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α-decay from 44Ti: A study of microscopic clusterization
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Background: Microscopic determination of alpha-decay half-lives requires structure and reaction calculations.
The structure part is given by the microscopic distribution of the constituent nucleons, while the relative motion
of the product’s decay provides the reaction part.
Purpose: This paper studies the clusterization of the 0+ excited states of 44Ti arising from the nucleonic degrees
of freedom.
Methods: The continuum spectra of proton and neutron are incorporated through the Gamow shell-model
formalism. The alpha-like wave function is calculated in the weak-coupling approximation. Gaussian effective
interaction in each pair of nucleons is included.
Results: The 0+ ground and excited states are compared with experiment and shell-model calculations. The
wave-function amplitudes are obtained and discriminated by their resonant and nonresonant contributions. The
influence of a four-body truncated basis is analyzed.
Conclusions: Inclusion of the continuum spectra produces a gain in the excited states of a few hundred keV of
energy. One candidate for alpha decay was identified near the experimental unresolved state (0, 2)+ of 6.8 MeV
excitation energy, with a lower limit for the half-life of ≈ 0.8 ns.
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I. INTRODUCTION

A unified treatment of the alpha decay from the shell-
model framework is possible [1,2]. On the one hand, the
formation process involves the structure calculation of a
many-body overlap between the mother nucleus and the
product’s decay. On the other hand, the penetration process
needs to appeal to a resonant state. In general terms, pro-
cesses relate to different aspects of nuclear physics: The
former belongs to nuclear structure and the latter to nuclear
reaction. In Ref. [3], a unified framework for alpha-decay
calculations was presented in the pole approximation of the
Gamow shell model. In the present work the nonresonant
continuum is incorporated into the single-particle representa-
tion. An effective Gaussian interaction replaces the separable
force. The Coulomb interaction between the valence proton
is also considered. The missing proton-neutron interaction
is now taken into account. While the two-body mean-field
parameters are constrained using low-lying excited states
from neutron-neutron, proton-proton, and neutron-proton ex-
perimental data. Finally, the alpha-like wave function is
constructed using the weak-coupling scheme [4,5].

We consider 44Ti as our case study, in which evidence of α

structure has been observed through multiple reactions, also
at excitation energies above the alpha threshold [6–8]. It is
also a nucleus of significant astrophysical interest because
of its implications in core-collapse supernovae [9–12]. At
the same time, evidence of α structure has been observed
through multiple reactions, also at excitation energies above
the alpha threshold [6–8]. This paper presents the treatment of

the full continuum correlation on alpha clusterization from the
nucleon degree of freedom. The following study will present
the microscopic calculation of the alpha-decay half live using
the microscopic spectroscopic factor.

Section II presents the two-step process [4] to define the
four-body basis. Section III A defines the single-particle rep-
resentation, while Sec. III B describes the isospin-dependent
two-body interactions. Section III C studies the influence of
the continuum over the four-body 0+ spectrum and the wave
function, while Sec. III D shows the effects on the collectivity
due to truncation. Section III E calculates the half-lives in
the two-body approximation. Finally Sec. IV summarizes the
results and outlines the next step related to the alpha decay
in 44Ti.

II. FOUR-BODY WAVE FUNCTION

This section presents the two-step process [4,5,13] for-
malism, which provides a systematic way of truncating the
four-body basis. Correlated two-like nucleon bases are formed
first by diagonalizing the two-like nucleon parts of the
Hamiltonian. Each one of these two-body eigenfunctions is
expanded in the uncorrelated two-like nucleon basis formed
by the eigenfunctions of the core-nucleon parts of the five-
body Hamiltonian,

H = Hn + Hp + Vnp.

The alpha-like wave function is expanded in a basis built
from the neutron-neutron �Jπ

n Mn and proton-proton �Jπ
p Mp

eigenfunctions of the Hamiltonian of each pair of the two-like
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nucleon, respectively,

Hn�Jπ
n Mn = EJπ

n
�Jπ

n Mn ,

Hp�Jπ
p Mp = EJπ

p
�Jπ

p Mp .

