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Background: The quadrupole (β±
2 ) deformed targets in the actinide region are found to be of great relevance in

the production of superheavy nuclei (SHN), in both the hot and cold fusion mechanisms. Recently, the application
of “elongated or cold” and “compact or hot” configurations of pear-shape octupole (up to β±

3 ) deformed nuclei
was found to play significant role in the fusion-fission dynamics of heavy-ion induced reactions, in the low
energy regime.
Purpose: To understand the relevance of higher-order deformed (up to β±

4 ) actinides and their compact and
elongated nuclear fusion configurations in the production cross section of SHN, we have obtained the optimum
orientations (θopt ) in reference to the above mentioned configurations of β4-deformed targets. For this, a variety
of projectile-target combinations—spherical (36S, 40,48Ca) and β±

2 -deformed (30Si, 34S) nuclei as incident beams
and β4-deformed (with different signs ± and magnitudes) actinides (≈1400 isotopes) as targets—are taken into
consideration. Later, the application of θ

hot/cold
opt (β±

2 β±
3 β±

4 ) was done to analyze the fragmentation structure of
286Cn∗.
Methods: On the basis of the proximity theorem, the optimum orientations (θopt) defining the compact and
elongated configurations of deformed nuclei are obtained at the maximum and minimum barrier height, re-
spectively. Further, the obtained θopt and static deformations (up to β±

4 ) for around 1400 isotopes of actinides
are utilized in the calculations of capture cross section σcap(Ec.m.) using the extended �-summed Wong model
at energies lying across the Coulomb barrier. Also, to study the fragmentation structure of 286Cn∗ SHN, the
collective clusterization approach of quantum mechanical fragmentation theory has been adopted.
Results: For a large variety of projectile-target combinations, leading to SHN, the incorporation of higher-
order deformation (up to β±

4 ) shows a significant influence on θ
hot/cold
opt with the effect of ± signs and different

magnitudes of β±
4 deformation. Also, with the incorporation of deformations up to β±

4 and corresponding θopt,
the σcap(Ec.m.) improves and is in better agreement with the available experimental data of 238U-based reactions,
across the barrier energies. Also, in the decay channel, the β4-deformed fragments, i.e., 143Ba + 143Ba, are found
to minimize the fragmentation potential, as compared to the β2 or β3 deformed fragments.
Conclusion: The present study concludes that the optimized configurations of higher-order deformed actinides
up to β4 participate relatively better than the optimized configurations of β2 and β3 deformed nuclei in the
formation as well as exit channel of superheavy nuclei.

DOI: 10.1103/PhysRevC.108.044613

I. INTRODUCTION

The criterion of choosing the appropriate projectile-target
(P-T) combination for the formation of the compound nucleus
(CN) of superheavy nuclei (SHN) (atomic number Z � 104),
has attracted prodigious attention in the field of low-energy
nuclear reactions. Although the production of such a super-
heavy element is a very difficult task, researchers have found
heavy-ion (mass �4 and charge �2) induced reactions to
be the most relevant probe for studying the nuclear fusion
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mechanisms leading to SHN [1–5]. The main intent of syn-
thesizing superheavy nuclei is to extend the periodic table and
reach toward the ‘Island of Stability,” which defines the most
stable stage of nuclei for magic numbers Z = 114, 120, 126
and N = 162, 184 [6,7].

To date, numerous experiments have been performed to
synthesize SHN. The successful production of SHN has be-
come possible via two different nuclear fusion mechanisms,
named cold and hot fusion reactions [8,9]. In the former case,
a stable target of lead-208 (208Pb) or bismuth-209 (209Bi) is
bombarded with suitable projectiles, leading to the formation
of a CN (Z = 104–112) with an excitation energy E∗

CN lying
in the range 10–20 MeV [10]. On the other hand, in the hot
fusion mechanism, neutron-rich projectiles like 48Ca are used
to hit highly deformed actinide targets and subsequently form
CN (Z = 112–118) with E∗

CN = 30–45 MeV [11–18].
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FIG. 1. Schematic diagram of elongated (or cold) and compact (or hot) fusion configurations for spherical (Sph) + (a) β+
2 , (b) β+

2 β+
4 ,

(c) β+
2 β−

4 , (d) β−
2 , (e) β−

2 β+
4 , and (f) β−

2 β−
4 projectile-target combinations. Note that the magnitudes of quadrupole (β2) and hexadecapole

deformations (β4) are 0.236 and 0.098, respectively, of the 238U target nucleus, and 48Ca is taken as projectile nucleus of spherical shape.

Besides, theoreticians, through their rigorous efforts, have
found that the collision between deformed and oriented nu-
clei participates significantly in the production of stable and
long-lived nuclei. In the early 1980s, it was found that the
gentle fusion among two similar nuclei, e.g., 238U, could lead
to a long-lived giant molecule [19]. Based on such analysis,
theoreticians have performed numerous calculations and an-
alyzed the effect of deformation and orientation degrees of
freedom on the fusion barrier and fusion cross section. For
an illustration, the elongated (pole-to-pole) configuration of
prolate quadrupole (β+

2 ) deformed similar nuclei lowers the
fusion barrier and subsequently enhances the reaction cross
sections. On the other hand, the belly-to-belly configuration
of quadrupole deformed nuclei increases the fusion barrier,
reducing the cross section [20]. In other words, on the basis of
these configurations, researchers have explored the relevance
of deformation and orientation degree of freedom in heavy-
ion induced fusion reactions for incident beam energies lying
across the Coulomb barrier [21–37].

