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Spontaneous fission half-lives of actinides and superheavy elements
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Spontaneous fission half-lives of actinide and superheavy nuclei are calculated using the least-action integral
of the Wentzel-Kramers-Brillouin (WKB) tunneling probability through the barrier that appears in the defor-
mation landscape obtained in the macroscopic-microscopic potential-energy surface. This deformation-energy
landscape is obtained using a Fourier shape parametrization with four deformation parameters, taking into
account the nuclear elongation, left-right asymmetry, neck formation, and nonaxiality degrees of freedom. The
collective inertia tensor entering the WKB half-life expression is taken from the so-called irrotational flow
model, whose components are scaled by an overall multiplicative factor. For a comparisons, we have also
used the so-called phenomenological mass parameter depending only on the center-of-mass difference of the
nascent fission fragments. Our approach is shown to be able to reproduce empirical fission half-lives of all here
considered nuclei to within three orders of magnitude.
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I. INTRODUCTION

Nuclear fission, as a decay mode competitive with the
emission of light particles such as neutrons or protons, light
clusters like α particles, or γ quanta, plays an essential role
in determining the stability of heavy and superheavy nuclei.
The nuclear fission process, induced by the absorption of
neutrons, was observed for the first time in 1938 by Hahn
and Strassmann [1]. The theoretical explanation of this new
phenomenon was given within a few weeks by Meitner and
Frisch [2]. The authors established the basic features of the
low-energy fission process, such as the energy released in
this process being equal to almost 200 MeV, as well as the
fact that it results from the Coulomb repulsion of the fission
fragments. In addition, it was estimated that the number of
neutrons emitted in each such fission event is larger than 1,
and that a chain reaction is thus possible. The spontaneous
fission of uranium was discovered one and a half years later by
Flerov and Petrzak [3]. Since these early days, there has been
continuous interest in the theoretical description of the fission
process. Based on the first theoretical model of a nucleus as
a charged drop of liquid, fission was described as a collective
motion of nucleons in which the nuclear deformation evolves
from a form close to a sphere to an elongated shape [4]. Such
a shape evolution is associated with the change of the nuclear
deformation energy, which grows with increasing deforma-
tion. When the elongation exceeds a certain critical value,
the energy decreases again up to the point where the nuclear
system splits into two separated fragments. In a quantum
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mechanical description the fission process can be understood
as a tunneling through the potential energy barrier. The tunnel-
ing probability and, as a consequence, the spontaneous fission
half-life strongly depend on the shape of the fission barrier, in
particular its height and width. In recent decades, there have
been numerous attempts to present a reliable model of the
fission process which allows one to reproduce in particular
the measured spontaneous fission half-lives. Concerning the
quality of this reproduction, one has to keep in mind, however,
that already a very small change of the barrier, in particular its
height, will lead to a substantial change in the fission half-
life. Among the best known of these early attempts, within
which the global systematics of spontaneous fission half-
lives was reproduced, is the semiempirical formula proposed
in 1955 by Świątecki [5]. The main idea of this approach
comes from the observation of the strong correlation between
the logarithm of the spontaneous fission half-lives and the
ground-state microscopic corrections due to shell effects and
pairing correlations. Later on, this concept was applied to
up-to-date experimental data [6,7] within a modern version
of the liquid-drop model, which is now known as the Lublin-
Strasbourg drop (LSD) [8]. There are also various theoretical
approaches, often based on mathematically quite advanced
methods [9–17]. There have also been several attempts to
apply fully microscopic, self-consistent methods in order to
reproduce spontaneous fission observables [18,19], yet the ac-
curacy in the reproduction of the experimental data still cannot
be considered fully satisfactory. To obtain a better agreement
with experiment, one may consider pairing as a dynamical
degree of freedom (see Refs. [20,21]) and/or use improved
approaches for the collective inertia [22]. Such approaches
turn out, however, to be numerically very costly. In general,
spontaneous fission half-life calculations require not only an
assessment of the collective potential energy surface (evalu-
ated in a purely microscopical approach or, as will be done
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is what follows, within the macroscopic-microscopic model),
but also of the collective inertia tensor. Commonly, the latter
is obtained within the adiabatic time-dependent Hartree-Fock-
Bogoliubov (ATDHFB) approach [23,24] or the generator
coordinate method (GCM) with the generalized Gaussian
overlap approximation (GOA) [25,26], or is evaluated within
the so-called cranking approximation [27,28]. In the present
work the irrotational-flow approach of Ref. [29] (see also [30])
will be used to evaluate the inertia tensor.

The present paper is entirely devoted to presenting spon-
taneous fission half-lives, obtained within that approach, and
their comparison with experimental data.

Using the tunneling model of the Wentzel-Kramers-
Brillouin (WKB) approximation for a multidimensional
potential-energy barrier [31–33], we will analyze the half-
lives for this process for selected even-even actinide and
superheavy nuclei from Z = 90 to 110. The calculations will
in particular concern the isotopes of the actinide isotopic
chains Th, U, Pu, Cm, Cf, Fm, No, as well as the super-
heavy elements Rf, Sg, Hs, and Ds. The obtained results are
compared with the available experimental data. Since this
comparison turns out to be quite satisfactory, we will also
make predictions for half-lives of nuclei where the measure-
ments have not yet been performed.

In Sec. II the theoretical framework of our approach
will be presented with the main ingredients, which are the
parametrization of the nuclear shape and the model used
to describe the energy of the nuclear system as function of
the chosen deformation, which in our present study is the
macroscopic-microscopic approach together with the Lublin-
Strasbourg drop model with the Strutinsky shell correction
and a seniority force BCS pairing treatment. Section III will
explain how the spontaneous-fission half-life can be evaluated
in a WKB-type model, based on the least-action path, before
we present in Sec. IV our results for such half-lives for some
actinide and superheavy nuclei. Section V finally draws some
conclusions and gives an outlook on further studies which can
be carried out using our approach.

II. THEORETICAL FRAMEWORK

To be able to describe very heavy nuclei and their de-
excitation through fission or particle emission, a study of
the evolution of their energy with deformation is mandatory.
We will therefore investigate in what follows the two main
ingredients required for such an investigation of what is com-
monly called the deformation energy of the nucleus, namely
the parametrization of the nuclear shape up to very large
deformations as they may occur in the fission process, and
a model capable of giving a reliable description of the nuclear
energy at a given deformation.

