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The momentum dependence of the nucleon mean-field potential in a wide momentum range can be an
important factor to determine the � resonance and pion production in intermediate-energy heavy-ion collisions.
In particular, in neutron-rich systems such as 132Sn + 124Sn collisions, we need to carefully treat the momentum
dependence because the neutron and proton potentials can have different momentum dependence, as character-
ized at low momenta by effective masses. In the present work, we rigorously calculate the collision terms of
NN ↔ N� and � ↔ Nπ processes with the precise conservation of energy and momentum under the presence
of momentum-dependent potentials for the initial and final particles of the process. The potentials affect not
only the threshold condition for the process but also the cross section in general as a function of the momenta
of the initial particles, which is treated in a natural way in the present work. Calculations are performed by
combining the nucleon dynamics obtained by the antisymmetrized molecular dynamics (AMD) model with a
newly developed transport code which we call sJAM. The calculated results for central 132Sn + 124Sn collisions
at 270 MeV/nucleon clearly show that the momentum dependence of the neutron and proton potentials has
a significant impact on the NN → N� process, and this information is strongly reflected in the charged pion
ratio (π−/π+). We also investigate the effects of the high-density symmetry energy and the isovector part of the
potential of � resonances on pion production, which we find are relatively small compared to the effect of the
momentum dependence of the neutron and proton potentials.
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I. INTRODUCTION

Heavy-ion collisions provide useful systems for studying
nuclear matter under various conditions of temperature and
density. In particular, in collisions of neutron-rich nuclei, they
allow us to access insights into the equation of state (EOS)
of isospin-asymmetric nuclear matter at high density, where
the numbers of protons and neutrons are unbalanced [1,2].
The study of the EOS has recently attracted attention as a
combined effort involving nuclear theory, experimental nu-
clear physics, and astrophysics. For example, by combining
information from terrestrial and astrophysical observations,
it has been reported that the properties of neutron-rich dense
matter are constrained in the density range explored in neutron
stars [3]. Constraints from heavy-ion collision experiments
play an important role there.

In the incident energy range from several hundred MeV to
several GeV per nucleon, experiments of heavy-ion collisions
have been carried out and information on the EOS has been
deduced to some extent from observables such as the collec-
tive flow and the kaon and pion production, e.g., by the anal-
yses of the Au+Au collision data taken at GSI [2]. Recently,
at the RI Beam Factory (RIBF) in RIKEN, an experiment of
collisions of Sn isotopes was performed at 270 MeV/nucleon
by the SπRIT Collaboration, which allows us to study the
systems of various isospin asymmetries. They reported the

pion observables [4,5] and the nucleon observables of the light
fragments [6–8]. In particular, the charged pion ratio (π−/π+)
is believed to be one of the good observables to probe the
symmetry energy at high density [9]. The slope of the sym-
metry energy is determined to be 42 < L < 117 MeV from
the charged pion spectra at high transverse momenta [5,10]
by an analysis with one of the transport models, dcQMD [11].

Transport models are used as the main method to obtain
physics information from heavy-ion collisions by solving the
time evolution of the collision reactions [12]. However, there
are some ambiguities in the model ingredients and numeri-
cal implementations. The Transport Model Evaluation Project
(TMEP) has been underway to resolve the uncertainties
among the transport model predictions [4,12–17]. One of the
projects was the pion production prediction of Ref. [4], where
a significant discrepancy was found between the transport
model predictions and the experimental data for the charged
pion multiplicities and charged pion ratio in 132Sn + 124Sn,
112Sn + 124Sn, and 108Sn + 112Sn collisions. Most theoretical
predictions including the AMD + JAM model [18–20] un-
derestimated the π−/π+ ratio. One of the reasons for this
discrepancy is considered to be the lack of potentials for the
nucleons and � resonances in the collision terms.

The momentum dependence of the neutron and proton
mean-field potentials in isospin-asymmetric systems is one
of the important aspect of the nuclear interaction that affects
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various phenomena in nuclear physics and astrophysics; see,
e.g., Refs. [21,22] for reviews. The nucleon collective flow in
heavy-ion reactions is known to be strongly sensitive to the
momentum dependence of the isoscalar part of the potential
[23,24], and also was shown to be affected by the momentum
dependence of the isovector part of the potential, i.e., the
effective mass splitting at high isospin asymmetries [25,26].
The n/p spectral ratio is also predicted to be sensitive to the
effective mass splitting [27] and some information has been
obtained from experimental data [28,29]. Note that the above
effects of the momentum-dependent potentials are essentially
caused by the single-particle motion in the mean field.

The collision term in transport theory is as important as the
mean-field propagation term. In fact, when the system reaches
thermal equilibrium, the collision term determines properties
such as the EOS and the chemical composition. For example,
careful treatments of the NN ↔ N� and � ↔ Nπ processes
are necessary for a correct description of a mixture of nucle-
ons, � resonances, and pions in a box, as shown in Ref. [15],
where transport models were compared in the case without
mean-field potentials. When potentials are present, the colli-
sion term needs to incorporate potentials at least to guarantee
the correct description of equilibrium reflecting mean-field
interaction. First of all, the presence of potentials affects the
threshold condition for the process, particularly when the po-
tentials are momentum dependent and/or the particle species
change from the initial to the final state, e.g., in the NN →
N� process. In an isospin-asymmetric environment where
the neutron and proton potentials are different, the threshold
condition depends on the isospin channel, e.g., whether nn →
p�− or pp → n�++, which requires an extended treatment in
transport models. A few transport models consider the thresh-
old effect in heavy-ion collision calculations [30,31], and its
importance has also been demonstrated in box calculations
[32–34]. Furthermore, a related question is how the presence
of potentials modifies the cross section above the threshold
as a function of the momenta of the colliding particles, as
investigated by Ref. [35] for isospin symmetric systems and
by Ref. [36] for asymmetric nuclear matter in the framework
of the one-boson exchange model. A fully consistent incor-
poration of the potential-dependent cross sections in transport
calculations is still a challenging problem.

In the present work, we theoretically study the � resonance
and pion productions in the 132Sn + 124Sn collision at E/A =
270 MeV by taking into account momentum-dependent mean-
field potentials in the collision term. For this, we develop
a transport model (AMD + sJAM) to properly treat the po-
tentials, e.g., for the NN ↔ N� and � ↔ Nπ processes.
This is an extension of the previous model AMD + JAM
[18–20] by Ikeno, Ono, Nara, and Ohnishi in which the anti-
symmetrized molecular dynamics (AMD) [37] was combined
with a hadronic cascade model (JAM) whose collision term
was formulated for particles in vacuum [38]. We will see
that by the extension for potentials the results are improved
drastically and the high π−/π+ ratio can be explained by the
AMD + sJAM model, depending on the momentum depen-
dence of the neutron and proton mean-field potentials.

This paper is organized as follows. In Sec. II, we explain
our choice of the nuclear interaction and the nucleon and �

potentials. In Sec. III, we formulate the collisions under the
presence of potentials, especially for NN ↔ N� and � ↔
Nπ processes. In Sec. IV, as an example, we discuss how the
NN → N� cross sections in nuclear matter are affected by
momentum-dependent potentials. In Sec. V, we introduce the
AMD + sJAM transport model, in which the above formu-
lation for the collision term is applied to a newly developed
code, sJAM. In Sec. VI, we show the results of the pion ob-
servables in the 132Sn + 124Sn collision at the incident energy
of E/A = 270 MeV within the AMD + sJAM model. We will
see a strong impact of the momentum dependence of the neu-
tron and proton potentials on the pion productions. We also
investigate the effects of the high-density symmetry energy
and the isovector part of the potential of the � resonances on
the pion productions. A summary is given in Sec. VII.

II. POTENTIALS

A. Energy density and potentials in system with nucleons only

When only nucleons are present in the system, our model
is based on the interaction energy density, expressed as

Eint(r) =
∑
αβ

{
Ut0

αβρα (r)ρβ (r) + Ut3
αβρα (r)ρβ (r)[ρ(r)]γ

+ U τ
αβ τ̃α (r)ρβ (r) + U ∇

αβ∇ρα (r)∇ρβ (r)
}
, (1)

which is similar to the Skyrme energy density functional but
the spin-orbit term is not included in our calculations. Each
single-particle state is assumed to be a product of the spatial
part and the spin-isospin part χα , with the spin-isospin label
α (or β) = p ↑, p ↓, n ↑, and n ↓. The densities ρα (r) and
τ̃α (r) in Eq. (1) are defined by using the one-body Wigner
distribution function fα (r, p) as

ρα (r) =
∫

d p
(2π h̄)3

fα (r, p), (2)

τ̃α (r) =
∫

d p
(2π h̄)3

[p − p̄(r)]2

1 + [p − p̄(r)]2/
2
md

fα (r, p), (3)

with

p̄(r) = 1∑
α ρα (r)

∑
α

∫
d p

(2π h̄)3
p fα (r, p). (4)

Here τ̃α (r) is a kind of kinetic energy density, but a cutoff pa-
rameter 
md was introduced in Ref. [18] following Ref. [39],
which will be important for the high-momentum behavior of
the mean field.

