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Momentum-space second-order pion-nucleus potential including medium effects
in the �(1232) region
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In this work, we develop an updated model for pion-nucleus scattering in the framework of the distorted
wave impulse approximation in momentum space. We construct the second-order pion-nucleus potential, which
involves analysis of pion-nucleus elastic scattering as a solution of the Lippmann-Schwinger equation. The
potential is based on the individual pion-nucleon scattering amplitudes extracted from SAID, and its second-
order correction is presented in detail. We estimate optimal energy-independent parameters of the potential by
a multienergy fit of the pion-12C total, reaction, and differential elastic cross sections. We show the predictive
power by applying it to pion elastic scattering on 16O, 28Si, and 40Ca.
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I. INTRODUCTION

The study of the pion-nucleus interaction has a long history
filled with various theoretical approaches [1] and has seen a
renewed interest in very recent years [2–4]. While the earlier
works were concentrated on the pion-nucleus scattering and
pionic atoms, modern experiments open new perspectives and
challenges in applying the pion-nucleus reactions knowledge
base. The pion production experiments in photon (electron)-
and neutrino-nucleus scattering serve as examples of utmost
importance. They are related to the extraction of neutron
skin and neutrino oscillation measurements, respectively. The
final-state interaction between the outgoing pion and nu-
cleus in these two processes is non-negligible at the energies
considered, and it is particularly significant in the �(1232)
resonance region [5,6]. Moreover, the �(1232) excitation is
the dominant mechanism of single-pion production, implying
the significance of studying modifications of the resonance
in the nuclear medium. For the neutrino experiments, a good
understanding of the pion final-state interaction is paramount
to interpret the measurements to the level of precision required
[7,8].

After the initial studies on pion-nucleus elastic scattering
and energy levels of pionic atoms using the simple first-
order potential, it became evident that higher-order effects
are required for a consistent description of experimental data
[9]. There are essentially two types of existing theoretical
models. The first is based on multiple-scattering theory and
provides terms beyond first order to the pion-nucleus optical
potential, treating the pion-nucleon amplitudes phenomeno-
logically. The second approach is the isobar-doorway model,
which considers the � resonance as an elementary particle
modified by various medium corrections. Our work is inspired
by both of these approaches.

*vitsaran@uni-mainz.de

The optical potential formalism effectively describes the
many-body pion-nucleus scattering process by a one-particle
equation for the pion interacting with a complex phenomeno-
logical potential. The Kisslinger optical potential [10], built
on Watson’s theoretical basis [11], was introduced more
than half a century ago and has been continuously improved
over the years by including various corrections [9,12–16].
The Kerman-McManus-Thaler formulation of the multiple-
scattering theory [17], treatment of the Fermi motion, and
relativistic kinematics have been taken into account. The addi-
tion of the phenomenological term proportional to the squared
nuclear density, which covers beyond-first-order effects and
real pion absorption, has resulted in a much-improved agree-
ment between theory and pion-nucleus scattering data for a
large set of nuclei.

However, the properties of the �(1232) isobar in the nu-
clear medium are essential in understanding pion-nucleus
interaction and have been the subject of numerous in-
vestigations, especially in the framework of the �-hole
model [18–23]. This resonance is particularly important for
pion-nucleus interaction because its excitation drives the dom-
inant p-wave spin-isospin- 3

2 (P33) channel in the elementary
pion-nucleon scattering. However, strong scalar and vector
fields affect the � isobar propagating through the nuclear
many-body system. The many-body medium effects are in-
corporated in the complex effective � self-energy ��, which
shifts the � mass and width. The treatment of pion-nuclear
reactions within the framework of the �-hole model is done
by means of a phenomenological spreading potential, the pa-
rameters of which are fitted to the data.

The aim of the present work is to develop the second-order
pion-nuclear potential in momentum space. In addition to the
first-order part of the potential, which has a standard form
[15], our second-order part involves more realistic two-body
correlation functions than have been used in earlier works.
In addition, we account for nuclear medium effects, which
affect the resonant P33 pion-nucleon scattering amplitude. The
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pion-bound nucleon amplitude in our approach relies on the
relativistic �-isobar model [24] with modified � propagator.
The effective � self-energy is considered as a parameter in
our model, which is fixed by a multienergy fit to π±- 12C scat-
tering data in the energy range 80–180 MeV laboratory kinetic
energy. In addition to describing pion-nucleus scattering, our
work aims to develop a model that can be applied directly to
the processes of pion photoproduction and neutrino-induced
pion production on spin-zero nuclei.

The paper is organized as follows: In Sec. II, we present the
main aspects of the multiple-scattering formalism. Then, in
Sec. III, we consider the pion-nucleon elementary amplitudes
and the dominant P33 channel. In Sec. IV, we derive the
second-order pion-nucleus potential and introduce in-medium
modifications to the scattering amplitudes. Next, in Sec. V, we
fit the obtained potential to the data on pion-12C scattering and
apply it to the 16O, 28Si, and 40Ca data. Finally, in Sec. VI, we
provide our conclusions.

II. MULTIPLE-SCATTERING FORMALISM

In multiple-scattering theory, the overall pion-nuclear tran-
sition amplitude T̂ is a symmetric sum of amplitudes over all
A individual nucleons,

T̂ (E ) =
A∑

i=1

τ̂i(E ) +
A∑

i=1

A∑
j �=i

τ̂i(E )Ĝ(E )τ̂ j (E )

+
A∑

i=1

A∑
j �=i

A∑
k �= j

τ̂i(E )Ĝ(E )τ̂ j (E )Ĝ(E )τ̂k (E ) + · · · ,

(1)

where E is the reaction energy and Ĝ(E ) is the Green’s
function of the noninteracting pion-nuclear system. The
pion-nucleon transition amplitude describing scattering to all
orders on a single nucleon bound inside the nucleus is

τ̂i(E ) = v̂i + v̂iĜ(E )τ̂i(E ), (2)

where v̂i denotes the pion-single-nucleon potential. Further-
more, we are going to replace the potential v̂i with the
corresponding free-space pion-nucleon amplitude t̂i, which
may be more easily parametrized from the experiment (see
Sec. III):

t̂i(W ) = v̂i + v̂iĝ(W )t̂i(W ). (3)

The scattering series for t̂i with the pion-nucleon reaction
energy W differs from Eq. (2) by the Green’s function of the
pion-free nucleon system ĝ(W ).

A determination of the transition amplitude T̂ from Eq. (1)
is difficult due to the presence of all possible intermediate
nuclear excited states in the series. Moreover, T̂ , Ĝ, and τ̂i

are (A + 1)-particle operators, so nucleon degrees of freedom
must be integrated out. Further simplification of the prob-
lem is possible by separating the equation involving only the
ground-state matrix elements from the one containing excited
states. For this purpose, we introduce projection operators,
which distinguish the ground state from the excited states of

the target nucleus:

P̂0 = |�0〉〈�0| and P̂∅ =
∑
α∗ �=0

|�α∗ 〉〈�α∗ |, (4)

where |�0〉 and |�α∗ 〉 correspond to the nuclear ground state
and all possible excited states, respectively. Also we assume
P̂∅ = 1̂ − P̂0. Following the Kerman-McManus-Thaler for-
mulation of the multiple-scattering theory, Eqs. (1)–(3) are
equivalent to the system of integral equations [17]

T̂ (E ) = Û (E ) + A − 1

A
Û (E )Ĝ(E )P̂0T̂ (E ), (5a)

Û (E ) = A τ̂ (E ) + (A − 1)τ̂ (E )Ĝ(E )P̂∅Û (E ), (5b)

τ̂ (E ) = t̂ (W ) + t̂ (W )[Ĝ(E ) − ĝ(W )]τ̂ (E ). (5c)

Here and further, we drop the index of t̂i when there is
no need to distinguish nucleons. The above scattering equa-
tion on T̂ (E ) (Û (E )) resembles the Lippmann-Schwinger
equation, with the additional factor (A − 1)/A and projector
P̂0 (P̂∅), which forbids intermediate nuclear excited (ground)
states, respectively. The factor (A − 1)/A prevents double
counting of pion rescattering on the same nucleon since all
possible rescatterings on a single nucleon are already included
in the pion-nucleon amplitude τ̂ .

The many-body process of pion-nucleus elastic scattering
is completely determined by the nuclear ground-state expec-
tation value of 〈�0|T̂ |�0〉, defined by the scattering equation

〈�0|T̂ (E )|�0〉 = 〈�0|Û (E )|�0〉 + A − 1

A
〈�0|Û (E )|�0〉

× Ĝ0(E )〈�0|T̂ (E )|�0〉, (6)

where we have used the property of Ĝ0(E ): 〈�0|Ĝ(E )|�α〉 =
Ĝ0(E )δ0α . Note, Eq. (6) contains only the terms diagonal in
the nuclear ground state. As a result, this equation is not
necessarily rapidly convergent. However, it can be solved
numerically if the effective potential 〈�0|Û |�0〉 is known. As
follows from Eq. (5b), the scattering equation for the potential
〈�0|Û |�0〉 contains two nondiagonal matrix elements in the
second term and is expected to converge rapidly. This is a
consequence of the fact that all influence of the excited states
is contained in Û . A detailed consideration of the effective
potential is presented in Sec. IV.

It is convenient to consider the pion-nucleus scattering in
the center-of-mass (c.m.) frame of the pion-nucleus system.
The reaction energy is then defined as E = E (k0) = ω(k0) +
EA(k0), where ω(k0) and EA(k0) are the energies of the pion
and nucleus defined relativistically, and k0 is the on-shell
momentum. As was discussed above, Eq. (5a) contains only
the diagonal in the nuclear ground-state relativistic propagator
of the pion-nucleus system Ĝ0(E ) = 〈�0|Ĝ(E )|�0〉. In pion
momentum space, it becomes

〈π (k′)|Ĝ0(E )|π (k)〉 = (2π )3δ(k′ − k)G0(k), (7)

where k = |k| and

G0(k) = 1

E − ω(k) − EA(k) + iε
, (8)
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We can write Eq. (8) in the pseudononrelativistic form

G0(k) = 2M (k)

k2
0 − k2 + i ε

, (9)

with an off-shell analog of the relativistic reduced mass,

M (k) ≡ [E + ω(k) + EA(k)][ω(k0)EA(k0) + ω(k)EA(k)]

2(E2 + (ω(k) + EA(k))2)
.

(10)

Taking into account the equality M (k0) =
ω(k0)EA(k0)/(ω(k0) + EA(k0)), we introduce the elastic
scattering amplitude in the momentum space, defined as

F (k′, k) = −
√

M (k′)M (k)

2π

× 〈π (k′), �0|T̂ (E )|π (k), �0〉, (11)

where k and k′ are the pion c.m. momenta in the initial and
final states, respectively. Then, in accordance with Eq. (5a),
the elastic-scattering amplitude is calculated by solving the
integral equation

F (k′, k) =V (k′, k) − A − 1

A

∫
dk′′

2π2

V (k′, k′′)F (k′′, k)

k2
0 − k′′2 + i ε

,

(12)

where the momentum-space potential of the pion-nuclear in-
teraction is defined as

V (k′, k) = −
√

M (k′)M (k)

2π
U (k′, k), (13)

with U (k′, k) = 〈π (k′), �0|Û (E )|π (k), �0〉.
Note that the formulas given above and developed in the

following sections are derived for the case of nuclear interac-
tion. The modification that is needed for the inclusion of the
Coulomb interaction is discussed in Appendix A.