The above discussion raises a relevant question that up
to which order should the deformations be considered to
provide the relevant details of cross sections, especially for
CN of the superheavy region (Z = 104–118)? In the search
of an answer, researchers initially analyzed the impact of
hexadecapole (β4) deformations on the fusion barrier and
fragmentation structure of SHN formed via hot fusion 48Ca-
induced reactions [38]. Later, in [32], the authors found that
with the inclusion of β4-deformation the evaporation residue
(ER) cross sections get improved for the hot fusion reac-
tions. Besides, the importance of belly-to-belly and tip-to-tip
collision, respectively, for both the hot (48Ca + 238U) and
cold fusion (70Zn + 208Pb) reactions has been studied across
the Coulomb barrier energies [14]. However, such analysis
is broadly done for the quadrupole deformation of the de-
formed colliding nuclear partners. Note that, in the present
work, the word “optimum” refers to [24], where it is used
to define the orientation corresponding to the elongated and

compact configurations having minimal and maximum barrier
heights respectively. However, in [39], the authors optimized
the orientation to identify the best possible projectile-target
combinations for synthesizing superheavy nuclei.

In the present work, we intend to explore the importance
of respective optimum orientations (θopt) of higher-order de-
formation (up to β4), which help in defining the “elongated
or cold” and “compact or hot” configurations of deformed
nuclei, in the fusion as well as decay of superheavy com-
pound nuclei. The relevance of θopt obtained in reference to
the aforementioned configurations of β4-deformed nuclei is
tested for incident energies lying across the Coulomb barrier.
For the above analysis, it is quite important to comprehend
the effect of +/− signs and magnitude of deformations up
to β4 on θopt, which is further compared with θopt obtained
with the inclusion of quadrupole β±

2 [28] and octupole β±
3

deformations [40].
In the present work, we have opted for around 1400 hex-

adecapole deformed actinides as targets, bombarded with 30Si,
34,36S, 40,48Ca projectiles. For an illustration, in Fig. 1 we
show a schematic diagram of the elongated (or cold) and com-
pact (or hot) configurations of deformed 238U (β±

2 = ±0.236,
β±

3 = 0, and β±
4 = ±0.098) target which is hit by spherical

projectile 48Ca. From this figure, one may estimate the change
in the separation distance R between the centers of two collid-
ing nuclei, as one goes from the spherical + quadrupole (β+

2
and β−

2 ) deformed case towards the spherical + hexadecapole
(β±

2 β±
4 ) case. A significant change in the nuclear shape with

the effect of higher-order deformation (up to β±
4 ) from that

of β±
2 shape modifies R. Such observations motivate us to

analyze the corresponding effects on the fusion barrier char-
acteristics and, consequently, on the fusion cross sections over
a wide range of incident beam energies.

In the present calculations, we first investigated the change
in θopt with the incorporation of β±

4 along with β±
2 deforma-

tions for the considered isotopes. Then the essence of octupole
deformation present in some actinides was also accounted for
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along with the β±
2 and β±

4 deformations. Further, as an appli-
cation of θopt, we calculated the capture cross sections (σcap)
with the use of the extended �-summed Wong model, for
238U-based reactions with cross sections at fixed optimum
orientations as well as cross sections integrated over all ori-
entations (σInt) and compared the results with the available
experimental data [41–45] over a wide range of incident en-
ergies. We also explore the relevance of θopt obtained with
the incorporation of higher-order deformation (up to β4) in
the exit channel of SHN using the collective clusterization
approach of the quantum mechanical fragmentation theory
(QMFT) [46–48]. In the present work, the fragmentation
potential has been extended with the inclusion of higher-
order deformations up to β4 along with the relative optimum
orientations, θopt, defining the elongated and compact config-
urations of the decay fragments.

This paper is organized as follows to carry forward with the
above idea. In Sec. II the formalism of the extended �-summed
Wong model, the contributing potentials, and the fragmenta-
tion theory of QMFT, used to pursue the present analysis, are
summarized. In Sec. III the results and observations of the
present analysis are discussed, followed by a summary of the
work in Sec. IV.

II. METHODOLOGY

The shape of the deformed nuclear surface can be ex-
pressed through the radius vector Ri(αi ), which involves
the spherical harmonics Y (0)

λ (αi ) of higher order, i.e., λ =
2, 3, 4 [49–52], as given by

Ri(αi ) = R0i

⎡
⎣1 +

∑
λ=2,3,4

βλiY
(0)
λi (αi )

⎤
⎦

= R0i

⎡
⎣1 +

∑
λ=2,3,4

βλi

√
2λ + 1

4π
Pλ(cos αi )

⎤
⎦, (1)

where i = 1, 2 correspond to projectile and target nuclei,
respectively. R0i(=1.28A1/3

i − 0.76 + 0.8A−1/3
i ) in fm [53]

represents the radius of the equivalent spherical nuclei. βλi

is the static deformation parameter taken from the data ta-
ble of Möller et al. [52]. λ = 2, 3, 4 defines the quadrupole,
octupole, and hexadecapole deformed shapes, respectively.
Pλ(cos αi ) are the Legendre polynomials. The detail of angles
can be found in [20]. The above radius term is involved as
input in the total interaction potential and its constituent terms,
as discussed below.

