PHYSICAL REVIEW C 108, 044609 (2023)

Optical potentials and nuclear reaction cross sections for n->C and N- 12 scattering
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In this work we extend a previously derived n-°Be optical potential up to 500 MeV and apply it to the
system n- '2C, finding excellent results for the energy dependence of the total cross sections. Results obtained
with a standard optical model calculation are compared to those from the eikonal formalism in order to asses
the accuracy of the latter as a function of the nucleon incident energy. For comparison, single folded (s.f.)
nucleon-target potentials are also obtained using '>C densities from different models. These potentials are
sensitive to the density used and none of them reproduce the characteristics of the phenomenological potential nor
the cross section results. We then calculate nucleus-nucleus (NN) potentials and total reaction cross sections for
some “normal” and exotic projectile nuclei on '>C within the eikonal formalism. We find that single folded
(S.F.) projectile-target imaginary potentials and double folded (D.F.) potentials can produce similar energy
dependence of the reaction cross sections but the S.F. results agree better with experimental data provided the
radius parameter of the phenomenological n-target potential is allowed to be energy dependent. We conclude
that the results previously obtained for a °Be target are quite general, at least for light systems, and that a S.F.
NN potential built on a phenomenological nN potential can constitute an interesting and useful alternative to

D.F. potentials.

DOI: 10.1103/PhysRevC.108.044609

I. INTRODUCTION

Since its first introduction in 1958 [1], the optical-model
potential has been widely used to describe scattering of
nucleons and composite particles off nuclei. As shown in
Ref. [1,2], the optical-model potential is the single-particle
operator which, introduced in the one-body Schrodinger equa-
tion, yields the elastic part of the full many-channel wave
function. As Feshbach already pointed out in [2] the “gen-
eralized optical-model potential” is complex, nonlocal, and
energy dependent, therefore it is very difficult to calculate
without the introduction of several approximations. The first-
order term of the Feshbach potential is real and it assumes
a straightforward “folding” form in terms of the projectile
and target densities and a nucleon-nucleon interaction. Such a
form is called double folding (D.F.) when both projectile and
target are composite nuclei, while in the case of a projectile
given by a single nucleon one talks of single folding (s.f.)
because only the target density is folded with the nucleon-
nucleon interaction. The second-order term is complex. Its
real part represents a correction to the first order-term often
referred to as “polarization potential.” The imaginary part
represents all possible reactions between projectile and target
and it is obviously difficult to calculate microscopically.
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However, the O.P. (optical potential) has been successfully
applied in the framework of a phenomenological approach
in which its form factor has been chosen on the grounds
of nuclear structure considerations and its parameters have
been adjusted in order to fit the experimental data. In spite of
its complexity, several attempts have been made to calculate
the optical potential. In the past they were mainly concerned
with the calculation of the real part of the O.P. via folding
procedures, while the imaginary part has been treated phe-
nomenologically due to its further complexity.

The folding procedure which is exact for the first-order
real term was generalized by several authors [3-6] to obtain
both the real and the imaginary part of the optical potential,
introducing an effective, complex g matrix which describes
the nucleon-nucleon interaction. In the high energy limit one
can easily obtain the Glauber [7] form of the reaction cross
section in terms of the imaginary potential as given by the
folding form [8], which was first used by De Vries and Peng
[9] and Kox et al. [10].

However, from the time of the introduction of folding po-
tentials Satchler [6] suggested that caution should be taken
with the model, in particular when applied to obtain the imag-
inary part of the optical potential. The imaginary potential
should be all orders in the interaction while the folding pro-
cedure provides first-order potentials. Furthermore a known
drawback of imaginary folded potentials is that they are often
too absorptive in the internal part while being too shallow on
the surface. This can be a problem, for example for exotic
nuclei which are often very diffuse due to the anomalous
N/Z ratios and present phenomena such as neutron halo and
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neutron skin. In order to improve the calculations of NN
folded potentials Satchler and Love [5] proposed a different
type of single folded (S.F.) potentials obtained by folding a
phenomenological nucleon-nucleus interaction with the den-
sity of the other colliding nucleus. The authors of Ref. [11]
applied this idea by using the Bruyeres Jeukenne-Lejeune-
Mahaux (JLMB) model [12,13] for the nN potentials folded
with various projectile densities. Recently the authors of [14]
folded the KDO2 global nucleon-target potential [15] with
67Li densities. Another method called MOL [16], for mod-
ified optical limit, can also be interpreted as a special kind
of the S.F. procedure that we will discuss with Eq. (5). In
Ref. [16] an effective nN profile function was introduced
within the Glauber approach, which acts as the nN optical
potential does in the S.F. model.