III. PION-NUCLEON ELEMENTARY
SCATTERING AMPLITUDE

The potential Û relies on the knowledge of the pion-
nucleon scattering amplitude. To describe the scattering on a
single bound nucleon, we assume that the contribution from
the second term of Eq. (5c) can be neglected. In this way,
we impose τ̂ (E ) ≈ t̂ (W ), which is known as the impulse
approximation. However, the c.m. energy of the pion-nucleon
subsystem W is a dynamical variable [19,25]. An optimal
approach for choosing W would be minimizing the second
term of Eq. (5c), describing binding correction to τ̂ . There
are several prescriptions with various motivations for choos-
ing the optimal value for W [12,15,26]. We will follow the
arguments of Gurvitz [27] and set

W (k, p) =
√

(ω(k) + EN (p))2 − (k + p)2, (14)

where k and p are the pion and target nucleon momenta in
the pion-nucleus c.m. frame, and ω(k = |k|) and EN (p = |p|)
are the corresponding relativistic energies. The choice of the
effective value of p will be discussed in Sec. IV A. We note

that the freedom in choosing W can be absorbed in the model
parameters when studying the medium effects (see Sec. IV C).

While we require the pion-nucleon transition amplitude in
the pion-nucleus c.m. frame, it is more convenient to consider
the pion-single-nucleon interaction in the pion-nucleon c.m.
system. All quantities denoted by the subscript “2cm” refer to
the pion-nucleon frame in order to distinguish both systems.
The pion momenta in both reference frames are related by the
Lorentz transformation

k2cm(k, p) = k + α (k + p),

α = 1

W (k, p)

(
(k + p) · k

W (k, p) + ω(k) + EN (p)
− ω(k)

)
,

(15)

and an analogous relation for k′
2cm. Also, we assume that the

transformation in Eq. (15) is justified for virtual particles,
which is the approach of relativistic potential theory [28–30].

The free pion-nucleon scattering matrix in the pion-nucleus
and pion-nucleon c.m. frames is then related through

〈π (k′), N (p′)|t̂ |π (k), N (p)〉
= (2π )3δ(k′ + p′ − k − p)γ t2cm(k′

2cm, k2cm ), (16)

with the usual Møller phase-space factor [31]

γ =
√

ω(k2cm )ω(k′
2cm )

ω(k)ω(k′)
EN (k2cm )EN (k′

2cm )

EN (p)EN (p′)
(17)

due to the noncovariant normalization convention used to cal-
culate t2cm. In Eq. (16) and further, we imply that the transition
amplitude is calculated at the pion-nucleon reaction energy
calculated according to Eq. (14) for the on-shell process. The
notation t (k′, k) indicates that the momentum-conserving δ

function was explicitly separated.
The pion-nucleon on-shell T matrix is related to the elastic

scattering amplitude f as

t2cm(k′
0,2cm, k0,2cm ) = −4π

2ω̄
f (k′

0,2cm, k0,2cm ), (18)

where ω̄ = ω(k0,2cm )EN (k0,2cm )/W is the pion-nucleon rel-
ativistic reduced mass, W = ω(k0,2cm ) + EN (k0,2cm ), and
|k′

0,2cm| = |k0,2cm| = k0,2cm. We consider further in this sec-
tion only the most relevant properties of the scattering ampli-
tude for the π (k2cm ) + N (−k2cm ) −→ π (k′

2cm ) + N (−k′
2cm )

process and refer to Ref. [1] for a more detailed review.
Assuming the isospin conservation, we can explicitly rep-

resent the spin-isospin structure of the amplitude as

t̂ = t̂ (0) + t̂ (1) t̂ · τ̂ + (t̂ (2) + t̂ (3) t̂ · τ̂)σ̂ · n, (19)

where t̂ and τ̂ are the pion and nucleon isospin operators, σ̂ is
the nucleon Pauli spin operator, and n = k2cm × k′

2cm/|k2cm ×
k′

2cm| is the normal to the scattering plane. The same notation
also holds for t2cm(k′

2cm, k2cm ) and f (k′
2cm, k2cm ).

The P33 partial wave is the only resonant one at low and
intermediate energies, peaking at about the pion laboratory
kinetic energy Tlab ≈ 190 MeV. Correspondingly, within the
energy range under our consideration, Tlab � 300 MeV, only
the s- and p-wave contributions are dominant. As a result, the
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pion-nucleon scattering amplitude can be written as

f (k′
0,2cm, k0,2cm ) ≈ b0+b1 t̂ · τ̂+(c0+c1 t̂ · τ̂) k′

0,2cm · k0,2cm

+ i(s0 + s1 t̂ · τ̂) σ̂ · [k′
0,2cm × k0,2cm],

(20)

where b0,1, c0,1, and s0,1 are energy-dependent complex s- and
p-wave coefficients.

The multipole expansion allows us to express the param-
eters b0,1, c0,1, and s0,1 through the partial wave amplitudes
f l
2T 2J as

b0 = 1

3

[
f 0
1 1 + 2 f 0

3 1

]
, (21a)

b1 = 1

3

[
f 0
3 1 − f 0

1 1

]
, (21b)

c0 = 1

3k2
0,2cm

[
f 1
1 1 + 2 f 1

3 1 + 2 f 1
1 3 + 4 f 1

3 3

]
, (21c)

c1 = 1

3k2
0,2cm

[
f 1
3 1 − f 1

1 1 + 2 f 1
3 3 − 2 f 1

1 3

]
, (21d)

s0 = 1

3k2
0,2cm

[
f 1
1 1 + 2 f 1

3 1 − f 1
1 3 − 2 f 1

3 3

]
, (21e)

s1 = 1

3k2
0,2cm

[
f 1
3 1 − f 1

1 1 − f 1
3 3 + f 1

1 3

]
. (21f)

Here l , T , and J are, respectively, the orbital angular
momentum, isospin, and total angular momentum of the pion-
nucleon system. The partial-wave amplitudes are related to the
measured pion-nucleon phase shifts as

f l
2T 2J = 1

2ik0,2cm

(
e2iδl

2T 2J − 1
)
. (22)

In this work, we take the complex scattering phase shifts
δl

2T 2J as extracted from the state-of-the-art phase shift analysis
(WI08) by the SAID Collaboration [32].

As can be seen from Eq. (12), explicit knowledge of the
off-energy-shell behavior of the potential V is required to
solve the scattering equation. Whereas the on-shell behav-
ior is directly defined by the partial wave amplitudes f l

2T 2J ,
Eq. (22), the off-shell extrapolation needs a model specifica-
tion. We assume that for the on-shell momentum k0,2cm the
dependence of the amplitude f l

2T 2J on the off-shell momenta
k2cm and k′

2cm is defined by the separable form

f l
2T 2J (k′

2cm, k2cm ) = f l
2T 2J (k0,2cm, k0,2cm )

(
k′

2cmk2cm

k2
0,2cm

)l

× v(k′
2cm )v(k2cm )

v2(k0,2cm )
, (23)

with the off-shell vertex factor for s and p waves

v(k) = 1

�2 − (ω2(k0,2cm ) − k2)
, (24)

where � = 1.25GeV is taken. Note that including the second-
order part of the potential Û (see Sec. IV) reduces the model
sensitivity to the off-shell behavior of the pion-nucleon am-
plitude. The alteration of the off-shell parameter � does not

significantly impact the model’s predictions after fitting. How-
ever, the variation of � does result in changes to the free
parameters, which will be described in the following sections.

An important feature of pion-nucleon scattering is the rel-
ative weakness of the s-wave interaction. It makes the p-wave
part of the amplitude not only dominant at intermediate en-
ergies but also significant at low energies, even close to the
threshold. As a result, an accurate description of the p-wave
interaction is essential for the pion scattering on both free
and bound nucleons. The starting point should be a model
which effectively describes the basic dynamical features of
the free pion-nucleon process. In our work, we adopt the
relativistic �-isobar model by Oset, Toki, and Weise [24],
which successfully reproduces the p-wave pion-nucleon phase
shifts at low and intermediate energies, especially the resonant
P33 channel. The model is based on the K-matrix formalism in
which we express the elastic-scattering partial amplitudes as

f l
2T 2J = Kl

2T 2J

1 − ik0,2cmKl
2T 2J

. (25)

When the K matrix is real, the unitarity is automatically in-
corporated. In general, the phase shifts and, correspondingly,
the K matrix remains real only below the pion production
threshold (πN → ππN), which is approximately at 170 MeV
pion laboratory kinetic energy. However, even when the in-
elastic channel is open, the inelasticity parameters for the p
wave remain close to 1 with high accuracy. As a result, the
p-wave pion-nucleon interaction can be described by the real
crossing symmetric K matrix. According to the relativistic
�-isobar model, the pion-nucleon K matrix is based entirely
on the pion-baryon effective Lagrangian and contains direct
and crossed contributions from nucleon N , �(1232)-isobar,
and Roper resonance N∗(1440). The resulting K matrix in the
dominant P33 channel is given by

K1
33 = 1

3

k2
0,2cm

4πm2
π

mN√
s

[
4 f 2

N

2mN

m2
N − ū

+ 4 f 2
N∗

2mN∗

m2
N∗ − ū

+ f 2
�

(
2m�

m2
� − s

+ 1

9

2m�

m2
� − ū

)]
, (26)

where s = W 2, mπ is the pion mass, and the approximate
u-channel Mandelstam variable is ū = u + 2k′

2cm · k2cm =
m2

N + m2
π − 2ωEN (k0,2cm ). The masses and coupling con-

stants used are [24]

mN = 939 MeV, f 2
N/4π = 0.079,

m� = 1232 MeV, f 2
�/4π = 0.37,

mN∗ = 1450 MeV, f 2
N∗/4π = 0.015.

The primary role of the Roper resonance N∗(1440) in this
model is providing the correct behavior in the P11 channel.
The contributions of the u-channel N∗(1440) and � to the
P33 channel are on the order of a few percent. In contrast,
the nucleon u-channel term is not negligible and becomes
particularly significant at lower energies, e.g., making an ap-
proximately 50% contribution at the pion laboratory kinetic
energy of 50 MeV.
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FIG. 1. The theoretical f 1
33 amplitude obtained with the relativis-

tic �-isobar model (R�M) as a function of pion laboratory kinetic
energy compared with SAID phase shift analysis [32]. The solid
black (long-dashed red) curve represents the real (imaginary) part of
the amplitude taken from SAID, while the dot-dashed green (short-
dashed blue) curve corresponds to the R�M calculation.

In Fig. 1, we compare the P33 partial amplitude taken from
the SAID phase shift analysis with the relativistic �-isobar
model results. The corresponding curves in the plot are almost
indistinguishable, showing excellent agreement between the
theoretical model and experiment.