The coefficients Ut0
αβ , Ut3

αβ , U τ
αβ , and U ∇

αβ in Eq. (1) are
related to the Skyrme parameters by

Ut0
αβ = 1

2 t0〈αβ|(1 + x0Pσ )|αβ − βα〉, (5)

Ut3
αβ = 1

12 t3〈αβ|(1 + x3Pσ )|αβ − βα〉, (6)

U τ
αβ = 1

4 t1〈αβ|(1 + x1Pσ )|αβ − βα〉
+ 1

4 t2〈αβ|(1 + x2Pσ ) |αβ + βα〉, (7)

U ∇
αβ = 3

16 t1〈αβ|(1 + x1Pσ )|αβ − βα〉
− 1

16 t2〈αβ|(1 + x2Pσ ) |αβ + βα〉, (8)
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where Pσ is the spin exchange operator. In the case of

md = ∞, our interaction is equivalent to the Skyrme-type
interaction

vi j = t0(1 + x0Pσ )δ(r)

+ 1
2 t1(1 + x1Pσ )[δ(r)k2 + k2δ(r)]

+ t2(1 + x2Pσ )k · δ(r)k

+ 1
6 t3(1 + x3Pσ )[ρ(ri )]

γ δ(r), (9)

where r = ri − r j and k = 1
2h̄ (pi − p j ).

Employing the AMD model [37], we solve the time evolu-
tion of a many-nucleon system by directly using the energy
density functional [Eq. (1)] together with the other param-
eters, e.g., for the two-nucleon collision term. However, for
some purposes, it is useful to consider the corresponding
momentum-dependent mean-field potential, which is obtained
by

Uα (r, p) = (2π h̄)3 δ

δ fα (r, p)

∫
Eint(r)dr. (10)

In the case of Eq. (1), we have

Uα (r, p) = Aα (r)
[p − p̄(r)]2

1 + [p − p̄(r)]2/
2
md

+ C̃α (r), (11)

with

Aα (r) =
∑

β

U τ
αβρβ (r) (12)

and

C̃α (r) =
∑

β

{
2Ut0

αβρβ (r) + 2Ut3
αβρβ (r)[ρ(r)]γ

+ U τ
αβ τ̃β (r) − 2U ∇

αβ∇2ρβ (r)
}

+
⎛
⎝∑

α′β ′
Ut3

α′β ′ρα′ (r)ρβ ′ (r)

⎞
⎠γ [ρ(r)]γ−1. (13)

In the above, the term originating from ∂τ̃α (r)/∂ p̄(r) has been
ignored, which is justified when∫

d p′

(2π h̄)3

p′ − p̄(r){
1 + [p′ − p̄(r)]2/
2

md

}2 fα (r, p′) ≈ 0. (14)

An example of the momentum dependent potential U (p) =
Uα (r, p) is shown in Fig. 1 for zero-temperature symmetric
nuclear matter at the saturation density ρ = ρ0 = 0.16 fm−3.
Here, we took the SLy4 parameter set [40] to determine the
coefficients in Eq. (1). The blue dot-dashed curve shows the
case of 
md = ∞, in which the momentum dependence is
simply quadratic in p as a direct consequence of the Skyrme
interaction of Eq. (9), and the curvature is related to the effec-
tive nucleon mass m∗ ≈ 0.70 mN in the SLy4 parametrization.
This quadratic momentum dependence is too strong compared
to the solid points, which show the energy or momentum
dependence of the optical potential derived from the global fit
of the proton-nucleus elastic scattering data by Hama et al.
[41]. On the other hand, when we choose the parameter

md/h̄ = 5.0 fm−1, the momentum dependence of U (p) is

FIG. 1. The momentum dependence of the nucleon potentials
in symmetric nuclear matter (ρn = ρp) at the normal density ρ =
0.16 fm−3 and at zero temperature. The blue dot-dashed line shows
the nucleon potential with 
md = ∞ [Skyrme interaction of Eq. (9)],
the red dashed line shows the one with 
md/h̄ = 5 fm−1 in Eq. (11),
and the black solid line shows the one of the relativistic form in
Eq. (25). The solid points indicate the empirical optical potential
from Hama et al. [41].

weakened, as shown by the red dashed line in Fig. 1, and it is
now similar to the potential by Hama. For the present study
of heavy-ion collisions at 270 MeV/nucleon, in particular
for the production of � resonances and pions, we expect
that a suitable description of U (p) at p � 500 MeV/c is
important. Therefore, in all calculations in this paper, we take

md/h̄ = 5.0 fm−1.

To formulate the collision term in Sec. III, we use a rela-
tivistic framework in which the nucleon single-particle energy
is written with the scalar and vector potentials (self-energies)
�a(r) ≡ (�s

a(r), �0
a (r),�a(r)) as

Ea(r, p) =
√[

mN + �s
a(r)

]2 + [p − �a(r)]2 + �0
a (r). (15)

We assume here that the distribution does not depend on the
direction of the spin, and thus the index a takes p (proton) and
n (neutron). The relations such as fp = fp↑ + fp↓ and Up =
Up↑ = Up↓ should be understood implicitly. The scalar and
vector potentials �a(r) can be determined from the potential
Ua(r, p) of Eq. (11) by following the same prescription used
in Ref. [34]. We require the equivalence

p2

2mN
+ Aa(p − p̄)2 + C̃a + mN

≈
√(

mN + �s
a

)2 + (p − �a)2 + �0
a (16)

to hold at low momenta up to the order of (p − �a)2. From
this condition, the scalar potential is determined by

�s
a = m∗

a − mN (17)

with the nucleon effective mass

m∗
a = (

m−1
N + 2Aa

)−1
, (18)
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TABLE I. Nuclear matter properties for the effective interactions
of Skyrme SLy4 [40], SLy4:L108 [18], and SkM* [42] (see text).

SLy4 SLy4:L108 SkM*

ρ0 (fm−3) 0.160 0.160 0.160
E/A (MeV) −15.97 −15.97 −15.77
K (MeV) 230 230 217
m∗/mN 0.70 0.70 0.79
S0 (MeV) 32.0 32.0 30.0
L (MeV) 46 108 46
�m∗

np/(mNδ) −0.18 −0.18 +0.33
in n-rich m∗

n < m∗
p m∗

n < m∗
p m∗

n > m∗
p

and the vector potential is derived as

�a = 4Aam∗
a p̄, (19)

�0
a = C̃a − �s

a + Aa p̄2 − 8m∗
aA2

a p̄2. (20)

However, when p̄ρb can be identified with the current Jb

defined by

Jb(r) =
∫

d p
(2π h̄)3

p fb(r, p), (21)

we may use an alternative formula for the vector potential:

�a = 2m∗
a

∑
b

U τ
ab Jb, (22)

�0
a = Ca − �s

a − �2
a

2m∗
a

, (23)

where Ca is the same as C̃α but τ̃β (r) in Eq. (13) is replaced by
the so-called kinetic energy density

τb(r) =
∫

d p
(2π h̄)3

p2 fb(r, p). (24)

In Fig. 1, the red dashed curve shows a relativistic version
of the potential,

Urel(p) =
√

(mN + �s)2 + p2 + �0 −
√

m2
N + p2, (25)

for the zero-temperature symmetric nuclear matter at ρ = ρ0.
The scalar and vector potentials are determined from the SLy4
parameters as described above. We find that the momentum
dependence of Urel(p) is similar to the empirical optical po-
tential by Hama et al. [41] (solid points) and also is consistent
with the nonrelativistic one with 
md/h̄ = 5.0 fm−1 (red
dashed curve).

In the present study, we investigate how the results de-
pend on the effective interaction by comparing three cases
of the energy density functional, which are labeled as SLy4,
SLy4:L108, and SkM*. In all cases, we set 
md/h̄ = 5.0 fm−1

to modify the momentum dependence. The SLy4 functional is
based on the Skyrme SLy4 force of Ref. [40], for which the
corresponding nuclear-matter incompressibility is K = 230
MeV at the saturation density ρ0 = 0.160 fm−3, as summa-
rized in Table I together with other nuclear matter properties.
The nuclear symmetry energy at the saturation density ρ0 is
S0 = 32.0 MeV with the slope parameter L = 46 MeV (called

“asy-soft” or soft symmetry energy). The SLy4:L108 func-
tional is based on a Skyrme parameter set which is obtained by
modifying the x3 and x0 parameters of the SLy4 interaction to
have a stiff symmetry energy with L = 108 MeV [18] (called
“asy-stiff” or stiff symmetry energy) without changing S0 and
the properties of the symmetric nuclear matter. The SkM*
functional is based on the SkM* parameter set of Ref. [42],
which corresponds to K = 217 MeV, S0 = 30.0 MeV, and
L = 46 (“asy-soft”) of nuclear matter at the saturation den-
sity ρ0 = 0.160 fm−3. In the symmetric nuclear matter at ρ0,
nucleons have an effective mass m∗ = 0.70 mN for SLy4 and
SLy4:L108, and m∗ = 0.79 mN for SkM*.

By the solid lines in Fig. 2, we show the neutron and proton
potentials Un(p) and Up(p) as a function of the momentum, af-
ter converting them to the relativistic form of Eq. (25). (The �

potentials shown by the dashed lines will be discussed later in
Sec. II B.) For the zero-temperature asymmetric nuclear mat-
ter with δ = (ρn − ρp)/(ρn + ρp) = 0.2, the potentials based
on SLy4:L108 (top), SLy4 (middle), and SkM* (bottom) are
shown at the densities ρ = ρ0 (left) and ρ = 2ρ0 (right) in
the left part (a) of Fig. 2. Evidently, in these asymmetric
cases, the momentum dependence of Un is different from
that of Up. At ρ0, the neutron-proton effective mass differ-
ence is �m∗

np = m∗
n − m∗

p = −34.4 MeV = −0.18 mNδ for
both SLy4 and SLy4:L108, while it is �m∗

np = 61.5 MeV =
0.33 mNδ for SkM*. It should be noted that Un and Up at
ρ = ρ0 for SLy4 are identical to Un and Up for SLy4:L108,
respectively. When the density is raised to 2ρ0 (right panels)
where the symmetry energy is larger in SLy4:L108 than in
SLy4, the neutron potential Un (or the proton potential Up) in
SLy4:L108 is shifted upwards (or downwards) compared to
that in SLy4. Thus, the gap between Un and Up is related to
the symmetry energy. In the SkM* case, the momentum de-
pendence of Un is weak compared to that of Up, i.e., m∗

n > m∗
p,

and consequently Un(p) becomes even lower than Up(p) at
high momenta, p > 650 MeV/c for ρ0 and p > 500 MeV/c
for 2ρ0. We will see later in Sec. VI how these behaviors of
Un and Up affect the nucleon dynamics in heavy-ion collisions
and the production of � resonances.