A simple use and check of the imaginary folded potential
is in the calculation of reaction cross sections. In the past, a
very detailed study of the dependence of reaction cross sec-
tion values on the parameters of the folded potential was done
in the seminal paper Ref. [17], while Ref. [18] dealt with Pauli
blocking and medium effects in nucleon knockout. In gen-
eral D.F. potentials need to be corrected to take into account
medium effects beyond the simple nn interaction. Toward this
goal, more recently, in studying the energy dependence of
reaction cross sections by the MOL [16] Glauber approach,
several groups have tried to modify some of the ingredients of
the double folding model in the attempt to improve its perfor-
mances. For example in Ref. [19] the average neutron-proton
(np) and proton-proton (pp) cross sections were modified,
while in Ref. [20] the range parameters g of the effective (nn)
and (np) interactions were fitted. See Egs. (9)—(11).

More fundamental, microscopic approaches to calculate
the imaginary potential have started to be quite successful
in the last twenty years thanks also to improved comput-
ing methods. See Ref. [21] for a recent, exhaustive review.
For nucleon-nucleus (nN) potentials ab initio methods have
reached a quite high degree of accuracy [22-26]. On the other
hand the nN potential [27] and NN potentials (Refs. [28-31]
and other works by the same authors) are based on a micro-
scopic, complex g matrix and then either a single folding or a
double folding model is constructed. In the following we will
define and discuss further these approaches.

However, when, for a give nucleus, a large set of data
is available it might be useful to start fitting the parameters
of a phenomenological potential. For example in Ref. [32],
thanks to the existence of an almost continuous series of
neutron-’Be data as a function of the neutron incident energy,
a phenomenological potential and a dispersive optical model
(DOM) [33] potential were introduced for the system neutron-
°Be, and were able to reproduce at the same time the total,
elastic, and reaction cross sections and all available elastic
scattering angular distributions. These results were important
because they showed that a phenomenological nucleon-target
O.P. could be obtained also for light nuclei and on a wide
energy rage. Then using one of those potentials, AB, a S.F.
(light)-nucleus-’Be imaginary optical potential was derived
and it was shown that it is more accurate than a D.F. optical
potential [34-36] in reproducing NN reaction cross section.
Considering that *Be is one of the most used targets for a large

number of reaction studies, the above cited works constituted
an important starting point for further studies and applica-
tions, in particular for reactions with exotic nuclei.

Of course one might wonder whether such results are due
to the special nature of °Be, which is itself weakly bound
and strongly deformed. For this reason and to draw more
general conclusions we decided to try to apply in this work the
same AB potential to the description of n- 1>C scattering and
calculate by the optical model total reaction cross sections in
the range 20-500MeV. At the moment we do not attempt to
fit the low energy resonance region, which would need an
ad hoc study in particular as far as the spin-orbit potential is
concerned. One motivation is that we are eventually interested
in experiments with exotic nuclei studied at energies larger
than about 60—80A MeV. These are insensitive to the low
energy part on the nucleon-target cross interaction, while there
is a large bulk of data at relativistic energies larger than 200A
MeV. For example the BARB experiment at GSI deals with
high energy beams [37]. For this reason we have extended the
AB potential to fit n- °Be and n- C total cross sections above
200A MeV, finding small differences in the two cases. Folding
the newly established n-'>C optical potential with several
projectile densities, we will then construct S.F. N-'2C po-
tentials. These potentials are necessary to calculate reaction
cross section and deduce from data unknown nuclear densities
and rms radii, as mentioned above. Optical potentials are also
necessary in breakup models to calculate the S matrices for
the core-target and nucleon-target scattering. In the future it
would be interesting to apply the S.F. and D.F. potentials to
a series of exotic nuclei knockout induced reactions in order
to asses their accuracy in reproducing single nucleon breakup
absolute cross sections as suggested in [38].

Besides fundamental research, we would like to stress the
other important application of simple optical potentials in
transport codes. An essential ingredient of such codes are
the calculated realistic nuclear reaction cross sections used
for risk evaluation of manned space exploration missions as
well as for radiation therapy, where one needs dose calcu-
lations for treatment planning [39]. The therapeutic use of
heavy ions, such as carbon, has gained significant interest
due to advantageous physical and radiobiologic properties
compared to photon based therapy [40]. Most recently exotic
nuclei close to 2C, such as 2N, ', and '°C have been
proposed for radiation therapy [37]. Also in reactor physics
data and models of reaction cross sections are of fundamental
importance [41].