A. Total interaction potential

To study heavy-ion induced reactions in the low-energy
regime, the total interaction potential VT (R) is considered
an important tool, and is defined as the combination of
Coulomb potential VC (R), centrifugal potential V�(R), and
nuclear potential VN (R). The deformations (up to β4) and
relative orientations (θi) of deformed nuclei are incorpo-

rated in these contributing potentials. Thus, the total potential
VT (R, Ai, βλi, θi ) is defined as

VT (R, Ai, βλi, θi ) = VC (R, Zi, βλi, θi ) + V�(R, Ai, βλi, θi )
+ VN (R, Ai, βλi, θi ), (2)

where the Coulomb potential VC (R, Zi, βλi, θi ) for deformed-
deformed pairs of colliding nuclei is defined as

VC (R) = Z1Z2e2

R
+ Z1Z2e2

i=1,2∑
λ=2,3,4

(
Rλ

i (αi)

Rλ+1

)
βλY (0)

λ (θi )

×
[

3

2λ + 1
+

(
12

7(2λ + 1)

)
βλY (0)

λ (θi)

]
. (3)

It is important to note that, for spherical projectiles, the second
term of the above equation will have terms only for i = 2, i.e.,
deformed target, as β21 = 0.0 and β22 �= 0.0. The centrifugal
potential V�(R, Ai, βλi, θi ) is in the form of rotational kinetic
energy and is given as

V�(R, Ai, βλi, θi ) = h̄2�(� + 1)

2I
, I = μR2. (4)

In Eq. (2), the nucleus-nucleus interaction potential
VN (R, Ai, βλi, θi ) is defined on the basis of the “proximity
theorem,” given by Blocki and his collaborators [53] as the
product of 4π R̄γ b, which is a function of the shape and
geometry of the colliding nuclei, and 
(s0), a universal
function depending on the shortest distance between the
interacting nuclei [53–55]. Thus, VN (R, Ai, βλi, θi ) is given as

VN (R, Ai, βλi, θi ) = 4π R̄γ b
(s0), (5)

where s0 is the minimum separation distance between the two
facing surfaces of interacting nuclei. R̄ is the mean curvature
radius expressed in terms of the radii of curvatures Ri1 and Ri2

for coplanar nuclei as [53]
1

R̄2
= 1

R11R12
+ 1

R21R22
+ 1

R11R22
+ 1

R21R12
. (6)

The principal radii of curvature (Ri1 and Ri2) for spherical-
deformed and deformed-deformed cases is given [56] as

Ri1(αi ) =
[
R2

i (αi ) + R′2
i (αi )

]3/2

R2
i (αi) + 2R′2

i (αi) − Ri(αi )R′′
i (αi)

,

Ri2(αi ) = Ri(αi ) sin αi

cos (π/2 − αi − δi )
. (7)

It is important to note, for spherical projectiles, R11(α1 ) =
R12(α1) = R1(α1). In Eq. (5) [53], γ is the surface energy
constant and is expressed for axially symmetric terms as

γ = 0.9517

[
1 − 1.7826

(
N − Z

A

)2
]

MeV fm−2., (8)

b is the surface thickness, having value 0.99 fm.
In Eq. (5), the universal function with single parameter s0

is given as


(s0) =
{

− 1
2 (s0 − 2.54)2 − 0.0852(s0 − 2.54)3, s0 � 1.2511 fm,

−3.437 exp
(− s0

0.75

)
, s0 > 1.2511 fm.

(9)
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From Eqs. (2)–(9), defining the total interaction potential,
one can get the details of fusion barrier characteristics, i.e.,
barrier height VB, barrier position RB, and barrier curvature
h̄ωB, which are influenced by the effects of deformation and
orientation degrees of freedom. These terms are further uti-
lized in the calculations of capture cross sections.

B. Capture cross sections, σcap(Ec.m., θi )

The capture cross section, in terms of angular momentum
(�) partial waves, for deformed and oriented nuclei, lying
in the same planes and colliding with center-of-mass energy
Ec.m., is defined using the extended �-summed Wong formula
of the one-dimensional penetration model [54] as

σcap(Ec.m., θi ) =
∞∑

�=0

σ� = π

k2

∞∑
�=0

(2� + 1)P�, (10)

with k =
√

2μEc.m.

h̄2 and μ as the reduced mass. P� is the trans-
mission coefficient for each �, which describes the penetration
probability across the Coulomb barrier. Here, �max is the max-
imum angular momentum calculated using the sharp cutoff
approximation [54,57,58].

In the present work, the penetration probability P� was
obtained using the Hill-Wheeler [59] and Wentzel-Kramers-
Brillouin (WKB) approximations [60], defined as

PHW
� (Ec.m.) =

[
1 + exp

(
2π

[
V �

B (Ec.m.) − Ec.m.

]
h̄ω�(Ec.m.)

