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Background: 7Li and 7Be play an important role in big bang nucleosynthesis and nuclear astrophysics. The
3H(4He, γ ) 7Li radiative capture reaction is crucial for the determination of the primordial 7Li abundance.
In nuclear astrophysics, lithium isotopes have attracted great interest because of the puzzling abundance of
6Li and 7Li.
Purpose: In this work we study spectra of 7Be and 7Li and elastic scattering cross sections 4He(3He, 3He)
and 4He(3H, 3H) within the Gamow shell model (GSM) in the coupled-channel formulation (GSM-CC). The
evolution of channel amplitudes and spectroscopic factors in the vicinity of the channel threshold is studied for
selected states.
Methods: GSM provides the open quantum system formulation of the nuclear shell model. In the representation
of GSM-CC, GSM provides the unified theory of nuclear structure and reactions which is suited for the study of
resonances in 7Be and 7Li and elastic scattering cross sections involving 3H and 3He projectiles.
Results: GSM-CC in the multimass partition formulation applied to a translationally invariant Hamiltonian
with an effective finite-range two-body interaction reproduces well the spectra of 7Be and 7Li and elastic
scattering reactions 4He(3He, 3He) and 4He(3H, 3H). Detailed analysis of the dependence of reaction channel
amplitudes and spectroscopic factors on the distance from the particle decay threshold allowed us to demonstrate
the alignment of the wave function in the vicinity of the decay threshold. This analysis also demonstrates the
appearance of clustering in the GSM-CC wave function in the vicinity of the cluster decay threshold.
Conclusions: We demonstrated that GSM formulated in the basis of reaction channels including both cluster
and proton/neutron channels allows us to describe both the spectra of nuclei with low-energy cluster thresholds
and the low-energy elastic scattering reactions with proton, 3H, and 3He projectiles. Studying dependence of the
reaction channel amplitude and spectroscopic factor in a many-body state on the distance from the threshold,
we showed an evolution of the 3He, 3H clustering with increasing separation energy from the cluster decay
threshold and demonstrated a mechanism of the alignment of many-body wave function with the decay threshold
[J. Okołowicz, M. Płoszajczak, and W. Nazarewicz, Prog. Theor. Phys. Suppl. 196, 230 (2012); J. Okołowicz,
W. Nazarewicz, and M. Płoszajczak, Fortschr. Phys. 61, 66 (2013)], i.e., the microscopic reorganization of the
wave function in the vicinity of the cluster decay threshold which leads to the appearance of clustering in this
state.

DOI: 10.1103/PhysRevC.108.044616

I. INTRODUCTION

The properties of radioactive nuclei are the basis for un-
derstanding nuclear mechanisms involved in astrophysical
processes. These nuclei are studied in various reaction pro-
cesses, and their properties are strongly affected by couplings
to many-body continuum of scattering and decay channels.
Therefore, the unified theory of nuclear structure and reactions
is essential for the comprehensive description of radioac-
tive nuclei in which bound states, resonances, and scattering
many-body states are treated equally and within a single
theoretical framework. A pioneering work in this direction
was initiated with the continuum shell model [1–6]. Later,
the ab initio description of structure and reactions of light

nuclei was developed within the no-core shell model coupled
with the resonating-group method (NCSM-RGM) [7,8] and
the no-core shell model with continuum (NCSMC) [9]. One
can recall that the standard approach of reaction theory is
to build few-body nuclear systems from uncorrelated cluster
wave functions, with which cross sections are calculated by
using coupling potentials directly fitted on experimental data,
in the frame of the R-matrix theory for example [10].

An alternative approach to describe radioactive nuclei
within a unifying framework has been proposed with the
Gamow shell model (GSM) [11–14], which provides the
open quantum system formulation of the nuclear shell model.
GSM offers the most general treatment of couplings be-
tween discrete and scattering states, as it makes use of Slater
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determinants defined in the Berggren ensemble of single-
particle states [15]. GSM is the nuclear structure model par
excellence. For the description of scattering properties and
nuclear reactions, it is convenient to formulate GSM in the
representation of reaction channels (GSM-CC) [16]. The cal-
culation of resonances using this Hamiltonian is performed
in the Berggren basis, so that the Hamiltonian matrix in
GSM-CC is complex symmetric. However, the cross sec-
tions are calculated by coupling the real-energy incoming
partial waves to the target states generated by a Hermitian
shell model Hamiltonian. Consequently, cross sections are
calculated in a fully Hermitian framework, whereas complex
energies for resonances arise because one diagonalizes the
complex symmetric Hamiltonian matrix in the Berggren ba-
sis representation. In fact, GSM-CC makes use of the RGM
framework [17], where a basis of reaction channels is built
by coupling target and projectile states. The fundamental dif-
ference in GSM-CC is that target and projectile states are
GSM eigenstates [14]. Thus, GSM-CC is a complex-energy
extension of the standard RGM approach of Ref. [17]. The
GSM-CC approach has been applied to the description of
proton elastic scattering [16], deuteron elastic scattering [18],
neutron transfer in (d, p) reactions [19], and proton/neutron
radiative capture reactions [20–22].

In this work, we study low-energy spectra of 7Li and 7Be in
the binary multimass partition GSM-CC approach. The lowest
energy thresholds correspond to the emission of a neutron and
3H in 7Li, and a proton and 3He in 7Be. Hence, in 7Li we deal
with 6Li +n and 4He + 3H mass partitions, in 7Be we consider
6Li +p and 4He + 3He partitions.

7Li and 7Be play an important role in big bang nucleosyn-
thesis (BBN) and nuclear astrophysics. The 3H(4He, γ ) 7Li
radiative capture reaction is crucial for the determination of
the primordial 7Li abundance. In nuclear astrophysics, lithium
isotopes have attracted great interest because of the puzzling
abundance of 6Li and 7Li. Whereas 7Li in hot, low-metallicity
stars is supposed to come from the BBN, 6Li is believed
to originate from the spallation and fusion reactions in the
interstellar medium [23]. Therefore, the abundance ratio of
6Li and 7Li could be considered as an effective timescale of
the stellar evolution [24].

The 3He(4He, γ ) 7Be radiative capture reaction is essen-
tial for determining the fraction of branches in the pp chain
resulting in 7Be and 8B neutrinos [25,26]. Much interest
has been devoted to the study of reactions which can pro-
duce 7Be in the stellar environment [26], especially to the
6Li(p, γ )7Be reaction which is crucial for the elimination of
6Li and the formation of 7Be. Recent experimental studies
of this reaction suggested a possible resonant enhancement
of the 6Li(p, γ )7Be cross section near threshold [27] (see also
discussion of this reaction in Ref. [21]).

The existence of clustering and its survival in the competi-
tion with nucleonic degrees of freedom can be conveniently
studied in the basis of reaction channels comprising both
cluster and proton/neutron channels. The evolution of the
channel probability in the wave function with the distance
from the threshold of a given reaction channel can teach
us how specific nucleon-nucleon correlations appear in the
wave function and what the favored conditions are for their

formation. Complementary information on the evolution of
nucleon-nucleon correlations is provided by the change of the
spectroscopic factors for nucleons and nucleon clusters with
the distance from the reaction channel threshold.

In this work, we study the near-threshold behavior of
the probability weights of various reaction channels and the
spectroscopic factors in selected states of 7Li and 7Be in
the multimass partition coupled-channel framework of the
GSM-CC. To benchmark GSM-CC for elastic scattering with
heavier projectiles, we study the reactions 4He(3H, 3H) 4He
and 4He(3He, 3He) 4He, which probe the cluster structures in
7Li and 7Be.

The paper is organized as follows. In Sec. II we give the
basic elements of the GSM-CC formalism, while in Sec. III
we present the specific points related to the Hamiltonian
(Sec. III A) and the model space (Sec. III B). Section IV con-
tains results. Spectra and structure of wave functions in 7Li
and 7Be are displayed in Sec. IV A. The behaviors of channel
amplitudes and spectroscopic factors for selected mirror states
of 7Li and 7Be in the vicinity of channel threshold are dis-
cussed in Sec. IV C. Differential cross sections for the elastic
scattering reactions with proton, 3H, and 3He projectiles are
presented in Sec. IV B. Finally, in chapter V we summarize
the main conclusions of this work.

II. THEORETICAL FRAMEWORK

In this section we will briefly outline the GSM-CC for-
malism for the channels constructed with different mass
partitions. Detailed discussion of the GSM-CC in a sin-
gle mass partition case can be found in Refs. [14,16,18].
GSM-CC has already been defined for the case of a one-
nucleon projectile in Ref. [16] and in the case of a deuteron
projectile in Ref. [18]. Here, we will mainly concentrate on
the differences between one and many mass partition cases
of the GSM-CC and apply it for the description of spectra
of mirror nuclei 7Be and 7Li and the mirror elastic scattering
reactions 4He(3He, 3He) 4He and 4He(3H, 3H) 4He.

We work in the cluster orbital shell model formalism
(COSM), where all space coordinates are defined with re-
spect to the center of mass (c.m.) of an inert core [14,28].
For valence nucleons, one has r = rlab − R(core)

c.m. , where rlab

is the nucleon coordinate in the laboratory frame and R(core)
c.m.

is the core c.m. coordinate in the laboratory frame, which
then define r as the nucleon coordinate in the COSM frame.
The fundamental advantage of COSM is that one deals with
translationally invariant space coordinates, so that no spurious
center-of-mass motion can occur [14,28].