A. Nuclear shape parametrization

The description of the huge variety of shapes encountered
all across the nuclear chart when going from oblate deforma-
tions as they appear in the transition region, generated by the
progressive filling of the p f shell, to prolate shapes as found
in the rare-earth region and in actinide nuclei necessitates a

sufficiently rich and flexible nuclear shape parametrization.
This demand is even tightened if one requires to describe the
typically very elongated and often necked-in shapes as they
are encountered in the fission process. To model the physical
reality (as far as that could be identified) as faithfully as
possible, it is obviously required to involve a large number
of deformation parameters, depicting the involved degrees of
freedom, characterized, e.g., by the multipole moments of
the nuclear shape. For a numerical treatment, on the other
hand, a very large number of deformation parameters would
be prohibitive. It is thus a demanding task for the nuclear
physicist to identify the essential degrees of freedom of a
nuclear shape and to bring these into an analytical form. A
very large number of shape parametrizations have been pro-
posed (see Ref. [34] for an extensive review) and are currently
used to investigate all kinds of nuclear properties. One of the
most widely used (see, e.g., [35–38]) such parametrization
is the one Lord Rayleigh proposed already towards the end
of the 19th century [39]. Among other more recent shape
parametrizations which have been used to describe the fis-
sion process, we mention the quadratic surfaces of revolution
(QSR) [40] of Nix, the Cassini ovals [41,42] of Pashkevich,
the famous funny-hills parametrization [28] of the Copen-
hagen group and its improved version [43], as well as the
expansion of the nuclear surface in Legendre polynomials [44]
of Trentalange, Koonin, and Sierk. While the Rayleigh shapes
were defined through the radius vector of any surface point in
spherical coordinates rs(θ, ϕ), an approach which is certainly
well adapted to the description of nuclear shapes reasonably
close to a sphere, it became rapidly clear that for the descrip-
tion of rather elongated shapes, as they are encountered in the
fission process, a parametrization that defines a surface point
in cylindrical coordinates in the form ρs(z, ϕ), as done in the
funny-hills parametrization [28], is much better suited. This
is, e.g., demonstrated by the fact that if one is interested in the
description of the fission process and in particular in fission
barrier heights, the Rayleigh parametrization fails, or rather
converges very slowly, as demonstrated in Ref. [45].

As already mentioned above, the description of nuclear
shapes as they appear along the way from the nuclear ground
state to the prescission configurations is obviously not a trivial
task. For practical reasons, that description should contain
as few deformation parameters of the nucleus as possible
and, at the same time, reproduce at least major classes of its
shape occurring on its path to fission. Such shapes should
comprise, among others, axially symmetric and asymmetric
deformations, elongated forms, characterized in addition by a
left-right symmetry or asymmetry, and the possible presence
of a neck forming between the two nascent fission fragments.

Making an expansion in cylindrical coordinates (ρ, z, ϕ) of
the distance ρs(z) of any surface point to the symmetry z axis
goes back to the seminal work of Ref. [28] and was developed
further in [44] and [43], but making an expansion of ρ2

s as
function of the cylindrical z coordinate in a Fourier series as

ρ2
s (u)

R2
0

=
∞∑

n=1

[
a2n cos

(
2n − 1

2
πu

)
+ a2n+1 sin

(
2n

2
πu

)]
(1)
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was presented for the first time in Ref. [46]. Here R0 is the
radius of the spherical nucleus having the same volume, while
2z0 is the length of the nuclear shape along the symmetry z
axis. The dimensionless variable u = (z − zsh )/z0 that appears
in (1) contains a parameter zsh given by

zsh = 3z2
0

2πR0

∑
n

(−1)n a2n+1

n
, (2)

which ensures that the center-of-mass of the shape is always
located at the origin of the coordinate system.

There are of course very many parametrizations to describe
the shape of a deformed nucleus. When one is interested in
rather elongated shapes as they occur in the fission process
it is certainly beneficial to use a parametrization defined in
cylindrical rather than in spherical coordinates, as explained
above. That is also why the so-called funny-hills shapes of
Ref. [28] had such a enormous success when dealing with
the fission process. The main advantage of the Fourier shapes
consists in the fact that the expansion of Eq. (1) converges
very rapidly and that its convergence can be tested easily
by carrying the expansion to higher orders, thus including
higher multipoles, which was not possible for the funny-hills
parametrization [28] or its extension [43].

Since our Fourier parametrization constitutes, when car-
ried to infinite order, a complete orthogonal series, it is clear
that for a given underlying model (like our macroscopic-
microscopic approach) the quality of the parametrization will
crutially depend on the convergence of the expansion, i.e.,
on the number of required expansion coefficients. It turns
out, however, that with a very limited number (of the order
of 2–3) of Fourier coefficients, which are going to be our
deformation parameters, one is able to describe the nuclear
energy along the fission path with a quite good accuracy of the
order of half an MeV as compared to the case when higher or-
der deformation parameters are taken into account, as shown
in Ref. [47]. It also turns out that these higher-order terms
will play a noticeable role only for very large elongations
and mass-asymmetry deformations (q2 ≈ 2.0 and q3 > 0.15),
while they do not exceed a very small fraction of an MeV in
the vicinity of the ground state.

The above parametrization (1) is obviously limited to axi-
ally symmetric shapes. Shapes breaking axial symmetry can,
however, be easily taken into account by assuming that the
cross section perpendicular to the symmetry z axis is always
of the form of an ellipse with half axes a and b (see Fig. 1),
such that a b = ρ2

s (z) which ensures volume conservation.
One then defines a nonaxiality parameter

η = b − a

a + b
, (3)

which is the relative difference of the half axes a and b.
Assuming that this parameter stays the same all across the
nuclear shape, the profile function of the nucleus can then
be written in the general case of an axially asymmetric shape
as [48,49]

	2
s (z, ϕ) = ρ2

s (z) fη(ϕ), (4)

FIG. 1. Schematic visualization of the parameters entering the
definition of the profile function defined through Eqs. (1)–(5).

where

fη(ϕ) = 1 − η2

1 + η2 + 2 η cos(2ϕ)
. (5)

In order to relate the Fourier coefficients aν , which are our
original deformation coordinates, to some more physical de-
formation parameters and make them vanish, at the same time,
for a spherical shape, we introduce new collective coordinates
qν [46] through

q2 = a(0)
2 /a2 − a2/a(0)

2 ,

q3 = a3,

q4 = a4 +
√

(q2/9)2 + (
a(0)

4

)2
,

q5 = a5 − (q2 − 2)
a3

10
,

q6 = a6 −
√( a2

100

)2
+ (

a(0)
6

)2
, (6)

where the a(0)
2n defined by

a(0)
2n = (−1)n−132/[π (2n − 1)]3 (7)

correspond to the values of the a2n for a sphere. In what
follows, we will limit ourselves to only four deformation
parameters (q2, q3, q4, η), where the parameter q2 determines
the elongation of the shape and therefore stands for the
quadrupole degree of freedom, q3 determines the octupole
deformation and thus indicates for the left-right asymmetry,
and q4 determines the hexadecapole deformation and would
be responsible for the possible formation of a neck region.
Higher order terms would then define higher-order multipole
moments.