The two-like nucleon Hamiltonians are

Hn = hn(r̄1) + hn(r̄2) + V (r̄1, r̄2),

Hp = hp(r̄3) + hp(r̄4) + V (r̄3, r̄4) + e2

|r̄3 − r̄4| ,

while Vnp = V (r̄1, r̄3) + V (r̄1, r̄4) + V (r̄2, r̄4) + V (r̄2, r̄4) is
the remaining proton-neutron interaction.

An isospin-dependent effective interaction in all nucleon-
nucleon channels is used,

V (r) =
∑

τ

V J
τ (r)Pτ , (1)

with r = |r̄i − r̄ j |, Pτ the projector operator over one of the
spin-isospin channels τ = {se, to, se, so}, and

V J
τ (r) = V J

τ e
− r2

β2
τ . (2)

The neutron and proton single-particle mean-field Hamil-
tonians contain the central Woods-Saxon, the spin-orbit
interactions, and the Coulomb one for the protons. Bound,
resonances, and complex-energy scattering eigenstates are
calculated from the single-particle Hamiltonian,

h(r̄)ψa,ma (r̄) = εaψa,ma (r̄), (3)

with a = {na, la, ja}.
The bound and continuum single-particle states are used

to generate the proton-proton and neutron-neutron bases
[14–17],

�Jπ M =
∑

a�b

X Jπ

ab �Jπ M
ab , (4)

with the amplitude X Jπ

ab normalized within the Berggren met-
ric, i.e.,

∑
a�b(X Jπ

ab )2 = 1.
Then, the correlated alpha-like wave function reads

|JM〉 =
∑

JnJp

ZJ
np|JnJp, J〉, (5)

where |JnJp, J〉 = [�Jπ
n
�Jπ

p
]Jπ M .

In the adopted weak-coupling interaction, the secular equa-
tion contains only diagonal elements in the nucleon-like
quadrants,

∑

J ′
nJ ′

p

[(
EJn + EJp

)
δJ ′

nJnδJ ′
pJp + 〈JnJp, Jπ |Vnp|J ′

nJ ′
p, Jπ 〉]ZJ

J ′
nJ ′

p

= EJZJ
JnJp

,

with EJ being the alpha-like eigenenergy H|JM〉 = EJ |JM〉.

III. APPLICATION

A. Representations

To separately assess the influence of the resonant and
nonresonant continuum in the alpha-like wave functions,
we define three single-particle representations called the (i)

TABLE I. Neutron and proton parameters (errors in parentheses)
for the Woods-Saxon and spin-orbit mean fields [20].

Nucleon V0 (MeV) Vso (MeV) a (fm) r0 (fm)

Neutron 52.052(1) 16.915(4) 0.811(0.2) 1.274
Proton 51.427(1) 16.191(5) 0.791(0.2) 1.278

bound basis (BB), (ii) pole basis (PB), and (iii) complete basis
(CB). The election of each one of these single-particle bases
will impact the neutron-neutron and proton-proton bases and,
consequently, in the four-body basis. In this way, we can
quantify the contribution of the continuum on the many-body
calculation.

The bound basis contains only neutron and proton states
bound to the core. Then, the alpha-like wave functions will
not include correlations with the continuum part of the energy
spectra, neither the neutron nor the proton ones. The pole
basis contains, besides the bound states, the resonant states
of the core-nucleon systems. Since the scattering contours
are absent, the completeness of the Berggren representation
is broken. Consequently, small imaginary parts may appear
in wave-function amplitudes and energies, also at the two-
particle stage. Then, the four-body amplitudes will contain
configurations that partially include the continuum. The third
basis, the complete basis, also includes the nonresonant con-
tinuum, particularly the complex contours companion of the
resonances included in the pole basis. This basis restores
the completeness of the complex-energy representation, and
former imaginary components of physically real magnitudes,
became zero (to some numerical resolution).

The core-nucleon mean-field parameters are optimized to
the energies of the nuclei 41Ca and 41Sc from Ref. [18].
The strengths and diffuseness are optimized by using χ2

minimization, with the reduced radius fixed by the experimen-
tal nucleon root-mean-square radius rn(p) = 3.375(3.385) fm
[19]. The same diffuseness and reduced radius are used for
the Woods-Saxon and the spin-orbit mean fields. A Coulomb
potential of uniform charge distribution is added to the proton
interaction with the same radius as for the Woods-Saxon. The
parameters are shown in Table I.

