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Clustering effects in the 6Li(p, 3He) 4He reaction at astrophysical energies
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Background: The understanding of nuclear reactions between light nuclei at energies below the Coulomb barrier
is important for several astrophysical processes, but their study poses experimental and theoretical challenges. At
sufficiently low energies, the electrons surrounding the interacting ions affect the scattering process. Moreover,
the clustered structure of some of these nuclei may play a relevant role on the reaction observables.
Purpose: In this article, we focus on a theoretical investigation of the role of clustered configurations of 6Li in
reactions of astrophysical interest.
Methods: The 6Li(p,3 He)4He reaction cross section is described considering both the direct transfer of a
deuteron as a single pointlike particle in the distorted-wave Born approximation (DWBA), and the transfer of a
neutron and a proton in second-order DWBA. A number of two- and three-cluster structure models for 6Li are
compared.
Results: Within the two-cluster structure model, we explore the impact of the deformed components in the 6Li
wave function on the reaction of interest. Without explicit adjusting of the calculation inputs to the transfer
channel, we obtain reaction cross sections in good agreement with the results of more microscopic models.
Within the three-cluster structure model, we gauge the degree of α-d clustering and explicitly probe its role
in specific features of the transfer cross section; however, cross-section absolute values are overestimated. We
compare the energy trend of the astrophysical S factor deduced in each case.
Conclusions: Clustered 6Li configurations lead in general to a significant enhancement of the astrophysical
factor in the energy region under study. This effect only originates from clustering, whereas static deformations
of the ground-state configuration play a negligible role at very low energies.

DOI: 10.1103/PhysRevC.108.044614

I. INTRODUCTION

The characterization of reaction mechanisms occurring
at low energies, and in particular below the Coulomb bar-
rier, represents one of the most interesting challenges of
the last decades for nuclear physics. More specifically, reac-
tions involving light nuclei are experiencing renewed interest,
also for their important implications in the astrophysical
context [1–8].

While nuclear reactions at energies in the range �1 MeV
are crucial for explosive-type evolutionary processes in the
Universe, the lower energy domain (�200–300 keV) is rele-
vant to the study of the nucleosynthesis processes taking place
shortly after the big bang and in quiescent-phase stars.

Low energy nuclear reactions essentially include transfer
and capture processes. The former are mainly governed by
the nuclear force, whereas the latter are mainly driven by the
electromagnetic interaction. The determination of cross sec-
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tions at stellar energies, which are in general much lower than
the Coulomb barrier, requires considerable efforts. Indeed, in
most cases, direct measurements are really difficult because,
for energies within the Gamow window, the corresponding
cross sections become extremely low (reaching the nano-
or picobarn regime) [1,9]. Although new experimental tech-
niques, including indirect measurement methods, have been
developed in recent decades [10], the extrapolation of data
down to stellar energies often requires theoretical insight.

Quantum scattering theory provides solid foundations for
cross-section calculations. A variety of models, well suited to
the low energies (and low level density of the involved light
nuclei) relevant for nuclear astrophysics, are widely employed
in current studies, such as, optical models for capture reactions
[11] and (first- and second-order) distorted-wave Born ap-
proximation (DWBA) and/or coupled-reaction-channel cal-
culations for transfer reaction mechanisms. Within such a
context, the phenomenological R-matrix theory (see for ex-
ample Refs. [12,13]) has proved to be an efficient tool to
investigate reactions of astrophysical interest, using existing
data at higher energies as a reference point. Major recent
developments also concern the formulation of more micro-
scopic (ab initio) models, such as the resonating group method
[14], relying only on the bare nucleon-nucleon interaction,
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with few or no adjustable parameters, thus having in principle
high predictive power. These studies are of wide interest, also
for the possibility of probing yet unknown aspects of the
nucleon-nucleon interaction and explore derivation schemes
involving subnucleonic degrees of freedom [15,16]. However,
solving the many-body Schrödinger equation for scattering
states is a quite difficult task that can only be accomplished
for specific reactions involving relatively light nuclei. Suitable
approximate methods, such as the cluster approximation [17],
are often employed.

The possible influence of clustering effects, characterizing
the structure of light nuclei, on reaction mechanisms occurring
at very low energies deserves particular attention. Several light
nuclei of relevant interest in the astrophysical context, like
6,7Li, 7,9Be, and 10,11B, are known to exhibit a pronounced
cluster structure. Particularly important is the case of 6Li,
because its abundance in the stellar environment constrains
the 7Li-depleting mechanisms and their efficiency. Current
stellar models are unable to predict the observed surface
lithium abundance. This is often referred to as the lithium
problem, which has stimulated several investigations, on both
the theoretical and experimental sides, aiming at improving
the accuracy of low-energy bare-nucleus cross sections of
lithium-burning reactions (see [5] and references. therein).
Reactions destroying 6Li are also interesting for studying pre-
main-sequence stars.

It is well known that low-energy fixed-target direct mea-
surements exhibit a cross section enhancement because of
the electron screening effect caused by the electron clouds
surrounding the interacting ions. This phenomenon makes
it more difficult to measure the bare-nucleus cross sec-
tion [18,19], which is needed to subsequently evaluate the
cross section relevant for astrophysical environments. An
anomalous cross-section enhancement, larger than predicted
by standard electron-screening calculations, has been ex-
perimentally detected in several reactions at astrophysical
energies (an overview can be found in Refs. [6,20]). This ob-
servation, known as the electron screening problem, calls for
a deeper analysis of nuclear reaction rates at stellar energies,
with particular reference to the possible impact of clustering
effects [6].

In this work, we undertake a theoretical investigation of the
6Li + p → α + 3He reaction cross section at energies below
and around the Coulomb barrier, within the framework of
first- and second-order DWBA. We focus on the impact of the
reactants’ structure, and in particular of the 6Li ground state,
by considering different configurations and investigating their
influence on the transfer cross section, for a fixed set of optical
and binding potentials. The main goal of this analysis is to
investigate a possible sensitivity of the results to clustering
and static deformation effects. Thus, explicit dynamical ef-
fects, namely the coupling to excited states or other competing
channels, are not included here and will be the subject of
future investigations.

The paper is organized as it follows: In Sec. II we discuss
in greater detail the electron screening problem and its impact
on the astrophysical S factor. The methodology adopted for
the transfer calculations, together with the details referring
to optical and binding potentials and to structure inputs, is

described in Sec. III. The results obtained for the transfer cross
section, and associated astrophysical factor, as a function of
the beam energy are presented in Sec. IV. Conclusive remarks
and perspectives are given in Sec. V.

II. PHENOMENOLOGICAL ANALYSIS OF REACTIONS
AT STELLAR ENERGIES

In this section, we will review some techniques and phe-
nomenological methods employed to analyze reaction cross
sections at stellar energies, with particular reference to the
6Li + p → α + 3He reaction, for which several sets of exper-
imental data are available in the literature.

A. Low-energy reactions and screening effects

Let us consider a reaction between two nuclei with charge
numbers Z1 and Z2 and reduced mass m. Denoting by σ (E ) the
nonpolarized angle-integrated cross section at a given center-
of-mass collision energy E , the corresponding astrophysical
factor, S(E ), is defined as (see, e.g., [2, Eq. 1.1.4])

S(E ) = E e2πη(E ) σ (E ), η(E ) = αeZ1Z2

√
m

2E
, (1)

where αe ≈ 1/137 is the fine-structure constant and η de-
notes the Sommerfeld parameter. The astrophysical S factor
is a convenient tool to represent and discuss results at sub-
Coulomb energies, as a relevant portion of the exponential
dependence on energy of the cross section is factored out.
Thus, in the following we will adopt it for our analysis of
transfer cross sections.

At very low energies, screening effects associated with
the electrons surrounding the interacting ions become rather
important. Since the effects found in laboratory experiments
are of different kind and amplitude as compared to those
appearing in astrophysical environments, information on the
scattering between isolated reactants is usually required for
the modeling of astrophysical reactions. An interesting pos-
sibility to get around this problem is represented by data
obtained with indirect measurements, like the ones based on
the Trojan Horse method (THM) [5], which are not affected by
electron screening and thus can potentially provide informa-
tion on the bare-nucleus cross section even at vanishing beam
energy. At the same time, for fixed-target direct measurements
such as the one reported in Ref. [21], one can safely rely on
data at sufficiently high collision energies, where electrons
play a negligible role.