Clearly, the use of a core+valence nucleon picture leads
to smaller model space dimensions than in NCSM-RGM
and NCSMC [7–9]. Consequently, GSM and GSM-CC are
more convenient numerically as only a few valence nucle-
ons usually have to be considered therein in target states.
When phenomenological Hamiltonians are utilized in GSM
and GSM-CC, this also allows one to systematically study
the effect of interaction parameters on observables, which
would be very difficult both theoretically and practically with
no-core approaches. Additionally, the use of core coordinates
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greatly simplifies antisymmetry requirements, as Slater
determinants built from one-body states in the COSM frame
are both antisymmetric and without spuriosity [14,28]. This is
in contrast with other models, where one typically uses Jacobi
coordinates for that matter [17], with which antisymmetry is
cumbersome to apply in practice.

The A-body state of the system is decomposed into reaction
channels defined as binary clusters:∣∣�J

M

〉 =
∑

c

∫ +∞

0

∣∣(c, r)J
M

〉uJM
c (r)

r
r2 dr, (1)

where the radial amplitude uJM
c (r), describing the relative

motion between the two clusters in a channel c, is the solu-
tion to be determined for a given total angular momentum
J and its projection M. The different channels in the sum
of Eq. (1) are orthogonalized independently of their mass
partition, involving different numbers of neutrons and protons.
The integration variable r is the relative distance between the
c.m. of the cluster projectile and that of the inert core [14],
and the binary-cluster channel states are defined as

|(c, r)〉 = Â[∣∣�JT
T ; NT , ZT

〉 ⊗ |r Lc.m. Jint JP; n, z〉]J

M (2)

where the channel index c stands for different quantum num-
bers and mass partitions {(NT , ZT , JT); (n, z, Lc.m., Jint, JP)},
NT and ZT are the numbers of neutrons and protons of the
target, and n and z are the numbers of neutrons and protons
of a projectile, so that N = NT + n and Z = ZT + z are the
total numbers of neutrons and protons in the combined system
of a projectile and a target. Â is the intercluster antisym-
metrizer that acts among the nucleons pertaining to different
clusters. The states |�JT

T 〉 and |r Lc.m. Jint JP〉 are the target
and projectile states in the channel |(c, r)〉 of Eq. (2) with
their associated total angular momenta JT and JP, respectively.
The angular momentum couplings read JP = Jint + Lc.m. and
JA = JP + JT. Quantum numbers of many-body projectiles
are customarily denoted by 2Jint+1(Lc.m.)JP

in numerical appli-
cations. These angular quantum numbers will also be denoted
by � j when dealing with one-nucleon systems for clarity.

The Schrödinger equation H |�J
M〉 = E |�J

M〉 in the channel
representation of the GSM takes the form of coupled-channel
equations:∑

c

∫ ∞

0
r2[Hcc′ (r, r′) − ENcc′ (r, r′)]

uc(r)

r
= 0, (3)

where E stands for the scattering energy of the A-body sys-
tem. To simplify reading, we have dropped the total angular
momentum labels J and M, but one should keep in mind that
Eq. (3) is solved for fixed values of J and M. The kernels in
Eq. (3) are defined as

Hcc′ (r, r′) = 〈(c, r)|Ĥ |(c′, r′)〉, (4)

Ncc′ (r, r′) = 〈(c, r)|(c′, r′)〉. (5)

As the nucleons in the target and those of the projectile inter-
act via a short-range interaction in our model, it is convenient
to express the Hamiltonian Ĥ as

Ĥ = ĤT + ĤP + ĤTP, (6)

where ĤT and ĤP are the Hamiltonians of the target and
projectile, respectively. In particular, ĤT is the intrinsic

Hamiltonian of the target, and its eigenvectors are |�JT
T 〉

with eigenvalues EJT
T . Ĥ is considered to be the standard

GSM Hamiltonian. The projectile Hamiltonian ĤP can be
decomposed as follows: ĤP = Ĥint + Ĥc.m.. Ĥint describes the
intrinsic properties of the projectile and |Jint〉 is its eigenvector
with an eigenvalue EJint

int . Ĥc.m. describes movement of the
projectile center of mass, defined in a single channel c as

Ĥc.m. = h̄2

2m̃P

(
− d2

dr2
+ L(L + 1)

r2

)
+ U L

c.m.(r), (7)

where L = Lc.m. is the c.m. orbital angular momentum, m̃P in
this equation is the reduced mass of the projectile, and U L

c.m.(r)
is the basis-generating Woods-saxon (WS) potential for nu-
cleon projectile, while it is the weighted sum of proton and
neutron basis-generating WS potentials for the multinucleon
projectile wave functions [14,18]:

U L
c.m.,C(r) = z U L

p,C(r) + nU L
n,C(r) (8)

U L
c.m.,s.o.(r) = z

n + z
U L

p,s.o.(r) + n

n + z
U L

n,s.o.(r), (9)

where z and n are the numbers of protons and neutrons of
the cluster, respectively, while U L

p,C(r), U L
p,s.o.(r), and U L

n,C(r),
U L

n,s.o.(r) are the WS basis-generating central and spin-orbit
potentials for proton and neutron, respectively.

One uses fractional masses in front of neutron and proton
spin-orbit potentials in order to form an average spin-orbit po-
tential in Eq. (9). Indeed, from this averaging procedure, one
can separate the radial spin-orbit dependence from the sum
over the � · s terms of the nucleons of the cluster projectile.
The spin of the projectile then appears explicitly:

∑
� · s �

[1/(n + z)] Lc.m. ·
∑

s � (Lc.m. · Jint )/(n + z). An additional
factor 1/(n + z) arises because � � Lc.m./(n + z) [14,18].

The potential U L
c.m.(r) of Eq. (7) then reads

U L
c.m.(r) = U L

c.m.,C(r) + 1

n + z
U L

c.m.,s.o.(r) (Lc.m. · Jint ). (10)

In order to calculate the kernels Hcc′ (r, r′) and Ncc′ (r, r′)
[Eqs. (4) and (5)], one expands |(c, r)〉 onto a one-body
Berggren basis:

|(c, r)〉 =
∑
Nc.m.

uNc.m.
(r)

r
|(c, Nc.m.)〉, (11)

where Nc.m. refers to the projectile c.m. shell number in the
Berggren basis generated by diagonalizing Ĥc.m. [see Eqs. (7)
and (10)], i.e. Ĥc.m.|Nc.m. Lc.m.〉 = Ec.m.|Nc.m. Lc.m.〉, and where

|(c, Nc.m.)〉 = Â∣∣{∣∣�JT
T

〉 ⊗ ∣∣Nc.m.Lc.m.JintJP
〉}J

M

〉
.

For simplicity, the channel dependence has been omitted in
the notation of uNc.m.

(r).
Consequently, one can expand Eqs. (4) and (5) onto the

basis of |(c, Nc.m.)〉 using Eq. (11) and derive the following
expression for the Hamiltonian and norm kernels:

Hcc′ (r, r′) = (
Ĥc.m. + EJT

T + EJint
P

)δ(r − r′)
rr′ δcc′ + Ṽcc′ (r, r′)

(12)

Ncc′ (r, r′) = δ(r − r′)
rr′ δcc′ + �Ncc′ (r, r′) (13)
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where Ṽcc′ (r, r′) includes the remaining short-range poten-
tial terms of the Hamiltonian kernels and is the inter-cluster
potential and �Ncc′ (r, r′) is a finite-range operator as well.
Hcc′ (r, r′) reduces to its diagonal part at large distance as
Ṽcc′ (r, r′) vanishes identically at a large but finite radius out-
side the target. Hence, nucleon transfer, which is induced by
Ṽcc′ (r, r′), and consequently ĤTP, can only occur in the vicinity
of the target and not in the asymptotic region.

The determination of Ṽcc′ (r, r′) involves the calculation of
the matrix elements of ĤTP, which contain a shell model
Hamiltonian. In order to compute ĤTP one has to expand
each |(c, Nc.m.)〉 onto a basis of Slater determinants built
upon single-particle (s.p.) states of the Berggren ensemble. In
practice, the intrinsic target and projectile states, |�JT

T 〉 and
|Jint〉 respectively, are already calculated with that basis, as
ĤT and Ĥint are solved using the GSM. Consequently, the
nuclear structure of target and projectile states is more realistic
than in the R-matrix theory, for example, where nuclei are
typically built from a few uncorrelated clusters [10]. Note
that in general, as we deal with very light projectiles, Ĥint is
solved within a no-core framework, and this will be the case
in the present study. The remaining task consists in expanding
|Nc.m. Lc.m. Jint〉 in a basis of Slater determinants. In GSM-CC,
one applies for this a center-of-mass excitation raising opera-
tor onto |Jint〉. More details can be found in Refs. [14,18].

The many-body matrix elements of the norm kernel Eq. (5)
are calculated using the Slater determinant expansion of the
cluster wave functions |(c, Nc.m.)〉. Note that the antisymmetry
of channels, enforced by the antisymmetrizer in Eq. (2), is
exactly taken into account through the expansion of many-
body targets and projectiles with Slater determinants.

The treatment of the nonorthogonality of channels is
the same as in the one-nucleon projectile case [16]. Chan-
nels are indeed not orthogonal in general because of the
antisymmetrizer in Eq. (2). In order to deal with orthog-
onalized channels, Ncc′ (r, r′) [see Eq. (5)] is diagonalized,
which generates orthogonal channels. These channels are lin-
ear combinations of the initial channels |(c, r)〉 [see Eq. (2)].
The coupled-channel equations(3) then become

∑
c

∫ ∞

0
r2

(
H̃cc′ (r, r′) − Eδcc′

δ(r − r′)
rr′

)
wc(r)

r
= 0, (14)

where H̃cc′ (r, r′) contains Hcc′ (r, r′) and terms induced by the
orthogonalization of channels, and the wc(r) functions are the
orthogonalized channel wave functions [16].