The dominant term in Eq. (26) comes from the direct (s-
channel) �-pole contribution. This resonant part of the K1

33
can be written as

K1(�)
33 = 1

k0,2cm

m��

m2
� − W 2

, (27)

where we have introduced the � decay width

� = 2

3

f 2
�

4π

k3
0,2cm

m2
π

mN

W
. (28)

The width at resonance (W = m�) is � ≈ 115 MeV. This
separation of the s-channel � term in the form of Eq. (27)
will be useful in the following, introducing the medium mod-
ifications.

IV. DERIVATION OF THE PION-NUCLEUS POTENTIAL

We are now in the position to construct the effective pion-
nucleus potential used in scattering equation (12). We assume
the potential Û (E ) is approximated by the first two terms of
the iterative series for Eq. (5b):

Û (E ) ≈ Û (1) + Û (2), (29)

where, within the impulse approximation, the first-order part
has the simple form

Û (1) = A t̂ (30)

and the second-order part is given by

Û (2) = A(A − 1)t̂ Ĝ(E )P̂∅t̂ . (31)

In the following, we will express Eqs. (30) and (31) for the
effective potential in more practical forms.

A. The first-order potential

The first-order potential in momentum space can be written
as

U (1)(k′, k) =
∫

dp′

(2π )3

dp
(2π )3

Tr[〈π (k′), N (p′)| t̂ |π (k),

× N (p)〉 ρ(p′; p)], (32)

where p and p′ are the initial and final momenta of the target
nucleon under consideration, Tr represents summation over
all nucleon spin and isospin projections as

Tr[t̂ ρ(p′; p)] ≡
∑
σ,σ ′

∑
τ,τ ′

〈σ ′, τ ′| t̂ |σ, τ 〉

× ρ(p′, σ ′, τ ′; p, σ, τ ), (33)

and the one-body density matrix for the target nucleus is

ρ(p′, σ ′, τ ′; p, σ, τ ) = A
∫ (

A∏
i=2

dxi

)
dr1 dr′

1ei(p′ ·r′
1−p·r1 )

× �∗
0 (x′

1, x2, . . . , xA)�0(x1, . . . , xA).

(34)

Here, the notation xi = {ri, σi, τi} covers nucleon spin and
isospin, and

∫
dxi(· · · ) = ∑

σi

∑
τi

∫
dri(· · · ). The spin and

isospin variables are suppressed in what follows.
As a result, the first-order potential in the impulse approx-

imation including the recoil of the struck nucleon is given by
the Fermi motion integral:

U (1)(k′, k) =
∫

dp
(2π )3

γ Tr[ρ(p − q/2; p + q/2)

× t2cm(k′
2cm(k′, p − q/2), k2cm(k, p + q/2)],

(35)

where q = k′ − k and γ is given by Eq. (17). The integration
over p in Eq. (35) requires nondiagonal elements of the one-
body density matrix which are model dependent. Moreover,
the proper treatment of the Fermi averaging should also take
into account the binding effects. To simplify the problem,
one can treat the nucleon Fermi motion approximately by
evaluating the pion-nucleon amplitude at the effective initial
and final nucleon momenta

peff = q
2

− k′ + k
2A

and p′
eff = −q

2
− k′ + k

2A
, (36)

respectively. This result was obtained for elastic nucleon-
deuteron scattering (for A = 2) in Ref. [33]. The terms
proportional to A−1 arrive due to the correct treatment of the
target recoil. In this so-called optimized factorization approx-
imation we arrive at

U (1)(k′, k) = γ Tr[ρ(q)t2cm(k′
2cm(k′, p′

eff ), k2cm(k, peff )],

(37)

with the nuclear form factor

ρ(q) = A
∫ (

A−1∏
i=1

dξi

)
ei A−1

A q·ξA−1 |�0(ξ1, . . . , ξA−1)|2 (38)
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FIG. 2. Diagram representation of the second-order part of the
pion-nuclear potential.

normalized to ρ(0) = A. Galilean-invariant Jacobi coordi-
nates, ξi, were introduced in order to eliminate the motion
of the nucleus as a whole, as the form factor characterizes
the internal structure of the nucleus (see Ref. [34] for details).
The factorization approximation is justified by the compensa-
tion between binding potential of the nucleon and the Fermi
motion kinetic energy [27].

Finally, the pion-nuclear potential, Eq. (13), is expressed
through the pion-nucleon scattering amplitude as

V (1)(k′, k) = W (k′, k)Tr[ρ(q) f (k′
2cm, k2cm )], (39)

with the phase space factor

W (k′, k) =
√

M (k′)M (k)

μ(k′, p′
eff )μ(k, peff )

, (40)

where μ(k, p) = ω(k)EN (p)/W (k, p) and we imply k2cm =
k2cm(k, peff ).

For spin- and isospin-zero nuclei, only the spin- and
isospin-independent part of the scattering amplitude, Eq. (20),
contributes to the first-order potential:

V (1)(k′, k) = W̃ (k′, k)[b0 + c0 k′
2cm · k2cm]ρ(q), (41)

where W̃ (k′, k) = W (k′, k)v(k′
2cm )v(k2cm )/v2(k0,2cm ). Note

that the scattering parameters b0 and c0 are derived at the pion-
nucleon c.m. energy given by Eq. (14) for on-shell momenta
and thus depend on the scattering angle. We extract the nu-
clear form factor ρ(q) from the corresponding nuclear charge
form factor determined through elastic electron scattering (see
Appendix B for details).

Note, in our calculation, besides the most important s- and
p-wave terms, we also include the d-wave contribution in the
same manner.

B. The second-order correction

The second-order part of the potential, Eq. (31), describes
scattering to all orders from one nucleon, after which the
nucleus makes a transition into an excited state followed by
propagation and then scattering to all orders on a second
nucleon, summed over all nucleons (see Fig. 2). We use the
subscripts “1” and “2” in this section to distinguish the initial
and final nucleons involved in the second-order scattering
process.

In calculating the second-order correction for the kinetic
energies larger than around 30 MeV considered in this work,
we neglect the nuclear excitation energies in comparison with
energies of the pion-nucleus system intermediate states. In
this way, the excited system propagator is approximated by
the ground state one, Ĝα∗ ≈ Ĝ0. Correspondingly, the second-
order part of the pion-nucleus becomes

〈�0|Û (2)|�0〉 = A(A − 1)〈�0|t̂2Ĝ0P̂∅t̂1|�0〉. (42)

Substituting the projection operator explicitly, we arrive at

〈�0|Û (2)|�0〉 = A(A − 1)[〈�0|t̂2Ĝ0t̂1|�0〉
− 〈�0|t̂2|�0〉Ĝ0〈�0|t̂1|�0〉]. (43)

According to Eq. (37) for the first-order potential, the second
term of Eq. (43) in momentum space becomes

〈π (k′), �0|t̂2|�0〉Ĝ0〈�0|t̂1|π (k), �0〉

= 1

A2

∫
dk′′

(2π )3
Tr[t2(k′, k′′)ρ(k′ − k′′)]G0(k′′)

× Tr[t1(k′′, k)ρ(k′′ − k)]. (44)

Similarly, the first term in Eq. (43) acquires the form

〈π (k′)�0|t̂2Ĝ0t̂1|π (k)�0〉

= 1

A(A − 1)

∫
dk′′

(2π )3
G0(k′′)

× Tr[t2(k′, k′′)t1(k′′, k)ρ2(k′ − k′′, k′′ − k)], (45)

where ρ2(q1, q2) is the Fourier transform,

ρ2(q1, q2) =
∫

dr1 dr2 e−i(q1·r1+q2·r2 )ρ2(r1, r2), (46)

of the two-body density function

ρ2(r1, r2) = A(A − 1)
∫ (

A∏
i=3

dri

)

× �
†
0 (r1, . . . , rA)�0(r1, . . . , rA). (47)

In Eqs. (44) and (45), we imply the same convention as in
Eq. (33), omitting spin and isospin variables. The nuclear two-
body density ρ2(x1, x2) characterizes the probability of finding
one nucleon with σ1 and τ1 at r1 and another nucleon with
σ2 and τ2 at r2, while all the other nucleons have arbitrary
positions, spins, and isospins. We imply that ρ2 is normalized
to A(A − 1).

As can be seen from Eqs. (43)–(45), the second-order
part of the optical potential depends directly on the nucleon-
nucleon correlations within the nucleus. We introduce two
correlation functions:

Cex(r1, r2) = ρ(r1)ρ(r2) − ρ2(r1, r2), (48a)

C0(r1, r2) = Cex(r1, r2) − 1

A
ρ(r1)ρ(r2), (48b)

which were considered in Ref. [35].1 The function Cex(r1, r2)
can be referred to as the “exchange correlation function”

1Note that different normalizations are used in this work compared
to Ref. [35].
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FIG. 3. The correlation functions Cex and C0 for 12C in momen-
tum space given by the harmonic oscillator shell model. Cex(q1, q2)
and C0(q1, q2) are plotted for |q1| = |q2| = q as functions of q and
the relative angle θ between q1 and q1. The red dashed curves
correspond to Cex, while the blue solid curves correspond to C0.

because, as demonstrated below, it accounts for the spin and
isospin exchange contributions to pion-nucleon scattering. It
is expressed as the exchange sum in terms of individual nu-
cleon wave functions, Eq. (B6). Both correlation functions

are employed in our calculations, as we do not neglect terms
of order A−1 appearing in the calculation. Both correlation
functions in momentum space are then obtained by the Fourier
transform:

Cex,0(q1, q2) =
∫

dr1 dr2 e−i(q1·r1+q2·r2 )Cex,0(r1, r2). (49)

None of the two-body correlation functions is directly mea-
surable, and a model is required to calculate the second-order
correction. A common approach is using the Fermi gas ap-
proximation to evaluate the second-order part of the potential
[9,36,37]. In our calculation, we employ the more realistic
harmonic oscillator nuclear shell model (see Appendix B).
The explicit forms of Cex(q1, q2) and C0(q1, q2), summed
over spin and isospin, are given by Eqs. (B12)–(B15). The
correlation functions for 12C in momentum space in the case
of |q1| = |q2| = q are shown in Fig. 3. While the difference
between Cex and C0 is less noticeable in coordinate space,
Fig. 3 demonstrates their different behavior in the case of
small momenta transfer, which is especially important for the
pion-nucleus scattering process.