Many efforts have been devoted in the past to the possi-
bility of extracting the bare cross section, also at very low
energies, from direct measurements (see Refs. [18,22,23] for
some examples), thus identifying the screening effects. Here,
we will consider low-energy direct data in Refs. [24,25]
measured employing targets in which electrons can be ap-
proximated as belonging only to atomic (or molecular) bound
states. The effects in the low-energy reaction cross section,
caused by interactions between the reactants and the surround-
ing environment, are commonly described using the screening
potential approximation. Within the context of fixed-target
nuclear reaction experiments, the approach is described in
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Ref. [18] and treated in depth in Ref. [26]; the same model
was employed since much earlier to describe screening effects
in plasma environments [27]. The approximation prescribes
expressing the screened cross section, σs, in terms of the
bare-nucleus one, σb, as

σs(E ) = σb(E + U ), (2)

where U denotes the screening potential, which is often ap-
proximated as a constant with respect to energy. In Ref. [26,
Eq. (2.17)] it is estimated that using such formalism will
induce a relative error of the order of U/E on screened
cross sections of atomic systems. In Ref. [26, Sec. 5], atomic
screening effects are discussed in the limit of small collision
energies, under the so-called adiabatic limit. If the initial and
final state for the atomic systems is the ground state (with
no degeneracy), the adiabatic limit yields the theoretical up-
per limit for the screening potential at zero collision energy,
which is just the difference between the final (corresponding
to the touching-point configuration) and initial binding ener-
gies for the projectile and target electron systems (namely,
the maximum amount of energy that electrons can release to
the nuclear-motion degrees of freedom). A system made of a
neutral hydrogen atom impinging on a neutral Li atom has an
adiabatic-limit screening potential of 182 eV [26, Table 4].

Substituting Eq. (1) into Eq. (2), the corresponding
screened astrophysical factor, Ss, is consequently connected
to the bare one, Sb, as follows:

Ss(E ) = E

E + U
e2π[η(E )−η(E+U )]Sb(E + U ). (3)

In this expression, it is often possible to approximate Sb(E +
U ) ≈ Sb(E ), since the astrophysical factor likely varies very
slowly within an energy range equal to the typical values
of U (few hundreds of eV at most for the systems here of
interest). Equation (3) can then be employed to gauge the
ratio fe = σs(E )/σb(E ), namely the enhancement factor. For
instance, assuming U = 182 eV, the quantity [ fe(E ) − 1] for
a 6Li + p reaction at center-of-mass energies above 75 keV is
approximately 1% or smaller, well below typical experimental
errors. On the other hand, the correction becomes significant
at vanishing energies, for instance it is [ fe(E ) − 1] ≈ 26% at
E = 10 keV and U as above.

Figure 1 illustrates the effect of the expected electron
screening in the case of the 6Li + p → α + 3He reaction. The
top panel of Fig. 1 compares the bare-nucleus astrophysi-
cal factor from Ref. [5], measured using the Trojan Horse
method, with screened astrophysical factors obtained through
direct measurements reported in Refs. [21,23,24,28], showing
a clear enhancement toward low energies. The bottom panel
of Fig. 1 instead reports the prediction for the corresponding
bare-nucleus astrophysical factor, obtained using Eq. (2) with
U = 182 eV. The impact of screening effects on the mea-
sured astrophysical factor is nicely evidenced by this simple
approach. As can be seen from the figure, a screening potential
of 182 eV largely removes the difference in energy trend
between direct and indirect data discussed above. However,
in spite of the large error bars, the direct data (see in particular
the points from Ref. [24]) still exhibit a clear enhancement at
very low energies. This effect, namely the “electron screening

FIG. 1. Top panel: Experimental 6Li + p → 3He + α astrophys-
ical factors as a function of the collision energy, in particular data
below 1 MeV from Ref. [21] (black circles), inverse-kinematics data
from Ref. [24] (orange full squares), data from Ref. [28] including
insulator-target data first published in Ref. [23] (red upward tri-
angles), and Trojan Horse method data from Ref. [5] (green open
diamonds). Bottom panel: Green open diamonds are the same as in
the top panel. All other points represent the predicted bare-nucleus
astrophysical factor obtained from data in the top panel using Eq. (2)
with U = 182 eV. Each line corresponds to Eq. (4) with a given value
of Rn, as per the legend, and C adjusted so that the line agrees with
experimental data at 350 keV (see text).

problem,” could be attributed to nuclear features (such as
clustering or deformation effects) which could further reduce
the Coulomb repulsion between the reactants, as we will in-
vestigate in the following.

B. Phenomenological description of the cross section

At sufficiently low energies, the 6Li + p → α + 3He bare-
nucleus astrophysical factor decreases approximately linearly
with energy, hence in the bottom panel of Fig. 1 one observes
a rather flat behavior as a function of ln(E ), suggesting the
absence of measurable contributions from resonances. It is in-
teresting to investigate the extent to which this trend resembles
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the one expected from a phenomenological Coulomb-barrier-
penetrability model.

At energies E well below the reactants’ Coulomb barrier,
the reaction dynamics tends to be dominated by the process
of quantum tunneling through the barrier. Considering for
simplicity a sharp-edge spherical well for the projectile-target
nuclear interaction, the angle-integrated reaction cross sec-
tion σb(E ) for the process of Coulomb-barrier penetration
can be expressed as in Ref. [29, Sec. 1.1.1]. As a matter of
fact, only channels with small projectile-target orbital angu-
lar momentum are relevant, because the centrifugal barrier
further hinders penetrability. Hence, considering only s-wave
scattering, one can write

σb(E ) ≈ C
π

k2
P0, P0 = kRn

|H0(η, kRn)|2 , (4)

where k = √
2mE/h̄ is the entrance channel relative momen-

tum, and P0 is the penetrability factor found also in R-matrix
theory [2, Eq. (10.2.5)]. C is a dimensionless free parameter,
phenomenologically accounting for reaction details such as
the overlap between initial and final states and phase-space
factors. Hl (η, kr) is the spherical Coulomb wave function [30,
Chap. 33] and Rn is a parameter representing the distance
between the two nuclei at the contact point, usually taken
equal to R0 = 1.2 fm(A1/3

1 + A1/3
2 ), which is about 3.5 fm

for the reaction considered here. In the sharp-edge spherical
well model, Rn also represents the radius at which the po-
tential reaches its maximum (the barrier height), keZ1Z2/Rn

(where ke ≈ 1.44 MeV fm), which in the present case is about
1.3 MeV for Rn = R0.

The curves reported in Fig. 1 (bottom panel) were obtained
considering several values for Rn and adjusting C to fit exper-
imental data at about 350 keV. One can observe that, whereas
the THM indirect data are nicely fitted by Rn = R0, a larger Rn

value is needed to reproduce the scaled direct measurements
at the lowest energies. This can be taken as an indication of the
fact that the experimental cross section would be compatible
with a lowering of the Coulomb barrier, possibly induced by
the presence of clustering or deformation effects in the 6Li
nucleus [6]. In the following, we will explore the possible role
of such effects in the (p, 3He) transfer process.

III. METHODOLOGY

When studying (p, 3He) reactions, one can take advantage
of the fact that the transferred system, namely a deuteron
(d), is bound and assume that the process corresponds to the
transfer of an elementary particle. In such a case, the cross
section can be obtained within the first-order distorted-wave
Born approximation (DWBA) [31, Sec. 2.8]. One can also
go beyond this approximation by assuming that the reaction
mechanism involves the transfer of two individual nucleons,
namely one neutron and one proton (np transfer). Then the
reaction process acquires a greater degree of complexity and
needs to be treated in second-order DWBA [31,32]. Recently,
there has been a revival in the use of second-order DWBA
thanks to its success in the study of two-neutron pairing
correlations, providing absolute cross sections in very good
agreement with the data [33–36]. The np transfer is a less

explored case. To our knowledge, the first attempt to perform
second-order DWBA calculations for a np transfer reaction
was discussed in Ref. [37], to investigate the relative impor-
tance of isoscalar (total isospin T = 0 for the np pair) and
isovector (T = 1) pairing.

In the following, the basic formalism and the different
ingredients of the calculations performed in the present study
are introduced. Consider a generic reaction A + b → a + B
proceeding as the transfer of the system N , meaning that A
(or B) can be seen as a bound state of particles a (or b)
and N . Let φi be the wave function describing the internal
motion of particle i in the state of interest for the process.
For the reaction considered in the present work, the initial
system involves p and 6Li in its ground state, and the final
one comprises the ground states of 4He and 3He.