)]−1

(11)

and

PWKB
� (Ec.m.) = exp

[
−2

h̄

∫ Rb

Ra

{
2μ

[
V �

B (Ec.m.) − Qeff
]}1/2

dR

]
,

(12)

respectively.
In Eq. (11), V �

B (Ec.m.), R�
B(Ec.m.), and h̄ω�

B(Ec.m.) repre-
sent the barrier height, barrier position, and barrier curvature,
respectively, which are extracted from the total interaction po-
tential VT [61]. On the other hand, in Eq. (12), Qeff [=V (Ra)]
is the effective Q value of the entrance channel. Ra and Rb

are the two turning points; for reference see Fig. 1 of [62].
Ra = R1(α1) + R2(α2) + R, where R is the neck-length
parameter, which is introduced to define the tunneling path.
The permissible value of R lies in the nuclear proximity
range of about 2 fm, since the surface interaction between the
colliding nuclei can take place around this range. Further, to
observe the effect of hexadecapole deformation over all the
orientations, the fusion cross sections are integrated over θ2

for the spherical + deformed combination, as given by

σInt (Ec.m.) =
∫ π/2

θi=0
σ (Ec.m., θi ) sin θ1dθ1 sin θ2dθ2. (13)

C. The fragmentation theory for deformed and oriented nuclei

The fragmentation analysis is worked out in terms of the
mass asymmetry parameter (i.e., ηA = |A1−A2|

A1+A2
), the relative

separation distance R, the neck parameter ε, deformations βλi

(λ = 2, 3, 4 correspond to quadrupole, octupole, and hexade-
capole deformations, respectively), and orientation θi degrees
of freedom. Here, i = 1, 2 stand respectively for fragments 1
and 2 [63,64]. In terms of these parameters, the fragmentation
potential V (η, R) is the sum of binding energies and the βλi

and θi dependent Coulomb, proximity, and centrifugal poten-
tials of decaying fragments, as given by

V (η, R) = −
2∑

i=1

Bi(Ai, Zi, βλi ) + VC (R, Zi, βλi, θi )

+ VN (R, Ai, βλi, θi ) + V�(R, Ai, βλi, θi ). (14)

Here, the binding energy Bi(Ai, Zi, T ) [=VLDM(Ai, Zi, T ) +
δUi exp (−T 2/T 2

0 )] of a nucleus at temperature T is defined
on the basis of the Strutinsky renormalization procedure [65].
The VLDM considered is from the temperature-dependent liq-
uid drop model (LDM) of Davidson et al. [66]. For relevant
details see Ref. [67]. The second term, i.e., shell-corrections
δU , is given by Myers and Swiatecki [65] with its T depen-
dence from Davidson et al. [66]. The term T represents the
temperature and is obtained using the statistical relation [68]
E∗

CN = ACN
a T 2 − T . Here the level density parameter a = 12

for superheavy nuclei [69].
The formalism related to the contributing potentials, that

is, Coulomb, nuclear, and centrifugal potentials, used in
the above equation of fragmentation potential was discussed
above in Eq. (3), (4), and (5).

III. RESULTS AND DISCUSSION

In the process of obtaining the optimum orientations (θopt)
which define the “elongated or cold” and “compact or hot”
configurations of higher-order deformed (up to hexadecapole
β4 deformation) actinides, we have considered a large variety
of projectile-target (P-T) combinations. In these combina-
tions, spherical (36S and 40,48Ca) and quadrupole deformed
(30Si and 34S) nuclei are used as projectiles, and around 1400
actinides with different magnitude and signs of β2, β3, and β4

deformation are taken as targets. The above analysis is dis-
cussed in reference to that of quadrupole β±

2 and octupole β±
3

deformations1 for both the cold and hot fusion configurations.
Later on, the application of θhot/cold

opt obtained with the effect
of β±

2 , β±
3 , and β±

4 deformation is analyzed in terms of the
fragmentation structure of the superheavy nucleus.

Before going into a comprehensive study, initially we
worked on some 238U-based nuclear reactions and calculated
capture cross sections [σcap(Ec.m.)] with the incorporation of
deformation (up to β4) and corresponding θopt. The related
discussion on to the above analysis is given in the following
section.

1In the Möller data table of deformations [52], only negative values
of β3 deformation are given. Thus, in the present work, the results
are for β±

2 β−
3 β±

4 shape.
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FIG. 2. The capture cross sections (σcap) and cross sections integrated over possible orientations (σInt) are calculated using the extended �-
summed Wong model [54] for 238U-based reactions as a function of Ec.m.. The calculated σcap and σInt for considered choices of projectile-target
combinations are compared with the available experimental data for incident energies lying across the Coulomb barrier.