Even for a nucleus with zero spin and isospin, the trace
operator in Eq. (45) yields a nontrivial result containing
spin- and isospin-dependent parts of the scattering amplitude,
Eq. (19). A direct calculation for spin-isospin-zero nuclei
yields the following spin and isospin sums entering Eq. (45):

1/2∑
s,s′,τ,τ ′=−1/2

χ
†
1 (s)χ†

2 (s′)η†
1(τ )η†

2(τ ′)
[
t̂ (0)
2 + t̂ (1)

2 t̂ · τ̂2 + (
t̂ (2)
2 + t̂ (3)

2 t̂ · τ̂2
)
σ̂2 · n2

]

× [
t̂ (0)
1 + t̂ (1)

1 t̂ · τ̂1 + (
t̂ (2)
1 + t̂ (3)

1 t̂ · τ̂1
)
σ̂1 · n1

]
η1(τ ′)η2(τ )χ1(s′)χ2(s)

= 4
[
t̂ (0)
2 t̂ (0)

1 + 2 t̂ (1)
2 t̂ (1)

1 + (
t̂ (2)
2 t̂ (2)

1 + 2 t̂ (3)
2 t̂ (3)

1

)
n1 · n2

]
, (50)

where χ (s) (η(τ )) is the nucleon spinor (isospinor).
The first term on the right-hand side of Eq. (50) consists of the spin-isospin averaged part t̂ (0) of the scattering amplitudes. The

remaining terms involve the spin- and isospin-dependent parts and describe intermediate spin and isospin exchange. In Fig. 4,
we show a diagrammatic representation of the isospin exchange for negative pion scattering. In the following, we include the
global factor 4, which arises due to spin-isospin summation, in the correlation functions.

Finally, combining the above results, we express the second-order part of the potential for spin- and isospin-zero nuclei in
terms of the correlation functions:

U (2)(k′, k) = −
∫

dk′′

(2π )3
G0(k′′)[t (0)(k′, k′′)t (0)(k′′, k)C0(k′ − k′′, k′′ − k) + (2t (1)(k′, k′′)t (1)(k′′, k)

+ (t (2)(k′, k′′)t (2)(k′′, k) + 2t (3)(k′, k′′)t (3)(k′′, k)) n1 · n2)Cex(k′ − k′′, k′′ − k)] (51)

or equivalently

V (2)(k′, k) =
∫

dk′′

2π2

W (k′, k′′)W (k′′, k)

k2
0 − k′′2 + iε

[ f (0)(k′, k′′) f (0)(k′′, k)C0(k′ − k′′, k′′ − k) + (2 f (1)(k′, k′′) f (1)(k′′, k)

+ ( f (2)(k′, k′′) f (2)(k′′, k) + 2 f (3)(k′, k′′) f (3)(k′′, k)) n1 · n2)Cex(k′ − k′′, k′′ − k)]. (52)

The first term in Eq. (52) describing spin-isospin averaged
individual nucleon scattering on two nucleons is similar to
Eq. (6.5) of Foldy and Walecka [38]. The term proportional
to f̂ (2)

1 f̂ (2)
2 ( f̂ (1)

1 f̂ (1)
2 ) corresponds to spin (isospin) exchange

between the intermediate pion and two nucleons, keeping the

scattered nucleus in the ground state (see Fig. 4 for an exam-
ple). Similarly, the term f̂ (3)

1 f̂ (3)
2 describes the simultaneous

exchange of both spin and isospin.
At the initial step of our calculation, the Pauli princi-

ple was included in the pion-nucleus potential through the
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FIG. 4. Diagrammatic representation of the second-order isospin
exchange for negative pion scattering.

antisymmetric nature of the nucleon wave functions. How-
ever, for the first-order potential, Eq. (37), this property was
lost after the integration over nucleon momenta within the
factorization approximation [39,40]. The obtained structure
of the second-order correction, Eq. (52), explicitly involves
two types of the two-nucleon correlation function and arises
primarily from the Pauli principle. This can, e.g., be un-
derstood by considering the process with zero momentum
transfer to each of the nucleons involved in the second-order
scattering. As shown in Fig. 3, for this situation, C0(0, 0) = 0
and Cex(0, 0) = A. As a result, the first term in Eq. (52),
describing the process which does not change the nucleon
quantum numbers, makes zero contribution to the integral. In
contrast, the second term is proportional to the nonzero Cex

correlation function. It corresponds to the situation when, after
the pion scattering on the first nucleon, this nucleon changes
its spin and/or isospin, acquiring quantum numbers already
occupied by another nucleon. In this way, the second-order
part of the potential, Eq. (52), introduces the Pauli corrections
to the model.

Figure 5 demonstrates the first- and second-order parts of
the pion-nucleus potential for on-shell forward scattering on
12C. As Pauli blocking limits the phase space available to the
struck nucleon, the second-order correction to the potential
leads to a reduction of the imaginary part of the potential.
Around Tlab = 160 MeV, the struck nucleon on-shell momen-
tum becomes close to the Fermi momentum, pF ≈ 1.36 fm−1,
and the imaginary part of Eq. (52) changes sign.

In Appendix C, we further discuss the second-order correc-
tion, Eq. (52).

C. Medium modifications

An essential part of the pion-nucleus total cross section for
all energies up to 300 MeV comes from pion absorption [41].
In the nuclear medium, the pion can be absorbed by one
or more nucleons, which indicates that intermediate states
without a pion should also contribute to the pion-nucleus
effective potential. This mechanism is usually referred to as
“true absorption” to distinguish it from the flux loss due to
scattering through many open inelastic channels. However,
even zero-energy pion absorption on a single nucleon results
in a momentum

√
2mN mπ ≈ 2.6 fm−1 to be carried off by

the nucleon. This value is very large for a nucleon within a

FIG. 5. The on-shell forward pion-nucleus potential for 12C as a
function of pion laboratory kinetic energy for parameters given by fit
1 in Table II. The upper and lower panels are for real and imaginary
parts, respectively. The solid red curves represent the first-order
part, V (1)(k0, k0) given by Eq. (41), with the on-shell momentum
k0 corresponding to Tlab. The dashed green curves correspond to the
second-order part, V (2)(k0, k0 ) given by Eq. (52), and the dash-dotted
blue curves are the sums of these two contributions.

nucleus, which means the single-nucleon absorption is sig-
nificantly suppressed [42]. As a result, the true absorption
originates from many-body mechanisms.

Early models of pion absorption hypothesized dominance
of two-nucleon pion absorption [43], where the pion is scat-
tered on one nucleon and then absorbed by another. Following
this assumption, the pioneering work of Ref. [9] introduced
additional phenomenological terms proportional to the square
of the nuclear density in the pion-nucleus potential to allow
for true absorption. However, it was shown both experimen-
tally [44] and theoretically [45] that the absorption process is
more complicated and the three-nucleon mechanism yields a
significant fraction of the total absorption cross section in the
resonance region and above.

As a result of the above, the pion-nucleon interaction is sig-
nificantly modified in the presence of surrounding nucleons.
In general, this means that the medium-modified scattering
coefficients b0,1, c0,1, and s0,1 are not only functions of the
reaction energy but also acquire a dependence on nuclear
density ρ(r). Even if the exact form of this dependence were
known, its inclusion in the momentum-space approach would
not be trivial. To solve this difficulty, we need to use the fact
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that the pion interacts mainly with a limited part of the nucleus
due to strong absorption, which results in the existence of an
effective nuclear density. Reference [49] studied the correla-
tions between the ρ(r) and ρ2(r) terms of the pion-nucleus
optical potential from the threshold to Tlab = 50 MeV. It was
proven that an effective density ρe could be defined such that
the substitution ρ2(r) ←→ ρeρ(r) would result in approxi-
mately the same binding energies and scattering amplitudes
for various nuclei in the range from 12C to 208Pb.

Even though we only fit in the range 80–180 MeV pion
kinetic energy, we still wish to check our model predictions
at lower energies. For this reason, the in-medium influence
on the s-wave scattering should be considered. Moreover,
due to s-p-wave interference in the second-order part of the
pion-nucleus potential constructed in Sec. IV B, both isoscalar
b0 and isovector b1 parts of the s-wave pion-nucleon scat-
tering amplitude are substantial even at high energies (see
Appendix C for details). In the following, we subsequently
describe modifications of both s- and p-wave pion-nucleon
scattering. The primary effect of the Pauli exclusion princi-
ple, which reduces the phase space accessible to the struck
nucleon, is incorporated by explicitly calculating the second-
order correction to the pion-nuclear potential as described in
Sec. IV B.

1. P33 modification

In our approach, we assume that for the p-wave interac-
tion, only the resonant P33 channel is changed in the nuclear
medium, keeping all other small partial-wave amplitudes at
their free values taken from SAID.

The interaction of the � isobar with the surrounding nu-
cleons significantly modifies the f 1

33 partial amplitude. A
comparably long lifetime of � on the nuclear scale and its
mean free path within a nucleus of around 1 fm suggest
that the � is a nuclear quasiparticle that may still be treated
effectively as a separate baryonic species without considering
the intrinsic quark dynamics. The open inelastic channels in-
volving many-body interactions, e.g., the two-body absorption
(πNN → �N → NN) and three-body absorption [45], con-
siderably affect the �-resonance decay width inside nuclear
matter. As a result, we consider the in-medium interactions
effectively by a renormalization of the intermediate � propa-
gator by the complex self-energy �� function:

K1(�)
33 (��) = 1

k0,2cm

m�

m� + W

�

m� + �� − W
. (53)

In this approach, the dressed resonance leads to a complex
K1

33 matrix element in which the effective many-body p-wave
absorption is automatically included in the model.

The � self-energy �� in a finite nucleus is, in gen-
eral, nonlocal [21]. However, we are looking for a simple
phenomenological parametrization of ��, which would still
provide a reasonable description of the data. Since the real part
of �� has a weak energy dependence [46], it is often approx-
imated to be constant. In contrast, the imaginary part of ��

is regularly considered as a function of the pion energy [47].
However, we have found that including the second-order part
of the pion-nucleus potential, Eq. (52), allows us to neglect the

energy dependence of Im��. As a result, we treat Re�� and
Im�� as two energy-independent p-wave model parameters
determined by fitting the experimental data for pion-carbon
scattering in Sec. V B.

The pion absorption process by a nucleus, unlike scatter-
ing, can occur even at pion energies below its mass. While
the � width, Eq. (28), starts at ω = mπ , the imaginary part of
the � self-energy inside nuclear matter starts at ω = 0 [48].
As a result, we expect the constant Im�� assumption to be
applicable not only in the �-resonance region but also at low
energies.

2. Isoscalar s-wave modification

The s- and p-wave true absorption within the optical poten-
tial formalism [9] is typically characterized by two complex
parameters denoted as B0 and C0, respectively. It is assumed
to be based on a two-nucleon mechanism. As was pointed
out above, we effectively take into account various inelastic
in-medium p-wave channels by introducing the � self-energy.
Thereby, we expect �� to incorporate absorption corrections
associated with C0. Furthermore, we limit our consideration
of analyses based on the optical model of Ref. [9] to only the
s-wave part of the potential:

U (s)(r) ∝ b0ρ(r) + B0ρ
2(r), (54)

where phase space factors were omitted for simplicity, and
the first term here corresponds to the Fourier-transformed
first term in Eq. (41). Due to the correlation between b0 and
B0 pointed out in Ref. [49], the two terms can be lumped
together, resulting in an effective modification of the isoscalar
parameter b0:

U (s)(r) ∝ (b0 + �b0)ρ(r), (55)

where �b0 = B0ρe.
In our model, we assume the following in-medium modifi-

cation of the isoscalar scattering parameter:

bbound
0 (Tlab) = bfree

0 (Tlab) + �b0(Tlab), (56)

where bfree
0 (Tlab) is given by Eq. (21a), and the complex

parameter �b0 effectively takes into account not only true
absorption but also all possible in-medium modifications.