The complete model Hamiltonian H can then be decom-
posed as

H = H0 +
∑

i∈{a,b,N}
Ki + Vab + VaN + VbN , (5)

where H0 describes the internal motion of a, b, and N , Ki is
the kinetic energy of the center of mass of particle i, and Vi j

is the potential between particles i and j. The internal-state
wave function for the initial partition, φAφb, will be an eigen-
function of H0 + KaN + VaN , where Ki j is the kinetic energy
for the relative motion between the centers of mass of i and j.
Analogous considerations apply to φaφB.

A. One-particle transfer

The one-step transition amplitude for the reaction, T
(whose square modulus is proportional to the differential cross
section [38, Eq. (12)]), can be expressed in DWBA as in
Ref. [31, Eqs. (2.96), (2.98)], in the so-called prior or post
forms:

T prior = 〈χ (−)
aB φaφB |VbN + Vab − UAb | φAφbχ

(+)
Ab 〉,

T post = 〈χ (−)
aB φaφB |VaN + Vab − UaB | φAφbχ

(+)
Ab 〉, (6)

where UAb and UaB are initial- and final-state optical poten-
tials, acting only on the relative motion between the centers of
mass of projectile and target in the respective partitions; χ

(+)
Ab

and χ
(−)
aB are distorted waves, namely eigenfunctions of UAb

and UaB with boundary conditions appropriate for the problem
of interest. If no further approximations are introduced, the
results do not depend on the chosen form (prior or post) [31,
Sec. 2.8.8].

In the one-particle-transfer description, the reaction takes
place as the direct transfer of an inert system, N , which is
the ground state of a free deuteron in the present calculation.
The complete internal state of A is truncated to a single
component factorized in the internal state of the free particles
a and N , and a bound wave function for the motion of the
centers of mass of a and N , φaN , obtained from the overlap
function 〈φaφN | φA〉. The same applies to the internal state
of B. The particles a, b, and N are thus effectively treated
as inert and pointlike, apart from the appearance of the spec-
troscopic amplitudes associated with the overlap functions.
The factorized form of the wave functions allows one to
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simplify the matrix elements in Eq. (6), performing the in-
tegrals over all internal-motion coordinates of a, b, N . For
instance, the term 〈φaφB |VbN + Vab | φAφb〉 can be written as
〈φbN |VbN + Vab | φaN 〉, where the potentials Vi j describe the
interaction between the centers of mass of particles i and j and
do not act on their internal degrees of freedom. In practice,
the many-body interactions V are not introduced explicitly:
The potentials VaN and VbN are set so that φaN and φbN are
eigenfunctions of such potentials with the desired separation
energy as eigenvalue, and the core-core interaction Vab is
defined phenomenologically.

B. Two-particle transfer

In the two-particle-transfer formulation, the transferred
system, N , is explicitly modeled as composed by two sub-
systems, μ and ν, here a proton and a neutron. A is thus
the composition of a, μ and ν, and similarly B = b + μ + ν.
Additionally, the model space is extended to include an inter-
mediate state where only particle ν is transferred, comprising
the nuclei A = a + μ and B = b + ν. The total Hamiltonian
of the system in Eq. (5) can now be written more explicitly:

H = H̃0 +
∑

i∈{a,b,μ,ν}
Ki + Vab + Vaμ + Vaν + Vbμ + Vbν + Vμν,

(7)

where H̃0 describes the internal motion of a, b, ν, and μ. As in
the one-particle-transfer case (see again Sec. III A), the many-
body interactions Vi j will not be explicitly employed in the
practical calculations, since all matrix elements of interest can
be simplified integrating over the internal coordinates of a, b,
ν, and μ.

The process was treated in second-order DWBA. The reac-
tion can proceed as a one-step transfer from A + b to a + B as
in Sec. III A, which corresponds to a transition matrix, T (1),
denoted the simultaneous term: This is formally identical to
the one in Eq. (6) but keeping in mind that VaN = Vaν + Vaμ

(and similarly for VbN ), and that the system has now an extra
degree of freedom (the internal motion within N). The final
state of interest can also be reached through a two-step process
involving two single-particle transfers of a nucleon (each,
once again, analogous to the one described in Sec. III A)
and the propagation of the intermediate state, A + B, popu-
lated by the first step of the process. In the literature, the
corresponding transition matrix (which is the same as that
appearing in Ref. [31, Eq. (3.62)]), T (2), is often split into two
terms denoted sequential and nonorthogonality contributions.
Here, the two latter terms are always considered together. The
total transition amplitude for the process is thus expressed
as T = T (1) + T (2). Within DWBA, if no further approxima-
tions are introduced and provided that nonorthogonality terms
are correctly taken into account, each transfer step appearing
in both T (1) and T (2) can be indifferently computed in either
the prior or post form [32, Sec. 3].

1. Simultaneous two-nucleon transfer

The wave functions of A and B, here labeled 	A and 	B,
are constructed in terms of a superposition of states factorized

in the core-nucleon motions (“V coordinates”), for instance,

	A(raμ, raν ) =
∑
i, j

ci, j φaμ,i(raμ)φaν, j (raν ), (8)

which, if the isospin formalism is adopted, needs to be prop-
erly antisymmetrized. The state is such that the separation
energy of A into a, μ, and ν is fixed to the experimental value
(this is necessary to ensure that A as a whole has the correct
binding energy, or mass), and similarly for B. This amounts
to a constraint on the binding potentials of the system, which
in practice is enforced by uniformly rescaling the potentials’
volume term.

In principle, the functions φ in Eq. (8) are to be chosen
so that 	A is an actual eigenstate of the Hamiltonian for the
isolated system A, which is∑

i∈a,μ,ν

Ki + Vaμ + Vaν + Vμν. (9)

The total Hamiltonian in Eq. (7) can be recast in several
possible ways by regrouping the kinetic energy operators and
moving to the center-of-mass frame of the whole a + b + ν +
μ system. For instance,

H = H̃0 + (Kaμ + Vaμ) + (KAν + Vaν + Vμν )

+ (KAb + Vab + Vbμ + Vbν ) (“prior”), (10a)

H = H̃0 + (Kbν + Vbν ) + (KBμ + Vbμ + Vμν )

+ (KaB + Vab + Vaμ + Vaν ) (“post”), (10b)

where Ki j is the kinetic energy for the relative motion between
the centers of mass of i and j. Kaμ + Vaμ can be seen as
the “internal” Hamiltonian of the isolated a + μ system in
its center-of-mass frame. Similarly, KAν + Vaν + Vμν is the
Hamiltonian of the A + ν system, in its center of mass, de-
prived of the contribution from the internal motion of A. All
the other terms enclosed in parentheses in Eq. (10) bear an
analogous meaning. Note that Vab + Vbμ + Vbν (the potential
between b and A) is the potential appearing in the prior-form
transition operator for the simultaneous-transfer calculation
[the analog of Eq. (6)].

When practically performing two-nucleon-transfer simul-
taneous calculations, for reactions involving heavy ions, the
Hamiltonian is often approximated (see, e.g., Refs. [32,
Sec. 7], [35], and [39]) by formally setting, for either or
both the projectile and target systems, Vμν = 0 and using Kaν

and/or Kbμ in place of, respectively, KAν and KBμ. This is
generally accurate if the core nucleus (a or b) is much heavier
than the transferred particles (μ and ν). Under such approxi-
mation, here labeled the “heavy-ion scheme” for definiteness,
the φaμ and φaν in Eq. (8) become just the eigenstates of the
a-μ and a-ν systems. Additionally, the approximated Hamil-
tonian is such that the potential appearing in the prior-form
simultaneous transition operator coincides with the sum of
the core-core interaction, Vab, and of the total binding poten-
tial of B (and similarly in post); this is the same condition
found in single-particle transfers, and simplifies the practical
calculation of the transfer cross section. However, the kinetic
terms in the approximated Hamiltonians in prior and post form
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are different, breaking the formal equivalence between the
two forms. In the present case, involving light ions, it was
observed that simultaneous calculations performed using the
heavy-ion scheme (or similar variations as the default one
from the FR2IN code [40]) were sensibly different in prior
and post forms, suggesting that the approximation itself may
not be suitable. The simultaneous calculations discussed here
were thus performed as described above but keeping the re-
duced masses associated with the correct kinetic terms (e.g.,
Kaμ and KAν for the core-μ and core-ν single-particle states
for the projectile); such modification almost perfectly restores
the equivalence between the prior- and post-form Hamilto-
nians. The geometry of the binding potentials was defined
correspondingly: For instance, the single-particle state com-
puted using kinetic energy KAν is associated with a potential
which attempts to account for the A-ν interaction. Such choice
also allows one to adopt wave functions with precisely the
same form in both first- and second-order contributions to the
transition amplitude (T (1) and T (2)). However, we notice that
the precise geometry of binding potentials has only a limited
impact on results, since any change is partly compensated
for by the adjustment to the desired binding energy [see the
comment on Eq. (8)]. The next step toward a fully consistent
calculation would be to construct the three-particle state of A,
to be used in the first-order simultaneous calculation, as the
superposition of states factorized in the a-μ and A-ν motions
(“Y coordinates”), and similarly for B.

