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Effects of deuteron potentials on deuteron-induced nonelastic cross sections
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The aim of this paper is to investigate how the choice of deuteron potential affects the nonelastic cross sections
of 12C, 40Ca, 58Ni, and 208Pb in the low-energy region below 200 MeV within the extended framework of the
intranuclear cascade model, in which a three-body proton-neutron-target system is introduced to incorporate
naturally the decomposition and capture reactions from weakly bound deuterons. To determine an appropriate
potential for the two nucleons of the deuteron, we compare two phenomenological potentials with the Gaussian
potential that we have used previously. Specifically, we examine the Reid and Coester-Yen soft-core potentials
and find that they give reduced nonelastic cross sections. To investigate the role of the potential, we separate
it into the tail region in the outer part and the soft-core region in the central part. By using a gluing method to
connect the Gaussian potential smoothly to the Yukawa tail, we show that the tail has no appreciable effect for
any of the targets. On the other hand, by adding a soft core to the ordinary Gaussian potential, we show that
the soft core has appreciable effects, especially in heavier nuclei such as 208Pb, the reason being the reduced
breakup process with a soft-core potential from the deuteron rotation due to the Coulomb potential. The results
of this study show that while the Yukawa tail has no appreciable effect, soft-core potentials tend to give reduced
nonelastic cross sections, especially for heavy nuclei.
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I. INTRODUCTION

Deuteron-induced nonelastic cross sections (sometimes
called deuteron-induced total reaction cross sections) have
been measured experimentally at incident energies below 200
MeV for 12C, 40Ca, 58Ni, and 208Pb as shown in Fig. 1.
One may consider as a simple model that these experimen-
tal data of deuteron-induced reactions can be understood by
simply assuming that the cross section is an independent sum
of the proton-induced and neutron-induced nonelastic cross
sections, each of which has half the energy of the incident
deuteron. This sum is straightforward if experimental data for
the corresponding nucleon-induced nonelastic cross sections
exist, but sufficient data do not exist for 40Ca and 58Ni, so
the missing data must be estimated by a well-fitting empirical
formula.

Recently, we presented such a formula for proton-induced
or neutron-induced nonelastic cross sections for arbitrary
energy and general targets [1]. Despite being empirical,
this general formula is based on the intranuclear cascade
(INC) model [2,3] and so includes Coulomb and discrete-
level-constraint effects [4], which play important roles in
reproducing single-nucleon-induced nonelastic cross sections,
especially at low energy. Using this formula for 12C, 40Ca,
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58Ni, and 208Pb, the results of summing the proton-induced
and neutron-induced nonelastic cross sections are shown by
the dotted lines in Fig. 1, along with the corresponding exper-
imental data.

Figure 1 shows that the simple summation overestimates
the experimental values, especially for heavy target nuclei.
The estimated values for 12C are close to the experimental
values because the radius of the deuteron (2.13 fm) is almost
the same as that of 12C (2.34 fm) according to Negele’s
formula [6], in which case the two nucleons in the incident
deuteron are considered to be independent for a similarly
sized target. In the other nuclei, the radii are 3.59, 4.04, and
6.52 fm for 40Ca, 58Ni, and 208Pb, respectively, and now the
cross-sectional area of the target is larger than the radius of
the deuteron. The fact that the experimental values are smaller
than the free sum of two nucleon contributions suggests
that the finite-size potential between the two nucleons in the
deuteron is important for heavy targets. Based on this idea, we
have previously extended the INC model to include the mutual
interaction between the two nucleons [7]. Also important is
that the introduced mutual potential incorporates naturally the
breakup and capture processes from weakly bound deuterons.

In our previous paper [7], the Gaussian potential was
incorporated for the two deuteron nucleons, but in many
quantum-mechanical applications, phenomenological soft-
core potentials are often used to describe deuteron reactions
[8–15]. Furthermore, it is considered realistic to use the
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FIG. 1. Comparison of estimation by the simple model men-
tioned above (dashed lines) and experimental data (circles with error
bars) for 12C, 40Ca, 58Ni, and 208Pb [5]. For the lighter nuclei, the
error bars are smaller than the data points.

Yukawa tail for surface geometry due to pion exchange.
Therefore, the aim of this paper is to investigate how the
mutual potential affects deuteron-induced nonelastic cross
sections. To advance the discussion, the analysis is performed
as follows. First, taking the Reid and Coester-Yen soft-core
potentials as specific examples, we show how realistic soft-
core potentials differ from the Gaussian potential. Next, we
investigate the origin of this difference by dividing the poten-
tial region into two parts: the surface region and the central
region. To investigate the effects in the surface region, we
compare the normal Gaussian potential with a merged po-
tential that is converted smoothly from the original Gaussian
potential to the Yukawa tail by means of a merging technique.
To investigate the effects in the central region, we compare the
original Gaussian potential and one with a soft core added to
its central region.