Comparing Eqs. (55) and (56), we see that pionic atom
analyses with the s-wave part of the potential given by Eq. (54)
can provide us with information about the threshold value of
�b0 (see more detailed discussion in Appendix C). Using
the value B0 = 0.189fm4 from Ref. [50], we arrive at the
following result for the imaginary part of the in-medium
isoscalar correction:

Im�b0(0) = 1 + mπ/2mN

1 + mπ/mN
ρeImB0(0) = 0.017 fm, (57)

where we restore the phase space factor and use the s-wave
effective density ρe = 0.6ρ0 ≈ 0.1 fm−3 deduced from the
overlapping of pion and nucleus densities for pionic atoms
[51].

The resulting imaginary part of �b0 is assumed to be

Im�b0(Tlab) = Im�b0(0) + αb0 k0,2cm(Tlab), (58)
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where αb0 is the effective s-wave isoscalar slope parameter,
determined by the fitting procedure, and k0,2cm(Tlab) is the on-
shell pion-nucleon c.m. momentum corresponding to Tlab.

Performing fitting with various parametrizations of the real
part of �b0, we conclude that while Im�b0 is an important
parameter of our model, the resulting Re�b0 is always close
to zero and can be neglected. For this reason, we assume �b0

is purely imaginary, given by Eqs. (58) and (57).

3. Isovector s-wave modification

Our approach includes the in-medium modification of the
s-wave amplitude b1, as it was successfully applied for the
s-wave pionic atom [52,53] and low-energy pion-nucleus
[52,54] potentials.

To lowest order in the chiral expansion, the parameter b1

for the scattering of a pion on a free nucleon in the threshold
region is given by the Tomozawa-Weinberg expression [55]:

bTW
1 = − 1

8π f 2
π

mπmN

mπ + mN
≈ −0.11 fm, (59)

where fπ = 92.2 MeV is the free-space pion decay constant
[56]. The value for b1 obtained in this way is very close
to the empirical one not only at low energies but also in
the resonance region. According to the suggestion by Weise
[57,58], the medium dependence of the pion decay constant
fπ , which is related to the quark condensate, is in the sim-
plest approximation given by a linear function of the nuclear
density

f ∗
π

2(ρ) = f 2
π − σ

m2
π

ρ, (60)

where σ is the pion-nucleon sigma term [59]. As a result, the
in-medium threshold parameter b1 is obtained as

bbound
1 = bfree

1

1 − σρ/m2
π f 2

π

. (61)

This simple model successfully described both pionic atoms
[51,52,60] and low-energy pion-nucleus scattering [61].

For energies above the threshold, b1 is not constant but
a slowly varying function of energy, which is, however, still
close to its threshold value even in the �-resonance region.
In our analysis, we assume the following weak energy depen-
dence of b1:

bbound
1 (Tlab) = bfree

1 (Tlab) + �b1, (62)

where bfree
1 (Tlab) is given by Eq. (21b) and the energy-

independent in-medium correction is taken from the pionic
atom

�b1 = bfree
1 (0)

σρe/m2
π f 2

π

1 − σρe/m2
π f 2

π

= −0.044 fm, (63)

where following Ref. [62] σ = 57 MeV is taken and
bfree

1 (0) ≈ −0.122 fm [63]. The resulting value of b1 at the
effective density ρe is in quantitative agreement with micro-
scopic [64] and chiral calculations [65], and the recent deeply
bound pionic atoms analysis [50]. The effect of double scatter-
ing to higher order was shown to be a minor correction [66].

V. RESULTS AND DISCUSSION

In this section, we apply the model developed in Sec. IV
to fit π±- 12C scattering data. As a result of the fit, we deter-
mine our model’s three energy-independent real parameters:
The real and imaginary parts of the effective �-resonance
self-energy, Re�� and Im�� entering Eq. (53), and the slope
of the imaginary s-wave isoscalar amplitude, αb0 in Eq. (58).
Subsequently, the same fixed parameters are used to compare
our predictions for the pion scattering on 16O, 28Si, and 40Ca
with available experimental data.

A. Observables

The Coulomb interaction significantly influences the
charged pion scattering process. The differential elastic cross
section is given by

dσ

d�
(θ ) = |FC,p(θ ) + FNC (θ )|2, (64)

where we have separated the Coulomb distorted strong-
interaction amplitude, FNC , from the singular point-charge
Coulomb amplitude

FC,p(θ ) = − ηc

2k0 sin2(θ/2)
exp{2i[σ0 − ηc log sin(θ/2)]},

(65)

with the Lorentz-invariant Sommerfeld parameter ηc =
αZZπωlab/klab, where Z (Zπ ) is the nucleus (pion) charge. The
Coulomb phase shifts σl are defined as

e2iσl = (1 + l + iηc)

(1 + l − iηc)
, (66)

with Euler’s gamma function .
The Coulomb-nuclear interference term is split in partial

waves as

FNC (θ ) =
∑

l

(2l + 1)e2iσl Fl Pl (cos θ ), (67)

where

Fl = 1

2

∫
d cos θ F (k′, k)Pl (cos θ ) (68)

and cos θ = k′ · k/(k′k).
The full partial-wave amplitudes Fl depend not purely on

the hadronic interaction, Eq. (12), but also on the short-range
part of the Coulomb potential due to the nuclear charge dis-
tribution and long-range Coulomb effects. To account for this
nuclear-Coulomb interference, we apply the matching method
of Vincent and Phatak [67] and an effective Coulomb modifi-
cation of the reaction energy (see Appendix A for details).

In addition to differential cross sections, experimental mea-
surements also provide Coulomb-subtracted angle-integrated
elastic and total cross sections. The direct calculation provides
the angle-integrated elastic cross section in the form

σ El = 4π
∑

l

(2l + 1)|Fl |2. (69)
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TABLE I. Summary of the π±- 12C data.

Ref. Facility Tlab (MeV) Observable

[68] LAMPF π− 30
[69] LAMPF π+ 30,50
[70] LAMPF π± 30,50
[71] TRIUMF π± 50 dσ El/d�

[72] LAMPF π± 50
[73] LAMPF π± 65,80
[74] SIN π± 100
[75] CERN π− 120–280
[75] CERN π− 90–280 σ Tot, σ Re, σ El

[76] RAL π± 89–855 σ Tot

[41] SIN π± 85–245 σ Tot, σ Re, σ El

[77] TRIUMF π± 42–65 σ Tot, σ Re

[78] TRIUMF π± 50–80 σ Re

[79] TRIUMF π± 20, 30 σ Re

Due to the optical theorem, the total cross section can be
derived as

σ Tot = 4π

k0

∑
l

(2l + 1)Im[Fl ]. (70)

The pion-nuclear potential is a non-Hermitian operator giv-
ing rise to the reaction channel with the corresponding cross
section, which can be calculated as

σ R = σ Tot − σ El. (71)

The reaction cross section σR includes quasielastic scattering,
charge exchange, and true pion absorption.

The total cross section is significant for our analysis since it
has a different sensitivity to the imaginary part of the potential
as compared with the differential elastic cross section.

B. Fit to 12C data

Various groups intensively studied pion scattering on car-
bon from the 1970s through the 1990s. Table I summarizes
the π±- 12C scattering data used in our analysis. The data set
includes measurements of the total, angle-integrated elastic,
reaction, and differential elastic cross sections done at differ-
ent facilities: Schweizerisches Institut fur Nuklearforschung
(SIN), Canada’s particle accelerator center (TRIUMF), Los
Alamos Meson Physics Facility (LAMPF), Rutherford Ap-
pleton Laboratory (RAL), and the European Organization for
Nuclear Research (CERN).

As our aim is the extraction of the effective �-resonance
self-energy, in the fitting procedure, we only use the data
having strong sensitivity to the � properties. We choose to
fit the data in the energy range of 80–180 MeV pion lab-
oratory kinetic energy, corresponding with the region up to
the �-resonance excitation energy on a nucleon. Furthermore,
our treatment of the Coulomb interaction [the Coulomb en-
ergy shift, Eq. (A1)] relies on the small momentum transfer
approximation. Thereby, we limit the fitting of the differen-
tial cross-section data to momentum transfers q � 1.5 fm−1.
Since σ Tot, σ R, and σ El are related through Eq. (71), we

TABLE II. Potential parameters from fits to π±- 12C scattering
data. For both fits ndf = 32.

Fit Re�� (MeV) Im�� (MeV) αb0 (fm2) χ 2 χ 2/ndf

1 12.9 ± 1.3 −33.2 ± 0.8 0.039 ± 0.006 53.4 1.67
2 12.8 ± 1.4 −33.3 ± 0.9 0.040 ± 0.006 47.9 1.50

include in the fit only σ Tot and σ El if all three observables
are provided.

The best fit is found by minimizing the χ2 defined as

χ2 =
∑

i

ni∑
j

⎡
⎣ 1

ni

(
dσ

Datai
j − N−1

i dσ j

�dσ
Datai
j

)2

+
(

Ni − 1

�Ni

)2
]

+
∑

i

ni∑
j

(
σ

Datai
j − σ j

�σ
Datai
j

)2

, (72)

where the first (second) term represents a sum over differ-
ential (angle-integrated) cross-section data sets and ni is the
number of data points in the dataset “i.” Every differential
cross-section dataset dσ Datai consists of correlated measure-
ments taken at individual energies and is treated as a single
uncorrelated point of the fit. Since �dσ Data

j contains only the
sum of the statistical and the measured background errors,
the normalization parameters Ni are included to account for
a fully correlated component between the data points of each
differential cross-section data set (instrumental error). The
normalization parameters are allowed to vary, keeping the
number of degrees of freedom (ndf) the same.

In our formalism, only three energy-independent fitting pa-
rameters are entering Eq. (72): The � self-energy parameters
Re�� and Im�� in Eq. (53), and the s-wave isoscalar slope
parameter αb0 in Eq. (58). We also tested the possibility of
improving our fit by adding model parameters that modify the
energy dependence of �� and b0. We found that the resulting
χ2/ndf value can be improved only slightly in this way. How-
ever, the strong correlation between the parameters results
in large uncertainties, making it impossible to determine the
fitted parameters precisely. Moreover, introducing additional
parameters does not improve our model predictions beyond
the fitting range and for other nuclei.

TABLE III. Fitted normalization parameters for fit 2. The first
column indicates the pion energy, the second (fourth) column the
experimental normalization uncertainties for π− (π+) data, and the
third (fifth) column the values of �Nfit

i = (Ni − 1)% for π− (π+)
data obtained from the fit.

π− π+

Tlab (MeV) �Ni (%) �Nfit
i (%) �Ni (%) �Nfit

i (%)

80 ±5 0.5 ± 4.8 ±7 3.9 ± 4.0
100 ±8 −5.6 ± 4.5 ±8 −1.8 ± 4.5
120 ±5 1.1 ± 3.4
150 ±4 0.1 ± 2.6
180 ±3 −1.0 ± 2.2
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TABLE IV. The correlation matrix for fit 1.