The neutron and proton single-particle states are calculated
by using the code GAMOW [20]. Table II shows them for the
first two major shells above 40Ca.

The neutron and proton bound bases (BBs) include the
real-energy states of Table II. The pole basis (PB) also
incorporates the resonances with |Im(ε)| < 0.25 MeV, i.e.,
{2d5/2, 0g9/2} neutron states, and {1p3/2, 1p1/2, 0 f5/2, 0g9/2}
proton states. Finally, a discretized number of Gauss-
Legendre real- or complex-energy scattering states are added
to the PB to generate the complete bases (CBs). Triangular-
shaped complex contours [17] are defined to enclose the
neutron {2d5/2, 0g9/2} and proton {1p3/2, 1p1/2, 0 f5/2, 0g9/2}
resonances, respectively. The contours are separated enough
from the poles such that they do not interfere with each other
[21]. Neutron s and p, and proton s real-energy scattering
states are also included in the CB. The energy cutoff for all
partial waves is taken as 12 MeV. Table III summarizes each
one of the neutron and proton bases considered.
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TABLE II. Neutron (ν ) and proton (π ) energies (MeV) in 40Ca.

εν επ

State GAMOW Ref. [18] GAMOW Ref. [18]

0 f7/2 −8.309 −8.36 −1.109 −1.09

1p3/2 −6.017 −5.84 (0.760, −0.007×10−3) 0.69

1p1/2 −3.995 −4.20 (2.291, −0.049) 2.38

0 f5/2 −1.626 −1.56 (4.982, −0.079) 4.96

0g9/2 (1.658, −0.004) (7.958, −0.222)

0g7/2 (8.321, −1.541) (14.430, −2.787)

2d5/2 (0.895, −0.188) (6.065, −1.734)

2d3/2 (1.954, −1.335) (6.951, −3.847)

0h11/2 (10.568, −1.129) (16.554, −2.074)

0h9/2 (17.876, −7.300) (24.164, −9.193)

B. Two-body interactions

The two-body residual interaction (2) is separately op-
timized for the T = 1 and T = 0 channels using the
Levenberg-Marquardt χ2 algorithm [22]. The range of the
interaction is taken as β = 1.6 fm [23] for all channels. A
first optimization using the even low-lying states of the three
nuclei 42Ca, 42Sc, and 42Ti gives a residue of about 800 keV.
This figure is much reduced (around 30 keV) considering only
the even states of Table IV. Although the ground state of
42Sc departs 1.4 MeV from the experimental one, this mean
field is more convenient to generate the correlated bases. The
triplet-odd strength mildly influences the spectra, so it was
taken to be zero [4,23–25]. Finally, the T = 0 strengths are
optimized using the odd 42Sc states listed in Table IV.

The optimization is carried out for each one of the single-
particle representations BB, PB, and CB. Table V shows the
optimized strengths, while in the previous Table IV, we com-
pare the calculated energies with the experimental ones. Due
to the missing nonresonant continuum in the pole basis, the
calculated energies using this representation show a spurious
imaginary component [27,28]. Using 30 neutron and 32 pro-
ton nonresonant continuum states in the CB, the real character
of the two-body energies is restored.

Figure 1 compares the low-lying part of the experimen-
tal spectra of 42Ca, 42Sc, and 42Ti with the calculated ones
using the complete basis. To describe more precisely the four-

TABLE III. Bound (BB), pole (PB), and complete (CB) single-
particle bases, with c preceding the scattering partial waves. Complex
contours are underlined.

Basis Neutron states Proton states

BB 0 f7/2, 1p3/2, 1p1/2, 0 f5/2 0 f7/2

PB BB + 2d5/2, 0g9/2 BB + 1p3/2, 1p1/2

0 f5/2, 0g9/2

CB PB + cd5/2, cg9/2, cs1/2 PB + cp3/2, cp1/2

cp1/2, cp3/2 c f5/2, cg9/2, cs1/2

TABLE IV. Experimental [26] and calculated low-lying energies
(MeV) in the 40Ca plus two nucleons. BB, PB, and CB refer to the
single-particle model space from which the two-body wave functions
are expanded.