In the right part (b) of Fig. 2, the neutron and proton
potentials are shown for high-temperature nuclear matter,
in the same way as in Fig. 2(a) for the T = 0 case. Here
the potentials are shown for the kinetic energy density τb =
3 mN TBoltz ρb with TBoltz = 60 MeV, which may be close to
the situation in heavy-ion collisions studied in this paper. The
potentials are generally higher than in the T = 0 case because
of their τb dependence. However, the qualitative behaviors
observed at T = 0 are preserved even at this high temperature.

B. � potentials

The potential for the � resonance in nuclei has been
studied by the theoretical analyses of the pion-nucleus,
photon-nucleus, and electron-nucleus scatterings for decades
(see, e.g., Ref. [43]). For example, the potential depth of
the � resonance was reported to be about −30 MeV in a
nucleus [44,45], and later to be about −23 ρ/ρ0 MeV [46]
and −33 ρ/ρ0 MeV [47] where ρ0 is the central density.
All these potentials for the � resonance in nuclei show less
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FIG. 2. Left part (a) The momentum dependence of the potentials of the nucleons and � resonances in asymmetric nuclear matter δ =
(ρn − ρp)/(ρn + ρp) = 0.20 at zero temperature T = 0. The left column is for the density ρ = 0.16 fm−3 and the right column is for ρ =
0.32 fm−3. The solid lines in each panel indicate the neutron and proton potentials in the relativistic form, for the three cases of parametrizations
based on SLy4:L108 (top), SLy4 (middle), and SkM* (bottom). The dotted lines show the potentials of � resonances (�−,�0, �+, �++)
adopted in the present work. As explained in Sec. II B, the � potentials are based on the SkM* parametrization with additional repulsive terms
with parameters α�

ρ = 15 MeV and α�
τ = 15 MeV. The isospin splitting is controlled by a parameter γ � = 1. Right part (b) The same as

(a) except at a finite temperature corresponding to the kinetic energy density τb = 3 mN TBoltz ρb with TBoltz = 60 MeV.

binding compared to nucleon potentials. On the other hand,
there is still some room for debate on that topic [48]. Also,
the � potential seems to play an important role in neutron star
studies [49–52].

In transport model calculations for heavy-ion collisions in
the literature, the � potentials U� (or ��) are often linked
with the nucleon potentials UN (or �N ) by linear combinations
such as U�− = Un, U�0 = 2

3Un + 1
3Up, U�+ = 1

3Un + 2
3Up,

and U�++ = Up [21,30,32,34]. In this case, when one varies
UN to study the sensitivity to the nuclear interaction such
as the symmetry energy, observables will change not only
through the change of UN but also through that of U�. Then
the results have to be interpreted carefully, considering that
the link of U� to, e.g., the nuclear symmetry energy has not
been established theoretically. In contrast, in the present work,
we treat UN and U� as independent variables, i.e., we do not
change the parameters for U� when UN is varied, similarly to
the work by Cozma et al. [5,11].

We write the single-particle energy of a � resonance in a
relativistic form,

E (r, p) =
√

(m� + �s
�(r))2 + (p − ��(r))2 + �0

�(r),

(26)

by using the scalar and vector potentials (�s
�,�0

�,��). The
vacuum mass m� is distributed according to the spectral func-
tion of the resonance, such as that of Breit-Wigner form. In
this article, we treat each component of the potential �� =
(�s

�,�0
�,��) as consisting of the isoscalar part �is and the

isovector part �iv as

��− = �is + 3
2�iv,

��0 = �is + 1
2�iv,

��+ = �is − 1
2�iv,

��++ = �is − 3
2�iv.

(27)

The isoscalar part �is = (�s
is, �

0
is,�is ) is chosen as

�s
is = 1

2

(
�s

n + �s
p

)
SkM*,

�0
is = 1

2

(
�0

n + �0
p

)
SkM* + α�

ρ

ρ

ρ0
+ α�

τ

τ

τ0
,

�is = α�
ρ

J
ρ0

, (28)

which is based on the nucleon potential in the SkM*
parametrization, regardless of the actual nucleon potential that
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we choose from SLy4, SLy4:L108, and SkM* as explained
in Sec. II A. Assuming that the � potential is less attractive
than the nucleon potential, we add repulsive terms in �0

is that
linearly depend on the density ρ = ρp↑ + ρp↓ + ρn↑ + ρn↓
and the kinetic energy density τ = τp↑ + τp↓ + τn↑ + τn↓. A
corresponding term is included in �is with J = J p↑ + J p↓ +
Jn↑ + Jn↓. We will adjust the parameters α�

ρ and α�
τ to repro-

duce the experimental data for the overall pion multiplicity
in Sec. VI. The kinetic energy density is normalized by τ0 =
3
5 p2

Fρ0 with pF = ( 3
2π2ρ0)1/3.

As for the isovector part of the � potential �iv =
(�s

iv, �
0
iv,�iv ), we use the neutron-proton potential difference

in the SkM* parametrization as

�s
iv = 1

3γ �
(
�s

n − �s
p

)
SkM*, (29)

�0
iv = 1

3γ �
(
�0

n − �0
p

)
SkM*, (30)

�iv = 0, (31)

where we have introduced a parameter γ � to vary the isospin
splitting of the � potentials. The case of γ � = 1 corresponds
to the relation chosen by Refs. [21,30,32,34] in which ��− −
��++ = �n − �p. On the other hand, the case of γ � = 3
is another option with a large isospin splitting, taken by
Refs. [53,54], in which ��− − ��++ = 3(�n − �p).

The � potentials in asymmetric nuclear matter are indi-
cated in Fig. 2 with the dotted lines, for the choice of the
parameters α�

ρ = 15 MeV, α�
τ = 15 MeV, and γ � = 1. In our

study, we use this parameter choice as the default setting when
we investigate how the momentum dependence of the nucleon
potential affects the pion observables.

III. CROSS SECTION UNDER POTENTIALS

In this section, we formulate the cross sections and the
resonance decay rates under the presence of potentials. In
particular, the inelastic processes NN ↔ N� and � ↔ Nπ

are important in the present study. In general, let us consider
the cross section σ (p1, p2) of a reaction channel, which is a
function of the canonical momenta p1 and p2 of the particles
in the initial state. This function may be modified in a medium
for three reasons. First, the matrix element of the process may
change in the medium through the modification of interme-
diate states. Second, the phase space factor for the final state
will change mainly because the momenta of the final parti-
cles depend on the potentials through energy conservation.
In particular, the potentials affect the condition on p1 and p2
for the process to be energetically possible, which is often
called the threshold effect in the literature [30–34]. Third,
the cross section includes the inverse of the flux of the initial
particles, which is also affected by the momentum dependence
of the potentials through the dispersion relation. In the present
work, we carefully treat the last two sources of the potential
effect in σ (p1, p2). In heavy-ion collision calculations, we
will calculate the cross section at every chance of collisions
using the current values of potentials of the initial and final
particles. In this section, we use the natural units, h̄ = c = 1.

A. General binary process

First, we consider a scattering process 1 + 2 → 3 + 4 oc-
curring around a point r at a time t in a heavy-ion collision.
This process is assumed to change the momenta of the par-
ticipating two particles under the constraint of the energy and
momentum conservation. We generally consider an inelastic
process in which the particle species (3 and 4) in the final
state may be different from those (1 and 2) in the initial state.
A resonance is treated by randomly assigning the mass m
according to the spectral function A(m). We here consider
the case in which the particle 4 is a resonance. The case of
a stable particle with a mass M corresponds to a δ function as
the spectral function, i.e., A(m) = (2π )δ(m − M ).