Turning to theoretical methods which use the O.P. to obtain
reaction cross sections, while the optical model (OM) and
coupled-channel (CC) model are certainly the most accurate
ways, as previously mentioned, the Glauber model [7] with
folded potentials (f.p.) [5,6], has also been used for many
years [9,10] and its results have been compared to data. In
particular from the beginning of physics with radioactive
ion beams (RIBs) the method has become very popular for
its simplicity in deducing density distributions of exotic nu-
clei and their root mean square (rms) radii [16,19,20,42—
47] and the core-target survival probability in knockout reac-
tions [48]. In particular in a recent work [38] the sensitivity
to folding methods used to obtain the nucleon-target and
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TABLE I. Energy-dependent optical-model parameters for the (AB) potential for n + °Be. ¥/ = 1.3 fm, &' = 0.3 fm at all energies. See

also Table III and text.

Elab VR I'R aR W sur Wvol
(MeV) (MeV) (fm) (fm) (MeV) (MeV)
20 < Ep < 40 31.304 — 0.145E1,, 1.647 — 0.005(E\p — 5) 1.65 4+ 0.365E 5.6 — 0.005(Ep — 20)

40 < Epp < 111 » »
111 < E < 160 » »
160 < Ej < 200 » »
200 < Epp < 215 » »
215 < Egp < 500

0.3-0.0001Ejy,
? 16.25 — 0.05(E,, — 40)

0.288 12.7
? 12.7 — 0.025(Eyq, — 160)
? 11.7 4+ 0.02(Ej — 200)

”»

5.5 = 0.01(Eyp, — 40)
4.8
4.8 — 0.025(E,, — 160)
3.8 + 0.02(Ep — 200)

core-target optical potentials in standard knockout eikonal
calculations used to extract spectroscopic factors has been
discussed.

A brief reminder of basic formulas used in this paper is
provided in Sec. II. Then Sec. III, which contains our results,
is divided in two subsections. In the first the extension of the
n-°Be AB potential of Ref. [32] up to 500 MeV is provided
and it is shown that almost the same potential can be ap-
plied to n- '2C scattering. Cross sections are calculated with
a standard optical model and with the eikonal method using
the phenomenological potential and some folded n-target s.f.
potentials. Our focus will be on the comparison of results for
the energy dependence of the total cross sections. In this way,
for the n-target system, we will test the accuracy of the phe-
nomenological potential vs the s.f. potential, the dependence
on the target model density and of the optical model vs the
Glauber model. To lend further support to our S.F. approach,
similarly to what has been done in Refs. [34,35], we will
calculate in Sec. III B, the imaginary part of '>C-'2C opti-
cal potential with the S.F. potential built from the projectile
density and the phenomenological n-target potential, and with
the D.F. potential obtained from the projectile and target den-
sities and the nucleon-nucleon interaction, and discuss their
differences. Finally NN reaction cross section calculations
made with the two different potentials will be compared to
experimental values for the systems 2c412¢, 9Be + 12,
20Ne + '2C, and "Ca + '>C. Given the symmetry of projectile
and target, the first system is a particularly interesting test case
for the accuracy of the phenomenological potential approach
vs folded potential.

For the various cases studied, we will provide figures of
the radial dependence of the imaginary potentials used, their
volume integrals, and rms radii, such that differences in
cross section results can be traced back to how various po-
tentials represent the localization of reactions and on how
they might contain in-medium and short-range repulsion
effects.

II. THEORY

The n- °Be phenomenological potential AB of Ref. [32] is
here extended to 500 MeV and to the system n + '>C. The
potential of this paper has the form

Uas(r, E) = —[Vws(r, E) + iWws(r, E)]. ey

The real part of the neutron-target interaction is given by Vs,
the usual Woods-Saxon potential:

Vis(r) = VRf(r, RR, a®). 2)

Also, the imaginary part takes the form

d
Wws(r) = WY f(r, R, a') — 4d" WS‘"d— f(r, R, d). 3)
r

i —1
with f(r, R,ad) = (1 +e% ) and R = riAl/3.

The real AB potential of Ref. [32] contained also a cor-
rection term 8§V which originates from surface-deformation
effects and represents channels for which a simple Woods-
Saxon form is not appropriate. Because such couplings are
important only up to around 20 MeV, and here we are not
interested in this low energy region for the present applica-
tions on '2C, we shall take 8V = 0. For the same reason the
spin-orbit term will be neglected. The parameters of Uag(r, E)
for the n-"Be and n-'2C interaction used in this paper are given
in Tables I and II respectively.

For comparison we consider also a s.f. [6,8] n-target poten-
tial U defined as

“

where pr(r) is the target density function, for which we
will use a number of different models as specified in the
following, o,, is the average of the experimental neutron-
proton and proton-proton cross sections, and «,,, is the ratio
of the real and imaginary scattering amplitude at zero degrees.
v is the classical relative motion velocity of the scattering.
The previous equation can be generalized in an obvious
way in order to distinguish between the proton and neutron
densities and the proton-neutron and proton-proton cross sec-
tions, using pp = p"p + p”p and U;‘T(r) = —%hv[a,,p(l —
ictyp)pP7(r) + 0pp(1 —iapy)p" 7 (r)]. This is the formalism
followed in the present work. Here we are assuming a
zero-range nucleon-nucleon interaction, and in numerical cal-
culations the values of o, and «,, will be taken from the
parametrization of Refs. [18,43,45].