Finally, we point out that, for the very light nuclei of
interest here, the contribution of the nucleon-nucleon potential
Vμν is not negligible compared to the other interactions (for
instance, both the α + p and the α + n systems are unbound,
even though the 6Li is bound). Albeit not explicitly included,
the impact of Vμν is, in general, necessarily reabsorbed in
an effective way in the other binding potentials (Vaν , for in-
stance), since these must be adjusted to fix the binding energy
of the a + μ + ν system (and similarly for B), as mentioned
above. In other words, when Vμν is neglected, Vaν cannot be
the “true” a-ν interaction, but is a phenomenological potential.
The downside is that such effective adjustment will then also
appear in the transition operator of Eq. (10), where it is not
needed [32, Sec. 2], potentially leading to an overestimation
of the transfer cross section for light nuclei. We expect this
problem to be the main cause of the discrepancy observed be-
tween the results of Sec. IV B 2 and the experimental transfer
cross section. We underline that the issue is a general feature
of the aforementioned “heavy-ion scheme,” whose relevance,
however, depends on the relative importance of the nucleon-
nucleon interaction, Vμν , with respect to the core-nucleon
binding potential.

C. Numerical calculations

The numerical cross-section calculations shown in this
work, for both one- and two-particle transfers, were carried
out, with the specifications given later in Sec. IV, employing
the FRESCO code [41] with the Numerov method. As the
collision energies of interest are rather small, it was checked
that the transfer calculations are already well converged when
truncating the partial-wave expansion of the scattering wave-

functions at a total angular momentum of 7/2. It is worth
mentioning that the practical implementation in FRESCO actu-
ally employs a coupled reaction channels (CRC) formulation,
rather than the integral one in Eq. (6), with an appropriate
choice of the couplings to recover the DWBA. The results
can be shown to be equivalent in either formulation [31,
Sec. 3.4.2] [42].

We also note that, in the (one- or two-particle) transfer
calculation, the inclusion of spin couplings (or, in general, an
angular-momentum dependence) in the core-core potential is
computationally very challenging and is not implemented in
the FRESCO code (or, to our knowledge, in any other available
code, with few specific exceptions not covering the case here
of interest; see, e.g., Ref. [43]). Similarly, while spin-coupling
terms in the projectile-target optical potentials can be fully
taken into account for the construction of distorted waves [the
χ in Eq. (6)], the UAb and UaB terms explicitly appearing in
Eq. (6) are truncated to their central, spin-independent parts.
This implies that cross sections computed in prior and post
form will not be equivalent if spin couplings in projectile-
target potentials are included. Nevertheless, such couplings
allow a richer description of the system, and were thus in-
cluded in the present calculations, as detailed in Sec. IV. All
transfer results shown in this work were computed in post
form (for first-order terms) and post-post form (for second-
order terms); we deem this to be the choice yielding the
best approximation of the correct result, given the form of
the adopted potentials. In particular, it is thought that the
neglected noncentral components in the projectile-target and
core-core potential can better compensate with each other
when they bear a more similar form (each with respect to
its own coordinates). The 6Li + p potential is the only one
bearing a spin-spin component, thus the post form in the
first (or single) transfer step is adopted to avoid neglecting
it. Regarding the form for the second step of the second-
order process, we expect the noncentral components of the
core-core α-d interaction to resemble more closely those of
the α-3He potential, rather than those of the 5Li-d one. Ad-
ditionally, the approximation involved in the post form for
this step is more coherent with the analogous one made in the
post-form simultaneous transfer (in both cases, the noncentral
part of the same 3He-α potential is being neglected), thus one
may suppose that the coherent sum of both contributions will
generate a more consistent result adopting the post form for
all transfer steps (see Ref. [29, Secs. 4.1.3.b, 4.2.3.e] for more
discussion).

IV. RESULTS

A. Deuteron transfer

Considering the deuteron as a single particle, the following
optical potentials are needed to evaluate the transfer cross
section: 6Li-p, α-3He (initial- and final-state projectile-target),
and α-p (core-core). All potentials employed in this work
were parametrized as reported in the Appendix, and the values
of the corresponding parameters are given in Table III.

For the core-core α-p interaction, we considered the po-
tential quoted in Ref. [44], taking for the Coulomb part the
potential generated by a uniformly charged sphere [the form in
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FIG. 2. Points are experimental 6Li + p elastic-scattering phase
shifts, collected in Ref. [49] from earlier experiments (see references
therein). Lines in corresponding colors are the prediction of the
optical potential discussed in Sec. IV A. In the figure legend, L is the
6Li-p relative orbital angular momentum modulus quantum number,
S the modulus quantum number for the sum of 6Li and p spins, J the
modulus quantum number for the sum of �L and �S, and π the parity
of the state.

Eq. (A2)] with radius fitted on elastic scattering experimental
cross sections at the relevant energies (see Refs. [45,46] and
references therein).

Regarding the 6Li-p potential, most optical potentials in lit-
erature include at most spin-orbit couplings. However, a term
coupling the spins of both reactants is needed to reproduce the
experimental phase shifts. Furthermore, to our knowledge, no
published energy-independent potential compares acceptably
with the elastic scattering cross section in the energy range
of interest here. For this work, a real energy-independent
potential was adjusted to reproduce the most relevant partial
waves of the experimental phase shifts, namely the s waves
and the p5/2 wave, the latter showing a resonant trend, at-
tributed to a 7Be level, which is visible also in the transfer
channel. The result is shown in Fig. 2. The potential found
in this manner introduces no spurious resonances (namely,
resonances with incorrect energy or quantum numbers) in the
region of interest. An imaginary component was subsequently
added to the interaction to improve the agreement with the
elastic scattering experimental cross sections below 1.4 MeV
reported in Refs. [47,48].

For the α-3He optical potential, instead, the real and imag-
inary parts were fitted to the elastic scattering cross-section
data presented in Refs. [50,51], using SFRESCO [41].

The remaining ingredients are the 〈α d | 6Li〉 and
〈p d | 3He〉 overlap functions. In each case, the asymptotic
radial trend of each wave function is fixed by adjusting
the associated binding energy to the correct separation
energy. The α + d wave function is constructed with the
same procedure adopted in Ref. [52, Sec. 5.3], but using
different choices for the relative weight of s- and d-wave
components, as detailed in Sec. IV A 1. Note that, according

FIG. 3. 6Li(p,3 He)4He astrophysical S factor. Points are a subset
of the rescaled data in the bottom panel of Fig. 1 (only some data
points are shown for readability). The magenta dotted line is the
resonating-group-method calculation in Ref. [14]. The other lines
are the present-work deuteron-transfer post-form DWBA calculation.
The brown dashed line was computed including only a relative orbital
angular momentum 
 = 0 (l in the figure legend) for the 4He-d wave
function. The turquoise dot-dashed and blue solid lines were com-
puted including also a d-wave component (constructed as reported in
Sec. IV A) with relative norms of about 0.8% and 6.6% respectively.

to this construction, the s- and d-wave radial wave functions
have, respectively, one and zero nodes, as in Ref. [52] and as
suggested by the Wildermuth connection [31, Eq. (16.32)],
while other works suggest one node for the d wave as well
[53, Sec. V.C], [54, Sec. IV]. An overall spectroscopic factor
of 0.82 is then assigned to the wave function, such that
the s-wave state reproduces the asymptotic normalization
coefficient of 2.29 fm−1/2 quoted in [55, Sec. 4.2]; this is also
the spectroscopic factor found in [53, Sec. V.C] for only the
s-wave component.

The 〈p d | 3He〉 overlap function was constructed using the
binding potential reported in [56, Table VIII], which repro-
duces a Green’s function Monte Carlo (GFMC) overlap while
providing the correct asymptotic form for the wave function.
The state includes both s- and d-wave components, with no
nodes in the radial parts, and with spectroscopic factors of
1.31 and 0.0221 respectively [56, Table IV]. Their sum is
slightly smaller than the spectroscopic factor found within
the independent-particle shell model, 3/2, and is consistent
with values used in previous (3He, p) or (p,3 He) calculations
[37,57].