The transition probability per unit time and unit volume,
to produce a resonance particle with a mass between m4 and
m4 + dm4, can be expressed by using a Lorentz invariant
matrix element as

dW

dV dt
= A(m4)dm4

2π

d3 p3

(2π )32E∗
3

d3 p4

(2π )32E∗
4

|〈p3 p4|M|p1 p2〉�|2

× 2πδ(E3 + E4 − E1 − E2)

× (2π )3δ3(p3 + p4 − p1 − p2), (32)

where the energies of the particles i = 1, 2, 3, and 4 depend
on the scalar and vector potentials �i = (�s

i , �
0
i ,�i ) as

Ei = E∗
i + �0

i , (33)

with the effective mass and the kinetic energy and momentum

m∗
i = mi + �s

i , (34)

E∗
i =

√
m∗2

i + p∗2
i , (35)

p∗
i = pi − �i. (36)

For this invariant transition rate, it is convenient to perform the
integration over the final momenta in the “out” frame, which
is defined by the Lorentz transformation with the velocity
[31,33]

βout = p∗
1 + p∗

2 + �1 + �2 − �3 − �4

E∗
1 + E∗

2 + �0
1 + �0

2 − �0
3 − �0

4

. (37)

After integrating the transition probability over p4 and chang-
ing the integration variable from p3 to p∗

3 = (p∗
f ,�

∗
f ), we

obtain

dW

dV dt
=

∫ p∗2
f d p∗

f d�∗
f

(2π )34E∗
3 E∗

4

|M|2�
A(m4)dm4

2π

× 2πδ(E3(p∗
f ) + E4(p∗

f ) − E1 − E2), (38)

and thus

dW

dV dt
= |M|2�

π

[
p∗2

f

4vfE∗
3 E∗

4

]
out

A(m4)dm4

2π

d�∗
f

4π
, (39)

where the quantity in [· · · ]out needs to be evaluated in the
“out” frame, and vf is the relative velocity of the final particles
in that frame,

vf = p∗
f

E∗
3

+ p∗
f

E∗
4

. (40)
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Dividing the transition rate dW/dV dt by the flux times the
density vi(2E∗

1 )(2E∗
2 ) of the initial state in the “in” frame

defined by the velocity

βin = p∗
1 + p∗

2

E∗
1 + E∗

2

, (41)

the cross section is written as

dσ = |M|2�
π

[
1

4viE∗
1 E∗

2

]
in

[
p∗2

f

4vfE∗
3 E∗

4

]
out

A(m4)dm4

2π

d�∗
f

4π

(42)

with the initial relative velocity

vi = p∗
i

E∗
1

+ p∗
i

E∗
2

(43)

in the “in” frame, where p∗
1 = −p∗

2 and |p∗
1| = |p∗

2| = p∗
i .

In the present work, we essentially assume that the matrix
element |M|2� = |〈p3 p4|M|p1 p2〉�|2 does not depend much
on the presence of the other particles near the colliding two
particles. However, since the invariant matrix element is de-
fined for the plane waves normalized as

〈p|p′〉� = 2E∗(p)(2π )3δ3(p − p′) (44)

depending on the potential �, we choose to relate |M|2� to the
matrix element |M|2�=0 in the vacuum by

|M|2� =
[

E∗
1 E∗

2

ω̃1ω̃2

]
in

[
E∗

3 E∗
4

ω̃3ω̃4

]
out

|M|2�=0 (45)

with

ω̃i =
√

m2
i + p∗2

i (i = 1, 2, 3, 4). (46)

The cross section under the potential is finally written as

dσ = fin fout
|M|2�=0

16π s̃

[p∗
f ]out

[p∗
i ]in

A(m4)dm4

2π

d�∗
f

4π
, (47)

with

s̃ = [ω̃1 + ω̃2]in[ω̃3 + ω̃4]out, (48)

fin =
[

1

ω̃1
+ 1

ω̃2

]
in

/[
1

E∗
1

+ 1

E∗
2

]
in

, (49)

fout =
[

1

ω̃3
+ 1

ω̃4

]
out

/[
1

E∗
3

+ 1

E∗
4

]
out

. (50)

For a given initial condition for p1 and p2, the cross sec-
tion depends on the potentials (�s

i , �0
i , �i) for the particles

in the initial and final states through the phase space factor
fin fout[p∗

f ]out/[p∗
i ]in, which we calculate precisely at every

chance of collisions. In particular, the final momentum is
obtained by

[p∗
f ]out =

√
[s∗

out − (m∗
3 + m∗

4 )2][s∗
out − (m∗

3 − m∗
4 )2]

4s∗
out

, (51)

where

s∗
out = (E∗

3 + E∗
4 )2 − (p∗

3 + p∗
4 )2 (52)

is determined by the energy and momentum conservation

E∗
3 + E∗

4 = E∗
1 + E∗

2 + �0
1 + �0

2 − �0
3 − �0

4 , (53)

p∗
3 + p∗

4 = p1 + p2 − �3 − �4. (54)

The condition [p∗
f ]out = 0 determines the threshold. When the

final state includes a resonance, the threshold can be defined
as a function of the resonance mass m4.

B. The NN → N� process

For the NN → N� process in free space, we assume
isotropic scattering and use a parametrization of the matrix
element,

|M|2�=0

16πs
= B

�2
�(

s − M2
�

)2 + s�2
�

, (55)

which is the same form as adopted in the UrQMD model
[55] but we take B = 64400 mb GeV2, �� = 0.118 GeV, and
M� = 1.232 GeV [38]. The dependence on s is moderate
in the region of our interest including near the threshold.
Therefore, we can allow some arbitrariness in s at which
the matrix element should be evaluated when the potentials
are present. Considering that the matrix element is essen-
tially a function of the momenta rather than the energies, we
choose

s = s̃NN = [ω̃1 + ω̃2]2
in = 4

(
m2

N + p∗2
N

)
(56)

with p∗
N = [p∗2

i ]in being the kinetic momentum of a nucleon
in the rest frame of the NN system. Then, from Eq. (47), we
write the cross section as

σNN→N� =CNNN� fin fout

( |M|2�=0

16πs

)
s=s̃NN

× [p∗
f ]out

[p∗
i ]in

A�(m)dm

2π
, (57)

where m is the vacuum mass of � and CNNN� is the isospin
Clebsh-Gordan factor,

CNNN� =

⎧⎪⎨
⎪⎩

3
4 for nnp�−, ppn�++,

1
4 for nnn�0, ppp�+, npn�+ npp�0,

0 otherwise.

(58)

The spectral function of the � resonance is parametrized as

A�(m) = 4m2�tot
� (m)

(m2 − M2
�)2 + m2�tot

� (m)2
, (59)

where the total width �tot
� (m) is determined below in

Sec. III D, depending again on the potentials in the initial and
final states of the � → Nπ process.

Under the presence of potentials, the � decay width in
principle depends on the momentum of �, which is deter-
mined by the scattering angle in the NN → N� process. In
the present study, we ignore this dependence by using �tot

� (m)
evaluated for � at rest in the “out” frame.

When there are several reaction channels starting with the
same initial channel, e.g., p + n → p + �0 and p + n → n +
�+, the threshold is channel dependent in general because the
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potentials in the final particles depend on the channel. Fur-
thermore, the width �tot

� (m) and therefore the spectral function
A�(m) also depend on the channel, e.g., whether � = �0 or
�+. We will correctly treat such cases, while such channel
dependence is often treated approximately in other transport
models, e.g., Ref. [56].

C. The N� → NN process

The inverse process N� → NN is described by the matrix
element that is related to that of the NN → N� process by

gNN |MNN→N�|2 = gN�|MN�→NN |2, (60)

where gNN and gN� are the spin degeneracy factors, gNN = 4
and gN� = 8. Therefore, we have

σN�→NN = gNN

gN�

CNNN�

1 + δNN
fin fout

( |M|2�=0

16πs

)
s=s̃NN

[p∗
f ]out

[p∗
i ]in

,

(61)

in which the factor 1/(1 + δNN ) takes into account the limita-
tion in angle integral for a final state with identical particles.

D. The � → Nπ process

For a decay process of a particle to two particles, 1 → 3 +
4, the decay rate in the rest frame of the decaying particle is

� = |M|2�
π

1

2m∗
1

[
p∗2

f

4vfE∗
3 E∗

4

]
out

. (62)

We relate the matrix element in the presence of potentials �

to that in the free space by

|M|2� = m∗
1

m1

[
E∗

3 E∗
4

ω̃3ω̃4

]
out

|M|2�=0, (63)

so that

� = fout
|M|2�=0

8π s̃
[p∗

f ]out (64)

with

s̃ = m1[ω̃3 + ω̃4]out. (65)

For the � → Nπ process, several parametrizations were
studied by Weil [57], among which the present work uses the
form by Manley et al. [58] that corresponds to a choice of the
matrix element for the p-wave decay as

|M|2�=0

8π s̃
= M0�0

m� p0

(
[p∗

f ]out

p0

)2 p2
0 + 
2

[p∗
f ]2

out + 
2
, (66)

where m� is the vacuum mass of the decaying � and the
constant parameters are M0 = 1.232 GeV, �0 = 0.118 GeV,

 = 1 fm−1, and

p0 =
√[

M2
0 − (mN + mπ )2

][
M2

0 − (mN − mπ )2
]
/4M2

0 .

(67)

Considering the isospin Clebsh-Gordan factor, the � decay
width in the presence of potentials is

��→Nπ (m�) = C�Nπ fout
M0�0

m�

(
[p∗

f ]out

p0

)3 p2
0 + 
2

[p∗
f ]2

out + 
2
,

(68)

with

C�Nπ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 for �− ↔ nπ−, �++ ↔ pπ+,

2
3 for �0 ↔ nπ0, �+ ↔ pπ0,

1
3 for �0 ↔ pπ−, �+ ↔ nπ+,

0 otherwise.

(69)

Starting with the same � mass m�, the final momentum
[p∗

f ]out and therefore the decay width depend on the decay
channel, e.g., whether �0 → n + π0 or �0 → p + π−, not
only due to the Clebsh-Gordan factor but also because of the
different potentials of particles in different final channels.

As for the total width, in the spectral function A�(m) of
Eq. (59), we use

�tot
� (m) = ��

sp
ρ

ρ0
+

∑
��→Nπ (m), (70)

where the second term in the right-hand side (r.h.s.) is the �

decay width summed over the isospin channels of N + π . The
first term in the r.h.s. of Eq. (70) represents the in-medium
� spreading width due to the absorption and rescattering
processes such as �N → NN and �N → �N , as considered
by Larionov et al. [35]. In the present work, we take the
parameter ��

sp = 60 MeV as a default setting.