B. The macroscopic-microscopic approach

Having defined above an analytical form of the
parametrization of the nuclear shape that is rapidly
convergent, as already mentioned and as shown, e.g., in
Ref. [49], we now present the macroscopic-microscopic
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TABLE I. Values of the parameters of the Lublin-Strasbourg
drop model.

bvol 15.4920 MeV
bsurf 16.9707 MeV
bcur 3.8602 MeV
kvol 1.8601
ksurf 2.2038
kcur −2.3764
C4 0.9181 MeV
r0 1.21725 fm

approach which will allow us to evaluate the nuclear energy
for any deformation that can possibly be defined through the
above shape parametrization. This macroscopic-microscopic
approach relies on a parametrization of the average,
liquid-drop type energy in the spirit of the Bethe-Weizsäcker
mass formula [50,51]. The liquid-drop type approach that we
are using in what follows is known as the Lublin-Strasbourg
drop (LSD) [8], which has the particularity to contain in
the leptodermous expansion a curvature A1/3 term and a
congruence energy term [52,53]. The total nuclear energy is
then given by

ELSD = bvol(1 − kvolI
2)A − bsurf (1 − ksurf I

2)A2/3Bsurf ({qi})

− bcur (1 − kcurI
2)A1/3Bcur ({qi})

− 3

5
e2 Z2

rch
0 A1/3

BCoul({qi}) + C4
Z2

A

− 10 exp(−4.2|I|). (8)

Taking into account, in addition, microscopic energy correc-
tions, taken from Ref. [53], the thus obtained total nuclear
energy, which had been fitted to reproduce in the best pos-
sible way the ground-state masses of the 2766 isotopes with
N � 8 and Z � 8 known at that time (2003), has been quite
successful. Indeed, it has been shown that it not only yields
an excellent description of nuclear masses (with an rms devi-
ation of 0.70 MeV from the experimental data), but is also
able to reproduce experimentally determined fission-barrier
heights with a very good accuracy [54]. The coefficients of
this leptodermous expansion are given in the Table I.

C. Shell and pairing corrections

Observing that the average nuclear energy can be approx-
imated to some reasonable extent by a macroscopic mass
formula, like the one of Weizsäcker and Bethe [50,51], but
that there exist quantum effects in such a microscopic sys-
tem, which are often responsible for the essential physical
phenomena, like the structure of the nuclear ground state, a
description of the influence of these quantum effects, asso-
ciated with the existence of the shell structure in nuclei, was
introduced by Myers and Swiatecki in 1966 in terms of energy
corrections [55] to the smooth liquid-drop energy given in our
case by Eq. (8).

An important contribution was then made by Strutinsky in
1968 [56–58] who proposed an efficient and fast method for

evaluating the total energy of a nucleus by a smoothing pro-
cedure of the single-particle spectrum which at the same time
takes into account in some approximate way the influence of
the energy levels lying in the continuum. The average nuclear
energy obtained in such a way can then be subtracted from
the sum of the single-particle levels, to yield the so-called
Strutinsky shell-correction energy

δEshell =
∑

ν

[nν − ñν ]eν, (9)

where nν is a Heaviside step function, with values 0 or 1
depending on whether eν is located above or below the Fermi
energy and ñν is obtained by a Strutinsky smoothing proce-
dure [59]. The main advantage of the Strutinsky method is that
it can be applied to an arbitrary spectrum of single-particle
states.

Another microscopic correction to the total energy of the
nucleus has its origin in the pairing correlations which ex-
ist in a BCS-type approach and for the heavy nuclei in our
study only between nucleons of the same type (protons or
neutrons). These pairing correlations cause nuclei having an
even number of protons or neutrons to be more bound. This
pairing interaction is described here by means of the super-
conducting approach proposed initially for the correlations
between electrons by Bardeen, Cooper, and Schrieffer [60]
in the framework of solid state physics. In order to obtain
a many-body solution which is an eigenstate of the particle
number operator, an approximate projection of the BCS wave
functions onto good particle number is carried out in our
approach using the generator coordinate method (GCM) with
the Gaussian overlap approximation (GOA), as presented,
e.g., in Ref. [61]. Let us recall that, in general, the nth GCM
many-body state |�n(X )〉 is constructed as a function of the
single-particle variables X as

|�n(X )〉 =
∫

dq fn(q)|X ; q〉, (10)

where fn(q) is called a weight function and |X ; q〉 is a genera-
tor function (of HF or HFB eigensolutions or BCS many-body
solutions) which depends on the single-particle variables X
and parametrically on a certain set of collective variables
{q} which can be taken simply as the nuclear deformation
parameters or other degrees of freedom describing nuclear
collective motions. To determine the weights fn(q), one as-
sumes the existence of stationary solutions εn of a many-body
Hamiltonian Ĥmb, with respect to variations δ fn(q):

〈�n(X )|Ĥmb|�n(X )〉 ≈ 〈�n(q)|Ĥcoll|�n(q)〉 = εn. (11)

Such a prescription represents an approximate way of map-
ping the single-particle fermionic space onto a collective
one, spanned by collective wave functions |�n(q)〉. For this
purpose, one assumes that the generator coordinates are con-
tinuous and the overlap of generating functions |X ; q〉 has
the form of a multidimensional Gaussian function or may
be transformed into a Gaussian shape. Let us now choose a
generator function |X ; φ, q〉 of the form

|X ; φ, q〉 = eiφN̂ |X ; q〉BCS, (12)
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where φ is the so-called gauge angle and {q} is the set of our
collective deformation parameters (η, q2, q3, q4). The Her-
mitian operator N̂ describes the fluctuations of the particle
number:

N̂ = −i
∂

∂φ
≡ N̂ − BCS〈X ; q|N̂ |X ; q〉BCS. (13)

With the above assumptions, the generator function entering
Eq. (10) may be rewritten to the form

|X ; q〉m =
∫ 2π

0
dφ ei(N+m)φ[e−iN̂φ|X ; q〉BCS] (14)

with m = N − 〈N̂〉 = 0,±2,±4, . . . corresponding to a
quantum number of rotation in the gauge space. For m = 0 we
get the prescription for the typical particle-number projected
generator function of the ground state, where no quasiparticle
pair is excited. The only effect of the particle number projec-
tion is then given by the appearance of a zero-point energy
correction ε0 given as