Jπ Expt. BB PB CB

42Ca

0+ −19.843 −20.093 −19.923 + i0.016 −19.925

2+ −18.319 −18.428 −18.293 + i0.010 −18.291
42Ti

0+ −4.836 −4.502 −4.745 + i0.098 −4.741

2+ −3.282 −3.034 −3.311 + i0.040 −3.316
42Sc

1+ −9.799 −9.799 −9.803 + i0.065 −9.801

7+ −9.795 −9.790 −9.794 −9.794

body threshold, we consider different strengths for J = 0. The
calculated states with J > 2 are overbound, indicating that
smaller strengths are needed. To keep the number of free
parameters as small as possible, we stick with the parameter
of Table V to generate the neutron-neutron and proton-proton
bases.

C. 0+ states in 44Ti

In this section, the 0+ states of the nucleus 44Ti are calcu-
lated, and the amount of clusterization is assessed from the
collective character of the wave function. Comparison with a
truncated two-body basis is performed. The contents of the
continuum on the wave functions are analyzed.

Each single-particle basis BB, PB, and CB generates a two-
nucleon basis, which in turn leads to three four-body bases.
Likewise the single-particle basis, we label the result for the
four-body calculation using the same labeling, i.e., BB, PB,
and CB. Since each one of the nucleon-nucleon correlations
are taken into account, the content of continuum four-
body correlations between neutron-neutron, proton-proton,
and proton-neutron increment sequentially from the BB to
the CB bases. In particular, for the complete basis we keep
configurations which contains at most three nucleons in the
nonresonant continuum [29].

The ground-state energy of the 42Ca plus that of 42Ti
gives the uncorrelated four-body ground-state energy of

TABLE V. Optimized two-nucleon strengths (MeV) used for cal-
culating the two-body correlated bases with β = 1.6 fm.

Vτ J BB PB CB

se = 0 −58.823 −52.623 −51.023

>0 −73.116 −66.497 −63.816

so −5.479 −5.125 −5.059

te −9.595 −9.672 −9.659
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FIG. 1. Experimental and calculated two-body energies for the
complete basis.

−24.679 MeV, while the experimental ground-state energy of
44Ti is −33.423 MeV. Then, the proton-neutron interaction
has to provide 8.744 MeV of correlation energy. Using the
proton-neutron strength of Table V in the four-body Hamilto-
nian, the gain is around 2 MeV. To get the experimental energy
we increase the strengths of Vso and Vte by the factors χBB =
7.7028, χPB = 7.8191, and χCB = 7.9169, for each one of
the basis, respectively. We may interpret that the parameter
χ measures the increase of the proton-neutron T = 0 part of
the correlations in the four-body medium. This parameter also
indicates the viability of the two-proton two-neutron approach
without including the proton-neutron interaction to describe
alpha-like states in medium size nuclei.

Table VI shows the low-lying 0+ states of 44Ti calculated
using each BB, PB, and CB bases. The two-body model
spaces include all bound states, i.e., two-proton states with en-
ergy up to Scalc

2p (42Ti), and two-neutron states up to Scalc
2n (42Ca).

Table VI shows the amplitude of the main configurations.
All the excited states are sitting above the alpha threshold
α + 40Ca threshold, −28.301 MeV (Qα = −5.127 MeV).
The calculation from the PB has an imaginary component
that vanishes in the CB. Except for the third excited state,
when changing from the PB to the CB, the inclusion of the
continuum produce a gain in the correlations. The average
overbinding energy from the pole to the complete continuum
is about 200 keV, except for the fourth and fifth states that are
less bound.

Figure 2 shows the experimental and calculated 0+ levels
of 44Ti labeled with their corresponding isospin. Our model

TABLE VI. Low-lying 0+ energies and wave functions of 44Ti
calculated using the BB, PB, and CB model spaces. Z2

Jπ are the four-
body amplitudes, Z2

Jπ = ∑
i(Z

0+
i )2, with Z0+

i = Z0+
np of Eq. (5), and i

labeling all configurations with [Jn, Jp]Jπ .