A. Capture cross sections of 238U-based reactions

We calculated the capture cross sections (σcap), using the
extended �-summed Wong model [54], with respect to the
center-of-mass energy (Ec.m.) for 30Si, 34,36S, 40,48Ca + 238U
projectile-target combinations. For each reaction, σcap(Ec.m.)
is calculated in three steps: (I) β±

2i = β±
4i = 0.0 (here i = 1, 2

labeled for projectile and target nuclei, respectively), i.e.,
spherical case, (II) β±

2i �= 0.0 and β±
4i = 0.0, quadrupole de-

formed case, and (III) β±
2i �= 0.0, β±

41 = 0.0 and β±
42 �= 0.0,

hexadecapole deformed case (as for 238U β3 = 0.0), as shown
in Fig. 2. It is important to mention that the choice of θopt,
for the respective elongated and compact configurations, is
made on the basis of the order of deformation (λ = 2, 4 of
βλ). In Table I, we have listed the values of deformation β2i,
β4i and related optimum orientations θi of colliding nuclear
partners. In Fig. 2, the calculated σcap(Ec.m.) for all the above
mentioned cases are compared with the available experimental

data [43–45,70]. With this comparison, we have determined
that the cross sections improve as one moves from hot config-
uration to spherical to cold configuration of β42 deformation,
which is reflected in the targets of 30Si and 34,36S, 40,48Ca-

TABLE I. The quadrupole (β2i) and hexadecapole (β4i) deforma-
tions of colliding nuclear partners. Note that here the projectile nuclei
are either spherical or quadrupole deformed.

Elongated Compact

Reaction β±
21 β±

22 β±
42 θ1 θ2 θ1 θ2

36S + 238U 0.00 0.236 0.098 0◦ 70◦ 0◦ 180◦
40Ca + 238U 0.00 0.236 0.098 0◦ 72◦ 0◦ 180◦
48Ca + 238U 0.00 0.236 0.098 0◦ 75◦ 0◦ 180◦
30Si + 238U −0.236 0.236 0.098 0◦ 76◦ 90◦ 180◦
34S + 238U −0.235 0.236 0.098 0◦ 72◦ 90◦ 180◦
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induced reactions, especially at the below- and near-barrier
energies. However, there is still some hindrance observed in
σcap(β2β4) (cold) from σ

Expt
cap , mainly in the sub-barrier region.

Note that, in order to observe the average effect of orienta-
tion degree of freedom, the integrated cross sections over all
mutual orientations of the deformed nuclei are also shown in
Fig. 2.

As noted, for the calculation of σcap we used the extended
�-summed Wong model [see Eq. (10)], which is expressed in
terms of quantum-mechanical transmission/penetration prob-
ability, P�. This term defines the penetration of the barrier
by the projectile (with some kinetic energy), to hit and fuse
into the target for an equilibrated formation of CN. The above
discussed results are based on the Hill-Wheeler approxima-
tion [see Eq. (11)], used to calculate P�. According to this
approximation, P� is dependent on VB, RB, and h̄ωB, which
gives larger area of penetration under the inverted Harmonic
oscillator curve. Consequently, the hindrance is noticed in
the below barrier region. To overcome this problem, we have
opted to use another approximation, i.e., the WKB approach
[see Eq. (12)] in which the penetration path is decided on the
basis of neck-length parameter R [60]. It was also noticed
in Ref. [71] that the WKB approach gives better results, es-
pecially for the below-barrier region. The permissible values
of this parameter lie in the nuclear proximity range of about
2 fm, since the surface interaction between two colliding
partners can take place around this range of R. In reference
to the experimental data of considered choices of 238U-based
nuclear reactions, we have noticed a systematic trend in the
neck-length parameter depending on the mass number of the
compound nucleus, ACN, and the kind of projectile beam; for
reference see Fig. 3. In this figure, we show the variation
of R (fm), with respect to ACN, separately for spherical
(36S, 40Ca, and 48Ca) and quadrupole deformed (30Si and 34S)
projectile beams. Here, its value increases with the decrease
in the mass of projectile, which is from either a spherical or
quadrupole deformed beam. This value of R remains con-
stant for independent choice of beam energy of each reaction
and supports addressing the experimental data of 238U-based
reactions.

It is important to mention here that the calculations done
so far are for β+

22β
+
42 deformed shape of the target nucleus.

As in our recent work [20], we have defined all the possible
geometries of a hexadecapole deformed nucleus with different
signs on β2 and β4 deformation, viz., β+

2 β+
4 , β−

2 β+
4 , β+

2 β−
4 ,

and β−
2 β−

4 . In the present work, we also tested the effect of
+/− signs of β4 deformation on the fusion barrier of reactions
leading to the formation of SHN. For an illustration, we have
plotted the total interaction potential VT (MeV) as a function
of separation distance R (fm) for 48Ca (β21 = β41 = 0.0) +
238U (β22 = ±0.236, β42 = ±0.098), as shown in Fig. 4. As
we know, to study heavy-ion induced reactions the total po-
tential, considered as an important tool, provides the barrier
characteristics (barrier height VB, barrier position RB, and
barrier curvature h̄ωB), which are very sensitive to the defor-
mation and orientation degree of freedom. In Fig. 4, one may
notice that, with the inclusion of deformation up to β4, there is
a significant modification of the barrier in reference to that of
the spherical case. For the positive value of β4 [see panels (a)

FIG. 3. Variation of neck length parameter R (fm) is shown as
a function of mass number ACN of CN for 238U-based reactions, with
spherical (open star) and β−

2 deformed (closed star) projectile beams.

and (c) of Fig. 4], the barrier gets lower than that of the β2 case
for both the cold and hot configurations. In contrast to this,
the negative sign of β4 deformation increases the barrier from
that of β2; see panels (b) and (d) of Fig. 4. Such modifications
observed on the barrier with the effect of different signs of β4

deformation would definitely influence the cross sections for
incident energies lying across the Coulomb barrier. Besides,
we are also interested in investigating the effect of magni-
tude, along with different signs of higher-order deformations
(β2, β3, and β4) of all the deformed targets belonging to the
actinide region, on the optimum orientations of elongated
and compact configurations. The highly deformed actinides
are generally considered as targets in collision with 48Ca or
neighboring nuclei for the successful formation of superheavy
nuclei. The related discussion is provided in detail in the
following section.