ε0 =
∑
ν>0

[
(eν − λ)

(
u2

ν − v2
ν

) + 2�uνvν + G v4
ν

]
/E2

ν∑
ν>0

E−2
ν

, (15)

which, subtracted from the BCS ground-state energy without
the projection effects, leads to a deeper ground-state energy at
a slightly higher value of the pairing gap � as compared to
the corresponding value in the original BCS approach without
projection. In Eq. (15), Eν =

√
(eν − λ)2 + �2 is the quasi-

particle energy while λ and G are respectively the BCS Fermi
energy and the constant pairing strength. Let us recall that
these equations need to be defined independently for protons
and neutrons. The summations in the above equations run
over the single-particle states inside what is called a pair-
ing window of energy width 2� around the Fermi energy
(λ − � < eν < λ + �). Since the pairing interaction takes
place between a pair of particles in time-reversed states and
since these have precisely the same energy, this summation
runs only over states with one fixed orientation of the total
angular momentum (let us call these k >0), excluding their
time-reversed (k <0) partners. In the above equations v2

ν is the
occupation probability of the single-particle state of energy eν ,
while u2

ν denotes the probability that this state is unoccupied.
Obviously, v2

ν + u2
ν = 1. The single-particle energies eν are

the eigenvalues of a mean-field Hamiltonian with a mean-field
potential chosen in a well adapted way to describe the nucleus
under study at the chosen deformation. In this work this is
generally done by folding the deformed shape, generated in
our case by the Fourier expansion described in Sec. II A, with
a Yukawa-folded single-particle potential as explained, e.g., in
Refs. [62,63].

The energy correction generated by the pairing correlations
is in general defined as the difference between the nuclear
energy, obtained in the above projected BCS approach, and
the sum of the single-particle energies up to the last occupied
level:

δEpair = EBCS −
∑

ν

eν − Ẽpair, (16)

where Ẽpair is the so-called average pairing energy, which
is not included in the liquid drop formula. The ground-state
energy of the nucleus in such an approximation can then be
written as

EBCS = 2
∑
ν>0

eνv
2
ν − G

( ∑
ν>0

uνvν

)2

− G
∑
ν>0

v4
ν − ε0. (17)

The average pairing energy, projected onto good particle num-
ber, is then written as

Ẽpair = − 1

2
g̃�̃2 + 1

2
g̃�̃ arctan

(
�

�̃

)
− ln

(
�

�̃

)
�̃

+ 3

4
G

�/�̃

1 + (
�

�̃

)2

/
arctan

(
�

�̃

)
− 1

4
G, (18)

where g̃ is the average density of single-particle levels in the
2� energy window whereas �̃ denotes the average pairing
gap corresponding to a given strength G of the pairing inter-
action [64]:

�̃ = 2� e−1/(Gg̃). (19)

In all above considerations one admits a pairing energy
window of width 2�, containing 2

√
15Nq (Nq = Z or N)

single-particle levels around the Fermi level [27].

D. Fitting the pairing strength

To be able to carry out the calculations in the above de-
scribed model with pairing correlations acting inside a pairing
window of width 2� around the Fermi energy, one has to ad-
just the pairing strengths G and through that the pairing gaps
�(G) for protons and neutrons. The latter have to reproduce
as accurately as possible the experimental proton and neutron
pairing gaps �

(exp)
q calculated out of measured mass excesses

of neighboring odd-even heavy and super-heavy nuclei.
The energy gap �q (q = n or p) for neutrons or protons

produced by the pairing interaction can be expressed as �q =
E (q)

int /2, with E (q)
int the interaction energy between two nucleons

of type q. For a given nucleus with particle numbers Nq = N
or Z , and the corresponding separation energies S(Nq),

E (q)
int = S(Nq) − 1

2 [S(Nq + 1) + S(Nq − 1)]. (20)

The pairing gaps are easily expressed in terms of the empir-
ical mass excesses B(Nq) taken from Ref. [65] in the following
way:

�(exp)
q = 1

4 [2B(Nq) − B(Nq + 1) − B(Nq − 1) ]. (21)

The pairing strengths G can therefore be deduced for the 39
heavy nuclei considered here with Z = 90–100 for which the
ground-state masses are known, by requiring that the pairing
gaps �q(G) obtained in the BCS approach (including the
particle-number projection) are found as close as possible to
their empirical values calculated through Eq. (21). One then
requires the expression∑

set

|�(exp)
q − �q(G)| (22)
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FIG. 2. Comparison between calculated (black triangles) and empirical (red dots) neutron (a) and proton (b) pairing gaps for the discussed
isotopic chains from Z = 90 up to Z = 100. For a better visibility we present for a given value of the mass number A only the one isotope
for which the discrepancy between the theoretical and experimental values is the largest. Panel (c) displays the largest differences between
experimental and calculated ground-state masses, evaluated with the pairing strength of Eq. (24) (red dots) and the one obtained from Eq. (23)
(black triangles).

to be minimal, where the sum runs over the set of the consid-
ered nuclei.

In order to facilitate the above discussed calculation, one
usually tries to find, in practice, a simple analytical expres-
sion, depending on N, Z , which is able to reproduce the
pairing strength G for both protons and neutrons in the best
possible way. Among many such phenomenological expres-
sions, one which has proved quite successful may be written
in the following form:

G A = g0 + g1 (N − Z ). (23)

This expression depends on only two free parameters g0 and
g1 which are fitted to the value of G that renders the expression
of Eq. (22) minimal.

The optimal values for these two parameters have been
found for our sample of 39 actinide nuclei to be g0 = 18.35

MeV and g1 = 0.103 MeV for protons and g0 = 24.1 MeV
and g1 = −0.135 MeV for neutrons.

The quality of this fit is visualized in Figs. 2(a) and 2(b),
where the values of pairing gaps calculated using Eq. (23) are
compared with the empirical ones obtained from Eq. (21). To
make this comparison more transparent, we chose to present
for each isobaric chain only the one isotope for which the
discrepancy between the theoretical and experimental values
is the largest. One finds that the largest deviation for neutrons
does not exceed 0.35 MeV (236Th and 250Cf) and for protons
is always lower than 0.2 MeV. Note that, on average, the
largest deviations from the empirical pairing gaps for both
types of nucleons reach around 0.12 MeV. Panel (c) of the
Fig. 2 presents, for the nuclei of panels (a) and (b), the
macroscopic-microscopic ground-state energy, relative to the
experimental data, with the pairing corrections obtained using
the prescription of Eq. (23) (black triangles) and a previous
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fit of the pairing strength (red dots) within the same projected
BCS-like formalism as presented above (see [66] and refer-
ences therein), where the nucleon number dependence of G is
given by

GqN2/3
q = g(0)

q , q = {n, p}. (24)

The only parameter g(0)
q in this parametrization of the pair-

ing strength is chosen as g(0)
q =0.28h̄ω0 with a value of h̄ω0 =

41/A1/3 MeV from, e.g., Ref. , widely used in macroscopic-
microscopic calculations, and common for both protons and
neutrons.

