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Zero-sound modes for the nuclear equation of state at supra-normal densities
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The meaningful correlations between the zero-sound modes and the stiffness of the nuclear equation of
state (EOS) are uncovered in nuclear matter with the relativistic mean-field theory. It is demonstrated that the
high-density zero-sound modes merely exist in models with the stiff EOS. While the stiff EOS can be softened
by including ω-meson self-interactions (the ω4 term), the weakened coupling of the ω-meson self-interactions
reignites the zero sound at high density. These results suggest that the high-density zero-sound modes can be
used to probe the stiffness of the EOS at supra-normal densities. The implications and effects of zero sounds are
also discussed in heavy ion collisions and neutron stars.
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I. INTRODUCTION

A central issue in the theory of astrophysical compact
objects and heavy-ion reactions is the equation of state (EOS)
of asymmetric matter which is crucial for the description of
the exotic nuclei off β stability, the dynamical evolution of
many violent astrophysical events, and the structure of the
emerging compact stars [1–6]. After decades of effort, appre-
ciable progress has been achieved on constraining the EOS
near or beneath the saturation density based on astrophysical
observations or terrestrial laboratory experiments [7–9]. How-
ever, accurate extraction of the high-density EOS through the
energetic heavy-ion collisions in the terrestrial laboratories or
the observations of neutron star properties is rather challeng-
ing [8,10,11], although the multimessenger observations by
virtue of the currently operating satellites (NICER [12,13])
and the gravitational-wave (GW) laser interferometers (ad-
vanced LIGO and Virgo [14–16]) may hopefully impose new
constraints on the structure of neutron stars and the EOS, for
instance, see Ref. [17]. Due to the high nonlinearity of the nu-
clear many-body problems, the theoretical extrapolation of the
EOS to the high-density region seems to be quite diversified,
depending upon the models or approaches used. In this case,
it is very meaningful to search for new theoretical constraints
and sensitive probes to the high-density EOS that can possibly
be verified by experiments.

The electric multipolar excitation of the atomic nucleus
reflects or constrains properties of the EOS [18], such as the
nuclear matter compression modulus [19,20], the symmetry
energy [21,22], and the effective mass of the nucleon [23,24]
which are correlated tightly with the isoscalar giant multi-
pole resonances, the isovector giant dipole resonance, and the
isoscalar giant quadrupole resonance, respectively. Currently,
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the widely studied nuclear collective modes are mainly limited
to finite nuclear systems near or below saturation density. The
constraints on the EOS from these collective modes just apply
to relevant density domains. In a search of the constraints on
the high-density EOS, our attention will be paid to the zero
sound at suprasaturation densities, as it is pervasive in the
meson-nucleon interacting system [25,26]. As a digression, it
is interesting to mention the zero sound in condensed matter.
At low temperatures, the usual propagation of ordinary sound
waves in a gas is suppressed due to the rarity of collisions.
However, in a Fermi gas, another type of oscillation mode:
zero sound, predicted by Landau early in 1957 [27] and sub-
sequently observed in liquid 3He [28,29], can still propagate
even close to zero temperature. The concept of zero sound has
been applied in the past to isotropic two-component Fermi
liquids [30], holographic quantum liquids [31], and nuclear
matter [25]. In particular, it was reported that zero-sound
modes in neutron stars can influence the neutrino irradiation
and heat conduction in the star cooling process in the presence
of the nucleon superfluids [32–34]. With increasing attention
on the sound velocity in neutron stars [35,36], the study of the
zero sounds in dense matter is of special interest.

In the past, various approaches from the macroscopic to
microscopic models have been developed to study collective
modes. The hydrodynamic approaches are usual macroscopic
models where the collective modes are obtained by solving the
master equation which may be regarded as a semiclassic form
of the time-dependent Hartree-Fock (HF) theory [37–41].
Combining rather conveniently with the transport models,
the macroscopic approaches can still renew the applica-
tion in reproducing the data of collective modes [42–45].
Microscopically, the collective modes are mainly derived
from the time-dependent HF approach, the random phase
approximation (RPA), and self-consistent extensions with
more complicated configurations [46]. Strikingly, the rela-
tivistic RPA is equivalent to the time-dependent relativistic
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mean-field (RMF) theory in the limit of small amplitude oscil-
lations [47,48]. The nonrelativistic and relativistic RPA have
been used very successfully in studies of various collective
modes in finite nuclei [49–54]. In this work, we employ the
relativistic RPA based on the RMF theory to explore the char-
acteristics of zero-sound modes in nuclear matter especially
at suprasaturation densities. The emphasis will be placed on
the relationship between the stiffness of the EOS at suprasatu-
ration densities and the zero sound, while the variation of the
stiffness of the high-density EOS can be simulated by mainly
adjusting the vector potential through the self-interaction of
the vector meson [55].