The astrophysical factors obtained in DWBA with the
above ingredients are displayed in Fig. 3. The region of the
resonance, which corresponds to the second 5

2
−

state of 7Be,
is clearly underestimated with respect to the data; this is
not surprising, considering that the optical potential in the
exit channel was fitted on global features of the elastic cross
section at smaller energies. The limited number of parameters
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considered to describe the optical potentials in the entrance
and the exit channels makes it difficult to fit the whole energy
dependence of the cross section. Our aim here is to focus on
the trend at energies below 1 MeV.

It is interesting to notice that the calculations can reproduce
the almost linear trend observed in the energy range of astro-
physical interest, where our results even overestimate the bare
cross sections extracted from experimental data. Hence, the
single-particle transfer scenario, which implicitly assumes a
clustered deuteron structure, would seem to support the addi-
tional (“anomalous”) enhancement observed in the direct data.
A similar result was obtained from the Faddeev three-body
calculation in Ref. [58], and the resonating-group method
(RGM) calculations of Refs. [14] (the magenta dotted line in
Fig. 3) and [59]. In particular, we also note the quite good
agreement between the present calculation with the largest
d-wave contribution (blue solid line in Fig. 3) and the RGM
result from Ref. [14].

1. Role of deformations in the intercluster wave functions

Here, we would like to address the impact of possible
deformations effects, in the reactants ground state, on the low-
energy trend of the astrophysical factor. Indeed, the Coulomb
repulsion could be reduced if deformation effects are taken
into account in the 6Li cluster-model ground state, thus pro-
viding a further explanation of the cross section enhancement
associated with the electron screening problem [6]. In the
single-particle transfer calculations, clustering is being im-
posed in the sense that d and α are treated as pointlike
particles, and the 〈α d | 6Li〉 ground-state overlap function is a
two-body α-d wavefunction (and analogously for 3He). Usu-
ally, the 6Li two-cluster-model ground state is associated with
a wave function with α-d relative angular momentum, 
αd ,
fixed to 0 (see, e.g., [60–64]); the brown dashed line in Fig. 3
is a calculation performed in this manner (including only the
s-wave component). However, a small d-wave (
αd = 2) com-
ponent is suggested by models and required to reproduce some
experimental structure properties of 6Li [52,65,66]. To take
this into account, the calculation represented by the turquoise
line in Fig. 3 also includes an α-d d-wave component with a
relative norm of 0.83% (keeping the total norm of the bound
state fixed): This was adjusted to reproduce the 6Li electric
quadrupole moment (as in Ref. [52, Sec. 5.3] but using the up-
dated experimental values in Ref. [67]). Finally, the blue solid
line corresponds to a calculation with an α-d wave-function
reproducing the experimental 6Li magnetic dipole moment
(see Refs. [29, Sec. 5.2.1] and [68] for more details), namely
with a relative d-wave norm of 6.6%.

The deformed components of the intercluster wave-
functions allow the transfer to proceed through partial waves
which would be otherwise forbidden. This is because the
interactions adopted in the present calculation (including only
central terms and vector spin-orbit couplings) conserve not
only the total angular momentum and parity of the system, Jπ ,
but also the modulus of the total orbital angular momentum of
the system, which in each partition can be expressed as the
sum of 
 (defined above) and the orbital angular momentum
between the projectile and target centers of mass, L; see Fig. 4.

FIG. 4. Representation of the reactants structure and the Jacobi
“T ” coordinate system. Spheres depict the particles treated as el-
ementary in the present formalism (in Sec. IV A, the transferred
np system is inert). Each line represents a Jacobi “T ” coordi-
nate (transferred system internal motion, core-transferred motion,
projectile-target motion), and l , 
, L are the symbols employed
here to represent the orbital angular momentum modulus quantum
number associated with each of those coordinates.

It is stressed that the projectile-target coordinate is different in
the initial and final partitions, thus LLip and LαHe are distinct
quantities. However, if both the 〈α d | 6Li〉 and 〈p d | 3He〉
overlap functions include only an 
 = 0 component, then it
must be that LLip = LαHe. For instance, a 6Li + p pair collid-

ing in s3/2 wave (Jπ = 3
2

+
and LLip = 0) cannot couple to the

3He + α channel, where Jπ = 3
2

+
would require LαHe = 2.

The same reasoning forbids an incoming p5/2 wave (LLip = 1)
if 
 	= 0 components are discarded. It is worth noting that
the 6Li + p p5/2 is the wave displaying a resonance in the
elastic scattering phase shift fitted in our calculations (see
Fig. 2), which has been associated with the 7Be 5

2
−

excited
state at about 7.2 MeV [69] and to the aforementioned peak in
the transfer channel [70]. As a consequence, the inclusion of
nonspherical overlap functions is generally expected to alter
the reaction cross section: If the total spectroscopic factor of
the state is kept constant, the cross section will increase or
decrease depending on the relative probability of the processes
allowed by the spherical and nonspherical components.

If the adopted initial- and final-state projectile-target in-
teractions do not include spin-coupling terms, the difference
induced by the inclusion of the d-wave component of the
structure wave functions would depend just on the number
of spin states Jπ associated with the partial waves allowed
by each wave-function component, and on the distorted
waves associated with such partial waves (in general, greater
projectile-target angular momenta are disfavored). In a test
calculation where the aforementioned spin couplings were
removed, we found that, for collision energies below about
1 MeV, the variation of the astrophysical S factor induced
by the deformed component of the wave functions is almost
constant with energy. However, the presence of spin-coupling
terms in the optical potentials (for instance the 6Li-p spin-spin
term mentioned above), which are included in our calcula-
tions, can change this conclusion, as detailed in the following.

As shown in Fig. 3, the transfer S factor increases at ener-
gies around the Coulomb barrier when deformed components
are included in the overlap functions (see, in particular, the

044614-8



CLUSTERING EFFECTS IN THE 6Li(p, 3He) 4He REACTION … PHYSICAL REVIEW C 108, 044614 (2023)

solid blue line). A partial-wave decomposition of the com-
puted cross sections reveals that, for collision energies above
about 1 MeV, the difference between the brown dashed line
in Fig. 3 and the other two calculations is mainly due to a
contribution with 6Li + p incoming in p5/2 wave (the resonant
wave; see above), which leads to an enhancement at a slightly
smaller energy with respect to the peak observed in the exper-
imental transfer data. We underline again that the potentials
employed in this work were more focused on describing
the region at sub-Coulomb collision energies. Moreover, the
coupling to excited states of 6Li is expected to play a non-
negligible role in reproducing the resonant trend (note that
the 6Li breakup channel opens at a center-of-mass collision
energy of about 1474 keV). The inclusion of deformation
effects can thus be of interest for future investigations of
the region around the barrier using coupled-reaction-channels
approaches, since standard studies typically assign states with
definite intercluster orbital angular momentum modulus to
each level (see, e.g., Refs. [61–64]).

Regarding the region of astrophysical interest, it is inter-
esting to see that the cross-section difference between the
calculations involving spherical or deformed overlap func-
tions in Fig. 3 vanishes at very low collision energies. Due to
the adopted spin-coupling terms in the optical potentials, we
observe that the increase in the s3/2-wave cross section equals
the reduction in the s1/2-wave cross section, thus leading
to a negligible total variation. Therefore, within the present
DWBA framework, we conclude that possible static deforma-
tion effects, associated with clustered configurations, do not
play a role in the observation of an abnormal electron screen-
ing, though they affect the overall trend of the astrophysical
factor. This is also in agreement with the findings in [68]
regarding the 6Li-p barrier penetrability.

The discussion of dynamical deformation effects, namely
polarization or reorientation effects, requires one to go beyond
the present DWBA description of the reaction, as we plan to
do in future works.

B. Two-nucleon transfer

In this section we discuss the results obtained with second-
order DWBA calculations. The ingredients of the two-nucleon
transfer process which are in common with the deuteron-
transfer calculation (see Sec. IV A) were chosen to be the
same. This is in particular the case for the 6Li-p, α-3He,
and α-p potentials. The role of the intermediate partition in
second-order DWBA requires one to define more optical and
binding interactions. The α-d core-core potential was, for
consistency, taken to be the same one employed in Sec. IV A
to construct each component of the 6Li bound state, but with
the depth of the volume term rescaled to match the potential in
Ref. [71] at zero distance (whose numerical value is given in
Ref. [60, Fig. 2]). The fact that both 5Li and 5He are unbound
makes it difficult to fit the interactions involving these sys-
tems. Thus, we rely on generic optical potentials, namely the
one in Ref. [72] for the 5Li-d projectile-target interaction, and
the one in Ref. [73] for the 5Li-p core-core interaction. The
form and parameters of the adopted potentials are reported in
the Appendix.