As demonstrated in Fig. 2, our new pairing-strength fit,
Eq. (23), gives, for most of the nuclei in question, an overall
better reproduction of experimental ground-state masses as
compared to its older version (24), with the exception of the
uranium isotopes 222,226,228U and of 256Fm. Only in 228U does
the discrepancy between the two models reach half an MeV,
to the disadvantage of the new fit.

Taking into account the above considerations, one can now
write down the total energy of the nuclear system in the
macroscopic-microscopic approach simply as

E (N, Z, def) = ELSD +
∑

q

[
δE (q)

shell + δE (q)
pair

]
(25)

with the shell and pairing corrections δE (q)
shell and δE (q)

pair (q =
n, p) being given by Eqs. (9) and (16), respectively.

Using the above prescription, we determine the nuclear
energy as function of the deformation parameters η, q2, q3, q4

introduced in Sec. II A which stand respectively for the non-
axiality, elongation, left-right asymmetry, and neck formation
of the nuclear shape. The collection of all these energy points
constitutes what we call the deformation energy or potential
energy surface (PES) of a given nucleus on a discrete four-
dimensional mesh. We have chosen a step length of �q2 =
0.05 for the elongation parameter q2 and a step length of
�q j = 0.03 for the other three deformation parameters with
a total mesh size of n2 × n3 × n4 × nη = 60 × 8 × 15 × 8 =
57 600 nodes. We have verified that within such a mesh size
we are able to describe with a good enough accuracy all physi-
cally relevant effects, such as local minima, saddle points, and
the formation of valleys and ridges.

III. MULTIDIMENSIONAL WKB METHOD

The WKB method is a semiclassical approximation which
is widely used in quantum mechanical problems to find an
approximate solution of the Schrödinger equation implying
a potential barrier that a particle has to overcome. The main
assumption is that, under the influence of the potential, the
particle wave function can still be expressed in terms of a
plane wave, but with a momentum k(x) which is position
dependent and slowly varying with x.

A. Lifetimes for spontaneous fission

In our approach we have used a multidimensional version
of the above characterized WKB approximation to calculate
the lifetime of a nucleus undergoing spontaneous fission.

This approach has been widely used in nuclear physics for
fission and particle or cluster emission to determine the
penetrability of a potential-energy barrier defined in a multi-
dimensional deformation space. In the following, the standard
one-dimensional WKB method will be generalized to the case
of a four-dimensional (4D) deformation space, where the de-
formation variables are the Fourier parameters qi introduced
in Eq. (6).

The first step to obtain a good-quality estimate of the life-
time of a system undergoing spontaneous fission is to search
for the so-called least-action path (LAP) leading to fission
in our four-dimensional PES that a nucleus would have to
follow on its way to a splitting into fission fragments. Such
an approach treats a fission event as a dynamical process,
characterized by the collective motion of a large number of
nucleons tending to elongate the nuclear shape starting from
some initial state, like the nuclear ground state until the scis-
sion configuration is reached. Please note that the collective
space in which the fission process is simulated can generally
be multidimensional, curvilinear, and non-Euclidean. In the
framework of our present approach the dynamical path to fis-
sion actually proceeds in the four-dimensional space defined
by the (q1 ≡ η, q2, q3, q4) Fourier deformation parameters de-
fined through Eqs. (3)–(7). We have investigated the result
that, when triaxiality q1 is taken into account, one can observe
along the least-energy path a slight (up to 1 MeV) lowering
of, in particular, the inner fission barrier height.

One should keep in mind that in the approach pre-
sented here the energy E (q1, q2, q3, q4) is obtained in the
macroscopic-microscopic model, where the shell corrections
in (25) are determined using the Strutinsky method, and the
correction for the residual pairing interaction is determined
using the BCS approximation with projection onto good par-
ticle number obtained in the GCM approach (see Ref. [61]). In
both these methods, single-particle states of a folded-Yukawa
mean-field potential [67] are used.

B. Least-action fission path

The action in the above four-dimensional deformation
space {q1, q2, q3, q4} can be represented through the following
integral:

S =
∫ q(exit)

2

q(g.s.)
2

dq2

√√√√ 2

h̄2

4∑
i j=1

βBi j ({qk})[E − E (g.s.)]
∂qi

∂q2

∂q j

∂q2
,

(26)

where E=E ({qk}) and E (g.s.) stand respectively for the po-
tential energy of any configuration along the fission path
and at the ground-state deformation. The integration extends
from the nuclear ground-state deformation up to a so-called
exit point, which has the same energy as the ground state
(Eexit = Eg.s.). In the four-dimensional deformation space one
can obviously find many such turning points which fulfill
this condition. The problem now consists in the identification
of the one particular exit point, and the corresponding path
leading to it, which renders the action integral minimal. At
first sight, one may have the impression that the action integral
in Eq. (26) is computed only along a one-dimensional fission
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FIG. 3. Hydrodynamical mass tensor components in the (q2, q1) (a) and (q2, q3) (b)–(d) deformation planes. The LAP is indicated by the
solid red line.

path L(q2) instead of being defined in the multidimensional
collective space. That is, however, not the case, since that
search for the minimal action path is carried out in the full
four-dimensional deformation space. A similar kind of ap-
proach has also been used, e.g., in Refs. [68,69], to calculate
the LA integral in a multidimensional deformation space.

The deformation-dependent quantity Bi j ({qk}), with in-
dices i, j (i = 1, 2, 3, 4) referring to the pair of shape
parameters (qi, q j ), is the irrotational flow inertia tensor in
the Werner-Wheeler approximation of Refs. [29,30], and is
presented in Fig. 3 for the diagonal components B11, B22, and
B33 as well as for the off-diagonal component B23 projected
onto the (q2, q1) and (q2, q3) planes respectively. The values
of the remaining two deformation parameters q3, q4, respec-
tively q1, q4, are adjusted in such a way that they minimize
the action integral (26) along the least-action path.

Note that the deformation dependent parts of this purely
macroscopic hydrodynamical mass tensor are essentially
identical for all nuclei and simply have to be multiplied by
a scaling factor proportional to A5/3 (see, e.g. Ref. [30]) to
obtain the proper value for a given particular nucleus.