B. Optimum orientations corresponding to elongated
and compact configurations of hexadecapole

deformed actinide targets

In the preceding section, we analyzed the relevance of
optimum orientations (θopt) defining the elongated (or cold)
and compact (or hot) configuration of hexadecapole and
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FIG. 4. Total interaction potential VT (MeV) is plotted as a function of separation distance R (fm) for 48Ca (β21 = β41 = 0.0) + 238U
(β22 = 0.236, β42 = 0.098) for different combinations of β±

2 and β±
4 . (a) β+

22 = 0.236, β+
42 = 0.098, (b) β+

22 = 0.236, β−
42 = −0.098, (c) β−

22 =
−0.236, β+

42 = 0.098, and (d) β−
22 = −0.236, β−

42 = −0.098.

quadrupole deformed nuclei in the calculation of capture cross
sections for incident beam energies lying across the Coulomb
barrier. From this analysis, we found out that the optimized
orientation for the elongated and compact configurations of
β±

2 β+
4 deformed nuclei shows better agreement with the ex-

perimental results as compared to the optimum orientations of
β2 deformed nuclei for 238U-based reactions. This is because,
due to positive value of β4 deformation, the Coulomb barrier
gets lower than in the β±

2 case.
In this section, we consider around 1400 hexadecapole de-

formed actinides (90 � Z � 103) as targets bombarded with
30Si, 34Ti, and 48Ca projectiles. Note that these deformed
nuclei have different magnitudes and signs of deformations
(up to β4), and subsequently show corresponding effects on
θopt. For an illustration, the change in optimum orientation
[i.e., θopt (β±

2 ) − θopt (β±
4 )] and magnitude of β±

4 deformation
are shown with respect to the mass number of all the de-

formed isotopes of the thorium compound nucleus; see Fig. 5.
This figure is categorized in four panels for (a) β+

2 β+
4 , (b)

β−
2 β+

4 , (c) β+
2 β−

4 , and (d) β−
2 β−

4 nuclei with β±
3 = 0 for these

cases. Due to positive and negative values of β4 deforma-
tion, one may notice the change in θopt (β±

2 ) − θopt (β±
4 ) for

the “compact or hot” and “elongated or cold” configurations,
respectively. A significant change in optimum orientation
observed is for those isotopes which have relatively higher
magnitude of β±

4 than β±
2 . The trend followed by θopt (β±

2 ) −
θopt (β±

4 ) is in accordance with that of the magnitude of β±
4 .

So, one can clearly state that a significant change in optimum
angles with the effect of larger value of |β±

4 | will be noticed
on the fusion barrier and subsequently on the fusion cross
sections.

Further, in Figs. 6–9, we show θopt (β±
2 ) − θopt (β±

4 ) for all
the actinide (90 � Z � 103) isotopes having only quadrupole
and hexadecapole deformation with respect to the magnitude
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FIG. 5. The change in the magnitude of hexadecapole deformation (|β±
4 |) and optimum orientation θopt (β±

2 ) − θopt (β±
4 ) is shown with

respect to the mass number of Th isotopes, which are categorized as (a) β+
2 β+

4 , (b) β−
2 β+

4 , (c) β+
2 β−

4 , and (d) β−
2 β−

4 . Note that this analysis is
done for 30Si, 48Ca, and 34Ti + A2 Th projectile-target combinations.

of β4. In these figures, the difference in the magnitudes of
β2 and β4 deformations is categorized in eight ranges, which
are specified with different symbols and colors. From these
figures, the maximum change in θopt (β±

2 ) − θopt (β±
4 ) is ob-

served for higher magnitude of β4 deformation, only when
the difference between magnitudes of β2 and β4 comes within
the range of 0–0.05 and also for higher magnitude of β4

(�0.040). Besides, it is important to acknowledge the role
of octupole deformation (β3) which break the symmetry of
the nuclear shape around the reflection axis [72]. In a recent
study [40,62], three of us investigated the relevance of pear
shape of octupole deformed (up to β3) nuclei in the fusion as
well as fission dynamics of heavy-ion induced reactions. In
the present work, we have opted for deformations up to β4,
apart from the actinides used in the discussion of Figs. 6–9,
where some isotopes possess quadrupole, octupole, as well as
hexadecapole deformations; for reference, see the data table
of static deformations in [52]. So for these we have noticed
modifications in θopt of hot (or compact) configuration. For
convenience, we have given in Table II θopt (β±

2 β±
3 β±

4 ) for both
the soft (|β3| < |β2| and β4) and rigid pear-shape (|β3| � |β2|
and β4) nuclei. This result holds true for all the actinides

belonging to the 90 � Z � 103 region, with a few exceptional
cases. These exceptional results are because of very small
values of β3 and β4 deformations. Besides, we have observed
approximately 5% change in both the barrier height VB as well
as barrier position RB, due to incorporation of higher-order
deformation (up to β4) and θopt from Table II, compared to
the spherical case. It is important to mention that, for the cold
configuration, there is no change in θopt as one goes from β2 to
β3 to β4, since the nuclear shape of higher-order deformation
is being elongated in the same direction as in the quadrupole

TABLE II. Optimum orientations (θhot
opt ) for the “compact or hot”

configurations of actinides (belonging to Z = 90–103 region), in
which quadrupole (β±

2 ), octupole (β±
3 ), and hexadecapole (β±

4 ) de-
formations are nonzero.