II. INC MODEL AND GAUSSIAN POTENTIAL
FOR DEUTERON

The original INC model has been shown to be advan-
tageous for describing various phenomena such as pion,
antiproton, and light-cluster injections [16–21], and the
Uozumi group showed that the INC model combined with
the generalized evaporation model [22] can explain double
differential cross sections [23–27].

Here, we further extend the INC model to include the
mutual potential in the deuteron [7]. In this INC model, we
solve the time evolution of the three-body proton-neutron
target system based on a relativistic many-body formalism
with stochastic collisions, leading to explicit cross sections of
different processes by assembling probabilistic processes. The
time evolution is divided into two periods: before and after the
nucleons in the deuteron collide with the target nucleons. The

precollision motion is determined uniquely by the classical
equations of motion, while the postcollision motion follows
a stochastic process according to the usual INC model. For
the precollision motion, we introduce the following simple
relativistic Hamiltonian:

H =
∑

i

√
P2

i + m2
i +

∑
i j

Ui j (i, j = 1, 2, 3), (1)

where subscripts 1 and 2 indicate the proton and neutron,
respectively, and subscript 3 indicates the target; therefore, p1

and p2 are the momenta of the proton and neutron, respec-
tively, p3 is the momentum of the center of mass of the target,
and mi is the corresponding masses. In the classical limit,
this Hamiltonian becomes the ordinary Hamiltonian with rest
mass, and the advantages of this form are that total energy
and momentum are conserved and the deuteron splitting and
nucleon capture by the potential can be discussed explicitly.

The potential Ui3 is the sum of the nuclear potential in
Woods-Saxon form and the Coulomb potential of finite-size
charge distribution between nucleon and target, while the
potential U12 is the deuteron mutual potential discussed in
this paper. In a previous paper [7], we used a Gaussian-type
phenomenological potential for the mutual potential of the
two nucleons in the deuteron as shown in Refs. [28] and
[29], where the Gaussian parameters have been fitted to the
deuteron binding energy and 3S1 phase shifts:

U12(r) = V0exp(−(r/b)2), with r =| r1 − r2 | /2, (2)

where V0 = −72.15 MeV and b = 1.484 fm.
In the initial stage, the two nucleons in the deuteron are

placed at the z axis Zg ≈ −500 fm to include sufficiently the
effect of the Coulomb potential, and the angle of the deuteron
axis and the impact parameter are taken at random. While
oscillating around the center of the deuteron, the two nucleons
proceed to the target placed at the origin Zg = 0 and then
search for collisions with the nucleons in the target. Those
collisions happen according to the nucleon-nucleon cross sec-
tions, the parameters of which are the same as those used
in previous studies of nucleon-induced reactions in the INC
model [2–4]. See Ref. [7] for more details about the extended
INC model.

The results calculated in this way using the Gaussian po-
tential are shown by the solid lines in Fig. 2. The satisfactory
reproduction of the experimental values indicates the impor-
tance of introducing the finite-size potential of the deuteron
instead of the free motions. Note that we obtained these results
using the original potential parameters without adjusting them
to reproduce the experimental data.

III. EFFECTS OF REALISTIC SOFT-CORE POTENTIALS

In this paper, we focus on two potentials with different
depths and ranges, namely, the Reid [8] and Coester-Yen [9]
soft-core potentials. Figure 3 shows the radial dependencies
of triplet-even of these potentials together with that of the
Gaussian potential that we used in a previous paper.

These soft-core potentials are thought to consist of a one-
pion exchange potential in the outer region, a nuclear potential
in the middle region created by not only 2π exchange but
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FIG. 2. Comparison between results obtained using extended
INC model with Gaussian potential [7] (solid lines) and experimental
data (circles with error bars) for 12C, 40Ca, 58Ni, and 208Pb.

also other meson exchanges such as σ , ω, and ρ mesons,
and a phenomenologically repulsive core in the central part,
which is thought to simulate the nuclear force resulting from
antisymmetry between the quarks [30].