The remainder of the paper is organized as follows. In
Sec. II, we will introduce briefly the formalism of the relativis-
tic mean-field models and the random phase approximation.
In Sec. III, numerical results and discussions are presented.
At last, a summary is given in Sec. IV.

II. FORMALISM

A. Effective model of strong interaction

In the RMF approach, the isoscalar-scalar σ , the isoscalar-
vector ω, and the isovector-vector ρ (b0) mesons mediate the
nuclear interactions to quantitatively describe nuclear matter
and finite nuclei. The effective Lagrangian can be written
as [1,56–58]

L = ψ̄
[
iγμ∂μ − M + gσ σ − gωγμωμ − gργμτ3bμ

0

]
ψ

+ 1
2

(
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0, (1)

where nucleons and mesons (ψ, σ, ω, b0) have their free
masses M, mσ , mω, and mρ , respectively. Fμν and Bμν are the
respective strength tensors of the vector mesons ω and ρ,

Fμν = ∂μων − ∂νωμ, Bμν = ∂μb0v − ∂νb0μ. (2)

The nonlinear equations of motion for the nucleon and
mesons are deduced from the standard Euler-Lagrange for-
mula, and in the mean-field approximation, meson fields are
replaced by their expectation values. With these mean-field
quantities solved by iteration, the resulting effective meson
masses m∗

i are given by the formulas
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with E∗
i = √

k2 + (M∗
i )2. For neutron star matter, Eqs. (4)

and (5) can be easily extended to include leptons based on
the chemical and β equilibriums [59,60].

B. Polarizations in RPA

In the relativistic RPA approach, one can, in principle,
involve the particle-hole and particle-antiparticle excitations
of the fermions by the polarization functions, while with the
framework of the RMF models the particle-antiparticle exci-
tations are usually ignored from the Dirac sea. The interacting
polarization is determined through the Dyson equation, and,
for instance, the longitudinal polarization that is usually used
to search for the collective modes is given as

�̃L = �L + �LDL�̃L, (6)

where the polarization � and propagator D are in the matrix
form. In generalized matter including electrons, the lowest-
order longitudinal polarization matrix is written as

�L =

⎛
⎜⎜⎜⎜⎝

�e
00 0 0 0

0 �n
s + �

p
s �

p
m �n

m

0 �
p
m �

p
00 0

0 �n
m 0 �n

00

⎞
⎟⎟⎟⎟⎠, (7)

where the individual polarization entries are given by

i�s(q̄, q0) =
∫

d4 p

(2π )4
Tr[G(p)G(p + q)], (8a)

i�m(q̄, q0) =
∫

d4 p

(2π )4
Tr [G(p)γ0G(p + q)], (8b)

i�00(q̄, q0) =
∫

d4 p

(2π )4
Tr [G(p)γ0G(p + q)γ0] (8c)

with Tr indicating the trace over Dirac indices. Here, the
nucleon Green function reads

Gi(k) = (γμkμ + M∗
i )

[
1

k2
μ − M∗2

i + iε

+ iπ

E∗
ki

δ(k0 − E∗
ki )θ (kFi − |k|)

]
, i = p, n, (9)

where M∗ = M − gσ σ0 is the nucleon effective mass, and kFi

is the Fermi momentum. In nuclear matter without electrons,
�L in Eq. (7) reduces to a 3 × 3 matrix.

The propagator matrix DL is in a relatively simple form
if there are no crossing coupling terms between different
mesons [61]. With the crossing coupling term of the ρ and
ω mesons in Eq. (1), we first interpret the concise derivation.
With the path integral method, it has been proven that the
generating functional of proper vertices �0[�] in the tree
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approximation is equal to canonical action S[�],

�0[�] = S[�] =
∫

d4xL. (10)

In this case, the propagator D(x, y) and two-point proper ver-
tex �0

2 are simply the mutual reciprocal, i.e.,

�0
2 (x, y) = D−1(x, y) (11)

with �0
2 (x, y) = δ2�0

δφ(x)δφ(y) , which follows from a general rela-
tion ∫

d4z�2(x, z)D(z − y) = δ4(x − y). (12)

Accordingly, the propagator DL with the crossing coupling
term, obtained from the inverse of �0