In the case of NN scattering we will discuss potentials
UMV, negative defined as

UMt (r) = =3 hvou,(1 — icp)pr (r),

U"(r)= /dblUnN(bl —b, Z)/dzl p(by,z1).  (5)
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TABLE II. Energy-dependent optical-model parameters of the potential n- '2C for E},, > 160 MeV. At lower energies, the parametrization

is the same as for °Be in Table .

E]ab VR rR aR W sur Wvol
(MeV) (MeV) (fm) (fm) MeV) MeV)
160 < Eyy < 200 31.304 — 0.145E,, 0288  12.7—0.025(Ei, — 160) 4.8 — 0.025(E;, — 160)

200 < Ep < 215 »
215 < Epy < 220 0 .
220 < Egp < 500 » 0.1

1.647 — 0.005(Eyw — 5)

? 11.7 3.8

2 ”» ”»

” 11.7 4+ 0.02(Ej — 220) 3.8+ 0.02(Ejp — 220)

This quantity is the S.F. optical potential given in terms of a
nucleon-nucleus (nN) optical potential U™ (r) and the matter
density p(by, z;) of the other nucleus. In the S.F. method,
U™ (r) can be a phenomenological nucleon-target potential,
Eq. (1), such as the DOM or the AB potentials of Ref. [32].
In the D.F. method, UM is obtained from the microscopic
densities pp 7 (r) for the projectile and target respectively and
an energy-dependent nucleon-nucleon (nn) cross section o,
by using Eq. (4) for U™ with the notation T = N in Eq. (5).

The reaction cross section, which depends only on the
imaginary potential, in the eikonal formalism is given by the
well known formula

og =271 /oobdb(l — ISer()1?), (6)
0

where
1Spr(b)[* = 211 ®) (7

is the probability that the projectile-target (PT) scattering is
elastic for a given impact parameter b.
The imaginary part of the eikonal phase shift is given by

1
xi(b) = — — / Az WP (b, 2), ®)
hv

where, depending on the case studied, WFT will be the imag-
inary part of one of the nucleon-target or nucleus-target
potentials defined above.

III. RESULTS

A. Nucleon-2C

We start by showing in Fig. 1 the energy dependence of the
total cross section calculated with an optical model code using
the potential defined by Egs. (1)—(3) and the parameters given
in Tables I and II for n 4 °Be and 1 4 '>C. We include also the
experimental data from Ref. [49]. It is interesting that the ex-
perimental data exhibit a clear scaling between the two nuclei,
which the calculations reproduce accurately. Note that the two
corresponding potentials have the same radius parameter but
different radii, due to the difference in mass. Otherwise the
other parameters differ only above 160 MeV. Reference [32]
presented also results for n + Be from a dispersive optical
potential DOM calculation. DOM potentials exist also for
n + '2C. Indeed in the same figure the green solid line shows
the results obtained for a °Be target using the DOM obtained
for 12C [50]. It is amazing that, also for the DOM potential
model, the same parametrization can be successfully applied
to the two different targets. As was found in Ref. [32] for

9Be, the agreement shown here for the 2¢ target, between
data and OM calculations, is remarkable and is comparable
to that obtained for example in Ref. [41], where a coupled-
channel (CC) technique was used. Note that also the authors
of Ref. [41] stressed a similarity between parametrizations for
9Be and '2C. As we shall see in the following, the advantage
of a simple OP approach, with respect to CC calculations,
is that it can easily be used to build folding potentials for
nucleus-nucleus scattering and also it can be used in eikonal
and fully quantum-mechanical models [48,51] of knockout
from exotic nuclei.

In Fig. 2 the total experimental cross section for n + '>C
is shown again by red symbols while the blue full curve
and green double-dotted-dashed line are results of the optical
model and eikonal calculations, Ref. [7], respectively, with
the potential of Egs. (1)—(3) and Table II. The orange dot-
dashed line is the eikonal calculation with the s.f. potential (4).
These results indicate that, while the simple eikonal approxi-
mation with the phenomenological potential works well from
about 100 MeV incident energy, the eikonal model with the
folded potential starts to work well only from about 200 MeV.
Clearly the Glauber and folding models miss some effects of
excitation modes in the target, beyond the simple nn free scat-
tering concept. The optical model with the phenomenological
n-T potential includes instead such effects. In this respect, we

calc

- 9Be data
calc

- 12C data
_n 9
CDOM -> Be

(P
[S=

— T

1 10 100 1000
E. (MeV)

mnc

FIG. 1. Total experimental and calculated cross sections. Lower
blue symbols are for n 4+ *Be, upper red symbols for n+ '2C. The
optical model calculations are given by the orange and cyan dashed
lines, respectively. The solid green line is a calculation made with a
DOM potential obtained for n + '2C and applied to n + *Be [50].
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— C data
E — calc opt mod

calc eik pot Eq. (4)
- — calc eik pot table 2

Oyor (0)