Once the kernels are computed, the coupled-channel equa-
tions (3) and (14) can be solved using a numerical method
based on a Berggren basis expansion of the Green’s function
(H − E )−1, that takes advantage of GSM complex energies.
Details of this method can be found in Refs. [14,18].

III. MODEL SPACE AND HAMILTONIAN

GSM in the Slater determinant representation will be used
to optimize the effective interaction. In the following, the
GSM-CC with cluster projectiles will be applied to the spectra
of 7Be, 7Li, and elastic scattering reactions 4He(3He, 3He) and
4He(3H, 3H).

TABLE I. Parameters of the one-body potential for protons and
neutrons optimized to describe spectra of 6Li, 7Be, 7Li in GSM. From
top to bottom: central potential depth, spin-orbit potential depth,
radius, diffuseness, and charge radius.

Parameter Neutrons Protons

V0 (MeV) 52.9 52.2
V�s (MeV fm2) 3.39 3.77
R0 (fm) 2.0 2.0
a (fm) 0.65 0.65
Rch (fm) 2.5

A. Effective Hamiltonian

The effective Hamiltonian is optimized using the GSM
in Berggren basis. The model is formulated in the relative
variables of COSM that allow one to eliminate spurious c.m.
excitations (see Sec. II). We use 4He as an inert core with two,
three, or four valence nucleons to describe 6Li, 7Be, and 7Li
wave functions, respectively.

The Hamiltonian consists of the one-body part and the
nucleon-nucleon interaction of FHT type [29,30] supple-
mented by the Coulomb term:

VFHT = Vc + VLS + VT + VCoul (15)

where Vc, VLS, VT represent its central, spin-orbit and ten-
sor parts, respectively. The two-body Coulomb potential
VCoul(r) = e2/r between valence protons is treated exactly at
GSM-CC level by incorporating its long-range part into the
basis potential (see Ref. [31] for a detailed description of the
method).

The 4He core is mimicked by a one-body potential of the
WS type, with a spin-orbit term, and a Coulomb field (see
Table I). The WS potential depth V0, the spin-orbit strength
V�s, the radius R0, and the diffuseness a are the four parame-
ters that enter the optimization carried out independently for
protons and neutrons. The Coulomb potential was kept fixed
and equal to the potential generated by a spherical Gaussian
charge distribution: UCoul(r) = 2e 2erf (r/R̃ch )/r [32], where
R̃ch = 4Rch/(3

√
π ) and erf (r/R̃ch ) is the error function in

r/R̃ch. The previous value for R̃ch allows UCoul(r) to resem-
ble the Coulomb potential generated by a uniformly charged
distribution of radius Rch.

The different components VFHT in Eq. (15) read [33]

Vc(r) =
3∑

n=1

V n
c

(
W n

c + Bn
cPσ − Hn

c Pτ − Mn
c Pσ Pτ

)
e−βn

c r2
,

(16)

VLS(r) = Lrel · S
2∑

n=1

V n
LS

(
W n

LS − Hn
LSPτ

)
e−βn

LSr2
, (17)

VT(r) = Si j

3∑
n=1

V n
T

(
W n

T − Hn
TPτ

)
r2e−βn

Tr2
, (18)

where r is the distance between the nucleons i and j, Lrel and
S are the relative orbital angular momentum and spin of the
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TABLE II. Parameters of the FHT interaction used in this study
are compared with the original FHT parameters with their statistical
uncertainties reported in [33] for p-shell nuclei.

Parameter FHT [33] FHT (this work)

V 11
c −3.2 (220) −13.8 (232)

V 10
c −5.1 (10) −5.38 (0.24)

V 00
c −21.3 (66) −31.5 (145)

V 01
c −5.6 (5) −5.3 (0.33)

V 11
LS −540 (1240) −249.2 (2.7)

V 11
T −12.1 (795) −11.1 (29)

V 10
T −14.2 (71) −0.05 (4.7)

two-nucleon system, respectively, Si j = 3(σ i · r̂)(σ j · r̂) −
σ i · σ j is the tensor operator, Pσ and Pτ are spin and isospin
exchange operators, respectively, V n

c , n ∈ {1, 2, 3} and V n
LS,

V n
T , n ∈ {1, 2} are parameters fitting the central, spin-orbit and

tensor parts, respectively, while other parameters are fixed
[29]. Following Ref. [33], we rewrite VFHT in terms of its spin
and isospin dependence

Vc(r) = V 11
c f 11

c (r)�11 + V 10
c f 10

c (r)�10

+V 00
c f 00

c (r)�00 + V 01
c f 01

c (r)�01, (19)

VLS(r) = (Lrel · S)V 11
LS f 11

LS (r)�11, (20)

VT(r) = Si j
[
V 11

T f 11
T (r)�11 + V 10

T f 10
T (r)�10

]
, (21)

where �ST are projectors on spin and isospin [34,35] and
f ST
c (r), f ST

LS (r), and f ST
T (r) functions are straightforward to

evaluate from Eqs. (16), (17), and (18). The matrix elements
of the Hamiltonian are calculated in the model space consist-
ing of all proton and neutron harmonic oscillator (HO) states
having � � 3 and n � 4. The use of Berggren basis at this
level is not necessary as the Slater determinants used therein
only generate the GSM-CC Hamiltonian interaction Ṽcc′ (r, r′)
[see Eq. (12)], which is finite ranged. Note that the use of HO
states does not hamper the asymptotes of the loosely bound
and resonance GSM-CC states of 7Be and 7Li. Indeed, HO
states are used only to generate the finite range part of the
GSM-CC Hamiltonian, whereas the GSM-CC eigenstates of
7Be, 7Li, and 8Be are expanded with Berggren basis states.
Consequently, the density of 7Be and 7Li GSM-CC eigen-
states slowly decreases or increases exponentially in modulus,
respectively, independently of the Gaussian falloff of HO
states. Convergence for Hamiltonian representation is typi-
cally obtained with 5–10 HO states per partial wave [31]. The
parameters of the optimized one-body potential which imitate
the effect of a 4He core are shown in Table I. The statistical
properties of the FHT interaction parameters for p-shell nuclei
have been analyzed in Ref. [33]. It has been noticed that
they bear a sizable statistical error. Consequently, one can
modify the FHT interaction parameters within the bounds of
calculated statistical errors without in principle changing the
interaction. Table II compares parameters of the FHT inter-
action optimized in this work with those given in Ref. [33].
The optimization of the FHT interaction in GSM has been

performed in a model space spanned by spdf partial waves.
One can see that the parameters of the interaction obtained in
the present optimization agree with those of Ref. [33] within
the statistical errors.

B. Model space in GSM-CC calculation

GSM calculations of 6Li target are performed in the ap-
proximation of 4He core, whereby 0s1/2 HO shells are fully
occupied, and valence particles are in two main resonantlike
HO shells 0p3/2, 0p1/2 and several scatteringlike subdominant
HO shells in {s1/2}, {p3/2}, {p1/2} {d5/2}, {d3/2}, { f7/2}, { f5/2}
partial waves, verifying n ∈ [1 : 4] in sp waves and n ∈ [0 :
4] in other partial waves. This small number of HO states
per partial wave has been seen to satisfactorily approximate
the nonresonant continuum. To reduce the size of the GSM
matrix, the basis of Slater determinants is truncated by lim-
iting the excitation energy to 8h̄ω and restricting to 2 the
number of nucleons in the continuumlike states.

Antisymmetric eigenstates of the GSM-CC are expanded
in the basis of channels [4He(0+

1 ) ⊗ 3He(Lc.m. Jint JP)]Jπ

and [6Li((Jπ )T ) ⊗ p(� j)]Jπ

for 7Be, and [4He(0+
1 ) ⊗

3H(Lc.m. Jint JP)]Jπ

and [6Li((Jπ )T ) ⊗ n(� j)]Jπ

for 7Li,
where 6Li can be in its ground state or in low-lying excited
states.

The internal structure of 3He and 3H projectiles in
the channels [4He(0+

1 ) ⊗ 3He(Lc.m. Jint JP)]Jπ

and [4He(0+
1 ) ⊗

3H(Lc.m. Jint JP)]Jπ

is calculated using the N 3LO interaction
[36] without the three-body contribution, fitted on phase shifts
properties of proton-neutron elastic scattering reactions. The
N 3LO realistic interaction is diagonalized in six HO shells
to generate the intrinsic states of 3He and 3H. The oscillator
length in this calculation is b = 1.65 fm. For this value of
the oscillator length, the ground state energy of 3He equals
−6.35 MeV, whereas the experimental value is −7.71 MeV.
For 3H, the ground state energy is −7.14 MeV as compared
to −8.48 MeV experimentally. In the coupled-channel equa-
tions of GSM-CC, we use the experimental binding energies
of 3He, 3H to assure correct thresholds 4He + 3He, 4He + 3H.

The relative motion of the 3He (3H) cluster c.m. and
the 4He target is calculated in the Berggren basis generated
by proton and neutron Woods-Saxon potentials. Different
Lc.m. = 0, 1, 2, 3 partial waves bear 3, 3, 2, 2 pole states,
respectively, which are included along with the respective
contours. The contours consist of three segments, defined by
the origin of the Kc.m. complex plane and the complex points
Kc.m.: 0.2 − i0.1 fm−1, 1.0 − i0.1 fm−1, and 2 fm−1. Each
segment is discretized with 15 points, so that each contour
possesses 45 points. All unbound pole states lie below the
Berggren basis contours, so that they do not belong to the
considered Berggren bases. For the intrinsic 3He and 3H wave
functions we consider only the most important one bearing
(Jπ )int = 1/2+. Since the c.m. parts of 3He and 3H projectiles
bear Lc.m. � 3, the total angular momentum of 3He and 3H
projectiles satisfies JP � 7/2.