1. Description of the ground-state configuration

The new important aspect, with respect to the calculations
in Sec. IV A, is that the 〈α p n|6Li〉 and 〈p n p|3He〉 overlap
functions are three-body wave functions. The transferred
system is thus not fixed to an inert deuteron anymore, and it is
possible to implement different degrees of deuteron clustering
within the composite system. The specific approach employed
for the construction of the wave functions is discussed in
greater detail in Ref. [29], and summarized in the following.

The three-particle wave functions are expressed using
Eq. (8) as described in Sec. III B 1. To ensure that a complete
state 	 has the correct binding energy, the binding energy
of each single component of the superposition, for instance
φaμ,iφaν,i in Eq. (8), is fixed to the same value. Note that
this, in general, implies that the binding potentials will be
different for each component i. The standard prescription
(see, e.g., the construction implemented in the FR2IN code
[40]) is to assign to each single-particle state, φ, a binding
energy equal to half the total separation energy of A (or
B). Such prescription was adopted here for the 6Li state
(where the physical α-nucleon states are unbound). Follow-
ing the approach discussed in Sec. III B 1, the core-proton
wave-functions are constructed using the reduced mass of the
α-p system, while the core-neutron wave functions involve
the reduced mass of the 5Li-n system. The binding potential
employed to construct these wave-functions is the same α-p
interaction discussed in Sec. IV A and employed as core-
core potential, with the following differences. First, for each
single-particle wave function the volume depth is adjusted to
reproduce the aforementioned binding energy. Second, for the
core-neutron wave functions, the Coulomb term is removed,
and all radii were rescaled by (6/5)1/3 to empirically account
for the different size of 5Li with respect to the α (this was seen
to yield negligible differences in the results. The components
of the superposition defining the 6Li ground state were chosen
following the results of the Faddeev three-body calculation
in Ref. [44] (which adopts the same α-nucleon interaction in
use here). The paper reports the weights of the components of
the computed wave function in a different angular momentum
coupling scheme than the one adopted here (which is the
“ j j” scheme), thus they were transformed accordingly. Some
of the components quoted in Ref. [44, Table 2] for the 6Li
ground state are not compatible with the present model and
calculation scheme (for instance, the configuration with total
isospin 1) and were thus discarded. The adopted components
comprise a total norm of 0.936 and are shown in Table I.
The data included in Ref. [44] are not sufficient to extract all
relative phases between the different components in a straight-
forward manner. To find a set of reasonable relative phases, the
weight of each component was compared with the one given
by a three-body calculation in the hyperspherical harmonics
formalism [74]. With the choice of phases in Table I for the
components in Ref. [44], the two calculations predict a similar
structure for the global wave function and comparable norms
for the different components in “ j j” scheme.

Regarding instead the 3He, as is customary (consider for
instance the construction implemented in the FR2IN code
[40]), the total wave function for 3He comprises only one
component, in which both single-particle wave functions are

044614-9



S. S. PERROTTA, M. COLONNA, AND J. A. LAY PHYSICAL REVIEW C 108, 044614 (2023)

TABLE I. Decomposition of the α + p + n three-particle wave-
function adopted for the 6Li ground state (see top left panel in
Fig. 6), deduced as detailed in the text. The state is decomposed
into products of single-particle states in the “ j j” angular-momentum
coupling scheme, as specified in the first two columns, marking
respectively the proton and neutron states (in the present notation, the
radial quantum number corresponds to the number of radial nodes
plus one). The last column is the amplitude associated with each
component.

p shell n shell Amplitude

1p3/2 1p3/2 0.7482
1p3/2 1p1/2 −0.4044
1p1/2 1p3/2 0.4044
1p1/2 1p1/2 −0.1228
2s1/2 2s1/2 −0.1843

1s states (i.e., with no nodes in the radial part). However,
following the approach discussed in Sec. III B 1, in this work
the core-neutron wave function is constructed using the n-p
reduced mass, the p + n → d experimental separation energy,
and a n-p binding potential from the FR2IN code [40], while
the core-proton wave-function is the 1s component of the d-p
wave-function discussed in Sec. IV A for the deuteron-transfer
calculation.

These wave functions are then translated, using the
Moshinsky coordinate transformation [75], into the so-called
“T” Jacobi coordinates, namely, they are expressed as a func-
tion of the displacement between the transferred neutron and
proton (�rnn) and the displacement between the center of mass
of the transferred system and the rest of the nucleus, i.e., the
core ( �Rct ). The Moshinsky-transformed wave functions are
finally employed for the simultaneous transfer calculation.
The second-order contributions are instead computed using
directly the form of the aforementioned single-particle wave
functions, φ, for each transfer step (thus employing them
in the so-called “Y” Jacobi coordinate system), weighted in
the same way as the components for the three-particle wave
functions discussed above. Note that this implies that a bound
wave function is assumed for the intermediate 5Li state in the
two-step transfer; the adopted Q values for each transfer step
are adjusted consistently. A more accurate treatment might be
sought through a description of 5Li continuum. For both the
first- and second-order calculations, the same overall spec-
troscopic factors employed in the deuteron-transfer case are
adopted (see Sec. IV A); these spectroscopic factors are not
included in Figs. 5 and 6 and Tables I and II. Figures 5 and 6
represent the probability density functions for the ground state
structure of 3He and 6Li respectively, in terms of the radial T
Jacobi coordinates. In both figures, the red line corresponds
to the quadrant bisector (x = y) in the rescaled Jacobi space
coordinates, x = √

Annrnn and y = √
Act Rct , where Aab is the

reduced mass number for the a-b system (in particular, for
the p + n + p nucleus it is Ann = 1/2 and Act = 2/3, whereas
for the α + p + n nucleus it is Ann = 1/2 and Act = 4/3). The
kinetic energy part of the Hamiltonian is symmetric under the
exchange of the rescaled coordinates x and y, thus explaining
the nearly symmetric trend observed for the probability den-
sity functions with respect to the x = y line.

FIG. 5. Contour plot for the reduced radial probability density
function (pdf), in fm−2, for the core + p + n state of 3He. The x axis
is the distance between the transferred p and n, while the y axis is the
distance between the core and the n-p center of mass. The line obeys
the equation in the legend. See Sec. IV B 1 for details.

The Rct =
√

3
2 rnn line, which is the x = y line for 3He, hosts

equilateral triangle configurations. The maximum probability
density for 3He is found close to this line, as the transferred
nucleons are placed in the s shell.

A completely different situation is found for 6Li, as ex-
pected. The choice of relative phases for the wave-function
components (see the discussion above) yielding the best
agreement between the calculations in Refs. [44,74] corre-
sponds to the probability density function shown in the top
left panel of Fig. 6. We observe two maxima at the opposite
sides of the x = y line, which corresponds to Rct =

√
3
8 rnn

for α + n + p. The peak at Rct >
√

3
8 rnn, featuring a greater

maximum probability density, can be associated with a config-
uration in which the neutron and the proton are close together

TABLE II. Each row refers to a different 6Li wave function,
identified in the first column by the relative weight and phase of
the adopted components in core-nucleon coordinates. The second
column lists the integral of the probability density function (pdf)

over the “clustered region” Rct >

√
3
8 rnn (the region above the red

line in Fig. 6; see Sec. IV B 1 for details), normalized to the average
of the total norm of the transformed wave functions associated with
the pure (1p)2 and (2s)2 configurations. The last column lists the
maximum of the radial pdf within the same region, normalized to the
value for the pure (1p)2 case.