As can be seen from Fig. 3, the component B22 gradually
increases with the elongation coordinate q2, but is only weakly

dependent on the mass-asymmetry parameter q3 in the region
where it would have the largest influence on the action inte-
gral (26), namely the barrier region around q2 � 1. The other
crucial inertia component, B33, changes relatively slowly with
q2 in this region (below q2�1), but increases dramatically
in the vicinity of the scission configuration (q2 � 1.5). In
contrast, the component B11 decreases with elongation q2,
but stays almost constant when q1 increases. Since the WKB
action integral is determined by an interplay between potential
energy and inertia tensor, we may thus conclude that it is
the potential energy gradient in the q1 direction which will
mostly contribute to the final value of the action integral,
and the impact of B11 is small in the presented case. Note
also that the absolute values of B33 are much larger than
the ones of B22, and thus may contribute substantially to the
total action (26) whenever a derivative dq3

dq2
�= 0 comes into

play. This essentially happens if the fission path leads to a
mass-asymmetric division, even if q3 stays about constant in
its final stage. If, in turn, the exit point is mass symmetric
(q3 = 0), the observed local variations of q3 along the LAP are
too weak to significantly contribute to the action integral. Note
also that for the nuclei studied here the fission path usually
starts heading towards mass asymmetric deformations around
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FIG. 4. Potential energy surfaces for 230U (a)–(c), 234U (d)–(f) and 252No (g)–(i) isotopes projected onto the (q2, q1), (q2, q3), and (q2, q4)
deformation subspaces. The projection is performed in such a way that the other two variables qk (q2) and qk′ (q2) take values that minimize the
action (26) between the equilibrium and the exit points. The dashed red and solid black curves correspond respectively to the LAP obtained
with the hydrodynamical mass tensor and the least-energy path (LEP).

the second minimum (q2 ≈ 0.7–0.8), as shown for the cases of
234U and 252No in Fig. 4. It is interesting to note that changes

of the off-diagonal mass component B23 shown in Fig. 3(d)
favor asymmetric fragmentation.
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The parameter β in front of the Bi j mass tensor in (26)
gives the possibility of rescaling its six independent com-
ponents altogether in order to reproduce within a couple of
orders of magnitude the measured actinide half-lives. Obvi-
ously, such an operation does not touch the relative values
between the tensor components that, in addition to the reli-
ability of the PES, are relevant for a realistic determination of
the course of the LAP, and thus of the resulting action value.
Let us also recall that the inertia components evaluated within
several available macroscopic or microscopic approaches may
even differ by as much as one order of magnitude [22].

One of the distinguishing features of the macroscopic
hydrodynamical mass tensor used here as compared to its
microscopic (e.g., cranking model) counterpart lies in the
fact that the latter is often a rapidly fluctuating function of
deformation, caused mainly by the microscopic shell effects.
These local variations are, to some extent, smoothed out by
the method of the least-action trajectory itself, where the cor-
responding fission path tends to omit states associated with
a sudden change of the potential energy or the inertia. This
has a clear impact on the stability of the numerical search
for the minimum of the action integral (26) in a multidi-
mensional space of variational parameters. For a comparison,
we have applied, in addition, another efficient prescription
of the collective inertia effects simulated by the so-called
phenomenological mass parameter B(R12), expressed in units
of the reduced mass ALAR/(AL + AR), with AL and AR being
respectively the mass numbers of the left and right nascent
fission fragments (see, e.g. Ref. [70]):

B(R12) = 1 + k
17

15
exp

[
λ

(
R(sph)

12 − R12
)]

. (27)

The above phenomenological mass depends on a single pa-
rameter R12 =R12(q2, q3, q4) (in units of the radius R0 of
the spherical shape) describing the evolution towards fission
and which is given by the centers-of-mass distance (for a
spherical shape one has R(sph)

12 =0.75 R0) of the nascent fis-
sion fragments. The parameter λ=0.408/R0 describes the
descent rate of the exponential function. For this purpose,
in contrast to the calculations with full hydrodynamical mass
tensor, the 3D total potential energy function E (q2, q3, q4) =
E (q0

1, q2, q3, q4) [Eq. (25)] is used, where q0
1 is the nonaxiality

deformation parameter which minimizes the full 4D potential
energy E (q1, q2, q3, q4) at at given point in the 3D (q2, q3, q4)
space.

Note that the magnitude of the center-of-mass distance R12

depends essentially on the elongation q2 and only weakly on
the left-right asymmetry and the neck formation parameters q3

and q4. For that reason the least-action fission path obtained
with the phenomenological mass of Eq. (27) cannot be called
fully dynamical.

According to the main concept, the parameter k in (27)
is chosen so as to ensure that the value of B(R12) along the
fission barrier (in the vicinity of q2 ≈ 1) is close to the value
of the hydrodynamical mass tensor in that area.

At the same time, it should reproduce the asymptotic be-
havior of the rigid-body inertia when a nucleus splits into two
fragments, in which case the inertia of the strongly elongated
nucleus, close to the scission configuration, should smoothly

merge into the reduced mass of the two fragments. It turned
out that the optimal value of this parameter is k = 11.5.

Let us now explain an efficient method to determine the
least-action path in our 4D deformation space with the full
hydrodynamical mass tensor, which will then be used to cal-
culate the tunneling probability through the fission barrier to
determine the spontaneous fission half-lives, a method based
on the concept first introduced by Ritz [71] and successfully
used in particular to study the spontaneous fission process
(see, e.g., Refs. [14,68,72].

In order to define any path in this deformation space, one
first of all notices that any continuous and bounded function
over a given finite interval of its arguments can always be
approximated by a Fourier type expansion, involving only sine
functions on top of an average path whenever the endpoints
of that path are fixed. In our case these endpoints are the
ground state and the exit point, which is characterized by the
same energy as the ground state. Defining that average path
under the barrier by a straight line in the 4D deformation
space connecting the ground state and the chosen exit point
and considering the elongation parameter q2 as the essential
variable responsible for the fission process, one can always
approximate the deformation parameters q1, q3, and q4 along
the least-action path as functions of q2 in the following way:

q(LAP)
ν (q2) =

[
qνg.s. + (qνexit − qνg.s. )(q2 − q2g.s. )

q2exit − q2g.s.

+
NF∑
�=1

a� sin

(
�π

q2 − q2g.s.

q2exit − q2g.s.

)]
, ν = 1, 3, 4,

(28)

where the amplitudes a� of the series expansion are treated
as variational parameters relative to which the minimum of
the action integral (26) is sought. The upper limit NF of the
Fourier series expansion in each direction of the least-action
path (28) has to be chosen such that the final result for the
tunneling probability becomes essentially independent of NF .
We have found that a value of NF = 8 turns out to be sufficient
to obtain a very good convergence of the Fourier series and
thus a well converged tunneling probability.