E. The Nπ → � process

The cross section for 3 + 4 → 1 is

dσ =
[

1

4viE∗
3 E∗

4

]
in

|M|2�
A(m1)dm1

2π

2πδ(E1 − E3 − E4)

2E∗
1

.

(71)

By integrating this over m1, we have

σ = fin
|M|2�=0

8π s̃

π

[p∗
i ]in

A(m1), (72)

where m1 is determined by the energy conservation.
For the Nπ → � process, the matrix element is related to

that of the inverse process by

gNπ |MNπ→�|2 = g�|M�→Nπ |2 (73)

with the spin degeneracy factors gNπ = 2 and g� = 4, and
therefore the cross section is related to the decay rate as

σNπ→� = g�

gNπ

π

[p∗
i ]2

in

��→Nπ (m�)A(m�). (74)

IV. THE NN → N� CROSS SECTIONS IN ASYMMETRIC
NUCLEAR MATTER

In this section, we give discussions on some examples of
the cross sections in the nuclear matter to understand the
features of the NN → N� cross sections under the presence
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FIG. 3. Left part (a) The NN → N� cross sections for different channels as a function of
√

s̃ (see text) in asymmetric nuclear matter
δ = 0.20 at the zero temperature T = 0, for the three cases of the nuclear interaction based on SLy4:L108 (top), SLy4 (middle), and SkM*
(bottom). The left column is for the density ρ = ρ0 and the right column is for ρ = 2ρ0. The two cases of the isovector part of the � potential
are shown with the solid lines (γ � = 1) and the dotted lines (γ � = 3). The isoscalar part of the � potential includes repulsive terms with the
α�

ρ = 15 MeV, α�
τ = 15 MeV, and the spreading width parameter is ��

sp = 60 MeV. Right part (b) The same as (a), but at a finite temperature
corresponding to the kinetic energy density τb = 3 mN TBoltz ρb with TBoltz = 60 MeV.

of potentials. The cross sections shown here are calculated in
the same formalism as in the heavy-ion collision simulations
in Sec. V.

In the left part (a) of Fig. 3, we show the NN → N�

cross sections for different channels of the � production under
the presence of potentials. The initial two nucleons with mo-
menta ±pN are placed in the nuclear matter with the isospin
asymmetry δ = 0.20 and the temperature T = 0. The nucleon
potentials are chosen as described in Sec. II A for the three
cases based on the Skyrme parametrizations SLy4:L108 (top),
SLy4 (middle), and SkM* (bottom). As for the � potential of
Eq. (27), this figure shows the case when the isoscalar part
is taken as �is = 1

2 (�n + �p)SkM* with additional repulsive
terms (α�

ρ = 15 MeV and α�
τ = 15 MeV). For the isovector

part �iv, two cases of the isospin splitting parameter are
shown for γ � = 1 (solid lines) and γ � = 3 (thin dotted lines).
The spreading width of � is taken into account with ��

sp = 60
MeV in Eq. (70). Note that the cross sections are shown here
as functions of

√
s̃ = s̃1/2

NN = 2(m2
N + p2

N )1/2, which is a direct
function of pN = |pN | without dependence on potentials.

The effect of the isospin asymmetry (δ = 0.2) is evident in
the cross sections of different isospin channels of NN → N�

in Fig. 3(a), in particular in the difference between nn → p�−
(red) and pp → n�++ (blue). This channel dependence is
relatively small in the SkM* case of the nucleon potentials
compared to the SLy4 and SLy4:L108 cases at the density

ρ = 0.16 fm−3 in the left column. When the density is raised
to ρ = 0.32 fm−3 in the right column, the channel depen-
dence is particularly large in the SLy4:L108 case, and the
weak channel dependence in SkM* is further weakened or
even inverted. The same behaviors are observed under a high
temperature condition as shown in the right part (b) of Fig. 3.

When the cross sections in different channels are compared
at the same

√
s̃, i.e., at the same initial nucleon momentum pN ,

the channel dependence may be understood based on the most
important factor

ε∗ ≡ (s∗
out)

1/2 − (m∗
3 + m∗

4 ) (75)

in Eq. (51) for [p∗
f ]out, which we can write in the present case

of nuclear matter as

ε∗ =
√

m∗2
1 + p2

N +
√

m∗2
2 + p2

N

+ �0
1 + �0

2 − �0
3 − �0

4 − m∗
3 − m∗

4

= εfree(m4) + �U (pN ) (76)

with

εfree(m4) = 2
√

m2
N + p2

N − mN − m4, (77)

�U (pN ) = U1(pN ) + U2(pN ) − U3(0) − U4(0). (78)

Here, Ui(p) (i = 1, 2, 3) are the momentum dependent nu-
cleon potentials defined by Eq. (25) and U4(0) is that of �
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at zero momentum. It should be noted that the initial nucleon
momentum pN , at which U1 and U2 are evaluated in �U (pN ),
has to be high (pN � 500 MeV/c) for a production of �,
while the potential U3 of the final nucleon is evaluated at
p = 0. When we can ignore the isospin splitting in U4 for �,
we can understand the channel dependence of cross sections in
Fig. 3 based on the difference between U1(pN ) + U2(pN )
and U3(0), which we can read from Fig. 2. For example, let
us compare the nn → p�− and pp → n�++ processes. In
the case of SLy4:L108, Fig. 2 shows Un(p) > Up(p) at all
momenta and therefore 2Un(pN ) − Up(0) for nn → p�− is
greater than 2Up(pN ) − Un(0) for pp → n�++, which can ex-
plain the strong channel dependence in Fig. 3. The SLy4 case
is identical to the SLy4:L108 case at ρ = 0.16 fm−3, while at
a higher density ρ = 0.32 fm−3 the neutron and proton po-
tentials are similar, Un(p) ≈ Up(p), which makes the channel
dependence weak in the cross sections at the high density.
In the case of SkM*, the channel dependence of the cross
sections is relatively weak or even inverted compared to the
SLy4 case because Un(pN ) ≈ Up(pN ) or Un(pN ) < Up(pN ) at
high momenta while Un(0) > Up(0) at zero momentum.

We can appreciate the effect of the isovector part �iv of
the � potential by comparing the γ � = 3 case of the isospin
splitting parameter (thin dotted line) to the γ � = 0 case (solid
line) in each channel. In the case of Fig. 3(a) at zero tem-
perature, a strong splitting (γ � = 3) results in a weakening
of the channel dependence under most of these asymmetric
conditions. We may understand this because the splitting now
enters in U4(0) in �U (pN ) of Eq. (78). In contrast, in the case
of Fig. 3(b) at a high temperature, we find that the isospin
splitting of the � potential influences the cross sections only
weakly. This may be partly because the isospin splitting be-
tween U� at the high temperature [Fig. 2(b)] is smaller than
that at zero temperature [Fig. 2(a)] when compared at the same
splitting factor γ �.

The condition ε∗ = 0 determines the threshold for the pro-
duction of � at a vacuum mass m4, and thus the threshold
momentum pN,th(m4) or s̃th(m4) in each channel can be de-
fined as a function of m4. This threshold naturally depends on
the channel through the isospin dependence of the potentials
of nucleons and � in �U (pN ). To the authors’ knowledge,
this kind of threshold effect was argued by Fermini et al. [32]
and by Cozma [30]. On the other hand, the minimum value of
pN or s̃ for the � production that can be read for each channel
from Fig. 3 is pN,th(mmin) or s̃th(mmin), which is the threshold
to produce � at the minimum mass mmin. In our framework,
the minimum mass is determined by the condition [p∗

f ]out = 0
for the decay process � → N + π , i.e.,

mmin + U�(0) = mN + UN (0) + mπ , (79)

where UN (0) is for the nucleon after the decay of �. Using
this relation, the threshold condition ε∗ = 0 with m4 = mmin

and U4(0) = U�(0) is now obtained as

2
√

m2
N + [pN,th(mmin)]2 − 2mN − mπ

+ U1(pN ) + U2(pN ) − U3(0) − UN (0) = 0. (80)

Therefore, the threshold, pN,th(mmin) or s̃th(mmin), depends on
nucleon potentials but does not depend on the choice of the

� potential. This kind of threshold was considered by the
authors of Refs. [36,59]. In our case, by a careful look at
Fig. 3, we can confirm that the threshold of each channel
does not depend on the choice of the parameter γ � for the
isospin splitting of the � potential. This also implies that the
shift of the threshold, such as an assumption like σ (

√
s̃) =

σfree(
√

s̃ − const.), is not sufficient to express the effects of
potentials in the cross sections, as also can be found in the
results of Refs. [35,36] with the one-boson exchange model
at zero temperature for symmetric nuclear matter [35] and
asymmetric nuclear matter [36].