Clustered region

6Li pdf Integral Maximum

(1p)2(50%) − (2s)2(50%) 0.711 0.80
(1p)2(87.6%) − (2s)2(12.4%) 0.654 0.97
(1p)2(96.4%) − (2s)2(3.6%) 0.596 1.00
(1p)2(100%) 0.516 1

(2s)2(100%) 0.468 –
(1p)2(96.4%) + (2s)2(3.6%) 0.432 0.96
(1p)2(87.6%) + (2s)2(12.4%) 0.365 0.89

(1p)2(50%) + (2s)2(50%) 0.273 0.63
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FIG. 6. Same as Fig. 5 but for 6Li. The top-left panel represents the state yielding the best agreement with available information from
three-body calculations, constructed using the amplitudes in Table I. The state represented in the bottom-left panel was constructed with the
same weights but with opposite sign for the 2s1/2 × 2s1/2 component in Table I. The states represented in the top- and bottom-right panels are
constructed as those in the top- and bottom-left panels but assigning equal absolute weight to the (2s)2 and (1p)2 configurations. The states
shown in the middle-left and -right panels do not include the configurations with transferred nucleons occupying, respectively, the 6Li 2s or 1p
shells. See Sec. IV B 1 for details.

in space, forming a cluster resembling a deuteron, with a
larger separation from the rest of the nucleus. The other peak
corresponds to a cigarlike configuration in which neutron and
proton are far apart from each other and their center of mass is
close to the α core. It can be useful to note that the α particle
and the deuteron have root-mean-square charge radii of about
1.68 and 2.14 fm respectively [76].

For comparison, we have taken into account some alter-
native choices for the 6Li wave functions. As illustrated in

the bottom panels of Fig. 6, the cigarlike configuration be-
comes more important by inverting the relative phase between
the (2s)2 and (1p)2 components. An intermediate situation
is found if the (2s)2 components of the wave function are
neglected, as shown in the middle left panel of Fig. 6.
The right panels of Fig. 6 include additional test cases (see
Table II) analogous to those in the left panels but assuming a
greater norm for the (2s)2 component, to enhance (or remove)
the effect of the configuration mixing. Table II reports, for
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FIG. 7. The red dot-dashed line represents the 6Li(p,3 He)α as-
trophysical S factor for the (np)-transfer DWBA calculation using
the 6Li wave function in the top-left panel of Fig. 6. The red
dashed and brown dotted lines represent the S factor associated
with, respectively, only the first- and second-order contributions to
the total transition amplitude, namely T (1) and T (2) in Sec. III B.
The turquoise solid line represents the first-order-only S factor, but
excluding all contributions due to 6Li configurations where the α-d
relative-motion orbital angular momentum, 
αd , is greater than 0 (see
text for discussion). Points are the same experimental data in Fig. 3
(not shown in the legend for brevity).

several cases, the norm of the wave function in the clustered
region above the red line in Fig. 6. The differences between
the norms in each case are sizable, and seem to be related also
to the extension of each peak (in particular, how important
each configuration is in peripheral regions). Such differences
can be expected to be relevant for the transfer process.

Qualitatively, our findings are similar to those in [77],
where specific structures in the probability density functions
are enhanced by mixing configurations in which nucleons lie
in shells with different parity.

2. Transfer cross section

The astrophysical S factor for p + n direct transfer ob-
tained in second-order DWBA is represented in Fig. 7. It can
be seen that the computed cross section overestimates the data,
being higher by about a factor 2 than the one obtained in
the one-particle-transfer calculation (see Fig. 3). The over-
estimation of the data seems to be a common problem with
other microscopic calculations [14,58]; in our two-nucleon-
transfer calculations the discrepancy could be accentuated by
the approximation employed for the evaluation of the transi-
tion potential in the simultaneous transfer scheme—see the
last paragraph of Sec. III B 1—and by the use of a fictitious
bound 5Li in the second-order calculation. However, as we
will discuss in the following, the approach adopted here has
the advantage of allowing us to probe directly the link between
clustering and the characteristics of the cross section; we will
concentrate on this aspect hereafter.

Figure 7 also includes the S factors associated with the
first-order simultaneous term only and the second-order term
(including sequential and non-orthogonality, NO, terms) only.
Decomposing the cross section in terms of the 6Li -p initial
orbital angular momentum, LLip, we find that (not shown on
the figure) the total cross section at low energies is dominated
by LLip = 0, as expected in general for nonresonant reactions
in this regime [78, Sec. 4-5]. The LLip = 0 components of both
simultaneous and second-order processes are non-negligible,
and interfere destructively. The region of the resonance is
dominated by LLip = 1 components, as expected in literature
(see, e.g., Ref. [70]), mostly appearing in the sequential
process.

Regarding the angular momentum decomposition of the
structure wave functions, there is now an additional degree of
freedom with respect to the case in Sec. IV A. In “T” Jacobi
coordinates, the wave functions can be divided in components
with definite relative orbital angular momentum between the
two transferred nucleons, �lnn, and definite relative orbital an-
gular momentum between the core particle (e.g., α) and the
center of mass of the transferred system, �
ct ; see Fig. 4. The
additional degree of freedom enlarges the set of allowed con-
figurations. For instance, it is possible to form a component
of 6Li with odd values of both lnn and 
αd (so that the state
has the correct total parity). The total orbital angular mo-
mentum, which is conserved by the interactions in use, is the
sum �lnn + �
ct + �L (with �L being the projectile-target orbital
momentum). Figure 7 shows a simultaneous-term calculation
performed considering only 
αd = 0 for the 6Li configuration.
We observe that, at low energies, the latter is close to the full
simultaneous calculation, whereas the cross section above the
barrier is slightly reduced, similarly to what was found in the
deuteron-transfer case in Sec. IV A 1.

Figure 8 illustrates results for the S factor obtained
with different options for the 6Li wave function (the same
appearing in Fig. 6), The cases leading to larger cross sec-
tions correspond to configurations with a more pronounced
clustered structure, that is, with larger norm in the “clustered
region” (area above the red line in Fig. 6). Furthermore, we
found that the absolute value of the computed cross section,
in the energy region around 1 MeV, scales with the amplitude
of such norm, as shown in Fig. 9.

This scaling appears to be a clear sign of the role of the
clustering strength within the transferred system in the di-
rect reaction process. However, the figure evidences that the
low-energy trend is affected by more specific features of the
structure wave function; a cross-section enhancement in this
region appears to be favored for the configurations exhibiting
a greater maximal probability in the “clustered region,” which
is reported in Table II for each tested 6Li wave function. As
can be seen by comparison with Fig. 9, such “clustered peak
height” appears to be correlated with the relative excursion
of the astrophysical factor between 1.2 MeV and the lowest
explored energies. In particular, configurations with a larger
(1p)2 component (left panels of Fig. 6), leading to a well pro-
nounced “clustered” peak, display a steeper low-energy trend.
We mention that other scaling trends could be found, consid-
ering for instance the root-mean-square radius of an effective
α-d probability density function, obtained either integrating
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FIG. 8. (np)-transfer astrophysical S factors obtained for differ-
ent choices of the 6Li wave function, as per the legend (matching the
labels in Table II and Fig. 6). The green solid line corresponds to the
middle-left panel of Fig. 6, red dot-dashed and violet dashed lines
[“(2s)2(3.6%)” in the legend] correspond respectively to top- and
bottom-left panels of Fig. 6, orange dot-dashed and magenta dashed
lines [“(2s)2(50%)” in the legend] are associated with the top- and
bottom-right panels of Fig. 6, while the black dotted line refers to the
middle-right panel of Fig. 6. Experimental data are the same as in
Fig. 3 (not shown in legend for brevity).

the 6Li probability density function, or from the projection of
the complete 6Li wave function on the free-deuteron ground
state (representing a strongly clustered configuration), com-
puted similarly in [44, Sec. 5]. We have checked that the
norm of this latter projection also correlates with the cross-
section absolute values. The observation of scaling trends on
several benchmarks is mainly an indication of the correlation
between the aforementioned properties of the wave function.

FIG. 9. Same lines as in Fig. 8, each divided by a constant factor
proportional to the “clustered region” norm of the associated 6Li
wave function, as per Table II (see Sec. IV B 1 for details), taking
the pure (1p)2 case as reference.

FIG. 10. Points are the same rescaled data in the bottom panel
of Fig. 1 (not shown in legend for brevity). Lines are d- and
(np)-transfer calculations obtained for different choices of 6Li wave
function, as per the legend (matching the labels in Figs. 3 and 8 and
Table II), but each was multiplied by a distinct constant to match
experimental data at 350 keV.