The use of two different interactions to deal with the struc-
ture of 7Be (7Li) and the elastic scattering of 3He (3H) on
an α particle is necessary as we have two different pictures
in our model. Before and after the reaction occurs, 3He (3H)

044616-5



J. P. LINARES FERNANDEZ et al. PHYSICAL REVIEW C 108, 044616 (2023)

FIG. 1. The calculated energy spectra of 6,7Li and 7Be, are compared with experimental data [37]. 7Li and 7Be are calculated in GSM-CC
using the channel basis with two mass partitions: 4He +3He, 6Li +p and 4He +3H, 6Li +n, respectively. The spectrum of 6Li is calculated in
GSM and wave functions are expanded in the HO basis. Numbers in the brackets indicate the resonance width in keV.

is far from the target and its properties as a cluster projectile
are prominent, whereas during the reaction the properties of
composite systems 7Be (7Li) are decisive. As the FHT inter-
action is defined from 6Li, 7Be, 7Li properties, it cannot be
used to grasp the structure of 3He (3H) at large distances.
Conversely, the N 3LO interaction cannot be used in a core
and valence particles approximation. Added to that, the N 3LO
interaction generating 3He (3H) projectiles makes use of lab-
oratory coordinates, which are directly replaced by COSM
coordinates when building channels [see Eq. (2)]. While it
would be possible, in principle, to apply the transformation
from laboratory to COSM coordinates from a numerical point
of view, this procedure would be very cumbersome, with its
effect also being much smaller than the other theoretical as-
sumptions present in our model (presence of an inert core, use
of an effective FHT interaction fitted from experimental data,
restricted number of channels, truncated model spaces, etc.).
Moreover, as the N 3LO interaction enters only the 3He (3H)
projectile basis construction, it is not explicitly present in the
Hamiltonian, but just insures that the projectile 3He (3H) has
both the correct wave function (binding energy) and asymp-
totic behavior. This also implies that the use of both laboratory
and COSM coordinates is consistent therein, as they coincide
asymptotically. Indeed, cross sections are always calculated in
the asymptotic region, whereby rlab − R(core)

c.m. � rlab as rlab →
+∞ therein and 〈R(core)

c.m. 〉 equals a few fm. As a consequence,
the use of both realistic interaction for projectiles and effec-
tive Hamiltonian for composites induces no problem in the
GSM-CC framework.

IV. RESULTS

A. Spectroscopy of 7Be and 7Li

The lowest particle emission thresholds in 7Be and
7Li are 4He + 3He and 4He + 3H. Therefore, the descrip-
tion of low-energy states in 7Be and 7Li requires the
inclusion of the coupling to 3He and 3H continua, re-
spectively. In this section, we shall discuss the spectra of
mirror nuclei 7Be and 7Li in the channel basis compris-
ing [4He(0+

1 ) ⊗ 3He(Lc.m. Jint JP)]Jπ

, [6Li((Jπ )T ) ⊗ p(� j)]Jπ

in 7Be, and [4He(0+
1 ) ⊗ 3H(Lc.m. Jint JP)]Jπ

, [6Li((Jπ )T ) ⊗
n(� j)]Jπ

in 7Li.
Figure 1 shows the GSM spectrum of 6Li and the

GSM-CC spectrum of 7Li and 7Be. Wave functions of 6Li
states shown in this figure are used to build channel states
in 7Li and 7Be. The GSM-CC calculation for 7Be and 7Li
are performed in the channel basis consisting of the two
mass partitions 6Li +p, 3He + 4He and 6Li +n, 3H + 4He,
respectively. The interaction matrix elements entering the
microscopic channel-channel coupling potentials involving
nucleon-projectile channels have been rescaled by the tiny
multiplicative corrective factors c(Jπ ) for 3/2−

1 , 1/2−
1 , 7/2−

1 ,
and 5/2−

2 states to correct for missing channels in the
model space. These scaling factors are c(3/2−) = 1.0092,
c(1/2−) = 1.0156, c(7/2−) = 1.0173, c(5/2−) = 0.9955.

The agreement with experimental data for resonance ener-
gies is excellent. However, the calculated widths are smaller
than found experimentally. One may notice a change of
the order of higher lying levels 1/2−

2 , 3/2−
2 , 7/2−

2 between
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FIG. 2. The channel decomposition for selected states of 7Be.
In different colors, we show the summed GSM-CC probabilities of
p and 3He channels. Detailed information about major GSM-CC
channel probabilities and spectroscopic factors in individual states
of 7Be can be found in Table III. Information about the number of
protons and neutrons in different shells is given in Table IV.

7Be and 7Li due to different threshold energies and Coulomb
energies. All energies of the states are given relatively
to the energy of 4He core. Experimental and calculated
particle emission thresholds for 4He + 3He and 6Li +p in
7Be and 4He + 3H and 6Li +n in 7Li coincide within the
line thickness in the figure. Remaining tiny differences
are corrected in the coupled-channel equations so that the
threshold energies correspond exactly to the experimental
values.

Channels in 7Be (7Li), equal to [6Li((Jπ )T ) ⊗
p(� j)]Jπ

([6Li((Jπ )T ) ⊗ n(� j)]Jπ

), are built by coupling
the 6Li wave functions with (Jπ )T = 1+

1 , 1+
2 , 3+

1 , 0+
1 ,

2+
1 , 2+

2 with the proton (neutron) wave functions in the
partial waves � j: s1/2, p1/2, p3/2, d3/2, d5/2, f5/2, f7/2. The
cluster channels [4He(0+

1 ) ⊗ 3He(Lc.m. Jint JP)]Jπ

([4He(0+
1 ) ⊗

3H(Lc.m. Jint JP)]Jπ

) are constructed by coupling 3He (3H)
wave function in partial waves: 2S1/2, 2P1/2, 2P3/2, 2D3/2,
2D5/2, 2F5/2, 2F7/2, with the inert 4He core in the Jπ

i = 0+
1

state. Detailed information about the wave functions of
low-energy 7Be and 7Li states can be seen in Tables III and IV.
The decomposition of low-energy wave functions of 7Li and
7Be in the channel amplitudes and the spectroscopic factors
is shown in Table III. Additional information is provided
by the occupancies of single-particle shells for dominant
configurations in the considered states (see Table IV).

Figure 2 shows the relative probability of channels
[6Li ((Kπ )T) ⊗ p(� j)]Jπ

and [4He(0+
1 ) ⊗ 3He(Lc.m. Jint JP)]Jπ

in different states of 7Be. The sum of the real parts of
squared amplitudes Re[b2

c] ≡ Re[〈w̃c|wc〉2] over all channels
is normalized to 1, whereas the sum of imaginary parts
Im[b2

c] ≡ Im[〈w̃c|wc〉2] is equal to 0. The basis generating
one-body potential remains unchanged when the depth of a
core potential varies. One may notice that the [4He(0+

1 ) ⊗
3He(Lc.m. Jint JP)]Jπ

channels play a significant role only in the

four lowest states 3/2−
1 , 1/2−

1 , 7/2−
1 , 5/2−

1 , which are close
to the 4He + 3He threshold. The contribution of 3He-cluster
channel is tiny in 5/2−

2 resonance. In higher lying states, the
probability of this cluster channel drops below 1%. Notice
a very different composition of wave functions in the states
forming the doublet [5/2−

1 ; 5/2−
2 ]. The mirror system 7Li

shares a very similar channel decomposition of the states, as
can be deduced from Table III.

The ground state 3/2−
1 and the first excited state 1/2−

1 are
dominated by the channels [4He(0+

1 ) ⊗ 3He(Lc.m. Jint JP)]Jπ

and [6Li(1+
1 ) ⊗ p(p1/2)]Jπ

(see Table III). In the 7/2−
1 res-

onance, the dominant contribution to the resonance wave
function comes from the closed proton channels [6Li(3+

1 ) ⊗
p(p3/2,1/2)]7/2−

1 , [6Li(2+
2 ) ⊗ p(p3/2)]7/2−

1 and the open 3He
channel [4He(0+

1 ) ⊗ 3He(2F7/2)]7/2−
1 .

The 5/2−
1 resonance has still a significant component of

the open channel [4He(0+
1 ) ⊗ 3He(2F5/2)]5/2−

1 . However, the
dominant contribution in the wave function of this reso-
nance comes from the closed proton channels [6Li(2+

1 ) ⊗
p(p3/2,1/2)]5/2−

1 , [6Li(1+
2 ) ⊗ p(p3/2)]5/2−

1 . The contribution of
the open proton channel [6Li(1+

1 ) ⊗ p(p3/2)]5/2−
1 amounts to

about 2%.
The close lying 5/2−

2 resonance has a different structure
than the 5/2−

1 resonance. The amplitude of 3He channel
[4He(0+

1 ) ⊗ 3He(2F5/2)]5/2−
2 is only close to 1% and the wave

function is dominated by the open proton channel [6Li(1+
1 ) ⊗

p(p3/2)]5/2−
2 and the closed proton channels: [6Li(3+

1 ) ⊗
p(p3/2,1/2)]5/2−

2 . Hence, we predict that 5/2−
1 resonance is ex-

cited mainly in 4He + 3He reaction and decays mostly by the
emission of 3He, whereas 5/2−

2 resonance is excited mainly
in 6Li +p reaction and decays predominantly by the proton
emission.