Having found the least-action integral value (with respect
to the a� amplitudes), one thus obtains the evolution of this
path for a given nucleus in the considered 4D deformation
space.

IV. RESULTS

In Fig. 4 we present, for 230U, 234U, and 252No, the pro-
jections of the full 4D PES onto the 2D subspaces (q2, q1),
(q2, q3), and (q2, q4), where the other two deformation pa-
rameters are functions of the elongation q2 that minimize the
action integral (26) between the ground state and the true
exit point. The evolution of the LAP obtained when using
the above discussed hydrodynamical mass tensor in these
landscapes is indicated by the dashed red line. These isotopes
have been chosen to cover the region from light to heavy
actinides. As can be seen, the PES and the associated LAP
in these extreme cases have different characteristics.
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In the lighter actinides, due to the importance of the shell
effects, the PES is showing a stronger deformation depen-
dence than in the heavy No isotope. Consequently, the fission
barriers in uranium isotopes, unlike in nobelium, are generally
higher and longer before reaching the scission configuration.
Already from this quick qualitative analysis, one can expect
a shorter half-life for nobelium as compared to uranium, an
analysis which turns out to be consistent with experiment. As
can already be concluded from Eq. (26), the final course of
the LAP in the multidimensional deformation space is dictated
by the interplay between the deformation dependent PES and
the inertia tensor. This is one of the reasons why the LAP is
usually shorter than the least-energy path (LEP) and passes,
in general, through higher energy configurations (sometimes
by as much as 2 MeV) as compared to the corresponding
LEP. The actions along both these trajectories can therefore
differ significantly, thus causing sometimes a difference of
several order of magnitude in the estimates of the fission
half-lives.

As one can see from part (e) of Fig. 4 the LAP for 234U
starts from the mass-symmetric ground state, stays left-right
symmetric (q3 = 0) up to the second minimum, and then
evolves towards asymmetric shapes around q2 ≈ 0.7, leading
finally to an asymmetric fission valley at a value of q3 ≈ 0.08.
One thus concludes that beyond the second minimum it is
absolutely crucial to take into account the mass asymmetry
degree of freedom. One notices that for the 234U nucleus
the LEP and the LAP stay fairly close to each other in the
(q2, q3) plane. When looking at the (q2, q4) subspace for the
same nucleus [see panel (f) of Fig. 4], one finds that the
LAP shows only a small deviations from a linear behavior
between a compact ground-state shape at q4 ≈ 0.08 and a
medium-elongated necked-in shape at q4 ≈ −0.12. Regarding
the nonaxiality in panel (d), the LAP between the ground
state and the second minimum goes through rather moderate
nonaxial shapes and returns to the axial path at q2 = 0.65. A
similar trend is observed in the super-heavy 252No nucleus,
panels (g)–(i). However, in this case the LAP ends around
q2 = 1.1, and is thus much shorter than in 234U. For 230U
[panels (a)–(c)], in contrast, the q3 deformation is almost
negligible in the initial and final stages of the LAP whereas
at intermediate elongations it reaches values beyond q3 ≈ 0.1
to bypass the energy maximum (barrier) peaked at q2 ≈ 1.
In both the discussed uranium isotopes their LAPs q4(q2)
presented in panels (c) and (f) have comparable shapes. In-
terestingly, the LAP in this nucleus prefers fully axial shapes
throughout its course, even though the LEP passes through
energetically slightly lower, nonaxial configurations at very
small deformations just beyond the equilibrium point. In order
to keep the computation time within reasonable limits, with-
out making any compromise on the precision of our results,
we are able to consider up to N tot

F = 3 × NF = 24 harmonic
components of the Fourier series in Eq. (28). In such a large
number of dimensions, one may clearly encounter a problem
of distinguishing between a local minimum and the global
minimum of the action integral. To avoid this behavior, we
start the calculations for each nucleus with a low value of NF ,
e.g., NF = 3 for each of the three functions q1(q2), q3(q2),
and q4(q2), on top of the average path. The value of NF is

then gradually increased, checking after each step whether
convergence is obtained. It turns out that restricting ourselves
to the first few components of these series, e.g., NF = 6–8,
leads to LAPs in Fig. 4 that visually cannot be distinguished
from the ones obtained with larger values of NF .

Having calculated the values S of the action, one can finally
determine the spontaneous fission lifetime using the standard
WKB relations [73]:

T (sf )
1/2 = 2π ln(2)

ω0
(1 + e2S ), (29)

where EZPE ≈ 1
2 h̄ω0 stands for the zero-point vibration energy,

which is usually taken to be in the range of 0.5–1 MeV. In the
present work we have taken a value of EZPE = 0.5 MeV.

Spontaneous fission half-lives are determined for selected
isotopes of some actinide nuclei, namely thorium (Th), ura-
nium (U), plutonium (Pu), curium (Cm), califormium (Cf),
and fermium (Fm), and for superheavy isotopes of nobelium
(Nb), rutherfordium (Rf), seaborgium (Sg), hassium (Hs), and
darmstadtium (Ds) for which experimental data are avail-
able [74]. The results of the calculations obtained with the
rescaled (adjusting the value of β) hydrodynamical mass
tensor and the phenomenological mass formula (27) are pre-
sented in Fig. 5 together with the measured values. The data
for the different isotopes calculated within the above pre-
sented approach are given as open blue circles and black
triangles, while the experimental data are shown as full red
circles.

In order to obtain some systematics for the spontaneous
fission half-lives displayed in Fig. 5 for all isotopic chains of
actinides and superheavy elements up to Z =110, we adjusted
the parameter β in Eq. (26) through a χ2 minimization to all
the 39 measured half-lives of actinide nuclei from thorium to
fermium presented in this figure. It is found that the half-lives
in all presented actinides are well reproduced with a value of
β =5. By choosing a smaller sample of nuclei, we made sure
that the value of β =5 is, indeed, practically independent of
the chosen sample. Such a β value ensures that the logarithm
of the evaluated half-lives in superheavy nuclei stays within
reasonable limits of approximately 2–3 (in 1/s units) which
is comparable with other recent evaluations [7,17]. Note that,
as shown, e.g., in Ref. [25], the hydrodynamical inertia used
in our approach may differ from the commonly used micro-
scopic mass tensors obtained within the cranking model or the
GCM + GOA model by almost a factor of 3–5 on average,
particularly for compact nuclear shapes (q2 ≈ 1), where the
fission barrier is located. Once the β value has been fixed,
the spontaneous fission half-lives calculations are performed
for superheavy elements and compared with the experimental
data.