01— ' ' 500 600

300 400
E.(MeV)

¢

100 200

FIG. 2. Total experimental and calculated cross sections for n +
2C. Red symbols are the data. The blue full curve and green
double-dotted-dashed line are results of optical model and eikonal
calculations respectively, with the potentials (1)—(3) and Table II.
The orange dot-dashed line is the eikonal calculation with the s.f.
potential (4).

first note that the U ;}T potential of Eq. (4) has the same range
and profile as the target density because o, and «,,, are simple
scaling factors. To understand better this point Fig. 3 shows
the imaginary potentials calculated at 300 MeV with the
densities indicated in the legend from Refs. [52,53]. Hartree-
Fock-Bogoliubov (HFB) densities were calculated with the
code HFBTHO [54] and the Skyrme interaction SKM* [55].
Using other Skyrme interactions does not produce substan-
tial differences. No-core-shell-model (NCSM) densities were
obtained by using the nn4lo [25] interaction. We provide also
the volume integrals per particle and rms values. The former
(Jw /Ar) have all the same values because all densities are
normalized to the number of nucleons. The latter (rms values)
have very similar values although in the internal parts the

50 — - HFB-J, /A(MeV fm*)=229; rms(fm)=2.42
e HF 237
40 + > S VGFM 24
~ ot = =« NCSM dlo 233
" S, | — Phenom 209 29
H S, | — MoL 186 257
301 N3 =
~ - .
% L |
< 20 .
2 UL ,
=
= f i
= 10— -
0 I
-10+ -
20 ! ! ! ! |
0 1 2 3 4 5

r (fm)

FIG. 3. n + '2C potentials calculated with various model densi-
ties at 300 MeV; see legend and text. The blue line is the potential
deduced from the profile function of Ref. [16]. The magenta tick
curve is the phenomenological potential of Eqs. (1)—(3) and Table II.

- n-uC data

— phenom calc opt.mod.

— phenom calc. eikonal

—- HFB
HF
VGFM

-~ » NCSM

L. HFB_N

otP)

015 N T/

FIG. 4. Total experimental and calculated cross sections for n +
12C. Red symbols are the data. The blue curve is the calculation by
the optical model with the phenomenological potential. The other
curves are calculations using the s.f. potential (4) and Fig. 3 using
fixed oy, values in Eq. (4) appropriate for 300 MeV. The brown
dashed curve labeled as HFB_N uses the energy dependent c,,, from
Refs. [18,43,45]. Note that they are known only from 40 MeV. See
text for details.

potentials are quite different. The phenomenological potential
is completely different, being very shallow at the interior and
having instead a pronounced surface peak and long tail. Its
volume integral is smaller than that of the s.f. potentials while
its rms radius is much larger. Indeed Fig. 4 shows again the
experimental cross sections as in Figs. 1 and 2 but this time,
besides the optical model calculation with the phenomenolog-
ical potential, results are shown of the eikonal approximation
Ref. [7] with the s.f. potentials (4) of Fig. 3 obtained with
different densities. One can notice the small effect of changing
the target density. However, it is interesting to note that the
cross section values seem to scale with the rms radius of the
potential. This result suggests that only the surface behavior of
the potential (and of the target density) determine the value of
the cross section, and that in turn it is only the rms radius of the
target density that can be deduced from data, a confirmation
of the simple geometrical nature of the Glauber model. In
this figure the calculations marked as HFB_N were made
from 40 MeV using the HFB density and o, and «,, taken
from the parametrization of Refs. [18,43,45] (brown dashed
curve), while in the other calculations with various densities
we kept «,,, fixed at the value appropriate to 300 MeV just to
show the small dependence on the density. Note that a precise
evaluation of the o, parameters is a delicate issue which to
our knowledge has not been fully resolved to date; see in
particular Fig. 4 of [56].