Z2
J BB PB CB

E0+
1

−33.423 (−33.423, 0.197) −33.423

Z2
0+ 0.616 (0.616,0.000) 0.609

Z2
2+ 0.320 (0.325,0.000) 0.330

Z2
4+ 0.057 (0.053,0.001) 0.054

Z2
6+ 0.007 (0.005,0.000) 0.005

∑
J Z2

J 1 0.999 0.998

E0+
2

−27.338 (−27.888, 0.155) −28.086

Z2
0+ 0.164 (0.079,0.002) 0.087

Z2
2+ 0.496 (0.655,0.016) 0.708

Z2
4+ 0.022 (0.079,0.002) 0.086

Z2
6+ 0.318 (0.180,0.030) 0.112

∑
J Z2

J 1 0.993 0.993

E0+
3

−25.755 (−26.640, 0.136) −26.782

Z2
0+ 0.190 (0.207, −0.009) 0.222

Z2
2+ 0.130 (0.470, −0.002) 0.424

Z2
4+ 0.128 (0.047,0.004) 0.032

Z2
6+ 0.552 (0.249,0.000) 0.296

∑
J Z2

J 1 0.973 0.974

E0+
4

−25.569 (−25.574, 0.073) −25.566

Z2
0+ 0.016 (0.036, −0.002) 0.022

Z2
2+ 0.078 (0.211, −0.007) 0.175

Z∈
4+ 0.810 (0.542, −0.002) 0.662

Z2
6+ 0.096 (0.202, −0.034) 0.135

∑
J Z2

J 1 0.991 0.994

E0+
5

−24.923 (−25.346, 0.079) −25.232

Z2
0+ 0.334 (0.209,0.019) 0.240

Z2
2+ 0.524 (0.107,0.016) 0.157

Z2
4+ 0.127 (0.387,0.000) 0.245

Z2
6+ 0.015 (0.284,0.023) 0.352

∑
J Z2

J 1 0.987 0.994

E0+
6

−22.246 (−23.799, 0.139) −24.022

Z2
0+ 0.417 (0.368,0.000) 0.372

Z2
2+ 0.262 (0.458,0.012) 0.437

Z2
4+ 0.211 (0.135,0.001) 0.140

Z2
6+ 0.110 (0.011,0.000) 0.018

∑
J Z2

J 1 0.972 0.967

calculation does not find any of the first three excited states
below the alpha threshold due to the truncation of the model
space [30]. In particular, the states at 1.905 and 4.9 MeV were
not found in Ref. [31]. The first calculated excited 0+

2 state
at the energy 5.337 MeV agrees with the one estimated in
Ref. [30]. In this Ref., only states with the same configuration
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FIG. 2. Low-lying 0+ states of 44Ti. The results for the three
single-particle model spaces are shown. The experimental values are
from Ref. [26].

were kept, a = b in Eq. (4). The isospin assignments and
energies of the states above the alpha threshold agree with
those calculated using the complete model space of Ref. [31].
Still, we get two fewer states near the T = 2 ones. The ade-
quacy of the truncation was checked by incrementally adding
two-body states to the basis. It was found that the energy
position converged to the values shown in Fig. 2.

0+
2 is only 210 keV above the alpha threshold, at the ex-

citation energy of 5.337 MeV. None of the states listed in
Ref. [26] around 5 MeV is a 0+ state. Reference [32] lists
a state at the energy 5.304 or 5.315 (values came from dif-
ferent reactions). This state may correspond to the calculated
0+

2 state. The 0+
3 is nearby of the unconfirmed (0, 2)+ state,

while the 0+
6 , at the excitation energy 9.401 MeV, is in be-

tween the six experimental 0+ states with energy in the range
9.14–9.78 MeV.