In the 7/2−
2 resonance, the summed probability of

[6Li(3+
1 ) ⊗ p(p3/2,1/2)]7/2−

2 channels is 85% and the weight
of the cluster channel [4He(0+

1 ) ⊗ 3He(2F7/2)]7/2−
1 is to-

tally negligible. In the resonances 3/2−
2 and 1/2−

2 , the
channels [6Li(1+

1 ) ⊗ p(p3/2,1/2)]Jπ

dominate with a summed
probability of 47%. Slightly smaller contributions come
from the channels [6Li(1+

2 ) ⊗ p(p3/2,1/2)]1/2−
2 , [6Li(2+

1 ) ⊗
p(p3/2,1/2)]3/2−

2 for 1/2−
2 and 3/2−

2 , respectively. Other chan-
nel wave functions, including the 4He + 3He channel, have a
negligible weight in these states.

Major amplitudes of the channels [4He(0+
1 ) ⊗

3H(Lc.m. Jint JP)]Jπ

, [6Li((Jπ )T ) ⊗ n(� j)]Jπ

in 7Li are given in
Table III. As in 7Be, a significant probability of the channel
wave function [4He(0+

1 ) ⊗ 3H(Lc.m. Jint JP)]Jπ

is seen only in
the low-energy states: Jπ

i = 3/2−
1 , 1/2−

1 , 7/2−
1 , 5/2−

1 which
are close to the 4He + 3H threshold. At higher excitation
energies, the probability of the 4He + 3H channel diminishes
below 1%.

In general, mirror symmetry for low-energy wave func-
tions in 7Be and 7Li is satisfied very well. Main probabilities
are close in higher energy resonances: 3/2−

2 , 7/2−
2 , and

1/2−
2 . More significant deviations are seen for the proba-

bilities of channels [6Li(1+
1 ) ⊗ p(p3/2)]5/2−

2 and [6Li(3+
1 ) ⊗

p(p3/2,1/2)]5/2−
2 which equal 0.46 and 0.45 in 7Be, whereas
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TABLE III. Major GSM-CC amplitudes of channels 6Li +p and 3He + 4He for 7Be and 6Li +n and 3H + 4He for 7Li. Re[b2
c] denotes the

real part of the channel probability Re[〈w̃c|wc〉2]. S2 corresponds to the GSM-CC spectroscopic factor [see Eq. (22)].

7Be; Jπ 6Li; (Jπ )T
3He p Re[b2

c] S2 7Li; Jπ 6Li; (Jπ )T
3H n Re[b2

c] S2

3/2−
1

2P3/2 0.31 0.04 3/2−
1

2P3/2 0.28 0.04
1+

1 p3/2 0.22 0.43 1+
1 p3/2 0.23 0.44

1+
1 p1/2 0.10 0.20 1+

1 p1/2 0.11 0.22
3+

1 p3/2 0.18 0.41 3+
1 p3/2 0.18 0.43

0+
1 p3/2 0.10 0.22 0+

1 p3/2 0.10 0.22
2+

1 p1/2 0.02 0.05 2+
1 p1/2 0.03 0.08

2+
2 p3/2 0.03 0.07 2+

2 p3/2 0.03 0.07
2+

2 p1/2 0.03 0.08 2+
2 p1/2 0.02 0.07

1/2−
1

2P1/2 0.33 0.04 1/2−
1

2P1/2 0.31 0.03
1+

1 p3/2 0.31 0.64 1+
1 p3/2 0.33 0.67

1+
1 p1/2 0.06 0.05 1+

1 p1/2 0.03 0.06
0+

1 p1/2 0.07 0.17 0+
1 p1/2 0.08 0.19

2+
1 p3/2 0.12 0.27 2+

1 p3/2 0.11 0.23
2+

2 p3/2 0.06 0.14 2+
2 p3/2 0.08 0.19

1+
2 p1/2 0.06 0.12 1+

2 p1/2 0.06 0.13
7/2−

1
2F7/2 0.22 0.03 + 0.02i 7/2−

1
2F7/2 0.21 0.03 + 0.01i

3+
1 p3/2 0.33 0.70 3+

1 p3/2 0.32 0.68
3+

1 p1/2 0.18 0.37 3+
1 p1/2 0.19 0.40

2+
1 p3/2 0.07 0.16 2+

1 p3/2 0.11 0.23
2+

2 p3/2 0.19 0.43 2+
2 p3/2 0.17 0.38

5/2−
1

2F5/2 0.24 −0.15 + 0.06i 5/2−
1

2F5/2 0.26 −0.09 + 0.08i
1+

1 p3/2 0.02 0.02 − 0.02i 1+
1 p3/2 0.01 0.01 − 0.02i

3+
1 p3/2 0.05 0.11 − 0.07i 3+

1 p3/2 0.05 0.11 − 0.04i
2+

1 p3/2 0.22 0.45 − 0.11i 2+
1 p3/2 0.19 0.40 − 0.08i

2+
1 p1/2 0.09 0.19 − 0.06i 2+

1 p1/2 0.08 0.14 − 0.03i
2+

2 p3/2 0.05 0.09 − 0.04i 2+
2 p3/2 0.07 0.13 − 0.04i

2+
2 p1/2 0.10 0.23 − 0.06i 2+

2 p1/2 0.11 0.27 − 0.06i
1+

2 p3/2 0.23 0.47 − 0.12i 1+
2 p3/2 0.23 0.47 − 0.10i

5/2−
2

2F5/2 0.01 −0.01 + 0.01i 5/2−
2

2F5/2 0.01 −0.004 + 0.006i
1+

1 p3/2 0.46 0.61 + 0.06i 1+
1 p3/2 0.54 0.67 + 0.04i

3+
1 p3/2 0.18 0.27 + 0.02i 3+

1 p3/2 0.15 0.24 + 0.01i
3+

1 p1/2 0.27 0.40 − 0.04i 3+
1 p1/2 0.25 0.37 − 0.04i

2+
1 p3/2 0.06 0.10 − 0.07i 2+

1 p3/2 0.05 0.08 − 0.05i
2+

2 p3/2 0.01 0.03 + 0.01i 2+
2 p3/2 0.01 0.02 + 0.01i

2+
2 p1/2 0.01 0.03 − 0.03i 2+

2 p1/2 0.01 0.02 − 0.02i
3/2−

2 1+
1 p3/2 0.12 0.16 + 0.02i 3/2−

2 1+
1 p3/2 0.13 0.17 + 0.02i

1+
1 p1/2 0.35 0.46 + 0.01i 1+

1 p1/2 0.35 0.46 + 0.02i
3+

1 p3/2 0.04 0.05 + 0.02i 3+
1 p3/2 0.04 0.05

2+
1 p3/2 0.28 0.42 − 0.05i 2+

1 p3/2 0.27 0.41 − 0.06i
2+

1 p1/2 0.09 0.14 − 0.01i 2+
1 p1/2 0.09 0.15 − 0.02i

1+
2 p3/2 0.12 0.18 − 0.03i 1+

2 p3/2 0.10 0.16 − 0.03i
1+

2 p1/2 0.01 0.02 1+
2 p1/2 0.01 0.01

1/2−
2 1+

1 p3/2 0.02 0.03 + 0.01i 1/2−
2 1+

1 p3/2 0.03 0.03 + 0.01i
1+

1 p1/2 0.45 0.61 + 0.02i 1+
1 p1/2 0.46 0.60 + 0.04i

2+
1 p3/2 0.11 0.16 2+

1 p3/2 0.11 0.17 − 0.01i
1+

2 p3/2 0.39 0.60 − 0.07i 1+
2 p3/2 0.37 0.59 − 0.08i

1+
2 p1/2 0.02 0.03 1+

2 p1/2 0.02 0.04 − 0.01i
7/2−

2 3+
1 p3/2 0.45 0.61 + 0.05i 7/2−

2 3+
1 p3/2 0.48 0.66 + 0.06i

3+
1 p1/2 0.40 0.53 − 0.06i 3+

1 p1/2 0.36 0.50 − 0.04i
2+

1 p3/2 0.16 0.23 − 0.07i 2+
1 p3/2 0.16 0.24 − 0.02i

2+
2 p3/2 0.01 0.001 + 0.003i 2+

2 p3/2 0.01 0.01 + 0.01i

the mirror channels in 7Li have the probability weights 0.54
and 0.40, respectively.

Occupancies of single-particle shells in the GSM wave
functions of 7Be and 7Li are very similar in all considered

many-body states (see Table IV). The probability of occupy-
ing the scattering continuum shells in 7Be and 7Li is small
and does not exceed around 15%. However, even in low-lying
states, 3/2−

1 , 1/2−
1 , 7/2−

1 , 5/2−
1 , the occupation of shells in the
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TABLE IV. Number of protons (neutrons) in resonant shells, � = 1 (p), and nonresonant shells of the scattering continuum, � = 0 ({s}),
� = 1 ({p}), � = 2 ({d}), for largest configurations in different GSM eigenfunctions of 7Be (7Li). Re[â2

c ] denote the real parts of the studied
squared configuration amplitudes. Only occupancies higher than 5% are shown.