V. SIMULATION OF HEAVY-ION COLLISIONS
IN THE AMD + sJAM MODEL

In the present work, we first solve the dynamics of neutrons
and protons by antisymmetrized molecular dynamics (AMD)
[18,60,61]. AMD describes the dynamics of a many-nucleon
system by the time evolution of a Slater determinant of Gaus-
sian wave packets. We use the nuclear effective energy density
functional given by Eq. (1) in Sec. II A. The AMD model
has some advantages in that antisymmetrization is treated
accurately and cluster correlations can be taken into account
by extending the two-nucleon collision process [18,60]. When
two nucleons N1 and N2 collide, we consider the process

N1 + N2 + B1 + B2 → C1 + C2, (81)

where each of the scattered nucleons Nj ( j = 1, 2) may form
a cluster Cj (up to α cluster) with a spectator particle Bj (nu-
cleon or cluster). This includes the special cases in which both
or one of B1 and B2 is empty, e.g., N1 + N2 → N1 + N2 and
N1 + N2 + B1 → C1 + N2. The cross section of the process to
form clusters (C1,C2) is given by

dσ (C1,C2)

d�
= P(C1,C2, pf,�)

pi

vi

pf

vf
|M|2 pf

pi
, (82)

where pi and vi are the initial relative momentum and the ve-
locity between the colliding nucleons N1 and N2. The relative
momentum vector after the momentum transfer between them
is denoted by (pf,�), and pf is determined to conserve the
energy E of the system which includes the adopted effective
interaction. The velocity factor vf = ∂E/∂ pf as a function of
pf also depends on the effective interaction. Here, E is the
total energy of the system obtained for the antisymmetrized
wave function in the AMD calculation. The values of pf and
vf that conserve the energy are determined numerically after
several steps of iteration. The overlap probability factor for
cluster formation, P(C1,C2, pf,�), is defined by considering
the nonorthogonality between the states of different config-
urations (Refs. [18,60]). The matrix element |M|2 for the
two-nucleon scattering is directly related to the assumed in-
medium cross sections σNN . We may express it as |M|2 =
(2/mN )2dσNN/d�, where the right-hand side is evaluated at
an average of pi and pf. The observables of light fragments in
the SπRIT experimental data have been analyzed by AMD
calculations [6–8]. In the present work, we use the same
nucleon calculations as in the analysis of Ref. [8].

In the AMD model, however, � resonances and pions have
not been incorporated. Considering the small pion multiplicity
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in heavy-ion collisions of our interest, we can still use the
nucleon dynamics calculated by AMD, by regarding � and
pion production as perturbation. In the AMD + JAM model
[18–20] by Ikeno, Ono, Nara, and Ohnishi, the nucleon dy-
namics was solved by AMD and then reactions related to
pions and � resonances were handled by a hadronic cascade
model (JAM). The JAM model is a reliable hadron transport
model developed by Nara, Otuka, Ohnishi, Niita, and Chiba
[38]. The cascade method by JAM has a feature that the se-
quence of the collision and decay processes in a many-particle
system is handled precisely in the order of the time at which
each process should take place. This feature is advantageous
in avoiding unphysical dependence on the computational time
step parameter, as we found in a comparison of transport mod-
els in Ref. [15] for pion production in a box. However, in the
AMD + JAM calculations, the potentials were not taken into
account in the processes related to � resonances and pions.

For a precise treatment of potentials in the collision term,
we have developed a new transport code sJAM. This code pre-
cisely follows the cascade mode of the JAM code [38] in the
case of the presence of only nucleons, � resonances and pions
without any effect of potentials. The sJAM code now takes
into account the potentials that affect the cross sections and
decay rates as formulated in Sec. III. The final momenta of
a collision or decay in the simulation are determined from
Eq. (51) to conserve the energy. The potentials also affect the
propagation in sJAM through the dispersion relation. How-
ever, the nuclear force acting on a � resonance is ignored,
assuming that the momentum change is small during a short
time between a production of � and its decay or absorption.

The electromagnetic force acting on charged particles, in-
cluding pions, is taken into account in sJAM. The Lorentz
force acting on a charged particle labeled by i is calculated as

d pμ
i

dt
= eZiF

μν
i

dxi,ν

dt
, Fμν

i =
∑
j( �=i)

Fμν
i j , (83)

by using the electromagnetic field tensor Fμν
i at the

space-time point of the particle, xi,ν = (t,−xi,−yi,−zi ).
The field Fμν

i j created by the jth particle is obtained by first
assuming the electrostatic Coulomb field E ′ = eZ jr′

i j/(r′
i j )

3

and B′ = 0 in the rest frame of the jth particle and then
Lorentz transforming the field tensor to the reference frame.
However, when the distance r′

i j = |r′
i j | in the rest frame of

the jth particle is less than 2 fm, the field is replaced by zero.
In the AMD code, the Coulomb interaction is considered by
solving the Poisson equation.

In the practical AMD + sJAM calculations, the informa-
tion on the nucleon dynamics calculated by AMD is sent to the
sJAM calculation in the form of a list of test particles (r1, p1),
(r2, p2), ..., (rA, pA) at every time step of 1 fm/c. These test
particles are generated randomly by the method of Ref. [18]
according to the Wigner distribution function fα (r, p) in the
AMD calculation. In addition, to allow the calculation with
potentials in sJAM, the information on the densities at the
positions of test particles, ρn(ri ), ρp(ri ), Jn(ri ), J p(ri ), τn(ri ),
and τp(ri ) for i = 1, 2, . . . , A, are sent from AMD to sJAM.
Using these densities, the potentials �s

a(ri ), �0
a (ri ), and �a(ri )

are calculated either in AMD or sJAM. Then, as formulated

FIG. 4. The distribution of
√

s̃ (see text) for the number of
NN → N� reactions per event in the AMD + sJAM calculations,
with the three cases of nucleon interaction based on SLy4:L108 (top),
SLy4 (middle), and SkM* (bottom).

in Sec. III, the cross sections and resonance decay rates are
calculated at every chance of collisions and decays. For this
purpose, we need to know not only the potential that the
particle i currently feels but also the potentials that it may feel
when it is changed to other species a = n, p,�−,�0,�+, and
�++ in the final channels of inelastic processes.

Thus, the NN ↔ N� and � ↔ Nπ processes are calcu-
lated in sJAM under the presence of potentials with a precise
treatment of energy conservation. The elastic NN collisions
are also considered in sJAM, but the nucleon information is
updated at every time step by AMD.

The Pauli blocking factor for the nucleon(s) in the final
state of NN ↔ N� and � → Nπ processes is determined by
using the Wigner function f (ri, p′

i ) calculated precisely for
the many-nucleon Slater determinant in AMD. This is the best
among the methods investigated in Ref. [20]. However, in the
evaluation of the width parameter �tot

� (m) in Eq. (59) for the
spectral function A�(m), the Pauli blocking in the � → Nπ

final states is ignored.
Figure 4 shows the � production in the calculation of

132Sn + 124Sn collisions at E/A = 270 MeV and for the
impact parameter range b < 3 fm. For the production of �−,
�0, �+, and �++, the numbers of NN → N� reactions per
event are shown in each panel as a function of

√
s̃ = √

s̃NN

[Eq. (56)]. The three cases of nucleon interaction are shown
for the cases based on SLy4:L108 (top panel), SLy4 (middle),
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and SkM* (bottom). In all cases, the � production peaks
between

√
s̃ = 2.05 and 2.10 GeV, from which we can

appreciate what part in
√

s̃ is important in the example of
NN → N� cross sections shown in Fig. 3. We can find that
the differences in the � production between the three cases
of nuclear interaction are well associated with those in the
NN → N� cross sections, in terms of the channel depen-
dence and the absolute value. By integrating the distribution,
we notice that the � production occurs only a few times per
event in this heavy-ion collision system, which justifies our
perturbative treatment of the AMD + sJAM model.

Due to Eq. (51), our calculation conserves the sum of the
single-particle energies of the particles involved in a colli-
sion or decay, which generally guarantees the total energy
conservation by the collision term, thanks to the definition of
the single-particle energies by Eq. (10). However, we have to
note that we replaced the original single-particle potential of
Eq. (11) by its relativistic form of Eq. (25) in sJAM, which
may affect the conservation of the total energy defined with
Eq. (1). We checked this point by performing a box calculation
[62] with an interaction similar to that used in the present
work, and confirmed that the total energy of the system in the
time evolution is conserved within 0.3 MeV per baryon.

VI. PION OBSERVABLES

A. Pion spectra

We calculate the pion production in 132Sn + 124Sn colli-
sions at E/A = 270 MeV for the impact parameter range
b < 3 fm, which corresponds to the SπRIT experimental data
published in Ref. [5]. In Figs. 5–7, we show calculated pion
observables in the three cases of nucleon interaction based
on SLy4, SLy4:L108, and SkM*, respectively. Note that the
momentum dependence is modified by a parameter 
md/h̄ =
5.0 fm−1 in the AMD calculation and the nucleon potential
is converted to a relativistic form in sJAM (see Sec. II A). As
explained in Sec. II B, the � potential, which is parametrized
independently of the choice of the nucleon interaction, in-
cludes additional repulsive terms with parameters α�

ρ = 15
MeV and α�

τ = 15 MeV, and an isovector term with the
parameter γ � = 1.

In these figures, the lines in the bottom left panel show the
calculated spectra dN/d pT of charged pions (π− and π+)
emitted to forward angles θc.m. < 90◦, as a function of the
transverse momentum pT , in comparison with the experimen-
tal data of Ref. [5] shown by points. The top left panel shows
the π−/π+ ratio of these spectra. The bottom right panel
shows an integral of the spectrum

N (>pT ) =
∫ ∞

pT

dN

d pT
(p′

T )d p′
T , (84)

that is the number of pions emitted with a transverse momen-
tum greater than pT . This quantity is useful to determine the
high momentum part of the spectra with a good estimation
of the statistical accuracy. The top right column shows the
π−/π+ ratio of these integrated spectra.