B. Nucleus-'>C

We turn now to the study of nucleus-nucleus scattering
by building a D.F. potential and a S.F. potential according to
Eqg. (5). Note that s.f. refers to a potential for n-T scattering,
built on the target density, Eq. (4), while in the case of NN
scattering S.F. indicates a potential built using in Eq. (5) the
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—- D.F.83MeV HF
. NCSM
) 300 MeV
300 NS S.F. 83 MeV NCSM r'=1.32 fm
AN .- 1.30 fm
| A - 1.21 fm
N — - 300 MeV 1.118 fm
- ‘.\ 300 MeV HFB 1.118 fm
MOL
2 200} ) — 0
s
~
)
=
100
0
r(fm)
150 -
300 MeV NCSM D.F. x 0.4 rms=3.29 fm
- S.F. 3.57 fm
S
> ~N
_ 100 ~
2 N
= AN
= [ N
= \
= N
\
50 \
AN
AN
AN
L \ ~
~ (b)
~
~ ~ o
0 ! ! ‘ =
0 4 6
r(fm)

FIG. 5. (a) Imaginary part of the '>C - '2C optical potential at 83
and 300 MeV as indicated in the legend. The D.F. potentials shown
are obtained with the HF and NCSM densities. The S.F. potentials
are obtained with the potentials of Table II varying the ! values and
the NCSM and HFB densities. See text for details. The full magenta
line with blue dots uses the MOL potential obtained from [16]. Panel
(b) contains the potentials from the NCSM density at 300A MeV
where the D.F. has been renormalized by a factor 0.4 in order to
emphasize the difference in shape and rms radius.

projectile density and the n-T phenomenological potential,
Eq. (1). D.F. refers to a NN potential obtained using Eq. (4) in
Eq. (9).

In Fig. 5 a number of such imaginary potentials are shown
for the '2C-'2C system at 83 and 300 MeV as indicated in
the legend. We show D.F. potentials obtained with the HF
and no-core-shell-model (NCSM) densities obtained from the
nn4lo [25] interaction and S.F. potentials obtained with the
potentials of Table II, varying the r! values and the NCSM
and HFB densities. We will see in the following that, in order
to reproduce the experimental cross sections, the 7/ parameter
needs to be energy dependent when the n-T phenomenologi-
cal potential is used to build up the NN potential. The lower
figure shows the potentials from the NCSM density at 3004
MeV, where the D.F. has been renormalized by a factor 0.4
in order to compare it directly to the S.F. potential and to
emphasize the difference in shape and rms radius. The D.F.

TABLE III. Energy-dependent optical-model parameter ! for
the (AB) potential for n + °Be and 1 + '2C used in calculations of
S.E. NN potentials.

Ep r'(°Be) r(12C)
(MeV) (fm) (fm)

30 < Ejp < 160 1.4 — 0.0015E
Ew > 160 1.15

1.32 — 0.0013E}y,
1.118

potentials shown in panel (a) of Fig. 5 are deeper and have
smaller rms radii than the S.F. potentials, which are character-
ized instead by longer tails and larger rms values while their
volume integrals are smaller than those of the D.F. potentials;
see also Table I'V. In the same table the values of calculated re-
action cross sections at 83 and 300A MeV are given. Incident
energies are indicated in the first column, strong absorption
radius parameters within the single and D.F. methods using
the HFB densities are listed in the third column, while the
fourth column provides the volume integrals for active par-
ticles of the imaginary potentials. The next columns contain
the theoretical cross sections calculated with various densities.
On the left-hand side of each of them are the rms radii of the
corresponding imaginary potentials shown in Fig. 5. Typically
an increase of 5% in the rms value results in a similar increase
in the calculated reaction cross section, Eq. (6), similarly to
what we have noticed for the n-target potential. The values of
Table IV indicate that the volume integrals are the same for all
densities, as they are normalized to the number of particles,
while the rms values are different. However, they obviously
depend on the energy and on the method used to build the
potential. On the other hand for each D.F. potential the rms
values are independent of the energy because they are just
determined by the densities. This is consistent with the results
of Ref. [35]. The accuracy of our results can be discussed for
example in comparison to Refs. [29,30]. In that work the data
for '>C 4 '2C elastic scattering were studied at 100A MeV
using microscopic coupled-channel calculations with the ex-
plicit goal to check the effect of repulsive three-body forces.
The potential between the colliding nuclei was determined
by the double folding method with three different complex
g-matrix interactions, and also the reaction cross section was
calculated. The calculated value which agreed better with the
data was o = 950 mb, obtained with the MPa interaction [57]
and a renormalization factor Ny = 0.57 for the imaginary
potential. The MPa interaction includes repulsive three-body
forces. It is interesting to note that with our S.F. potential we
obtain 969 and 953 mb with the HFB and HF densities respec-
tively, without any renormalization for the potential, while
the experimental value is 962 mb. With the D.F. potential
and the HFB densities we obtain 980 mb. Also, similarly to
what is shown in Fig. 6 and Table IV for the D.F. and S.F.
potentials at 300 MeV, we find that at 100 MeV the depth
of the D.F. potential should be renormalized by a factor 0.4
with respect to the S.F. potential depths to make their values
similar. However as noticed at 300 MeV, also at 100 MeV the
rms radii would be very different, namely 3.75 and 3.43 fm for
the S.F. and D.F. potentials respectively. This confirms the fact
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TABLE IV. Comparison of the reaction cross sections of the '2C 4+'2C system. Incident energies are indicated in the first column. Strong
absorption radius parameters within the single and double folding methods are listed in the third column. The fourth column provides the
volume integrals for active particles. The next columns contain the theoretical cross sections calculated with various densities. Before each of

them are the rms radii of the corresponding imaginary potentials, some of which are shown in Fig. 5.