2 in the momentum rep-
resentation, is given as [62]
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with χV = χω + χρ , χI = χω − χρ , and χ̃i = q2
μ

q̄2 χi, i = ω, ρ.
Expressions for the various meson propagators with nonlinear
meson couplings are given as follows:
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16�V g2
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The nuclear systems undergo transitions at small-amplitude
density fluctuations by encountering the zeros of the following
dielectric function:

εL = det (1 − DL�L ) = 0. (15)

As a collective mode that is determined by the zeros of the
dielectric function, zero sound follows the branch of the dis-
persion relation that has the limit q0 → 0 for q → 0, apart
from the optical branch (called meson branch in the litera-
ture [26]). If the imaginary part of the dielectric function also
vanishes, the zero sound is undamped, while it is damped
for the nonvanishing imaginary part. In particular, the static
uniform matter (q0 = 0) becomes unstable at subsaturation
densities when the positive εL changes its sign [1]. Note that
the microscopic RPA calculation of the zero sound herein can
alternatively be interpreted by Landau’s zero sound kinetic
equations [63]. With the expressions of DL and �L, we can

FIG. 1. The relation between the pressure and the energy den-
sity in symmetric nuclear matter with various RMF parameter sets,
NL3w03, GM1, TM1w02, and FSUGarnet.

write explicitly the longitudinal dielectric function in symmet-
ric nuclear matter as

εL = (1 − 2�sχs)
[
1 + 4�2

Lχwχρ + 2�L(χω + χρ )
]

− 4(1 + 2χρ�L )χsχ̃ω�2
m, (16)

which neglects the electron composition in Eq. (7) and photon
exchange in Eq. (13) and is rewritten as

εL = εsεv − εm, (17)

where εs, εv , and εm are the scalar, vector, and scalar-vector
mixed components, respectively.

III. RESULTS AND DISCUSSIONS

In this work, we compare the properties of zero sound with
four typical parameter sets, NL3 [64], GM1 [65], TM1 [66],
and FSUGarnet [67] with a rough classification of the stiff and
soft EOSs at high densities. In order to better satisfy the radius
constraints of neutron stars [13,68], TM1 and NL3 are mod-
ified by introducing the isoscalar-isovector (ω − ρ) coupling
term which is used to produce the softer symmetry energy and
smaller radii of neutron stars [69]. For a given ω − ρ coupling
constant �v , the ρNN coupling constant gρ is readjusted to
keep the symmetry energy unchanged at kF = 1.15 fm−1, fol-
lowing Ref. [1]. The modified models NL3w03 and TM1w02
based respectively on NL3 and TM1 are renamed according to
the value of �v , see Table I, where parameters and saturation
properties of these parameter sets are listed. Shown in Fig. 1
is the relation between the pressure and energy density which
is usually regarded as the nuclear EOS. The sound velocity
square v2

s with v2
s = ∂P/∂ε being the partial derivative of the

pressure with respect to the energy density is used to describe
the stiffness of the EOS. It is seen that the EOS with parameter
sets TM1w02 and FSUGarnet is clearly softer than that with
NL3w03 and GM1 with increasing density. The softening
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TABLE I. Parameters and saturation properties for various parameter sets. The meson masses mi (i = σ, ω, ρ), the incompressibility K0,
and the symmetry energy Esym are in units of MeV. The saturation density ρ0 is in units of fm−3.

gσ gω gρ mσ mω mρ g2 g3 c3 �V ρ0 K0 M∗/M Esym

NL3w03 10.217 12.868 5.6642 508.270 782.501 763 10.431 −28.890 – 0.03 0.148 272.56 0.60 31.8
GM1 8.700 10.603 4.060 500.000 782.500 763 9.235 −6.131 – – 0.153 300.28 0.70 32.5
TM1w02 10.029 12.614 5.277 511.198 783.000 770 7.233 0.618 71.31 0.02 0.145 281.20 0.63 30.7
FSUGarnet 10.505 13.700 6.945 496.939 782.500 763 9.576 −7.207 137.981 0.04338 0.153 229.63 0.58 30.9

stems from the inclusion of the nonlinear self-interaction term
of the ω meson (∼c3ω