The nonelastic cross sections calculated using the extended
INC model with the soft-core potentials are shown in Fig. 4
together with those calculated using the Gaussian potential.
The effect of the soft-core potentials is noticeable for heavy
nuclei such as 208Pb in that they give smaller cross sections
than does the Gaussian potential. By contrast, there is no ap-
preciable effect for light nuclei below 58Ni, and it is interesting
that the difference between two soft-core potentials is not

FIG. 3. Comparison of Coester-Yen (brown line) and Reid (blue
line) soft-core potentials and original Gaussian potential (red line).

FIG. 4. Comparison of results obtained using Coester-Yen (dot-
ted lines) and Reid (dashed lines) soft-core potentials and Gaussian
potential (solid lines) for nonelastic cross sections of 12C, 40Ca, 58Ni,
and 208Pb.

so important, since the shapes of the potentials are not very
different.

IV. EFFECT OF YUKAWA TAIL

The soft-core potentials give smaller cross sections than
does the Gaussian potential, especially for 208Pb. We inves-
tigate the reason for this difference from two perspectives:
the tail effect and the soft-core effect. First, we show the tail
effect by changing from the Gaussian tail to the Yukawa tail
without changing the Gaussian shape in the central region of
the deuteron. For this, we use the method of the gluing of
two potentials, which connects two arbitrary physical func-
tions smoothly so that the merged function is differentiable
everywhere.

A smooth function F that merges functions g and h at point
r∓ is given by

F (r) = P−g(r) + P+h(r), (3)

where

P∓ = 1/{1 + exp[±(r − r∓)/w∓]}. (4)

Here, the parameter r∓ is the gluing point and w∓ is the
gluing range. The lower projection P− is approximately unity
when r is approximately zero and zero when r is large, and
the upper projection P+ has the opposite nature because P− +
P+ = 1 when r− = r+ and w− = w+.

For our purpose, we take the Gaussian function for the
central region and the Yukawa tail of the Reid soft-core
potential for the outer region. Figure 5 shows the resulting
merged potential, which changes gradually from the Gaussian
potential in the central region to the Yukawa tail outside 1 fm.
In this gluing, the gluing point r∓ is taken as the one-pion
exchange range, that is, 1.413 fm, and the gluing width is
taken as w∓ = 0.2 fm to slowly change to the outer part of
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FIG. 5. Merged potential (black line) changes smoothly from
Gaussian potential (red line) to Yukawa tail of Reid soft-core po-
tential (blue line).

the Reid soft-core potential. Using this merged potential, the
INC calculation gives the results as shown in Fig. 6, which
shows clearly that the Yukawa tail does not play an impor-
tant role in the nonelastic cross sections for any target below
200 MeV, although there is a small difference for 208Pb.

V. GAUSSIAN SOFT-CORE POTENTIAL

In order to purely analyze the effect of the soft-core poten-
tial compared to the Gaussian potential, we set the following

FIG. 6. Comparison of results obtained using merged poten-
tial (dashed lines) and original Gaussian potential (solid lines) for
nonelastic cross sections of 12C, 40Ca, 58Ni, and 208Pb.

FIG. 7. Gaussian soft-core potential (black line) changes
smoothly from Gaussian potential (red line) to potential with soft
core. Shown for comparison is the Reid soft-core potential (blue
line).

schematic potential:

U N
12(r) = V0exp[−(r/b)2] + Vscexp[−(r/bsc)2], (5)

where a soft core is added to the original Gaussian potential.
The parameters of the soft-core part of the potential are chosen
as Vsc = 2000 MeV and bsc = 0.32 fm to reproduce that of the
Coester-Yen potential as shown in Fig. 7, and we refer to this
new potential as the Gaussian soft-core potential.

The nonelastic cross sections obtained using the Gaus-
sian soft-core potential are shown in Fig. 8, which indicates

FIG. 8. Comparison of Gaussian soft-core potential (dashed
lines) and original Gaussian potential (solid lines) for nonelastic
cross sections of 12C, 40Ca, 58Ni, and 208Pb.
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FIG. 9. Impact-parameter dependence of three different pro-
cesses on the deuteron-induced nonelastic cross section: two-nucleon
collision is shown in brown lines, single-particle transition process is
in blue lines, and the breakup process is in green lines. Nonelastic
cross sections of the three processes are the sum of their correspond-
ing cross sections in a total reaction for a random distribution of the
impact parameter, position, and angle of the incident deuteron. The
incident energy of deuteron is taken at 100 MeV and the target is
208Pb in this case.

an appreciable difference between the two potentials, which
is similar to the difference between the Gaussian and the
soft-core potentials in Fig. 4. The reason for this differ-
ence is mainly the decreased breakup reactions as shown
in Fig. 9, which shows the impact-parameter dependence of
three processes that occur in the injections. The three pro-
cesses observed in this full set are (i) the two-nucleon collision
(d , x), (ii) the sum of single-particle transition processes (d ,
px) and (d , nx), and (iii) breakup (d , pn), which involves no
collision with the nucleons in the target. These processes are
illustrated elsewhere [7].