Nuclear shape Optimum orientation θhot
opt

Soft pear shape 65◦ ± 3◦

(|β±
3 | < |β±

2 |)
Rigid pear shape I: 65◦ ± 3◦ if |β±

4 | � 0.04
(|β±

3 | � |β±
2 |) II: 180◦ ± 3◦ if |β±

4 | < 0.04
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FIG. 6. The difference between θopt (β+
2 ) and θopt (β+

4 ) is shown with respect to the magnitude of hexadecapole deformation β+
42 of the

actinide targets (90 � Z � 103). Note that, due to positive value of β42, the change in θopt is observed for the “compact” or “hot” fusion
configuration.

shape. However, due to elongation in the shape, one may
notice the change of ≈10% in the barrier characteristics from
those of the spherical case.

FIG. 7. Same as Fig. 6, but for the β−
2 β+

4 case.

From the above analysis, it can be said that the “+” and
“−’ signs of β4 deformation show changes in θopt of hot and
cold configurations, respectively. So far, we have gathered
the details of θopt with the effect of higher-order deforma-
tion (up to β4) and its different signs for a large variety
of entrance channels, which are leading toward the forma-
tion of superheavy nuclei. Further, it would be interesting
to analyze the application of θopt (β±

4 ) in the exit channel
of SHN.

C. Application of β±
4i and respective θopt (β±

4i ) in the fission region

Finally, in the subsection, we intend to make the appli-
cation of the optimum orientations (θopt) obtained for the
“elongated or cold” and “compact or hot” configurations of
higher order deformed (up to β±

4 ) nuclei in the exit channel
of the formed compound nuclear system. In view of this, the
fragmentation theory based on the collective clusterization ap-
proach of quantum mechanical fragmentation theory (QMFT)
has been chosen to understand the relevance of higher-order
deformation and respective θopt in the decay fragments. For
illustration, in Fig. 10, we have plotted the fragmentation po-
tential V (η) (MeV) with respect to the fragment mass number
A2 (or A1 = ACN − A2; complementary fragment) of the de-
cay of the 286Cn∗ superheavy compound nucleus, formed via
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FIG. 8. Same as Fig. 6, but for the “elongated or cold” fusion configuration of β+
2 β−

4 cases.

the 48Ca + 238U projectile-target combination. This analysis
was done at a common excitation energy E∗

CN = 21.7 MeV,
angular momentum � = 0h̄, and fixed neck-length parameter
R = 1.30 fm. Note that R is chosen in reference to the
addressing of experimental data of capture cross section for
the 48Ca + 238U reaction at Ec.m. = 180.1 MeV (or excitation
energy E∗

CN = 21.7 MeV) in the preceding section. For refer-
ence, see Figs. 2 and 3. The deformations up to λ = 4 order
and respective optimum orientations are taken into account,
and comparison is made for the case of spherical fragments.
It is important to mention that, to specifically analyze the
influence of deformation and orientation degree of freedom,
we obtained V (η) at � = 0h̄.

In Fig. 10, V (η) is minimized initially by considering (I)
the spherical case (i.e., βλ = 0), (II) quadrupole (β±

2i ) de-
formation and θopt (β±

2i ), (III) octupole (β±
3i ) and θopt (β±

2iβ
±
3i ),

and (IV) hexadecapole (β4i) and θopt (β±
2iβ

±
3iβ

±
4i ) introduced

for all the possible decaying fragments from 286Cn∗ CN. This
analysis was done for both the cold and hot configurations of
deformed fragments, but we show the results for the former
in Fig. 10. With hot configurations, there is nominal change
in the fragmentation structure irrespective of the choice of de-
formation and orientation degree of freedom. This is because
the fragments of spherical shape give relatively larger radius

than that of the hot configuration of deformed fragments. Con-
sequently, the spherical shape fragments have more minima
in V (η).

On the other hand, in the fragmentation structure of the
cold configuration (see Fig. 10), we have noticed the change
in the fragmentation structure, as one goes from spherical to
the higher-order deformation of possible decaying fragments
from the 286Cn∗ CN. The main change was observed in the
heavy mass fragment (HMF) and fission valley, marked in
Fig. 10. For these regions, the fragment mass belongs to
the ranges 21 � A2 < ACN

2 − 35 and ACN
2 − 35 � A2 � ACN

2 ,
respectively. It is important to mention here that there is no
change in the structure of V (η) for evaporation residue (ER;
1 � A2 � 4) and intermediate mass fragment (IMF; 4 < A2 <

HMF region) regions, irrespective of choice of deformation
order. In the HMF region, the fragments with minima in
V (η) obtained for spherical and octupole deformation cases
are different from those of quadrupole and hexadecapole
deformed cases. Due to incorporation of higher-order defor-
mation and corresponding cold optimum orientation, 63Mn
(Z1 = 25, N1 = 38) + 223Fr (Z2 = 87, N2 = 136) fragments
are found to possess relatively deeper minima in V (η). Here,
one of the decaying partners possess deformed magicity in
its neutron number (i.e., N1 = 38) [73]. Such a study would
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FIG. 9. Same as Fig. 6, but for the “elongated or cold” fusion configuration of β−
2 β−

4 cases.

be helpful to understand the stability and deformed magicity,
especially in the HMF region of SHN.