By comparing Fig. 5 (SLy4 based) and Fig. 6 (SLy4:L108
based), we can argue the effect of the density dependence

FIG. 5. Left panels: The transverse momentum (pT ) spectra of
π− and π+ (bottom) and their π−/π+ ratio (top), for pions emit-
ted to forward angles θc.m. < 90◦ from 132Sn + 124Sn collisions at
E/A = 270 MeV and b < 3 fm. The calculations are done with
the nuclear interaction based on the SLy4 parametrization and with
the � potential with parameters α�

ρ = 15 MeV, α�
τ = 15 MeV, and

γ � = 1. The in-medium spreading width of � is taken into account
with ��

sp = 60 MeV. The experimental data shown by points are
taken from Ref. [5]. Right panel: Pion spectra integrated in the
momentum range above pT [bottom; see Eq. (84)] and their π−/π+

ratio (top).

of the symmetry energy. However, the difference is not
large in the pion yields and spectra between these cases
of L = 46 and 108 MeV. We will discuss this point in

FIG. 6. The same as Fig. 5 except with the nucleon interaction
based on SLy4:L108.
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FIG. 7. The same as Fig. 5 except with the nucleon interaction
based on SkM*.

detail in the next subsection. The calculated pion results in
these cases are similar to the experimental data. In partic-
ular, the π−/π+ ratio is higher than the experimental data,
in contrast to the much smaller π−/π+ ratio predicted by
AMD + JAM in Refs. [18–20] and in Ref. [4], where the
potentials were not taken into account in NN ↔ N� and
� ↔ Nπ processes. The large π−/π+ ratio in the present
calculation can be roughly associated with the strong chan-
nel dependence of the NN → N� cross sections illustrated
for nuclear matter in the upper two panels of Fig. 3, which
is further related to the behavior of the momentum de-
pendence of the neutron and proton potentials in Fig. 2
(see Sec. II A).

On the other hand, by comparing Fig. 7 (SkM* based)
to Fig. 5 (SLy4 based), we can appreciate the effect of the
momentum dependence of the neutron and proton potentials
(Un and Up) under a common condition on the symmetry
energy (L = 46 MeV). As illustrated in Sec. IV for nuclear
matter, the channel dependence of NN → N� cross sec-
tions is weak or even inverted in the case based on SkM*
(bottom panels of Fig. 3) due to the weak momentum depen-
dence of Un compared to that of Up (bottom panels of Fig. 2).
This can explain the small π−/π+ ratio in the case of SkM*
compared to the SLy4 case.

The overall pion yield is small in the case based on SkM*
compared to the cases based on SLy4 and SLy4:L108, in par-
ticular at low pion momenta. This can be associated with the
relatively small NN → N� cross sections in nuclear matter in
the case of SkM* (see Fig. 3), which is likely a consequence
of a relatively weak momentum dependence of the isoscalar
nucleon potential in this case (see Fig. 2). However, the overall
pion yield will change when the assumed potential for � is
varied in the present framework, which nevertheless does not
strongly affect the π−/π+ ratio (see Sec. VI D).

B. Link from nucleon dynamics to pion observables

One of the original aims of studying charged pion produc-
tion in heavy-ion collisions has been to probe the symmetry
energy at high densities, expecting that pions originate from
energetic nucleon-nucleon collisions occurring in the high
density region, as predicted by transport model simulations
[5,9]. For this, it is essential to confirm how the nucleon
dynamics in heavy-ion collisions, in particular the neutron-
to-proton ratio N/Z in the high density region, is reflected in
the final π−/π+ ratio, after the processes of � production
and others. In the work of Refs. [18,19], we showed that
the final π−/π+ ratio is indeed correlated to the N/Z ratio
in the high-density and high-momentum phase-space region,
which the nucleon dynamics determines depending on the
high-density symmetry energy. However, this study did not
take into account the effects of potentials in the processes
related to � and pions.

Here, we repeat the same analysis of Ref. [18], for the
present calculation with potentials in NN ↔ N� and � ↔
Nπ processes. Panel (a) of Fig. 8 shows the time evolution
of the squared neutron-to-proton ratio (N/Z )2

ρ>ρ0
in the high

density region as a function of time, for the three cases of the
nucleon interaction by the three lines. The high density region
is defined in each event as the interior of the sphere defined by
ρ(r) > ρ0, with ρ(r) being the average density on the sphere
of the radius r in the center-of-mass frame of the system. The
effect of the symmetry energy is clearly seen by comparing
the asy-soft cases (SLy4 and SkM* based) and the asy-stiff
case (SLy4:L108 based) in the time interval t = 15–25 fm/c
around which the maximum density is reached.

Panel (b) of Fig. 8 shows the ratio (N/Z )2
ρ>ρ0,HM in the

high-density and high-momentum region, for which the nu-
cleons in the high-density region of ρ(r) > ρ0 are further
selected by the high-momentum condition |p − prad| > pcut.
We take the same condition as in Ref. [18], i.e., pcut =
480 MeV/c is chosen and the radial flow prad = prad(r)r/r
is subtracted with prad(r) being the radial momentum com-
ponent averaged for the nucleons on the sphere of the radius
r. As we have already seen in Refs. [18,19], the ratio
(N/Z )ρ>ρ0,HM increases compared to (N/Z )ρ>ρ0 when the
high momentum region is selected, and the symmetry energy
dependence is somewhat enhanced between the SLy4 and
SLy4:L108 cases. Furthermore, we can now find a strong
effect of the momentum dependence of the neutron and pro-
ton potentials (Un and Up) in the behavior in the SkM*
case, where (N/Z )2

ρ>ρ0,HM increases most drastically from
(N/Z )2

ρ>ρ0
compared to the other cases. This can be under-

stood from Un and Up in the high momentum region of Fig. 2.
Due to a relatively weak momentum dependence of Un, its
value at a high momentum in the SkM* case is lower than
that in the SLy4 case. Therefore, high-momentum neutrons
are favored and thus (N/Z )2

ρ>ρ0,HM goes up in the SkM* case
compared to the SLy4 case.

Since high-momentum nucleons are responsible to
� excitation, we might expect some relation between
(N/Z )2

ρ>ρ0,HM and the � production by NN → N�. Panel
(c) of Fig. 8 shows the ratio between the reaction rates of
nn → p�− and pp → n�++ (labeled as �−/�++) as a
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FIG. 8. The left two panels (a) and (b) show the time evolution of the squared ratio (N/Z )2 of neutrons and protons, for the three cases
of nucleon interaction; panel (a) shows the (N/Z )2 ratio calculated for the nucleons in the high density region (ρ > ρ0), and panel (b) shows
the (N/Z )2 ratio for nucleons in the high-density and high-momentum phase-space region (see text). Panel (c) shows the time evolution of the
�−/�++ production ratio, i.e. the ratio of the nn → p�− and pp → n�++ reaction rates. The horizontal line in each panel represents the
(N/Z )2

sys ratio of the total system.

function of time. We recall that �−/�+ was closely related
to (N/Z )2

ρ>ρ0,HM when potentials were not taken into account
for the � production in Refs. [18–20]. This is no longer the
case when potentials are considered. The �−/�++ ratio in
the SLy4- and SLy4:L108-based cases increases significantly
from (N/Z )2

ρ>ρ0,HM. This increase is the strongest in the
SLy4:L108 case. On the other hand, in the SkM*-based
case, the �−/�++ ratio becomes lower than (N/Z )2

ρ>ρ0,HM.
These drastically different ways of change can be understood
again based on the momentum dependence of Un and Up

shown in Fig. 2, from which we have understood the channel
dependence of NN → N� cross sections in asymmetric
nuclear matter (see Sec. IV). In the NN → N� reaction, the
initial nucleons have high momenta and the final nucleon has
a low momentum. Considering the nn → p�− reaction, a
high-momentum neutron in the SLy4 and SLy4:L108 cases
more favorably turns to a low-momentum proton compared
to the SkM* case, because of the difference in the momentum
dependence of Un and Up. Next, when the SLy4 and
SLy4:L108 cases are compared, a high-momentum neutron in
the SLy4:L108 case more favorably turns to a low-momentum
proton compared to the SLy4 case, because the difference
between neutron and proton potentials at high density, which
is related to the symmetry energy, is larger in the SLy4:L108
case than in the SLy4 case. Thus, �− production is favored in
the SLy4:L108 case, and consequently the relation between
the SLy4 (asy-soft) and SLy4:L108 (asy-stiff) cases in (N/Z )2

is inverted in the �−/�++ production ratio. Namely, the
(N/Z )2 ratio with the soft symmetry energy is larger than that
with the stiff symmetry energy, while the �−/�++ ratio with
the stiff symmetry energy is now larger than that with the
soft symmetry energy. The inversion of the symmetry energy
effect is also found in other calculations on the pion ratio
π−/π+ [30,59] and the kaon ratio K0/K+ [63] (see, e.g.,
Ref. [64] for a review).

The results on the various ratios are concisely summarized
in Fig. 9, which is similar to a figure in Refs. [18,19]. In the

first and second columns of Fig. 9, we show a representative
(N/Z )2 ratio which is defined in Ref. [18] as

(N/Z )2 =
∫ ∞

0 N (t )2dt∫ ∞
0 Z (t )2dt

, (85)

where N (t ) and Z (t ) indicate the numbers of neutrons and
protons as functions of time which are selected by the high
density condition ρ > ρ0 with or without imposing the high
momentum condition |p − prad| > pcut. In the third column
of Fig. 9, we show the representative value of the �−/�++

FIG. 9. From left to right, the representative nucleon ratios of
(N/Z )2

ρ>ρ0
and (N/Z )2

ρ>ρ0,HM in the high density region without
and with imposing the high momentum condition, respectively, the
�−/�++ production ratio, the π−/π+ ratio from all pions (pT > 0),
and the π−/π+ ratio of high-momentum pions (pT > 200 MeV/c).
The results are shown for the three cases of nucleon interaction based
on SLy4, SLy4:L108, and SkM*. As for the isovector part of the �

potential, two cases are shown for γ � = 1 (solid line) and γ � = 3
(thin dashed line). The horizontal line represents the (N/Z )2

sys ratio
of the total system.
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production ratio, which is defined in Ref. [18] as

�−/�++ =
∫ ∞

0 (nn → p�−)dt∫ ∞
0 (pp → n�++)dt

, (86)

where (nn → p�−) and (pp → n�++) indicate the reaction
rates of the � production as a function of time. These three
representative ratios in Fig. 9 show various effects of the
symmetry energy and the momentum dependence of Un and
Up, which we have seen in Fig. 8 and do not repeat here.