Besides the energies, Table VI also shows the contribution
to the norm of the alpha-like wave function from configuration
[Jn, Jp]0+ . The figures in the table include the sum of different
energy states with the same angular momentum. The four-
body basis states in each basis are 20, 78, and 1437 for the
BB, PB, and CB, respectively. The ground-state is built mainly
from the 0+ and 2+ states of the correlated 42Ca and 42Ti.
The energies and amplitudes may significantly be affected
by the inclusion of the resonances, while when adding the
nonresonant continuum, the real part of the amplitudes are
mildly affected, but the imaginary component is canceled out.
The state 0+

5 is the only one with a non-negligible contribution
from each configuration [Jn, Jp]Jπ . Next, the state 0+

3 has
important contributions but the two-body 4+ configuration.
These two states may be candidates for alpha decay from
44Ti. The collectively is only one aspect in the alpha decay
calculation [3]; the other, the single-particle width, will be
analyzed in the next section.

The Berggren representation allows discriminating the
content of the single-particle continuum in the many-body
wave function [33]. Let us define the bound-bound (B-B)
contribution to the norm as the sum of four-body configura-
tions when both neutrons and protons are in bound states. The

FIG. 3. Two-neutron correlated bound states. The quantum num-
ber EJπ of each line is not stated for simplicity.

bound-resonant (B-R) probability sums up all single-particle
configurations for which at least one of the nucleon is in a res-
onant state and the others in bound configurations. Likewise,
the pole-continuum (P-C) probability contains all configura-
tions for which at least one of the nucleons is sitting in the
nonresonant continuum and the others in any of the poles
(bound or resonant states). Finally, the continuum-continuum
probability sums up the remainder amplitudes. Table VII
shows the amplitudes of Table VI(last column) separated by
the different single-particle bases, to assess the influence of
the continua spectra (proton and neutron) in the many-body
calculation. One can observe that the continuum makes more
than 10% of the configurations, with the major contribution
coming from the mixing between bound and resonant config-
urations.

D. Four-body truncated basis

The analysis of the four-body collectivity requires the cal-
culation of the formation amplitude [3], which implies a large
number of many-dimensional integrals. However, it is possi-
ble to truncate the two-body bases to reduce this calculation
without significantly losing the collective character of the
state. Figure 3 shows the correlated two-neutron bases cor-
responding to the complete single-particle basis. The massive
growth of the two-body basis states above −9 MeV suggests
defining a two-neutron basis with states up to 10 MeV of
excitation energy. With this basis, the number of four-body
basis states reduces from 1437 to 76.

Let us call Case I the four-body basis used up to this stage,
i.e., it contains all bound two-body correlated states, and
Case II the truncated four-body basis. This last one includes
all correlated proton states and the correlated two-neutron
states up to 10 MeV of excitation energy. The strength of
the proton-neutron interaction was readjusted (χCB = 7.9809)
to reproduce the experimental ground-state energy of 44Ti.
Table VIII shows the energies and the amplitudes from the two
four-body bases for the states 0+

3 and 0+
5 . Both the energies

and amplitudes are very similar in the truncated basis. It is an
open question how these differences translate to the calcula-
tion of the formation amplitude and the spectroscopic factor,
this calculation is in progress. The following section analyzes
the effect of truncation on the single-particle width.

E. Two-body decay width

The alpha-decay half-lives calculation from the many-body
spectroscopic factor requires the single-particle width and the
formation amplitude [3]. In this section, we calculated the
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TABLE VII. Four-body wave-function amplitudes for the 0+ states discriminated by single-particle configurations, as explained in the text.
The continuum-continuum contributions are of the order of one eV.

E0+ (MeV) −33.423 −28.086 −26.782 −25.566 −25.232

Z2
Jπ B-B B-R P-C B-B B-R P-C B-B B-R P-C B-B B-R P-C B-B B-R P-C

0+ 0.550 0.041 0.002 0.077 0.005 0.002 0.200 0.014 0.002 0.019 0.001 0 0.216 0.016 0.001

2+ 0.264 0.058 0.003 0.390 0.300 0.007 0.285 0.129 0.004 0.122 0.049 0.001 0.129 0.024 0.001

4+ 0.049 0 0 0.053 0.031 0.001 0.024 0.007 0 0.603 0.050 0.003 0.222 0.020 0.001

6+ 0 0 0 0.114 0.003 0 0.286 0.008 0 0.130 0.004 0 0.340 0.009 0
∑

J Z2
J 0.868 0.105 0.005 0.634 0.341 0.010 0.795 0.183 0.006 0.874 0.111 0.004 0.908 0.075 0.003

single-particle widths for the 0+
3 and 0+

5 states. We use the
well-known current expression [34]