Eine Model T Jw /ApAr rms radius ONCSM rms radius Oup rms radius OHFB
MeV) (fm) (MeV fm?) (fm) (mb) (fm) (mb) (fm) (mb)
83 S.F. 1.2 184 3.72 994 3.75 1008 3.78 1025
D.F. 1.22 279 3.29 957 3.36 995 343 1027
300 S.F. 1.18 151 3.57 760 3.60 768 3.64 780
D.E 1.11 241 3.29 791 3.36 815 3.43 842

that a simple D.F. potential calculated according to Egs. (4)
and (5) would be far too absorptive because it does not contain
in-medium effects which instead are partially contained in the
microscopic potential of Ref. [30] thanks to the introduction

L e 2c+’Be data ]
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FIG. 6. Comparison of experimental reaction cross sections (cir-
cles with error bars) and theoretical values according to Eq. (6)
within S.F. and D.F. potentials (dot-dashed and full lines respec-
tively), for the scattering of '> C 4+ °Be (a) and '>C 4 '2C (b). The
magenta dashed lines in both panels represent the S.F. results ob-
tained using a fixed value ' = 1.3 fm for the radius parameter of the
imaginary phenomenological optical potential. The dot-dashed lines
correspond to an energy dependent r/ according to Table III. See text
for details. Data points are from Ref. [19]. In the lower panel the
large red points are from Ref. [10].

of the three-body repulsive force. Thus such potentials need a
not too strong renormalization. In light of such microscopic
method results, one possible interpretation for our surface
dominated n-T phenomenological potentials which give rise
to relatively shallow but “wide” NN potentials, cf. Figs. 3
and 5, is that they contain in a effective way the effects of
short range repulsion pushing most nn interactions to the
surface.

Another interesting comparison can be done with the MOL
method of Ref. [16], in particular their Eq. (10) for the S
matrix,

exp [iXoLa(b)] = exp (— / drp,(r)I'nr(b + E)>, ®

contains the profile function

e—bz/Zﬁ,

47[/31

e—bz/zﬂz

4 ,32 ’

(10)
with o), and B, given by the values in Table I of [16]
and p, given by Eq. (75) and Table 2 of [58]. It could be
interpreted as a S.F. model in which 'yt would be the result
of the z-integration of an effective nucleon-target potential of
Gaussian shape with imaginary part

+ 02(1 —icry)

Inr(b) = (01(1 — iory)

o712 e 1262

@npyn <2nﬂ2>3/2>' "

1
WaoL(r) = Ehv <01

Such a potential, shown in Fig. 3 by the blue line for n + '>C,
shows a repulsive behavior at very short distances, which
could be interpreted as an effective representation of short
distance repulsion originating in the three-body terms of the
chiral interaction as used for example in the microscopic
model of [30]. On the other hand in Fig. 5 the full magenta
line with blue dots shows the corresponding NN imaginary
potential for the system '2C+ '2C at 3004 MeV. It has a
volume integral of 184 MeV fm> and rms radius 3.48 fm,
consistent with our S.F. results of Table IV. In particular
we notice the same large distance behavior as in our best
S.F. potential. Thus the modifications to the MOL parameters
introduced in Ref. [19], which the authors mentioned are
not easily interpreted from the physical point of view, might
represent an effective way to obtain the correct energy and
radial dependence of their “effective” NT imaginary potential.
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TABLE V. Results for the 2’Ne + '>C scattering. The strong ab-
sorption radius parameter is listed in the third column, and the fourth
and the fifth columns give the predicted and the experimental [10]
reaction cross sections. The HFB density is used for 2°Ne.