Jπ p {p} {d} {s} Re[â2
c ] Jπ p {p} {d} {s} Re[â2

c ]

7Be 3/2−
1 2p1n 0 0 0 0.83 7Li 3/2−

1 1p2n 0 0 0 0.83
1p 0 1p1n 0 0.06 1p 0 1p1n 0 0.07

1/2−
1 2p1n 0 0 0 0.82 1/2−

1 1p2n 0 0 0 0.83
7/2−

1 2p1n 0 0 0 0.84 7/2−
1 1p2n 0 0 0 0.85

5/2−
1 2p1n 0 0 0 0.83 5/2−

1 1p2n 0 0 0 0.83
5/2−

2 2p1n 0 0 0 0.77 5/2−
2 2p1n 0 0 0 0.78

1p1n 1p 0 0 0.09 1p1n 1n 0 0 0.09
1p 0 1p1n 0 0.05 1n 0 1p1n 0 0.06

3/2−
2 2p1n 0 0 0 0.75 3/2−

2 1p2n 0 0 0 0.76
1p1n 1p 0 0 0.12 1p1n 1n 0 0 0.11

1p 0 1p1n 0 0.05 1n 0 1p1n 0 0.05
1/2−

2 2p1n 0 0 0 0.75 1/2−
2 1p2n 0 0 0 0.77

1p1n 1p 0 0 0.11 1n 0 1p1n 0 0.05
1p 0 1p1n 0 0.06 1n 0 1p1n 0 0.05

7/2−
2 2p1n 0 0 0 0.77 7/2−

2 1p2n 0 0 0 0.78
1p1n 1p 0 0 0.13 1p1n 1n 0 0 0.11

scattering continuum, i.e., the complement of the resonant-
shell probability (p only in Table IV), amounts to about 17%
and increases to close to 25% for higher lying states.

Table III shows also the GSM-CC spectroscopic factors for
different states of 7Be and 6Li. Even though the spectroscopic
factors are not observables, they nevertheless provide useful
information about the configuration mixing in the many-body
wave function [38–41].

In GSM-CC, the spectroscopic factor is calculated in the
following way:

S2
Lc.m.JP

=
∫ +∞

0
uc(r)2 dr

+
⎡
⎣∑

Nc.m.

A2
Lc.m.JP

(Nc.m.) −
∫ +∞

0
uc(r)2 dr

⎤
⎦

(HO)

,

(22)

where c is the channel associated with the Lc.m. and JP

quantum numbers, the superscript (HO) indicates that one
projects wave functions on a basis of HO states, and
ALc.m.JP (Nc.m.) is the spectroscopic amplitude:

ALc.m.JP (Nc.m.) = 〈�A||A†
Nc.m.Lc.m.JP

||�A−k〉√
2JA + 1

. (23)

In Eq. (23), �A and �A−k are the wave functions of the
systems with A and A − k nucleons, respectively. JA is the
total angular momentum of the system with A nucleons,
and A†

Nc.m.Lc.m.JP
is a creation operator associated with the HO

projectile basis state |Nc.m. Lc.m. Jint JP〉. The integral of the
squared norm of uc(r) in Eq. (22) is the GSM-CC spectro-
scopic factor where asymptotic properties are included exactly
but antisymmetry between target and projectile is neglected.
As antisymmetry is localized inside the nuclear region, it is
restored by adding the GSM spectroscopic factor projected

in a HO basis, where antisymmetry is exactly taken into ac-
count via the use of Slater determinants, and by removing
the squared norm of the HO projected uc(r) channel wave
function.

One may see in Table III a qualitative agreement between
the real parts of the one-proton channel probability Re[b2

c]
and the corresponding real parts of the spectroscopic fac-
tor, i.e., large probabilities for the channels {[6Li((Kπ )) ⊗
p(� j)]Jπ }2 correspond to large real parts of the spectro-
scopic factors: 7Be(Jπ ) → p(� j) ⊕ 6Li((Kπ )). Similarly for
7Li, there is a close qualitative relation between magnitudes
of probabilities Re[b2

c] for channels {[6Li((Kπ )) ⊗ n(� j)]Jπ }2

and values of the spectroscopic factors Re[S2]: 7Li(Jπ ) →
n(� j) ⊕ 6Li((Kπ )). However, the one-nucleon spectroscopic
factors in mirror configurations of 7Be and 7Li may show in
some cases deviations up to ≈20%.

One may also notice that the real parts of cluster spectro-
scopic factors in 7Be and 7Li are significantly smaller than
the dominant one-nucleon spectroscopic factors, even though
the largest one-nucleon channel probabilities are of the same
order as the cluster channel probabilities. Moreover, in the
doublet of resonances [5/2−

1 ; 5/2−
2 ], the cluster spectroscopic

factors are small and negative. It is to be noted that in a
complex-energy framework such as GSM or GSM-CC, the
spectroscopic factor Re[S2] or the squared wave-function
amplitude Re[b2

c] can be negative in resonance states [13].
The statistical uncertainty of Re[S2] is, at the leading order,
associated with its imaginary part Im[S2] [14,42]. A statis-
tical uncertainty on Im[S2] arises because of the different
lifetimes that the resonance state can have in several exper-
iments. Hence, as explained in Refs. [14,42,43], Re[S2] is
the average value of the corresponding spectroscopic factor
obtained in different measurements, while Im[S2] can be
related to the dispersion rate over time in the measurement,
and hence represents its statistical uncertainty. In the case of
the doublet of resonances [5/2−

1 ; 5/2−
2 ], an imaginary part
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FIG. 3. The GSM-CC elastic differential cross sections of the re-
action 4He(3H, 3H) 4He, calculated at four different c.m. angles, are
compared with the experimental data (in dots) [44]. 3H bombarding
energy is given in the laboratory frame.

of the spectroscopic factor is of the same order of mag-
nitude as the real part Re[S2]. Thus, there is a large
statistical uncertainty on cluster spectroscopic factors in these
resonances.

B. Reaction cross sections

In this section, we shall discuss the reaction cross-
sections 4He(3He, 3He), 4He(3H, 3H), and 6Li(p, p). The
GSM-CC cross sections are calculated by coupling the real-
energy incoming partial waves to the states of 4He or 6Li
given by the Hermitian Hamiltonian. GSM-CC calculations
are performed using COSM coordinates [28] but the reac-
tion cross sections will be expressed in the c.m. reference
frame. The initial energy is E (COSM) = E (COSM)

proj + E (COSM)
T ,

where E (COSM), E (COSM)
proj , and E (COSM)

T are the total energy, the
projectile energy, and the GSM target binding energy, respec-
tively. One has E (lab)

proj � 1.25 E (COSM)
proj for 4He(3H, 3H) 4He

and 4He(3He, 3He) 4He reactions and E (c.m.)
proj � 1.07 E (COSM)

proj

for the 6Li(p, p) 6Li reaction [14].
Reaction 4He(3H, 3H) 4He. Figure 3 shows the

4He(3H, 3H) 4He differential cross section calculated in
GSM-CC (solid line). Triton bombarding energy is given
in the laboratory frame. The calculation is performed using
the same Hamiltonian and the same model space as used
in the calculation of the spectra of 6,7Li. 3H energies in
Fig. 3 are in the c.m. reference frame. The estimated error on
experimental results varies with the 3H bombarding energy
and amounts to about 10% [44]. Peaks in the calculated cross
section correspond to 7/2−

1 , 5/2−
1 , and 5/2−

2 resonances (see
Fig. 1). The agreement between theory and experiment is
satisfactory at backward angles whereas at forward angles
the GSM-CC underestimates experimental cross sections.
However, the reason for this underestimation of cross
section at forward angles has not been identified.

Reaction 4He(3He, 3He) 4He. Figure 4 shows the
4He(3He, 3He) 4He elastic differential cross section calculated

FIG. 4. The same as in Fig. 3 but for the reaction
4He(3He, 3He) 4He. Experimental data (in dots) are from Ref. [44].

in GSM-CC (solid line) at different c.m. angles. The
GSM-CC cross section provides a good description of
experimental cross sections at large angles. At �c.m. � 90◦,
the calculated cross sections underestimate the experimental
ones.

Reaction 6Li(p, p) 6Li. Figure 5 shows the proton elastic
differential cross section 6Li(p, p) 6Li calculated in GSM-CC
(solid line) at different c.m. angles. Experimental results are
well reproduced by the GSM-CC calculation.

C. Near-threshold behavior of the channel amplitudes
and spectroscopic factors

As the incident energy increases and new reaction channels
open up, the reaction threshold becomes a point of bifurcation

FIG. 5. The GSM-CC elastic differential cross sections of the
reaction 6Li(p, p) 6Li at three different c.m. angles are plotted as a
function of proton energy and compared with experimental data (in
dots) [45]. Proton bombarding energy is given in the c.m. frame.
Both GSM-CC and experimental cross sections are divided by the
Rutherford cross section.

044616-10



DESCRIPTION OF 7Be AND 7Li WITHIN … PHYSICAL REVIEW C 108, 044616 (2023)

for particle flux. Due to the unitarity of the scattering matrix
and the resulting flux conservation, an opening reaction chan-
nel can generate changes in other open channels.

The appearance and properties of near-threshold cusps has
been explained by Wigner, who formulated the threshold law
for the elastic and total cross sections. Later this phenomenon
found explanation in terms of the R-matrix theory [46–52].
Wigner cusps are the nonanalyticities appearing in cross sec-
tions at energies when a new particle emission channel opens.
They translate into very sharp changes of cross sections, dis-
continuities of the derivative of cross sections or of the cross
sections themselves, depending on the angular momentum
content of the wave functions involved in cross sections.