Figure 10 compares selected results related to the two-
nucleon and inert-deuteron transfer. In particular, the two-
nucleon-transfer astrophysical factor for three of the 6Li wave
functions in Table II is compared to the complete deuteron-
transfer calculation in Fig. 3 adopting the strongest 
αd = 2
component for the 6Li state (blue line). All curves are rescaled
by a distinct constant adjusted on experimental data. We ob-
serve that the deuteron-transfer calculation has a low-energy
trend similar to those of the aforementioned two-nucleon
transfer calculations considering a large (1p)2 contribution
(featuring the most pronounced clustered peak). This appears
to be consistent with the idea that, in the d-transfer case, the
deuteron internal state is decoupled and frozen to the the free-
deuteron one. This observation nicely supports the occurrence
of clustering in the ground state configuration as a possible
candidate to explain the behavior of the astrophysical factor
at very low energies and the so-called electron screening puz-
zle. On the other hand, the calculations corresponding to the
50% mixing of (1p)2 and (2s)2 configurations clearly show
a flatter trend at low energy, especially in the least-clustered
case [“(1p)2 + (2s)2(50%)” in the figure’s legend], as already
observed in Fig. 9.

V. SUMMARY AND PERSPECTIVES

We have presented an analysis of the 6Li(p,3 He)α transfer
reaction, based on first- and second-order DWBA calcula-
tions. Our main motivation is linked to the analysis of the
cross section at energies of astrophysical interest, also in
connection with the quite debated anomalous enhancement
observed in several sets of experimental data. It was recently
proposed that this observation could be ascribed to clustering
effects [6], possibly inducing also deformation effects in the
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ground state configuration of the involved nuclei. Along this
trail, we have performed DWBA calculations adopting two
distinct models: we consider the transfer of a single inert parti-
cle, namely a deuteron, or we adopt the more complex picture
of a np transfer, allowing for different possible configurations
of the two nucleons with respect to the α-particle core.

The deuteron-transfer calculation leads to a reasonable
reproduction of the measured transfer cross section at very
low energies. It is interesting to note that our present DWBA
results are quite close to those obtained from past resonating-
group-method calculations (see Fig. 3). One can argue that the
use of sufficiently rich projectile-target interactions, capturing
essential properties of interest of the elastic scattering pro-
cess, contributed ensuring that the computed transfer cross-
section was free from spurious resonances, thus increasing the
reliability of the results. Moreover, within our approach, it was
also possible to investigate the role of deformed components
in the reactants’ wave functions (see Sec. IV A 1).

The np-transfer picture is more flexible. It allows one
to gauge the degree of clustering and to probe its impact
on the features of the transfer cross section. In all cases,
we observe that a clustered configuration of the n-p sys-
tem, characterized by a short relative distance between the
two nucleons, favors the transfer mechanism. We also find
that the cross-section overall magnitude approximately scales
with the integral of the 6Li probability density function over
the region above the red line in each panel in Fig. 6, pop-
ulated by more strongly clustered configurations. The 6Li
wave-function structures predicted by microscopic calcula-
tions [44,74], which are characterized by a relevant weight
of (1p)2 configurations (as generally expected for the ground
state), are instead particularly effective in enhancing the astro-
physical factor at very low energies.

Moreover, our calculations show that the enhancement of
the low-energy cross section is not ascribable to static defor-
mation effects of the ground state but comes from the presence
of clustered components in the wave function. We note that
the wave functions adopted or emerging from our calculations
include only relatively small contributions from nonspherical
waves in the core-deuteron (or n-p system) relative motion.

As a drawback, the approach adopted here leads to a global
overestimation of the experimental data, which seems to be a
common problem with microscopic approaches [14,58]. The
issue is particularly relevant in the two-nucleon-transfer cal-
culations, where it might originate from the approximations
employed in applying state-of-the-art two-nucleon-transfer
numerical methods to the light systems considered here. In

perspective, in order to address this problem it could be ben-
eficial to consider more microscopic (three-body) approaches
for the description of the 6Li and 3He structure wave functions
[35,44,79]. Finally, in the present work we have considered
possible clustering and deformation effects only in the ini-
tial and final (ground-state) configurations of the involved
systems. The discussion of dynamical deformation or re-
orientation effects, namely polarization effects, and of their
possible impact on the transfer cross section will be the sub-
ject of future work.

To overcome the drawbacks discussed above, this in-
vestigation could possibly be approached from a more
ab initio perspective. Resonating-group-method calculations
might be improved within the no-core shell model with con-
tinuum framework [80]. A microscopic four-body treatment
(e.g., Faddeev-Yakubovsky [81] or Alt-Grassberger-Sandhas
[82–84]) of the α + p + n + p system (treating the α particle
as inert) may also be feasible. A comparison with a four-body
Faddeev AGS calculation, where in principle the same interac-
tions can be used, will be of great help to understand whether
the disagreement in the absolute value with the experimental
data comes from limitations regarding the DWBA approxima-
tion or from the interactions used. A similar comparison has
found a satisfactory agreement for (p, pN ) transfer reactions
[85], but to our knowledge no benchmark has been done at
energies of astrophysical interest.
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APPENDIX: ADOPTED POTENTIALS

The two-body potentials employed in this work were
parametrized as follows:

V1,2(r) = VC (r, RC ) − Vv f (r, Rv, av ) − Vg e−(r/ag)2− iVw f (r, Rw, aw ) + i4Vxax
d

dr
f (r, Rx, ax )

+2 �l · �s1Vo
2 fm2

r

d

dr
f (r, Ro, ao) + 2 �s1 · �s2Vs f (r, Rs, as), (A1)

where

VC (r, RC ) = keZ1Z2

⎧⎨
⎩

3−r2/R2
C

2RC
, r < RC,

1
r , r � RC,

f (r, R, a) = 1

1 + exp
(

r−R
a

) , (A2)
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TABLE III. List of all potentials employed in this work. Each column refers to a different potential, identified in the column header by the
pair of particles it refers to. Each line refers to a parameter in Eq. (A1) (with same notation; see text for details). “p-d (L = 0)” or “L = 2”
refers to the two potentials employed in Sec. IV to construct the 3He state.

p-6Li 3He-α d-5Li p-5Li p-n p-d (L = 0) p-d (L = 2) d-α p-α n-5Li

RC (fm) 2.326 0.1000 2.223 2.233 – 2.000 2.000 1.900 2.900 –

Vv (MeV) 48.20 66.08 90.04 50.97 165.4 179.9 8155 80.09 43.00 43.00
Rv (fm) 1.908 2.649 2.001 1.912 0.4000 0.5400 −2.190 1.900 2.000 2.125
av (fm) 0.6700 0.7175 0.7090 0.6900 0.6000 0.6800 0.9100 0.6500 0.7000 0.7000

Vg (MeV) 0 0 0 0 0 −203.3 −8400 0 0 0
ag (fm) – – – – – 0.6400 0.3500 – – –

Vw (MeV) 0 0 0 0.6908 0 0 0 0 0 0
Rw (fm) – – – 1.854 – – – – – –
aw (fm) – – – 0.6900 – – – – – –

Vx (MeV) 0.2246 1.089 12.20 4.723 0 0 0 0 0 0
Rx (fm) 3.634 2.102 2.266 1.854 – – – – – –
ax (fm) 2.715 0.7386 0.6497 0.6900 – – – – – –

Vo (MeV) 1.000 4.162 7.330 0 0 0 1.470 0 10.00 10.00
Ro (fm) 1.817 2.644 1.830 – – – 2.070 – 1.500 1.594
ao (fm) 0.700 0.2078 0.6600 – – – 0.0600 – 0.3500 0.3500

Vs (MeV) 18.00 – 0 0 0 0 0 – – 0
Rs (fm) 1.853 – – – – – – – – –
as (fm) 0.200 – – – – – – – – –

ke ≈ 1.44 MeV fm, Z1 and Z2 are the particles charge num-
bers, and “2 �a · �b” is a shorthand for c(c + 1) − a(a + 1) −
b(b + 1), where c is the modulus quantum number of the
coupling of the angular momenta associated with a and
b. r represents the distance between the interacting parti-
cles, while s1, s2, and l are the modulus quantum numbers
for, respectively, the particles intrinsic spin and their rela-
tive orbital angular momentum. In all potentials taken from
the literature, the spin-orbit term couples only the light-
est particle spin. Only in the fitted 6Li-p potential does

the spin-orbit term involve the total intrinsic spin (cou-
pling of �s1 and �s2), whose modulus quantum number is
denoted by s; in this case, the potential depth has thus the
form 2 �l · �sVo, different from what is stated in Eq. (A1).
Table III lists the parameters value adopted for each po-
tential. Whenever a potential was employed to construct a
bound wave function, Vv was rescaled to obtain the desired
binding energy for the system. Whenever a potential was
employed as core-core interaction, all noncentral terms were
discarded.
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