Re�� Im�� αb0

Re�� 1 0.53 0.22
Im�� 0.53 1 −0.4
αb0 0.22 −0.4 1

As was mentioned in Sec. IV A, we also include the d-
wave contribution to the first-order potential in addition to
the traditional s- and p-wave terms. This small component
does not change the overall energy and momentum behavior

of observables in a significant way. However, including the
d-wave amplitude improves the resulting minimal χ2 of the fit
by about 10%. Note that the observables and fitting parameters
are sensitive to the value of the effective bound nucleon mass,
which in our calculation is taken as the average of the proton
and neutron masses, mN = 938.92 MeV.

Tables II–IV summarize the fitting results. Two fits were
performed: Fit 1 with fixed normalization parameters and fit 2
with Ni also being fitted. The obtained model and normaliza-
tion parameters are collected in Tables II and III, respectively.
The covariance matrix for fit 1 is given in Table IV. As can be
seen from Table II, letting Ni free improves the resulting χ2 by
about 10%, keeping the fitted parameters almost unchanged.

FIG. 6. Fit to π±− 12C scattering data using the full second-order potential. The top left panel demonstrates the total (red curves and
circles), integrated reaction (blue curves and squares), and elastic (green curves and triangles) cross sections. Solid curves and closed markers
stand for π+; dashed and open markers for π−. The vertical dashed lines on the top left panel indicate the fitted energy range. Differential cross
sections in the 80–180 MeV range as functions of the scattering angle in the c.m. frame are shown on other panels. The blue circles on the
differential cross-section plots correspond to the q < 1.5 fm−1 range, which was fitted; the black circles were not included in χ2. The dashed
vertical lines on dσ/d� plots indicate the zero position of the form factor. Table I lists the experimental data presented in the plots.
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FIG. 7. Comparison of the theoretical prediction based on fit 1 with the π±- 12C scattering data at kinetic energies outside the fitting range.
The meaning of the curves is the same as in Fig. 6. Table I lists the experimental data presented in the plots.

The obtained normalization factors in Table III are well within
the provided experimental normalization uncertainties. The
consistency of the results strengthens the reliability of derived
results and the robustness of the method. In the following
calculations, we will use the parameter set corresponding to
fit 1.

In Fig. 6, we show the fitted data compared with the ob-
tained theoretical curves corresponding to fit 1. The resulting
agreement is especially good for integrated and differential
elastic cross sections for θ � 60◦. Despite the fact that the
data for q > 1.5 fm−1 were not fitted, our model demonstrates
a fairly good description of the data even for large angles,
except for the data set at 100 MeV, which seems to be an
outlier. The obtained differential cross section at 100 MeV
significantly undershoots the data for θ � 120◦. The same
discrepancy was also reported in the �-hole model analy-
sis of Ref. [74] and the phenomenological momentum-space
potential approach of Ref. [16] with the ρ2(r)-dependent
second-order term.

As seen from the top left panel of Fig. 6, the integrated
cross sections are well described outside the fitting range
denoted by the vertical dashed lines. The predicted differential
cross sections based on fit 1 outside the fitting range are
plotted in Fig. 7. The data measured at 65 and 200 MeV are
well reproduced. Some deviations are seen at 30 and 50 MeV,
which can be fixed by a more precise treatment of the s-wave
medium modifications. This involves a more intricate energy
dependence for b0 with a nonzero real part. Incorporating
nuclear excitations in the propagator Ĝα∗ of Eq. (31) also

becomes particularly crucial at low energies, where the tran-
sition strength to collective states becomes significant.

In Fig. 8, we illustrate the impact of the second-order
component of the potential on the π−- 12C differential cross
sections. We compare theoretical curves obtained using the
full potential, i.e., the sum of Eqs. (41) and (52), as presented
in Figs. 6 and 7, with results from calculations using only the
first-order potential, Eq. (41). First, we disable the second-
order part of the potential, resulting in the black dash-dotted
curves in Fig. 8. Then, we fit the same data set using the
first-order potential, producing the blue long-dashed curves.
The minimization process yields χ2/ndf ≈ 10, indicating a
poor fit to the data. The plot at Tlab = 65 MeV underscores the
substantial significance of the second-order component, V (2),
in π - 12C scattering at low energies. Although the influence
of V (2) diminishes as energy increases, it remains substan-
tial even at Tlab = 200 MeV for θ > 80◦. For energies Tlab �
100 MeV, within our parametrization, the first-order potential
fails to provide sufficient Coulomb splitting between positive
and negative pion differential cross sections. Consequently,
the differential cross sections for π+, for which there is less
available experimental data, exhibit notably poorer agreement
compared to π−.

C. Comparison with 16O data

Having the model parameters of the pion-nucleus potential
fixed from the π±- 12C data fitting, we can further test the
predictive power of our model for another p-shell nucleus.
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FIG. 8. Differential cross sections for π−- 12C with and without the second-order part of the potential. The red short-dashed curves
correspond to fit 1 and are identical to those in Figs. 6 and 7; the black dash-dotted curves are obtained from fit 1 by switching off the
second-order part of the potential, V (2) = 0; the blue long-dashed curves represent the results of fitting π±- 12C data using only the first-order
potential V (1). Table I lists the experimental data presented in the plots.

We compare our theoretical predictions based on fit 1 with
the data on π±- 16O scattering. Table V summarizes the ex-
perimental data used for the comparison.

TABLE V. Summary of the π±- 16O data.

Ref. Facility Tlab (MeV) Observable

[70] LAMPF π− 50
[69] LAMPF π+ 50 dσ El/d�

[80] SIN π+ 80–343
[81] SREL π± 155–213
[82] SIN π+ 114–240 σ Tot, σ El

[76] RAL π± 89–342 σ Tot

Since 12C and 16O are both spin-isospin-zero closed p-
subshell nuclei, in our calculation, we replace only the
nuclear form factors and apply the correlation functions
given by Eqs. (B13). The pion-nucleon scattering amplitudes
are kept the same. The resulting plots with our predictions
are presented in Fig. 9, demonstrating a rather good agree-
ment between the model and experimental data. The small
deviations between theoretical curves and the differential
cross-section data are similar to those present on the plots
for 12C. The theoretical curves follow the data even for large
angles, except for 114 MeV, where the minimum is shifted by
about 5◦. The small-angle π±- 16O scattering data at 155, 185,
and 213 MeV from the Space Radiation Effects Laboratory
(SREL) [81] are well reproduced. The comparison supports
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FIG. 9. Comparison of the theoretical calculation based on fit 1 with the data for π±- 16O scattering. The meaning of the curves is the same
as in Fig. 6. Table V lists the experimental data presented in the plots.
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FIG. 10. Comparison of the theoretical calculation based on fit 1 with the data for π±- 28Si scattering. The meaning of the curves is the
same as in Fig. 6. Table VI lists the experimental data presented in the plots.

our expectation of the model’s universality and demonstrates
its predictive power.

D. Comparison with 28Si and 40Ca data

The described model copes well with describing both 12C
and 16O data using the same set of parameters. In general,
it can be applied for any spin- and isospin-zero nucleus if
the nuclear form factor and correlation functions C0 and Cex

are known. However, the calculation of the second-order part
of the potential, Eq. (52), becomes involved even for p-shell
nuclei. Moreover, the harmonic oscillator shell model used to
calculate the correlation functions for 12C and 16O is much
less suitable for describing heavier nuclei like 40Ca, requiring
more realistic nucleon wave functions. However, considering
that the influence of the second-order correction decreases
for heavier nuclei, we can still try applying the harmonic
oscillator model to derive C0 and Cex for closed d-subshell
nuclei, as given in Eqs. (B14) and (B15).

In Figs. 10 and 11, we demonstrate our prediction for the
π±- 28Si and π±- 40Ca differential cross sections, respectively.
The theoretical model is compared with the experimental
differential cross-section data listed in Table VI. Given that
no additional adjustments were made, the agreement between
our prediction and the data is surprisingly good, especially
at larger energies. The observed small discrepancy at low
energies can be explained by a more decisive influence in
heavier nuclei of the s-wave part of the potential and stronger
Coulomb-nuclear interference.

In Fig. 12, we further investigate the influence of the
second-order part of the potential, Eq. (52), by comparing
the differential cross sections for π− scattering on 12C, 28Si,
and 40Ca at 50 and 180 MeV pion laboratory kinetic energy.
We present the results of the full calculation, as displayed in
Figs. 6, and 7 10, and 11, alongside the theoretical curves
obtained after setting V (2) = 0. As can be seen from Figs. 8
and 12, the contribution of V (2) diminishes as the nucleus
becomes heavier and as the energy increases. However, the
second-order component remains important for achieving a
good agreement with the data, particularly for θ > 60◦ in the
case of π - 40Ca scattering at 180 MeV.

VI. CONCLUSION AND OUTLOOK

In the present work, we have constructed the second-order
pion-nuclear potential in momentum space. The potential is
based on the individual pion-nucleon scattering amplitudes
extracted from SAID. The second-order correction to the po-
tential depends on two types of correlation functions and, as a
result, is consistent with the Pauli principle. The many-body
medium effects are incorporated in the complex effective �

self-energy and the modifications to the s-wave scattering
parameters.

In our approach, only three fitting parameters are intro-
duced: The real and imaginary parts of the � self-energy
and the s-wave isoscalar slope parameter. The free pa-
rameters were determined by fitting the π±- 12C scattering
data in the energy range of 80–180 MeV pion laboratory
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FIG. 11. Comparison of the theoretical calculation based on fit 1 with the data for π±- 40Ca scattering. The meaning of the curves is the
same as in Fig. 6. Table VI lists the experimental data presented in the plots.

kinetic energy, which shows a strong sensitivity to the �-
resonance properties. The developed second-order potential
was found to yield a successful description of the total, angle-
integrated elastic, reaction, and differential elastic cross-
section data, assuming that the model parameters are energy
independent.

Furthermore, the model demonstrates that it yields a good
description of the π±- 12C data not only in the fitting range
but also outside of it. To check its predictive power, we have
applied the second-order potential to heavier nuclei, using the
three parameters which have been fixed by fitting the 12C data.
The model predictions for 16O, 28Si, and 40Ca nuclei were
found to nicely agree with the experimental data, supporting
the model’s universality and predictive power.

In future work, we plan to provide a more detailed analysis
for scattering on heavy nuclei and for the case of nuclei with

nonzero isospin. As a next step, the presented model can also
be applied to analyzing electron- or neutrino-induced pion
production processes on nuclei.

TABLE VI. Summary of the π±- 28Si and π±- 40Ca differential
cross section data.