�sp = h̄2Re(k)

μ

|u(r)|2
|H+

0 (η, kr)|2 , (6)

with k the wave number related to the single-particle energy
ε defined below, μ the reduced mass of the α − 40Ca system,
u(r) the corresponding relative Gamow wave function, and
H+

0 the outgoing Coulomb function.
The single-particle wave function is calculated with the

geometric parameters of Table I. The strength of the Woods-
Saxon is adjusted to reproduce the corrected energy of the 0+
states (Table VI, last column) relative to the threshold,

εi = E (0+
i ) − E (0+

1 ) + Qα + �Esc, (7)

with Qα = −5.127 MeV and �Esc = 4.7 keV the electron
screening.

Table IX shows the resonant parameters (energy and width)
for the alpha decay of the excited states 0+

3 and 0+
5 of 44Ti. The

results of nontruncated (Case I) and truncated bases (Case II)
are given.

An alternative mean-field for the calculation of the single-
particle width is provided by the local potential used in
Ref. [35] which describes the α-elastic scattering from
40Ca: a = 1.04 fm, r0 = 0.68 fm. Using this potential the
widths are reduced by a factor around two. For exam-
ple, the widths (for the nontruncated basis) changed from

TABLE VIII. Comparison of the 0+
3 and 0+

5 states from two dif-
ferent four-body bases. One includes all bound two-body correlated
states, Case I and the other with a reduction of the two-neutron bases
states, Case II.

0+
3 0+

5

Four-body basis Case I Case II Case I Case II
E (MeV) −26.782 −26.742 −25.232 −25.203

Z2
0+ 0.222 0.221 0.240 0.235

Z2
2+ 0.424 0.431 0.157 0.155

Z2
4+ 0.032 0.032 0.245 0.252

Z2
6+ 0.296 0.293 0.352 0.352

∑
J Z2

J 0.974 0.977 0.994 0.994

0.58×10−12 to 0.26×10−12 MeV, and from 0.19×10−4 to
0.11×10−4 MeV, for the 0+

3 and 0+
5 states, respectively. In any

case, the 0+
5 state must be dismissed as a resonance; it is an

example of the so-called wide resonance. In terms of the half-
lives Tsp = h̄ ln 2/�sp, this resonance decays in 2.4×10−17 s
(or 4.2×10−17 s with the mean field of Ref. [35]), which is
orders of magnitude faster than the prompt gamma decay.

The half-life Tsp = 0.786 ns of the 0+
3 is a lower-limit es-

timation (this figure changes to 1.746 ns using the mean-field
of Ref. [35]) since the consideration of the alpha’s structure,
coded in the four-body spectroscopic factor S , may increase
this value (T1/2 = Tsp/S) [3]. Truncation of the four-body
basis affects the single-particle half-lives by a factor of two.
Even when this change may be significant, the reduction of a
factor around twenty of the multidimensional integral is worth
emphasizing.

IV. CONCLUSIONS

The ground and 0+ excited states of 44Ti were studied
using an effective interaction, and considering the correlation
between all pairs of nucleons. The influence of the continuum
spectrum was assessed using the Gamow shell-model frame-
work. Our calculation supports the 0+ assignment for the
experimental (0, 2)+ state at 6810(60) keV. The analysis of the
collectivity of the excited states suggests that this state may
be a candidate for alpha decay with a lower limit around the
nanoseconds. Although this value is small to be measured, the
structure of the two-neutron two-proton in the mother nucleus
may increase this value through the spectroscopic factor.

The calculation of the 44Ti alpha half-life using the four-
body spectroscopic factor, including the full continuum and
all pair of correlations, is undergoing.

TABLE IX. Single-particle alpha decay energy, width (in MeV),
and half-lives.

Case I Case II

State ε �sp Tsp ε �sp Tsp

0+
3 1.519 0.581×10−12 0.786 ns 1.559 1.261×10−12 0.362 ns

0+
5 3.069 0.193×10−4 0.024 fs 3.098 0.232×10−4 0.020 fs
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