Ei,c (MeV) Model ry (fm) Oheo (Mb) Ocxp (Mb)

30 S.F. (1.35)1.33 (1478)1456 1550 &+ 75
D.F. 1.37 1560

100 S.F. (1.27)1.23 (1327)1211 1161 £ 80
D.F 1.21 1206

200 S.F. (1.21H)1.11 (1193)1012 1123 £ 80
D.F. 1.15 1079

300 S.E. (L.21)1.12  (1181)1001 1168 £+ 100
D.F. 1.13 1062

From the discussion of our results it appears that Hartree-
Fock and HFB densities are the best for reproducing the
experimental reaction cross section values, and indeed they
are used in most codes related to exotic nuclei reactions.
Besides the system '>C + '2C, using HFB densities we study
also the systems “Be + '2C, *Ne + '?C, and "Ca + '>C. The
energies of the scattering and cross sections and other relevant
parameters are given in Tables IV, V, and VI. In particular as a
significative parameter we provide also the strong-absorption
radius R, [59,60], obtained from the S matrices as the radius
where |Spr(R,)|? = %, and in particular the “strong absorption
radius parameter” r, extracted from

Ry = ry(Eno) (A +47). (12)

The values of this parameter in Tables IV, V, and VI indicate
also that the S.F. potentials provide longer range absorption
than the D.F. potential. The cross sections and rms radii in
Tables V and VI were calculated with two different options for
the ! parameter of the phenomenological imaginary potential.

TABLE VI. Results for system "Ca - '2C at E = 2804 MeV. The
strong absorption radius parameter is listed in the third column, and
the fourth and the fifth columns give the predicted and the experimen-
tal [44] reaction cross sections. Statistical and systematic errors for
the experimental values are given in the first and second parentheses
respectively. The root-mean-square (rms) matter radius of the HFB
projectile density is listed in the last column.

Nucleus Model ry Otheo Ocxp rms radius
(fm) (mb) (mb) (fm)
2Ca SE  (1.23)1.14 (1598)1388 1463(13)(6)  3.38
D.F. 1.16 1460
BCa SE (1.22)1.14 (1614)1402 1476(11)6)  3.40
DF 1.17 1476
#“Ca SE  (1.23)1.15 (1630)1417 1503(12)(6)  3.42
DF 1.16 1490
“Ca SE  (1.24)1.15 (1683)1466 1505(8)(6) 3.50
DF 1.17 1543
BCa SE  (1.23)1.16 (1714)1495 1498(17)(6)  3.50
D.F. 1.18 1573

The values in parentheses were obtained with r/ = 1.3 fm
while the other values were obtained with the prescription of
Table III. The best agreement with the data is obtained with an
energy dependent 7/, as we discuss further in the following.

Figure 6 presents the energy dependence of the calcu-
lated and experimental reaction cross sections [10,19] for
9Be 4+ '2C and '2C + '?C. There are two curves showing re-
sults obtained within the S.F. model: one (dot-dashed line),
using in the phenomenological imaginary part of the n-T po-
tential the radius parameter 7/ which depends on the incident
energy according to Table III, provides the best agreement
with the data, while the other (dashed line), using the stan-
dard ' = 1.3 fm, corresponds to values larger than the data.
This is consistent with the results in Tables V and VI. It is
interesting that the small change in #/ brings the S.F. results
in much better agreement with the data. The full lines are D.F.
results which are in between the two S.F. curves. What we
have found is interesting because it agrees with what has been
discussed in other works like Ref. [19]. Namely it shows that
modifications might be necessary in reaction models when
including ingredients which successfully reproduce simpler
reactions. In the case of the D.F. model it is evident that not
only is the idea of a NN reaction being a collection of nn
free reactions is too simple, but so is the S.F. description of
a collection of free, independent nucleons interacting with a
nucleus via optical model potentials. However, at the moment
it seems that simple, understandable modifications are suffi-
cient to reproduce the data. For example, the reduction in the
radius parameter found useful in our model might indicate
that, when a nucleus scatters from another nucleus, as the
energy increases its nucleons interact with those of the other
nucleus at smaller distances than a free nucleon interacts with
the nucleons of a nucleus.

IV. CONCLUSIONS

In this paper we obtained an excellent phenomeno-
logical n-'2C optical potential which fits the total cross
sections up to 500 MeV. We then single folded it with var-
ious projectile densities and studied the systems '>C + '*C,
9Be + 2C *Ne + '2C, and "Ca + '>C, finding that the energy
dependence of the total cross section data can be fitted by
introducing a simple energy dependence in the radius pa-
rameter of the imaginary n-target potential. D.F potentials
were also calculated and it was shown once again that they
are too deep and too “narrow.” On the other hand we have
shown that the MOL method to calculate phase shifts, in
which nucleon-target multiple scattering effects are taken into
account, would provide potentials with characteristics similar
to ours. The general conclusion of our study is then that it is
necessary that the imaginary part of microscopic and/or semi-
phenomenological optical potentials contains higher order and
in-medium effects. Also it would be useful to study further the
importance of short range repulsion and/or or the effect of the
three-body force which might be at the origin of the necessary
reduction of the strength of the potential at short distances. As
a next step our S.F. method could be also tested by evaluating
the S matrices that are necessary in the eikonal formalism of
nuclear breakup.
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