Ref. Facility Tlab (MeV) Nucleus

[83] TRIUMF π± 50 28Si
[84] SIN π± 130, 180, 226
[70] LAMPF π− 50
[69] LAMPF π+ 50
[85] LAMPF π± 65 40Ca
[86] LAMPF π± 80
[87] SIN π± 130, 180, 230
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FIG. 12. Comparison of the theoretical calculation based on fit 1 with the data for π− scattering on 12C, 28Si, and 40Ca at 50 and 180 MeV
pion laboratory kinetic energy. The meaning of the curves is the same as in Fig. 8. Tables I and VI list the experimental data presented in the
plots.
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APPENDIX A: SCATTERING BY NUCLEAR AND
COULOMB POTENTIALS

The charged pion that approaches the nucleus, π− (π+),
is accelerated (decelerated) due to the influence of the long-

range Coulomb field of the nucleus. This effect occurs before
the pion reaches the range of the strong interaction described
by the pion-nucleus potential Û (E ). At intermediate energies,
the pion-nucleon scattering has a strong energy dependence
due to the resonant P33 channel and is sensitive to this
Coulomb energy shift. As a result, the potential Û (E ) in
the scattering equations must be replaced with the nuclear-
Coulomb potential ÛNC (E ), which can be approximated as

ÛNC (E ) = Û (E − 〈ÛC〉) + ÛC . (A1)

In Eq. (A1), besides adding the Coulomb potential, ÛC ,
we shift the reaction energy by the value of the Coulomb
potential at the root-mean-squared (rms) radius of the nu-
cleon distribution [88,89]. The shift in the energy argument
of the nuclear potential describes the intermediate Coulomb
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rescattering and, in general, is given at the operator level, but
assuming the commutativity of UC with the Green’s function
and neglecting the nucleus excitation by the Coulomb poten-
tial, we arrive at Eq. (A1) (see Ref. [90] for details).

We explicitly separate the momentum-transfer-dependent
nuclear structure characteristics, namely, the form factor and
correlation functions, from the angle- and energy-dependent
single-nucleon scattering amplitudes in the pion-nucleus po-
tential. When dealing with the pion-nuclear potential in
coordinate space, applying the Coulomb energy shift in
Eq. (A1) is straightforward and consists in shifting only the
argument of the scattering coefficients in Eqs. (21). However,
the situation is more complicated for the potential in momen-
tum space due to its dependence on the off-shell momentum.
To address this, we assume that the entire pion-nucleon on-
shell transition and scattering amplitudes are calculated as
described in Sec. III but with the shifted on-shell momentum
k0(Tlab − 〈UC〉) in the pion-nucleus c.m. frame, where

k2
0 (Tlab) = m2

ATlab(2mπ + Tlab)

(mA + mπ )2 + 2mATlab
. (A2)

For a smooth off-shell extrapolation, we further assume that
the Coulomb-affected off-shell momenta involved in calculat-
ing the off-shell vertex factor, Eq. (24), are replaced by

k2 −→ k2 + k2
0 (Tlab − 〈UC〉) − k2

0 (Tlab). (A3)

A direct solution of the scattering equation (12) involv-
ing the long-range Coulomb interaction is difficult due to
1/q2 singularity in the momentum-space representation of the
Coulomb potential. To address this issue, we apply Vincent
and Phatak’s method [67] to treat the Coulomb-nuclear inter-
action in momentum space. It is assumed that in coordinate
space, the nuclear part of the potential vanishes beyond the
cutoff radius Rcut. As a result, at r � Rcut, only the point-
charge Coulomb potential exists, and the radial part of the
coordinate space wave function can be expressed as

ul (r) ∝ Fl (ηc, k0r) + k0Fl Hl (ηc, k0r), (A4)

with Hl ≡ H +
l = Gl + iFl , where Fl and Gl are the regular

and irregular Coulomb functions [91]. The amplitude Fl in
Eq. (A4) represents the correct Coulomb-modified nuclear
partial-wave scattering amplitude that describes the observed
cross sections and enters Eqs. (67)–(70). The asymptotic
Coulomb wave function, Eq. (A4), is smoothly matched with
the cutoff solution at r = Rcut, which yields

Fl = 1

k0

F ′
l (ηc, ρ) − ξlFl (ηc, ρ)

ξlHl (ηc, ρ) − H ′
l (ηc, ρ)

, (A5)

where ρ = k0Rcut and

ξl = F ′
l (0, ρ) + k0F cut

l H ′
l (0, ρ)

Fl (0, ρ) + k0F cut
l Hl (0, ρ)

. (A6)

The partial amplitude F cut
l is the solution of the pion-nucleus

scattering equation with the short-range potential, which is
the sum of the Coulomb potential cut at Rcut and the strong
pion-nuclear potential described in Sec. IV. We derive F cut

l
from Eq. (12) using the momentum-space representation of

the cut Coulomb potential given by

V cut
C (q) = −2ω̄

αZπ

q2

[
ρch(q)ρπ

ch(q) − Z cos(qRcut )
]
, (A7)

where ρch(q) and ρπ
ch(q) are the charge form factors of the

nucleus and pion. We use the value Rcut = 8 fm.
The original Kerman-McManus-Thaler (KMT) multiple-

scattering formalism does not explicitly address the Coulomb
interaction. As a result, the KMT scattering equations (6)
and (12) in the pure Coulomb scattering limit, Û → ÛC , fail
to provide the correct Coulomb scattering amplitude due to
factor (A − 1)/A. The treatment of the Coulomb interaction
in the KMT formalism was examined in detail in Ref. [92].
To recover the Coulomb scattering amplitude effectively, we
follow the “KMT No. 3 prescription” of Ref. [92] [Eqs. (48)–
(50)] and replace the pure Coulomb KMT T matrix with the
analogous quantity in the Watson approach. Despite being a
minor correction, this approach improves the calculated cross
sections by a few percent.

APPENDIX B: NUCLEAR FORM FACTOR AND
CORRELATION FUNCTIONS

The determination of the nuclear charge density, ρch(r),
provides information on the nucleon distribution within nu-
clei. In this work, we use the Fourier-Bessel (FB) series
expansion to provide an accurate, model-independent descrip-
tion of the charge distribution [93]. The charge density, ρch(r),
is assumed to be zero beyond a certain cutoff radius Rc. Within
the interval r � Rc, we can then expand ρch(r) into the FB
series:

ρch(r) = θ (Rc − r)
nmax∑
n=1

an j0(qnr), (B1)

where qn = nπ/Rc are the zeros of the zero-order Bessel
function j0(x) = sin x/x, and the coefficients of the series are
determined by fitting experimental data on electron scattering.
The number of expansion coefficients is determined by the
maximal experimentally measured momentum qmax as nmax =
qmaxRc/π .

For spin-zero nuclei, the charge distribution, ρch(r), and
the charge form factor, ρch(q), are related by the Fourier
transform, which for spherically symmetric nuclei is given by

ρch(q) = 4π

∫
r2 dr j0(qr)ρch(r). (B2)

Correspondingly, the FB expansion, Eq. (B1), in the momen-
tum space becomes

ρch(q) = 4π
sin(qRc)

q

nmax∑
n=1

an
(−1)n

q2 − q2
n

. (B3)

The nuclear charge density does not correspond to the
proton density in the nucleus because of the finite size of
the proton. Moreover, the neutron also possesses a charge
distribution with a negative mean square radius. The nuclear
charge distribution, ρch(r), can be found as the convolution
of the distribution ρ(r) of the nucleons in the nucleus with
the nucleon charge density. As a result, the form factor for
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isospin-zero nuclei is given as

ρ(q) = 2ρch(q)

ρ
(p)
ch (q) + ρ

(n)
ch (q)

, (B4)

where ρ
(p)
ch (q) and ρ

(n)
ch (q) are the proton and neutron charge

form factors, respectively. We utilize the nucleon charge form
factors obtained from the global fits of electron-scattering data
presented in Ref. [94].

While the FB expansion is a reliable approach for the
first-order potential, Eq. (41), the second-order correction,
Eq. (52), requires a model for deriving the two-body density
and correlation functions, Eqs. (48). Assuming the A-body
Slater determinant form of the total nuclear wave function,

�SD
0 (x1, . . . , xA) = 1√

A!
det{φαi (x j )}, (B5)

with i, j = 1, . . . , A and the multi-index α ≡ {n, l, j, m, mj},
we can express the exchange correlation function, Eq. (48a),
in terms of the shell-model single-particle nucleon wave func-
tions φαi (x j ):

Cex(x1, x2) =
A∑

i, j=1

φ†
αi

(x1)φ†
α j

(x2)φαi (x2)φα j (x1). (B6)

The corresponding nuclear density within the shell model is
given by

ρ(r) =
∑
στ

A∑
i=1

φ†
αi

(x)φαi (x). (B7)

In this work, we use the harmonic oscillator (HO) nuclear
shell model [95] to obtain approximate single-particle wave
functions of nucleons, φnlm(x). A direct calculation followed
by the Fourier transform provides the following HO nuclear
form factor for closed p-subshell nuclei (12C and 16O):

ρ(q) =
[

A − A − 4

6
a2q2

]
e− 1

4
A−1

A a2q2
, (B8)

where a is the HO parameter. As in Eq. (38), factor (A − 1)/A
in the exponential takes into account the center-of-mass mo-
tion correction.

TABLE VII. Comparison of the HO parameter a and rms
charge radius for 12C, 16O, 28Si, and 40Ca. The value of 〈r2

ch,FB〉1/2

(〈r2
ch,HO〉1/2) represents the rms charge radius calculated using the

FB (HO) charge density. The experimental value from Ref. [96] is
provided by 〈r2

ch,expt〉1/2.

12C 16O 28Si 40Ca

a (fm) 1.63 1.76 1.82 1.98

〈r2
ch,FB〉1/2 (fm) 2.47 2.74 3.09 3.45

〈r2
ch,HO〉1/2 (fm) 2.47 2.71 3.08 3.47

〈r2
ch,expt〉1/2 (fm) 2.47 2.70 3.12 3.48

Performing a similar calculation with the additional closed
d subshell, we arrive at the HO form factors for 28Si,

ρ(q) = [
28 − 6a2q2 + 1

5 a4q4
]
e− 1

4
A−1

A a2q2
, (B9)

and 40Ca,

ρ(q) = [
40 − 10a2q2 + 1

2 a4q4]e− 1
4

A−1
A a2q2

. (B10)

The HO form factors, Eqs. (B8) and (B10), enable us
to determine the corresponding HO model parameters. The
extracted values of a used in our calculation of the correlation
functions are listed in Table VII. The FB coefficients are taken
from Refs. [97] (12C) and [98] (16O, 28Si, and 40Ca). In each
case, Rc = 8 fm is used. In Table VII, we also compare the
rms charge radius for HO and FB analyses with experimental
values from Ref. [96].

To obtain the two-body correlation functions C0 and Cex in
momentum space within the HO shell model, we generalize
the derivation presented in Refs. [35,99] to the q �= q′ case.
Starting from Eq. (B6), followed by spin-isospin summation
and the Fourier transform, Eq. (49), we arrive at the two-body
correlation functions

Cex(q1, q2) =
∑
σ1,2

∑
τ1,2

Cex(q1, σ1, τ1, q2, σ2, τ2), (B11a)

C0(q1, q2) = Cex(q1, q2) − 1

A
ρ(q1)ρ(q2), (B11b)

which yields the following forms.