In Fig. 9, we can also find some information on the depen-
dence on the isovector part of the � potential, by comparing
two cases of the isospin splitting parameter γ � = 1 (solid
line) and γ � = 3 (thin dashed line). In the present calculation,
the splitting plays a minor but non-negligible role in the �

production.
As for the pion ratios, the fourth column shows the π−/π+

ratio calculated from all pions (pT > 0), while the fifth col-
umn shows that from the high-momentum pions selected by
the transverse momentum pT > 200 MeV/c, which corre-
sponds to the region that Ref. [5] used to extract information
on the symmetry energy from the SπRIT experimental data.
We include here all pions emitted to both forward and back-
ward angles. The π−/π+ ratio from all pions (pT > 0) is
almost identical to the �−/�++ production ratio in all the
cases, except the π−/π+ ratio in the asy-soft case (SLy4)
slightly increases from the �−/�++ ratio. The reduction of
the π−/π+ ratio for pT > 200 MeV/c is due to the effect of
the Coulomb force acting on charged pions, which is known
to be well under control in transport models [17]. Thus, the
final pion ratio is rather simply related to the NN → N�

process.
In summary, the impact of a change of nuclear symmetry

energy (SLy4- vs SLy4:L108-based nucleon interaction) on
the pion ratio is not very large and it is a consequence of dif-
ferent effects in the nucleon dynamics and in the NN → N�

process which act in opposite directions. The impact of the
isospin splitting of the � potential can be of the same order of
that of nuclear symmetry energy. Much larger is the impact
of a change of the momentum dependence of the neutron
and proton potentials (SLy4 vs SkM* based). This is also a
consequence of the effects in the nucleon dynamics and in the
NN → N� process acting in opposite directions; however,
the effect in NN → N� is much larger.

C. The effect of the in-medium � spreading width

So far, we have calculated the pion production with the
default option (α�

ρ = 15 MeV, α�
τ = 15 MeV, and ��

sp = 60
MeV), which added the repulsive terms in the isoscalar part
of the � potential and the spreading width ��

sp. Here, in order
to see the effect of the spreading width of � in the medium
[see Eq. (70)], we show in Fig. 10 the pion spectra when
the spreading width is turned off (��

sp = 0). By comparing
the lower left panel of Fig. 10 with that of Fig. 5, we can
see clearly that the spreading width affects only the low
momentum part of the π− and π+ spectra. Namely, the
spreading width works to increase the pion yield in the low
momentum region.

FIG. 10. The same as Fig. 5 except the in-medium spreading
width of � is turned off by setting ��

sp = 0. The repulsive terms in
the isoscalar part of the � potential are included by α�

ρ = 15 MeV
and α�

τ = 15 MeV as Fig. 5.

In spite of the change of the π− and π+ spectra, the π−/π+
ratio of the spectra, shown in the upper panels of Fig. 10, is not
affected much when the spreading width is turned off. Thus,
the pion ratio is almost free from the uncertainties in the in-
medium spreading width.

Figure 11 shows the various ratios when the spreading
width is turned off by ��

sp = 0. The π−/π+ ratios here are
quantitatively similar to those in Fig. 9 where the spreading
width parameter was ��

sp = 60 MeV. On the other hand, the
�−/�++ production ratios become larger than those in Fig. 9.
We can also see that the effect of the symmetry energy (SLy4
vs SLy4:L108 based) is small, and the effect of the difference
in the momentum dependence of Un and Up (SLy4 vs SkM*

FIG. 11. The same as Fig. 9 except the in-medium spreading
width of � is turned off by setting ��

sp = 0. The repulsive terms in
the isoscalar part of the � potential are included by α�

ρ = 15 MeV
and α�

τ = 15 MeV as Fig. 9.
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FIG. 12. The same as Fig. 10 except the repulsive terms in the
isoscalar part of the � potential is turned off by setting α�

ρ = 0, α�
τ =

0, and ��
sp = 0.

based) is much more significant. These trends are the same as
those shown in Fig. 9.

D. The effect of the isoscalar part of the � potentials

Finally, we test the robustness of the above results against
the uncertainties in the isoscalar part of the � potential,
for which we added repulsive terms with parameters α�

ρ

and α�
τ , compared to the SkM*-based nucleon potential

[see Eq. (28)].
When these options are turned off by setting α�

ρ = 0
and α�

τ = 0 (and we also set ��
sp = 0 in this subsection

as well as in Sec. VI C), the pion yield is overestimated,
as we can see in the lower left panel of Fig. 12 in com-
parison with that of Fig. 10. This is naturally understood
as a consequence of turning off the repulsive terms in the
� potential. Even in this case, the π−/π+ ratio of the
spectra, shown in the upper panels of Fig. 12, is not affected
much by changing the parameters α�

ρ and α�
τ . Therefore,

the result here also suggests that the pion ratio is not
affected strongly by the uncertainties in the isoscalar �

potential.
Figure 13 shows the various ratios when the repulsive terms

are turned off by α�
ρ = 0 and α�

τ = 0 (and ��
sp = 0). The

�−/�++ production ratio and the π−/π+ ratio here are quan-
titatively similar to those in Fig. 11, where the repulsive terms
were taken into account. However, the effect of the symmetry
energy (SLy4 vs SLy4:L108 based) is now stronger, i.e., we
find a stronger inversion of the symmetry energy effect from
the (N/Z )2

ρ>ρ0,HM ratio to the �−/�++ production ratio when
the repulsive terms in the � potential is turned off. The effect
of the isospin splitting of the � potential (γ � = 1 vs γ � = 3)
is also stronger in Fig. 13 compared to that in Fig. 11. On

FIG. 13. The same as Fig. 11 except the repulsive terms in the
isoscalar part of the � potential is turned off by setting α�

ρ = 0, α�
τ =

0, and ��
sp = 0.

the other hand, the effect of the difference in the momentum
dependence of Un and Up (SLy4 vs SkM* based) is always
the most significant, which is not affected by the uncertainties
in the isoscalar part of the � potential and the in-medium
spreading width of �.

VII. SUMMARY

We investigated the production of � resonances and pi-
ons in 132Sn + 124Sn collisions at E/A = 270 MeV/nucleon
within the AMD + sJAM model, in which the collision term
takes into account the momentum-dependent mean-field po-
tentials with strict conservation of energy and momentum. In
the newly developed part sJAM of the model, the potentials
for the particles in the initial and final states of a process are
treated in the form of the scalar and vector self-energies for
each species of particles, and the potentials affect the phase
space factor for the final state and the flux factor for the
initial state in a natural way. In particular, the cross section for
NN → N� depends on the isospin channel when the neutron
and proton potentials are different in isospin-asymmetric en-
vironment. The mass distribution or the spectral function of
the � resonance is also determined by the potentials through
the potential dependence of the � → Nπ width.

In particular, we focused on the effect of the different
momentum dependence between the neutron and proton po-
tentials. When the neutron potential has a strong momentum
dependence compared to the proton potential in a neutron-rich
environment (m∗

n < m∗
p in the SLy4-based case), the process

nn → p�− that converts two high-momentum neutrons to
a low momentum proton is favored compared to the pp →
n�++ process. The tendency is opposite when the neutron
potential has a weak momentum dependence compared to
the proton potential (m∗

n > m∗
p in the SkM*-based case). The

result of the AMD + sJAM simulations shows that this ef-
fect of the momentum dependence appears very clearly in
the � production, and consequently the π−/π+ ratio is an
observable that is very sensitive to the momentum depen-
dence of the neutron and proton potentials. The case with
a strong momentum dependence of neutrons compared to
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protons is more consistent with the SπRIT data than the
opposite case.

We also investigated the effects of other ingredients. The
symmetry energy L dependence (SLy4 vs SLy4:L108) was
found to have a relatively small effect on the pion ratio
compared to the effect of the momentum dependence of
the nucleon potentials. We carefully traced a link from the
nucleon dynamics to the pion observable through the � pro-
duction, and the symmetry energy effect in the neutron-proton
ratio (N/Z ) was found to be reversed in the � produc-
tion rate (�−/�++). We confirmed that the conclusions
remain the same even if the isoscalar and isovector parts of
the � potential and the in-medium � spreading width are
changed.

We have found that the in-medium � spreading width, due
to the collisions of �N → NN and �N → �N , affects only
the low-momentum part of the pion spectrum. It is known by
other transport model calculations [5,11] that the low-energy
part is also sensitive to the pion potential which the present
calculation ignored. Therefore, it is desirable to obtain a full
understanding of the low energy pion emission in the future by
considering both the � spreading width and the pion potential.

On the other hand, the high-momentum pions may be suitable
to extract physics information from experiments, as claimed
in Refs. [5,11]. We will check this point in our future work
by investigating the role of the pion potential, which should
be considered consistently for both the energy conservation
and the rates in the � ↔ Nπ processes, as well as for the
propagation of pions.
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