We mention in this connection that the hydrodynami-
cal inertia tensor has been successfully used in calculations
of fission properties determined by shapes lying close to
the scission configuration, such as fragment mass or charge
distributions, whereas the barrier penetration occurs at sig-
nificantly lower elongations around the fission barrier (see,
e.g., Ref. [75]). As seen in Fig. 3, the inertia components
B22 and B33, most crucial for the barrier penetration, are
much smaller in the vicinity of the barrier region than the
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FIG. 5. Top panel: Comparison of spontaneous fission half-lives
for actinide nuclei obtained in our 4D WKB approach using the
irrotational flow hydrodynamical mass tensor (open circles) and the
phenomenological inertia with 3D PES, Eq. (27) (open triangles),
with the experimental data (full red circles). Bottom panel: Same but
for superheavy elements from nobelium to darmstadtium.

ones close to the scission point. One has to keep in mind,
however, that the pure hydrodynamical approach seems, in its
original form, not really well suited for a reliable description
of the effective inertia near the barrier. The phenomenological
mass parameter (27), on the other hand, contains the rigid-
body inertia as the essential contribution together with a term
(controlled by the parameter k) determined by the difference
between the rigid body and the irrotational flow inertia, thus
making it more reliable in the fission-barrier region. Inves-
tigating through the results presented in Fig. 5 the capacity
of our approach using the hydrodynamical inertia tensor to
reproduce the experimental fission half-lives for actinides, one
could be quite satisfied. There are, however, a few cases that
stick out from their isotopic systematics by several orders of
magnitude, which we would like to understand a little better.
These are, e.g., some isotopes of Cm and the heaviest Cf
nuclei. To explain these discrepancies one may refer, e.g., to a
recent work [7], where it is shown, within a simple analytical
1D WKB approach, similar to the so called Światecki-like
systematics [5] of spontaneous fission half-lives, that the main
quantity determining the fission half-life is the fission barrier
height EB. Its dependence on other properties of the fission
barrier, including the barrier width, is already somehow ab-
sorbed in the adjustable function f (EB) (given by Eqs. (24)
and (25) of Ref. [7]), common for all heavy and superheavy
elements. At this point, recall that even a small change in the
fission barrier height leads to a substantial decrease or increase
of the tunneling probability and, as a consequence, produces
longer or shorter fission half-lives. Another interesting case
is the one of the 232–234U isotopes, where our macroscopic-
microscopic model underestimates the fission barrier heights
by about 1–2 MeV (see also Ref. [76]), causing an underes-
timation of the resulting fission half-lives by as much as 2–4
orders of magnitude. A similar effect can also be observed for
the 242–246Cm isotopes, where the discrepancies between the
experimental and theoretical first and second barriers are the
largest throughout the whole isotopic chain.

The reason for the overestimation of the lifetimes for the
superheavy 258–262No and 256–260Rf isotopes is presumably
similar to that for the aforementioned actinides, except that
we do not know yet the experimental barriers to be able to
make quantitative comparisons.

It is interesting to also present in Fig. 5 the results of
half-lives calculations for actinide nuclei obtained with the
phenomenological inertia of Eq. (27) at the three-dimensional
PES, where the total 4D energy function is minimized, for
a given (q2, q3, q4) point, with respect to the nonaxiality
parameter q1. Comparing the results obtained with both ap-
proximations presented here, one observes that the half-lives
with the 4D WKB dynamics and full hydrodynamical inertia
tensor with a scalling factor β =5 (common for all tensor
components) are in a majority of cases much closer to the
experimental data than those obtained with the phenomeno-
logical scalar mass given by Eq. (27). This shows, we believe,
that considering the full description of the inertial properties
of a system at each deformation point, as well as including
as many degrees of freedom relevant for the fission dynamics
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as possible, leads to a substantial improvement of the fission-
lifetime estimates.

V. CONCLUSIONS

Spontaneous fission half-lives for nuclei in the range
90�Z � 104 have been determined in the macroscopic-
microscopic approach together with the Lublin-Strasbourg
drop model, a mean field generated by a Yukawa-folding pro-
cedure, and a constant G seniority BCS pairing treatment with
a GCM + GOA particle-number projection. The dynamics of
the fission process have been simulated by the semiclassical
WKB method with the least-action integral describing the
evolution of the nucleus in a four-dimensional deformation
space given by the expansion coefficients of a Fourier shape
parametrization which stand for elongation, mass asymmetry,
nonaxiality, and neck degrees of freedom.

In order to take into account the variation of the collective
inertia along the fission path, we have used in the action-
integral expression the irrotational flow mass tensor, which
has been scaled by a factor of 5 in order to reproduce fission
half-lives in the actinide region. Since the resulting least-
action path to fission tends, to some extent, to omit states
where the inertia changes dramatically, due to the presence
of shell effects, the use of this effectively macroscopic model
of collective inertia should reduce the numerical instabili-
ties in the search for the minimum of the action integral.
For a comparison, we also performed similar calculations of
fission lifetimes with a collective mass parameter, Eq. (27),
whichalso led to a quite reasonable reproduction of fission half
lives over a wide range of actinide and superheavy nuclei.

One notices that both these inertia approaches generally
yield quite close values of the spontaneous fission half-lives
T1/2, particularly in superheavy nuclei and in the actinide
isotopes of thorium, uranium, plutonium and curium, while
in californium and fermium the use of the collective mass

parameter, Eq. (27), and the 3D PES, leads to a mean
deviation reaching several orders of magnitude relative to
the experimental results. One should also be aware of the
fact that the phenomenological mass formula (27) is a kind
of hybrid approach which, in order to reproduce the sponta-
neous fission half-lives, combines two different evaluations
of the nuclear collective inertia, namely the hydrodynami-
cal and the rigid-body approaches, and thus requires three
adjustable parameters, whereas our approach using the irro-
tational flow mass tensor yields better results with a single
adjustable parameter, namely the parameter β in the expres-
sion (26) for the action integral. We mention at this point that
no zero-point energy correction is needed in our approach
and would, in fact, be in disaccord with the philosophy of
our macroscopic-microscopic model which, similarly to a
mean-field Hartree-Fock type framework, describes the nu-
clear energy by some kind of variational approach, where
there is no place for an artificial increase or lowering of the
ground-state energy.

One should also keep in mind that spontaneous-fission is
only one of several possible nuclear decay channels, com-
peting with the emission of light particles (like n or p), γ

quanta, or light clusters (e.g., α particles). The competition
between fission and these other processes is something we are
presently working on, and will be the subject of a forthcoming
publication.
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