Another facet of this phenomenon has been demonstrated
in the GSM study of near-threshold behavior of the spectro-
scopic factors [53,54], which exhibit qualitatively different
features according to the bound or unbound nature of involved
eigenstates. Wigner cusps appear in spectroscopic factors
when a many-body state crosses the particle emission thresh-
old. They are particularly very visible for neutron � = 0, 1
waves, while they occur only in spectroscopic factor deriva-
tives in neutron waves with � � 2. No Wigner cusp appears in
spectroscopic factors for charged particles.

Spectroscopic factors measure occupancy of the single-
particle shells, and hence the role of nucleon-nucleon
correlations. Observation of near-threshold irregularities in
spectroscopic factors raises the question of how the proximity
of the particle-emission threshold and, in particular, coupling
to the nonresonant continuum, changes the structure of nu-
clear states. Coupling to the nonresonant scattering continuum
in GSM is essential to correctly describe the energy depen-
dence of spectroscopic factors close to the particle-emission
threshold. Neglecting this coupling removes a singular behav-
ior in the energy dependence of spectroscopic factors; i.e.,
coupling to the nonresonant scattering continuum is crucial
to preserve the unitarity at the particle-emission threshold.
Therefore, salient features of both cross sections and spec-
troscopic factors for states in the vicinity of decay thresholds
are direct consequences of unitarity in near-threshold wave
functions. Another effect of unitarity is the breaking of isospin
symmetry in mirror nuclei due to the very different asymp-
totic behaviors of proton and neutron wave functions at the
particle-emission threshold [31]. Hence, continuum coupling
may indeed lead to isospin breaking even in the absence of
Coulomb interaction.

The genuine near-threshold properties of quantum states
depend on the nature of configuration mixing between res-
onant states and the continuum of scattering states. It was
conjectured that an interplay between Hermitian and anti-
Hermitian continuum couplings leads to the concentration of
the collective strength in a single state, the so-called aligned
state of an open quantum system, which shares many proper-
ties of a nearby decay threshold [55–59]. Favorable conditions
for the formation of the aligned eigenstate have been
investigated in the shell model embedded in the continuum
(SMEC) [3–5,60], by calculating the correlation energy due
to the continuum coupling. The GSM in Slater determinant
representation is not a proper tool for a study of the alignment

FIG. 6. From top to bottom: the real and imaginary parts of the
squared amplitudes b2

c ≡ 〈w̃c|wc〉2, and the partial widths of each
reaction channel in the 5/2−

2 state of 7Li. Contributions of all partial
waves � j in reaction channels [6Li(1+

1 ) ⊗ n(� j)]5/2−
are summed and

everything is plotted as a function of the distance of the state to the
neutron threshold. The meaning of curves for different channels is
explained in the adjacent key. Each curve represents the sum of all
reaction channels built on the same many-body state of 6Li.

effect in near-threshold states because the correct asymptotic
behavior of many-body eigenstates and decay channels cannot
be imposed in GSM. In contrast, GSM-CC is well suited for
that purpose, as the latter nuclear state properties are well
defined therein. Below, we shall present selected examples of
the alignment phenomenon in the eigenstates of 7Li, 7Be, and
8Be, which can be seen in the near-threshold dependence of
the reaction channel probabilities.

D. Energy dependence of channel amplitudes and spectroscopic
factors in 7Li and 7Be

1. Channel probabilities and resonance widths

As discussed in Sec. IV A and seen in Fig. 1, the lowest
decay threshold in 7Li is the 3H cluster threshold. Neutron de-
cay thresholds [6Li(Kπ ) ⊗ n(� j)]Jπ

open at higher excitation
energies.

The dependence of channel probabilities and partial widths
�c in the 5/2−

2 state of 7Li on the energy difference with
respect to the lowest one-neutron decay threshold [6Li(1+

1 ) ⊗
n(� j)]Jπ

is shown in Fig. 6. Both real and imaginary parts of
the channel probabilities are shown. The partial widths are cal-
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culated using the current formula [61]. The energy difference
between the 5/2−

2 state and neutron-threshold energy is varied
by changing the depth V0 of the 4He core potential. We also
calculate 6Li with the same interaction. This means that the
energy of 6Li will move alongside the energy of 7Li and 7Be,
however, the binding energy of the clusters 3H and 3He in 7Li
and 7Be, respectively, remains unchanged.

For E − En
th[6Li(1+

1 )] < 0, all neutron reaction channels
are closed, i.e., the state 5/2−

2 is bound with respect to the
emission of neutrons. At E − En

th[6Li(1+
1 )] � −0.8 MeV, the

triton channel [4He(0+
1 ) ⊗ 3H(2F5/2)]5/2−

opens. This open-
ing has no visible consequences for the wave function 5/2−

2 .
For E − En

th[6Li(1+
1 )] > 0, both neutrons and tritons can be

emitted.
The contribution of the reaction channel [6Li(1+

1 ) ⊗
n(� j)]5/2−

dominates below the neutron emission threshold.
The second largest probability corresponds to the chan-
nel [6Li(3+

1 ) ⊗ n(� j)]5/2−
. In the vicinity of the neutron

threshold, the probability of a channel [6Li(1+
1 ) ⊗ n(� j)]5/2−

promptly increases, which is a manifestation of an align-
ment of the GSM-CC state 5/2+

2 with the neutron decay
channel [6Li(1+

1 ) ⊗ n(� j)]Jπ

. One may notice a Wigner cusp
in the energy dependence of the probability of the channel
[6Li(1+

1 ) ⊗ n(� j)]5/2−
. The increased probability of this chan-

nel is associated with the opposite effect in other channels,
mainly in the channel [6Li(3+

1 ) ⊗ n(� j)]5/2−
. At higher ener-

gies below the opening of the next neutron channel at E −
En

th[6Li(1+
1 )] � 2.93 MeV, the weight of the closed channel

[6Li(3+
1 ) ⊗ n(� j)]5/2−

increases gradually, and this channel
becomes dominant ≈1 MeV above the neutron threshold
[6Li(1+

1 ) ⊗ n(� j)]Jπ

.
The imaginary parts of squared amplitudes Im[b2

c] are zero
below the neutron emission threshold and show a complicated
behavior above it. Above the decay threshold [6Li(1+

1 ) ⊗
n(� j)]Jπ

and below the next threshold [6Li(3+
1 ) ⊗ n(� j)]Jπ

,
the major contribution comes from the open reaction chan-
nel [6Li(1+

1 ) ⊗ n(� j)]5/2−
. The magnitude of this contribution

decreases when we approach the threshold of the channel
[6Li(3+

1 ) ⊗ n(� j)]Jπ

, whereas the magnitude of the (negative)
contribution of the channel [6Li(3+

1 ) ⊗ n(� j)]5/2−
strongly

increases and changes sign at the threshold. The interplay
between these two reaction channels continues to dominate
the evolution pattern of imaginary parts above this threshold.

Figure 7 presents the dependence of channel probabilities
and partial widths in the 5/2−

2 state of 7Be on the energy dif-
ference with respect to the lowest one-proton decay threshold
[6Li(1+

1 ) ⊗ p(� j)]Jπ

. In this mirror state of a 5/2−
2 state in 7Li,

opening of the 3He channel [4He(0+
1 ) ⊗ 3He(2F5/2)]5/2−

has
no visible consequences for a structure of the 5/2−

2 wave func-
tion. 3He can be emitted, though a 3He decay width becomes
significant only for E − E p

th[6Li(1+
1 )] > 1.5 MeV.

Below the proton emission threshold, the contribution
of a reaction channel [6Li(1+

1 ) ⊗ p(� j)]5/2−
dominates. The

second largest probability corresponds to the channel
[6Li(3+

1 ) ⊗ p(� j)]5/2−
. In the vicinity of the proton threshold,

the probability of the channel [6Li(1+
1 ) ⊗ p(� j)]5/2−

slightly
increases, which is a manifestation of the alignment with the

FIG. 7. Same as Fig. 6 but for the mirror system 7Be(5/2−
2 ).

Everything is plotted as a function of the distance of the state to the
proton threshold.

proton decay channel. The Coulomb interaction is smooth-
ing this effect. The increased probability of the channel
[6Li(1+

1 ) ⊗ p(� j)]5/2−
is associated with the opposite effect in

the channel [6Li(3+
1 ) ⊗ p(� j)]5/2−

. At higher energies, below
an opening of the next proton channel, the probability of the
closed channel [6Li(3+

1 ) ⊗ p(� j)]5/2−
increases gradually and

dominates at E − E p
th[6Li(1+

1 )] � 2 MeV.
The imaginary parts of squared amplitudes Im[b2

c] are dif-
ferent from zero above the proton emission threshold. The
major contribution comes from the open reaction channel
[6Li(1+

1 ) ⊗ p(� j)]5/2−
. The magnitude of this contribution

does not decrease even in the vicinity of the next threshold
[6Li(3+

1 ) ⊗ n(� j)]Jπ

.
Figure 8 presents the dependence of channel probabilities

and partial widths �c on the energy difference with respect to
the lowest decay threshold [4He(0+

1 ) ⊗ 3H(Lc.m. Jint JP)]Jπ

in
the 7/2−

1 state of 7Li. In the whole interval of energies, neutron
reaction channel [6Li(3+

1 ) ⊗ n(� j)]7/2−
provides the major

contribution. The probability of the 3H channel [4He(0+
1 ) ⊗

3H(2F7/2)]7/2−
grows when approaching the emission thresh-

old and has a maximum close to 3.3 MeV above the threshold
energy E

3H
th . The maximum of the imaginary part of 3H

probability is shifted to slightly higher energy with respect to
the maximum of the real part.