Further, in the fission region, for the spherical case we
have analyzed that 152Nd (Z1 = 60, N1 = 92) + 134Te (Z2 =
52, N2 = 82) fragments possess the minimum value of V (η)
among the rest of the fission fragments. These are the near-
symmetric fission fragments with ηA(=|A1−A2|

A1+A2
) = 0.063, and

one of them (i.e., 134Te) has magicity in its neutron number,
which imparts more stability to emit out of the compound nu-
cleus. Further, with the inclusion of β±

2i and θ cold
opt (β±

2i ),
180Yb

(Z1 = 70, N1 = 110) + 106Mo (Z2 = 42, N2 = 64) fragments
with ηA = 0.259 are found to have minima in V (η). Also
note that one of the decaying partners (106Mo) has deformed
magicity [73], due to which the fragmentation potential min-
imizes compared to that of spherical nuclei. This result holds
true as we introduce octupole deformation β±

3i and respective
cold optimum orientation θ cold

opt (β±
2iβ

±
3i ). However, with the

inclusion of higher-order deformation up to β4 and respective
θopt, one may notice a significant change in the fragmentation
structure of the fission valley. For this situation, we have ana-
lyzed that 143Ba (Z1 = 56, N1 = 87) + 143Ba (Z2 = 56, N2 =
87) symmetric fragments (ηA = 0.0) appear across minima in
V (η). In a recent experimental [74] and theoretical work [62],
the authors analyzed that a fragment with atomic number =
56 and neutron number = 88, or in its vicinity, possesses ex-

tra stability compared to spherical and quadrupole deformed
nuclei. This result has been observed in the asymmetric fis-
sion of compound nuclei belonging to the actinide region.
In the present work, we have observed the fragments in the
symmetric fission region of a superheavy compound nucleus,
i.e., 286Cn∗.

The above analysis is an open problem of understanding
the role of hexadecapole deformation and respective opti-
mum orientation in the exit channel of superheavy nuclei,
at various extremities such as angular momentum, energy/

temperature, etc.

IV. SUMMARY

In the present work, we have obtained the optimum ori-
entations (θopt) of higher-order deformed (up to hexadecapole
β4 deformation) targets and analyzed their relevance on the
fusion barrier and fusion cross section. These θopt define the
“elongated or cold” and “compact or hot” configurations of
deformed nuclei and help to address the nuclear properties
across the Coulomb barrier.

In the above analysis, we have seen that θopt obtained
with the strong effect of β±

4 deformation shows significant
change from that of lower-order deformation, i.e., octupole
β±

3 and quadrupole β±
2 , on the barrier characteristics. The
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FIG. 10. The minimized fragmentation potential V (η) (MeV) is
shown as a function of fragment mass number A2 (or A1 = ACN − A2;
complementary fragment) for the cold configurations of the possible
decaying fragments, whose quadrupole β±

2i , octupole β±
3i , and hex-

adecapole deformations β±
4i along with their optimum orientations

are introduced one by one in the calculation. Note that the above
analysis is compared with the spherical case as well, at a common
value of excitation energy E∗

CN, angular momentum � = 0h̄, and
neck-length parameter R = 1.30 fm.

above analysis has been tested for over 1400 actinide tar-
gets, bombarded with spherical (36S, 40,48Ca) and quadrupole
deformed (30Si, 34S) beams. The result obtained in the con-
text of θopt is independent of the choice of incident energy.
Besides, in comparison to the available experimental data of
capture cross sections (σcap) for 238U-based reactions, we have
found that theoretically calculated σcap using the extended
�-summed Wong model improves with the incorporation of β4

and corresponding cold optimum orientations at below- and
near-barrier energies, whereas for above-barrier energies hot
optimum orientation is preferable.

On the basis of this result, the application of θopt defining
the elongated and compact configurations of β4 deformed
fragments, decaying from SHN (i.e., 286Cn∗), has been ana-
lyzed in terms of the fragmentation structure using collective
clusterization approach. As a result, the symmetric fission
fragments (i.e., 143Ba + 143Ba) possessing the higher-order
deformation are found to minimize the fragmentation poten-
tial. Experimentally, it has been noticed that fragment Ba
(barium) possesses extra stability, and we have also noticed
this in our theoretical calculations.

In conclusion, the application of θopt related to β±
4 de-

formed actinide targets shows their significant relevance in
the production as well as exit channel of superheavy nuclei
(SHN). Besides, the present work raises questions regarding
the collective influence of higher-order deformation in the
decay products of SHN, and their stability and structural prop-
erties in reference to the spherical, quadrupole, and octupole
deformed fragments. Such theoretical investigations will help
in future experiments related to the higher-order deformed
actinides, which participate in the fusion-fission dynamics of
superheavy nuclei.
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