For 12C,

Cex(q1, q2) =
(

12 − 4

3
a2

(
q2

1 + q2
2

) − 4

√
2

3
a2q1 · q2 + 2

3
a4(q1 · q2)2

)
exp

[
−1

4

A − 1

A
a2

(
q2

1 + q2
2

)]
, (B12a)

C0(q1, q2) =
(

−4

√
2

3
a2q1 · q2 + 2

3
a4(q1 · q2)2 − 4

27
a4q2

1q2
2

)
exp

[
−1

4

A − 1

A
a2

(
q2

1 + q2
2

)]
, (B12b)

for 16O,

Cex(q1, q2) = (16 − 2a2(q1 + q2)2 + a4(q1 · q2)2) exp

[
−1

4

A − 1

A
a2

(
q2

1 + q2
2

)]
, (B13a)

C0(q1, q2) =
(

−4a2q1 · q2 + a4(q1 · q2)2 − 1

4
a4q2

1q2
2

)
exp

[
−1

4

A − 1

A
a2

(
q2

1 + q2
2

)]
, (B13b)
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FIG. 13. The s- and p-wave components of the first- and second-order potential for on-shell pion scattering on 12C as a function of pion
laboratory kinetic energy. The potential parameters are given by fit 1 in Table II. The left and right panels are for real and imaginary parts,
respectively. The solid red (dot-dashed blue) curve represents the s-wave (p-wave) component of the full potential, i.e., the sum of Eqs. (41)
and (52), while the long-dashed green (short-dashed blue) curve corresponds to the first-order potential, Eq. (41).

for 28Si,

Cex(q1, q2) =
(

28 − 2a2(3(q1 + q2)2 + 4(
√

5/3 − 1)q1 · q2) + 1

240
a8q4

1q4
2(1 − 3x2)2

+ 1

15
a4(3

(
q4

1 + q4
2

) + 4
√

15q1 · q2

(
q2

1 + q2
2

) + q2
1q2

2(13 −
√

15 + 3(12 +
√

15)x2)
)

− 1

30
a6q2

1q2
2

(√
15q1 · q2(3x2 − 1) + (

q2
1 + q2

2

)
(3x2 + 1)

))
exp

[
−1

4

A − 1

A
a2

(
q2

1 + q2
2

)]
, (B14a)

C0(q1, q2) = a2q1q2

(
− 4

3
(3 + 2

√
15)x + 1

105
a2

(
28

√
15

(
q2

1 + q2
2

)
x − (44 + 7

√
15 − 21(12 +

√
15)x2)q1q2

)
− 1

210
a4q1q2

(
7
√

15q1 · q2(3x2 − 1) + (
q2

1 + q2
2

)
(21x2 − 2)

)
+ 1

8400
a6q3

1q3
2(23 − 210x2 + 315x4)

)
exp

[
−1

4

A − 1

A
a2(q2

1 + q2
2

)]
, (B14b)

with x = q1 · q2/(q1q2), and for 40Ca,

Cex(q1, q2) =
(

40 − 10a2(q1 + q2)2 + 1

2
a4((q1 + q2)4 + 10(q1 · q2)2) − 1

2
a6(q1 · q2)2

(
q2

1 + q2
2 + q1 · q2

)

+ 1

16
a8(q1 · q2)4

)
exp

[
−1

4

A − 1

A
a2

(
q2

1 + q2
2

)]
, (B15a)

C0(q1, q2) =
(

−20a2q1 · q2 + 1

2
a4

(
4(q1 + q2)2q1 · q2 + 6(q1 · q2)2 − 3q2

1q2
2

) + 1

160
a8

(
10(q1 · q2)4 − q4

1q4
2

)

− 1

8
a6

(
4(q2

1 + q2
2 + q1 · q2)(q1 · q2)2 − (

q2
1 + q2

2

)
q2

1q2
2

))
exp

[
−1

4

A − 1

A
a2

(
q2

1 + q2
2

)]
. (B15b)

By accounting for the difference in normalization conventions, we find that the obtained correlation functions at q2 = −q1
are consistent with the results reported in Ref. [99].2

APPENDIX C: THE SECOND-ORDER PART OF THE POTENTIAL

The pion angular distribution results from the interplay between partial scattering amplitudes and the Coulomb phase shifts, as
is described by Eq. (68). In Fig. 13, we demonstrate the two lowest partial waves for the first- and second-order on-shell potential
for pion scattering on 12C. As depicted in the plot, the second-order contribution, Eq. (52), substantially affects both s and p
waves in the low-energy region. This impact allows us to generate enough splitting through the nuclear-Coulomb interference to

2We compare q2 = −q1 instead of q2 = q1 due to using different Fourier transform definitions with Ref. [99].
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FIG. 14. The components of the on-shell forward pion-nucleus potential, Eqs. (C2), for 12C as a function of pion laboratory kinetic energy
for parameters given by fit 1 in Table II. The left and right panels are for real and imaginary parts, respectively. The solid red, dashed green,
and dash-dotted blue curves correspond to the second-order s-s-, s-p-, and p-p-wave interference of the spin-independent pion scattering,
Eqs. (C2a)–(C2c). The short-dashed curves represent the contribution from the spin-dependent part of the pion-nucleon amplitude, Eq. (C2d).

describe both positive and negative pions accurately. This was impossible to achieve using only the first-order potential and the
same minimal number of free parameters, as discussed in Sec. V B. Note that the second-order contribution to the potential has
the most pronounced effect on the s and p waves, and its influence decreases as the angular momentum increases.

To derive the explicit form of the second-order part of the pion-nucleus potential, we consider the s- and p-wave pion-nucleon
scattering amplitude, Eq. (20), with the off-shell momentum dependence given by Eq. (23). The unit vectors normal to the
pion-nucleon scattering planes entering Eqs. (50)–(52) are n1 = (k2cm × k′′

2cm )/|k2cm × k′′
2cm| and n2 = (k′′

2cm′ × k′
2cm′ )/|k′′

2cm′ ×
k′

2cm′ |. The subscript “2cm” (“2cm′”) corresponds to the c.m. system of the pion and the first (second) nucleon. Collecting all
the components, the second-order part of the potential, Eq. (52), can be written as a sum of four terms:

V (2)(k′, k) = Vss + Vsp + Vpp + V (s)
pp , (C1)

where

Vss =
∫

dk′′

2π2
W̃ (k′, k′′)W̃ (k′′, k)

1

k2
0 − k′′2 + iε

[
b2

0C0(k′ − k′′, k′′ − k) + 2b2
1Cex(k′ − k′′, k′′ − k)

]
, (C2a)

Vsp =
∫

dk′′

2π2
W̃ (k′, k′′)W̃ (k′′, k)

k′
cm′ · k′′

cm′ + kcm · k′′
cm

k2
0 − k′′2 + iε

[b0c0C0(k′ − k′′, k′′ − k) + 2b1c1Cex(k′ − k′′, k′′ − k)], (C2b)

Vpp =
∫

dk′′

2π2
W̃ (k′, k′′)W̃ (k′′, k)

(k′
cm′ · k′′

cm′ )(k′′
cm · kcm )

k2
0 − k′′2 + iε

[
c2

0C0(k′ − k′′, k′′ − k) + 2c2
1Cex(k′ − k′′, k′′ − k)

]
, (C2c)

V (s)
pp = −

∫
dk′′

2π2
W̃ (k′, k′′)W̃ (k′′, k)

[k′
cm′ × k′′

cm′ ] · [k′′
cm × kcm]

k2
0 − k′′2 + iε

[
s2

0 + 2s2
1

]
Cex(k′ − k′′, k′′ − k). (C2d)

Each second-order contribution described in Eqs. (C2)
represents the interference between the s- and p-wave parts
of the pion-nucleon amplitude. Figure 14 demonstrates the
second-order components for on-shell forward scattering
on 12C. Generally, the scattering parameters b0,1, c0,1, and
s0,1 in Eqs. (C2) depend modestly on the angle between
the corresponding momenta. For the purpose of evaluating
the second-order correction, we assume these parameters to
be angle independent and fixed at the forward scattering
angle.

The peculiarity of our approach is the presence of two
correlation functions in the second order. However, in the
s-s-wave interference term Vss, Eq. (C2a), the first term with
the C0 correlation function is negligible due to the smallness
of b0 compared to the real part of b1. This enables us to
compare our approach with the s-wave potential originally

derived in Ref. [9]. With the second-order correction, the
s-wave coordinate space potential given by Eq. (54) acquires
the form

U (s)(r) ∝
(

b0 − (
b2

0 + 2b2
1

)〈1

r

〉)
ρ(r) + B0ρ

2(r), (C3)

where 〈1/r〉 is the so-called inverse nucleon correlation
length, which within the Fermi gas model for zero pion kinetic
energy becomes 〈1/r〉 = 3pF /(2π ) ≈ 0.65 fm−1. Performing
the integration in Eq. (C2a) in the limit k0 → 0, we ob-
tain Vss(0, 0) = 2b2

1〈Cex〉, with 〈Cex〉/A acquiring the values
0.61 fm−1 and 0.56 fm−1 for 12C and 40Ca, respectively. The
approximate agreement between Vss and U (s)(r) at the thresh-
old allows us to directly apply the results of the pionic atom
analyses in Secs. IV C 2 and IV C 3.
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The p-p-wave interference term Vpp, Eq. (C2c), corre-
sponds to the second-order term,

Upp(r) ∝ −1

3

A − 1

A
(4πc0)2∇ρ2(r)∇, (C4)

in the coordinate space p-wave potential describing the
Lorentz-Lorenz-Ericson-Ericson effect [9]:

U (p)(r) ∝ ∇ c0ρ(r)

1 + 4π
3

A−1
A c0ρ(r)

∇. (C5)

The kinematic factors are omitted in Eqs. (C4) and (C5) for
simplicity. While our model does not account for effects be-
yond second order, unlike Eq. (C5), we expect Vpp to be much
more realistic. The reason for this is that Eq. (C4) is obtained
from Eq. (C2c) in the limit of zero pion kinetic energy by

setting Cex(q1, q2) = 0 and C0(q1, q2) = ρ(q1)ρ(q2), which
may be a crude approximation in the resonance energy region.

The term Vsp, Eq. (C2b), characterizes the s-p-wave inter-
ference. It is nonzero in our approach since we perform the
computation within the nuclear shell model without resorting
to the Fermi gas model. As seen from Fig. 14, this term is
not negligible and is important both at high and low energies.
Similarly to the case of Vss, the term proportional to C0 gives
a much smaller contribution due to the ratio of b0 and b1.

The term Vpp describes p-p-wave interference accounting
for processes with (term proportional to Cex) and without
(term proportional to ∝ C0) the isospin exchange. Similarly,
the term V (s)

pp , Eq. (C2d), characterizes the spin exchange.
This term has similar energy dependence as Vpp (see Fig. 14),
because both c0,1 and s0,1 are proportional to the P1

33 partial
amplitude. However, Vpp and V (s)

pp have different angle-
dependent structure.
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