Figure 9 shows clearly the place where the three processes
occur frequently. Taking 208Pb as an example, the two-nucleon
collision occurs mostly in the central region (within 6 fm) and
decreases sharply around the surface of the target, whereas
the one-nucleon transition is concentrated on the surface of
the target (around 7.5 fm), and breakup occurs outside the
potential maximum radius (around 9 fm) where the sum of
the Coulomb potential of the finite-size charge and nuclear
potential with Wood-Saxon shape has its peak (which we call
the ridge). The height of the ridge is 12.6 MeV in 208Pb but
less than half in 58Ni (5.7 MeV), so the effects of the ridge
are appreciable only for heavier nuclei such as 208Pb. Breakup
occurs when a deuteron strikes the ridge and is torn apart.
When the two nucleons meet the ridge, the proton goes out
because of the repulsive Coulomb potential and the neutron
goes in the central region because of the attractive nuclear
potential, thereby leading to breakup. Figure 9 also shows that
the breakup process due to the soft-core potential is a slightly

FIG. 10. Comparison of results obtained using empirical formula
[31] (black dash-dotted lines) and INC model using Gaussian po-
tential (solid lines) for deuteron-induced nonelastic cross sections
of 12C, 40Ca, 58Ni, and 208Pb. The data points with error bars are
experimental values.

smaller than that due to the Gaussian potential, especially
in the region of large impact parameter. The reason for this
decrease is the rotation of the two nucleons in the deuteron,
which is essentially caused by the Coulomb potential: the two
nucleons are more likely to rotate and hence escape the ridge
for the soft-core potential.

Regarding which of the phenomenological potentials is
better, the differences among them are within the exper-
imental scatter as shown in Fig. 4, so it is difficult to
determine which is better at reproducing the experimental
data. However, a useful reference is an empirical expression
for the deuteron-induced nonelastic cross section based on
the continuum-discretized coupled-channels method [31]. As
shown in Fig. 10, the empirically estimated values are slightly
larger than the experimental values for 40Ca and 56Ni and
those obtained with the Gaussian potential, thereby indicating
the superiority of the Gaussian potential compared with soft-
core potentials.

VI. CONCLUSIONS

Nonelastic cross sections are often discussed via an
optical-potential approach, but in this study, we obtained
them by explicitly considering the reaction processes based
on the INC model. Here, the mutual proton-neutron potential
is important for both the bounded size of the deuteron and
describing the breakup or the one-nucleon transfer reaction.

In this paper, we investigated the differences among three
mutual potentials of the deuteron for the deuteron-induced
nonelastic cross sections of 12C, 40Ca, 58Ni, and 208Pb in
the low-energy region below 200 MeV. First, we compared
the results using the conventional Gaussian potential and
two phenomenological soft-core potentials, namely, the Reid
and Coester-Yen soft-core potentials, and we found that the
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nonelastic cross sections obtained using both soft-core po-
tentials were smaller than those obtained using the Gaussian
potential, especially for 208Pb. To investigate which part of
the potential plays an important role, it was separated into two
parts, namely, the potential tail in the outer region and the soft
core in the central region. An important conclusion is that the
Yukawa tail itself makes no appreciable difference for various
targets below 200 MeV. This conclusion was deduced using
a merging technique that causes a smooth transition from the
Gaussian tail to the Yukawa tail. A more important conclusion
is that soft-core potentials lead to decreased cross sections,
especially for heavier nuclei such as 208Pb. The reason for this
decrease is the rotation of the two nucleons in the deuteron;
this is essentially caused by the central repulsion, and thus
this is a common feature of soft-core potentials.

Experimental and calculated nonelastic cross sections of
12C, 40Ca, 58Ni, and 208Pb in the low energy region below

200 MeV are compared. The experimental data were fairly
well reproduced by all three phenomenological potentials.
Interestingly, the three potentials used in quantum calculations
also gave reasonable results for the classical INC model with-
out any parameter adjustments. Although it is difficult to judge
the optimal potential because the current experimental data
are highly scattered, the cross sections obtained empirically
[31] are closer to those obtained with the previously used
Gaussian potential than to those obtained with the soft-core
potentials.
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