The alignment of the 7/2−
1 state with the decay channel

[4He(0+
1 ) ⊗ 3H(2F7/2)]7/2−

is shifted at a higher energy due
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FIG. 8. The real and imaginary parts of the channel probabilities
b2

c and the partial widths of each reaction channel in the 7/2−
1 state

of 7Li are shown as a function of the distance with respect to the
lowest decay threshold [4He(0+

1 ) ⊗ 3H(Lc.m. Jint JP )]Jπ
. The dashed

vertical line gives the GSM-CC energy of the 7/2−
1 resonance. For

more details, see the caption of Fig. 6 and discussion in the text.

to a combined effect of the Coulomb interaction and the
angular momentum involved in this reaction channel. This
alignment is accompanied by the antialignment with respect to
the [6Li(3+

1 ) ⊗ n(� j)]7/2−
decay channel. Above the neutron

decay threshold at E − E
3H
th [6Li(1+

1 )] � 6.8 MeV in the chan-
nel [6Li(1+

1 ) ⊗ n(� j)]7/2−
, which is barely visible in Fig. 8, the

squared amplitude of the 3H channel strongly diminishes and
the closed channel [6Li(3+

1 ) ⊗ n(� j)]7/2−
becomes dominant

again in the wave function of 7/2−
1 state. This radical change

of the 7/2−
1 eigenstate in the vicinity of the neutron threshold

is seen in the energy dependence of decay probability, which
both below and above neutron emission threshold corresponds
to 3H emission. However, one can see an interplay between
neutron and 3H channels in a narrow range of energies at
around the decay threshold.

The mirror system to 7/2−
1 of 7Li is shown in Fig. 9,

which presents the dependence of channel probabilities and
partial widths in the 7/2−

1 state of 7Be on the energy dif-
ference with respect to the lowest threshold [4He(0+

1 ) ⊗
3He(Lc.m. Jint JP)]Jπ

. In spite of different Coulomb interac-
tion in mirror 7/2−

1 states, one may notice large similarity
of the calculated energy dependencies shown in Figs. 8
and 9.

FIG. 9. Same as Fig. 8 but for the mirror system 7Be(7/2−
1 ).

Everything is plotted as a function of the distance of the state to the
3He threshold.

2. Near-threshold energy dependence of the spectroscopic factors

In this section we discuss the near-threshold effects in the
spectroscopic factors calculated using the GSM- CC wave
functions. Figure 10 shows the real and imaginary parts
of the spectroscopic factors and the real part of the chan-
nel probabilities in the 5/2−

2 resonance of 7Li. Only the
largest neutron spectroscopic factors are shown. All quanti-
ties are plotted as a function of the energy difference with
respect to the lowest neutron emission threshold [6Li(1+

1 ) ⊗
n(� j)]Jπ

. As expected, one may notice a Wigner cusp in the
spectroscopic factor 〈7Li(5/2−

2 )|[6Li(1+
1 ) ⊗ n(p3/2)]5/2−〉2 at

the threshold which mimics the cusp in the probability of
the channel [6Li(1+

1 ) ⊗ n(� j)]5/2−
. This local increase of the

spectroscopic factor 〈7Li(5/2−
2 )|[6Li(1+

1 ) ⊗ n(p3/2)]5/2−〉2 is
accompanied by the slight decrease of the spectroscopic fac-
tor 〈7Li(5/2−

2 )|[6Li(3+
1 ) ⊗ n(p1/2)]5/2−〉2. The same feature is

seen in the channel probabilities Re[b2
c]. In the whole range

of energies represented in Fig. 10, the spectroscopic factor
〈7Li(5/2−

2 )|[6Li(1+
1 ) ⊗ n(p3/2)]5/2−〉2 dominates but the dif-

ference with the value of the second largest spectroscopic
factor 〈7Li(5/2−

2 )|[6Li(3+
1 ) ⊗ n(p1/2)]5/2−〉2 diminishes when

the energy approaches the threshold of the channel [6Li(3+
1 ) ⊗

n(� j)]5/2−
.

The imaginary part Im[S2] of the spectroscopic factor
〈7Li(5/2−

2 )|[6Li(1+
1 ) ⊗ n(p3/2)]5/2−〉2 starts to grow above the
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FIG. 10. The spectroscopic factors and the channel weights in
5/2−

2 state of 7Li are shown as a function of the distance with
respect to the neutron emission threshold [6Li(1+

1 ) ⊗ n(� j)]Jπ
. From

top to bottom: (i) real part of the spectroscopic factors Re[S2],
(ii) imaginary part of the spectroscopic factors Im[S2], and (iii) real
part of the channel weights Re[b2

c].

threshold and dominates until E − En
th[6Li(1+

1 )] ≈ 1.6 MeV,
when it is surpassed by the spectroscopic factor in the channel
[6Li(3+

1 ) ⊗ n(� j)]5/2−
.

Results for a mirror 5/2−
2 state in 7Be are shown in

Fig. 11. The spectroscopic factor 〈7Be(5/2−
2 )|[6Li(1+

1 ) ⊗
p(p3/2)]5/2−〉2 is changing smoothly around the proton
threshold [6Li(1+

1 ) ⊗ p(� j)]Jπ

. The imaginary part of
〈7Be(5/2−

2 )|[6Li(1+
1 ) ⊗ p(p3/2)]5/2−〉2 grows gradually,

and at energies E − En
th[6Be(1+

1 )] > 2.75 MeV is approached
by the spectroscopic factor [6Li(3+

1 ) ⊗ n(� j)]5/2−
. Figure 12

shows the real and imaginary parts of the spectroscopic
factors and the real part of the channel probabilities in the
7/2−

1 resonance of 7Li. Only the largest neutron spectroscopic
factors are shown. All quantities are plotted as a function
of the energy difference with respect to the triton emission
threshold [4He(1+

1 ) ⊗ 3H(Lc.m.JintJP)]Jπ

. One may notice that
the energy dependencies of the triton 〈7Li(7/2−

1 )|[4He(0+
1 ) ⊗

3H(1F7/2)]7/2−〉2 and one-neutron spectroscopic factors
resemble the dependencies seen in the channel probabilities
Re[b2

c]. The minimum of the real part of the triton spectro-
scopic factor is negative, with a large uncertainty associated
with the imaginary part. Interestingly, the triton spectroscopic
factor increases and becomes positive when approaching

FIG. 11. Same as Fig. 10 but for the mirror system 7Be(5/2−
2 ).

the spectroscopic factors and the channel weights Re[b2
c] are shown

as a function of the distance with respect to the one-proton decay
threshold 6Li(1+

1 ) ⊗ p(� j)]5/2−
.

the one-neutron emission threshold [6Li(3+
1 ) ⊗ p(� j)]Jπ

.
In the whole range of energies represented in Fig. 12, the
dominant spectroscopic factors are 〈7Li(7/2−

1 )|[6Li(3+
1 ) ⊗

n(p3/2,1/2)]7/2−〉2, 〈7Li(7/2−
1 )|[6Li(2+

1 ) ⊗ n(p3/2)]7/2−〉2,
〈7Li(7/2−

1 )|[6Li(2+
2 ) ⊗ n(p3/2)]7/2−〉2.

V. CONCLUSIONS

We have applied in this work the multimass partition
GSM-CC approach for the description of 7Li and 7Be. The
lowest threshold in these nuclei corresponds to the emission
of clusters of nucleons, and therefore the GSM-CC description
of resonance wave functions requires the inclusion of the re-
action channels involving both clusters and nucleons. With the
two mass partitions 6Li +n, 4He + 3H for 7Li and 6Li +p, and
4He + 3He for 7Be, we obtain a good description of resonance
energies and widths in the coupled channel framework of the
GSM-CC. In the same framework, we have calculated elastic
scattering for 4He + 3H, 4He + 3He, and 6Li +p. The GSM-
CC provides a reasonable description of elastic differential
cross sections in these reactions, particularly at backward
angles.

Generally, the calculated resonance widths are somewhat
smaller than found experimentally. Small real-energy correc-
tion factors of the channel-channel coupling potentials which
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FIG. 12. The spectroscopic factors and the channel weights in
7/2−

1 state of 7Li are shown as a function of the distance with respect
to the triton emission threshold [4He(0+

1 ) ⊗ 3H(Lc.m. Jint JP )]Jπ
. From

top to bottom: (i) real part of the spectroscopic factors Re[S2],
(ii) imaginary part of the spectroscopic factors Im[S2], and (iii) real
part of the channel weights Re[b2

c]. The dashed vertical line gives the
GSM-CC energy of the 7/2−

1 resonance.

are supposed to correct for missing reaction channels do not
resolve this systematic discrepancy, but one might have re-
course to the complex correction factors in the future.

Extensive studies in SMEC [55,56] have demonstrated that
the low-energy coexistence of the clusterlike and shell-model-
like configurations can be reconciled in the open quantum
system formulation of the shell model. The proximity of
the branching point at threshold induces a collective mix-
ing in shell-model-like states mediated by the aligned state
that shares many features of the decay channel. This salient
phenomenon in open quantum systems has been studied for
the first time using the GSM-CC. The signature of a pro-
found change of the near-threshold shell model wave function
and of the direct manifestation of the continuum-coupling
induced correlations is the presence of cluster states near their
corresponding cluster emission thresholds. We have shown
with a few examples of the states in 7Li and 7Be how 3H
and 3He, cluster correlations appear when the shell-model-
like state approaches the cluster decay threshold, and how
these correlations become faint again further away from the
threshold. The appearance of a cluster is therefore associated
with the collective response in other channels due to the
unitarity.
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