4) that lowers the repulsion provided
by the ω meson at high densities, while the excess softening
with the FSUGarnet as compared to that with the TM1w02
can be attributed dominantly to the larger parameter c3 in
FSUGarnet. Zero sounds are usually the collective oscillation
modes following the dispersion relation at small momentum
transfer q. We check the zero-sound modes at various small
q = 1, 10, and 20 MeV and find that the results are similar,
as shown in Fig. 2. For larger momenta, the onset density
of zero-sound mode increases moderately. For instance, with
the model NL3w03, the appearance of zero-sound modes
at the density of 2.2 ρ0 is observed at q0 = 61.2 MeV for
q = 80 MeV, in comparison to the onset density 2.05 ρ0 at
q0 = 7.7 MeV for q = 10 MeV. For numerical concision, the
momentum q = 10 MeV is typically chosen in the following
calculation, and it is taken in the relevant figures below, unless
otherwise indicated. Represented in Fig. 3 are the zero-sound
modes with the RMF models in symmetric nuclear matter. At
low densities, it is shown that there are two close branches of
the zero-sound modes in all models. Intrigued by the ρ meson
primarily [63], they are labeled as the isospin zero sound.
The dominance of the isovector contribution arises from the
quadratic term of the polarization in εv in Eqs. (16) and (17)
due to the inclusion of the ρ meson exchange without which
the zero point of the dielectric function does not appear at low
density for the significant cancellation between the vector and

FIG. 2. High-density zero-sound modes as a function of density
with the NL3w03 and GM1. (a)–(c) are the results for momenta q =
1, 10, and 20 MeV, respectively.

scalar potential strengths (g2
ω/m2

ω − g2
σ /m2

σ ) in the presence
of the scalar-vector mixing polarization �m [25,26]. Specifi-
cally, the longitudinal polarization in Eq. (16) tends to have a
sharp peak at low densities, in contrast to the flat distribution
at high densities, and the significant magnitude of the peak
ensures the sufficient cancellation of two terms in Eq. (17)
and the appearance of the zero points. On the contrary, a sharp
difference in the zero-sound modes at high density that are
dominated by the isoscalar interactions exists for models with
different stiffness. With NL3w03 at ρB > 2ρ0 and GM1 at
ρB > 1.6ρ0, there are two zero-sound modes, which appear to
be similar to those in the Walecka model [26], while no zero
sound is found even at considerably high density in TM1w02
and FSUGarnet. The lower curves of the zero-sound modes in
NL3w03 and GM1 are always damped, abiding by �� �= 0,
which allows the decay of the collective modes into real
particle-hole pairs, or particle-antiparticle pairs if the vacuum
polarization is involved.

The onset of the zero sounds is closely relevant to the
stiffness of the EOS, as we see from Fig. 1 that the EOSs with
the NL3w03 and GM1 are clearly stiffer than those with the
TM1w02 and FSUGarnet. Actually, the zero-sound modes do
necessarily need the repulsive interaction dominance [25,26].
The strong net repulsion after the partial cancellation by the
scalar attraction in NL3w03 and GM1 is in support of the
onset of the zero sounds at high density, while the vector

FIG. 3. Zero-sound modes (q = 10 MeV) with various RMF
models. High-density (isoscalar-dominant) zero sounds and isospin
zero sounds are distinguished by different colors.
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TABLE II. The parameters for various nuclear EOSs based on TM1w02 and FSUGarnet. The unlisted parameters are the same as those
of the corresponding parameter set. The sound velocity squares v2

2.0 at 2ρ0 and v2
2.5 at 2.5ρ0 are listed. Also given are the maximum mass of

neutron stars and radius of the 1.4M� star with the composition of neutrons, protons, and electrons.

Models c3 g2 g3 gσ gω v2
2.0 v2

2.5 Mmax(M�) R1.4(km)

71.31 7.233 0.618 10.029 12.614 0.213 0.313 2.120 13.487
35 8.904 −11.587 9.984 12.451 0.254 0.370 2.292 13.647

TM1w02 20 9.609 −16.850 9.961 12.380 0.281 0.419 2.401 13.719
5 10.338 −22.266 9.938 12.307 0.321 0.494 2.558 13.797
1 10.537 −23.738 9.932 12.287 0.335 0.523 2.617 13.818

137.98 9.576 −7.207 10.505 13.700 0.228 0.314 2.066 11.706
25 11.089 −28.575 10.174 13.084 0.382 0.512 2.494 13.294

FSUGarnet 15 11.252 −30.631 10.141 13.022 0.418 0.560 2.581 13.337
5 11.420 −32.720 10.107 12.958 0.467 0.627 2.695 13.382
1 11.489 −33.566 10.093 12.932 0.491 0.663 2.752 13.401

potentials with the TM1w02 and FSUGarnet are significantly
weakened by the ω meson self-interaction, declining the zero
sounds at high density.

To further clarify the relation between the stiffness of the
nuclear EOS and the zero-sound modes at high density, we
need to examine the zero-sound modes for various stiffness
of the EOS. It is known that one can adjust the stiffness of
the EOS through the meson self-interacting terms [66,70,71],
while in this work we alter the stiffness of the high-density
EOS by predominantly readjusting the coupling strength of
the ω self-interacting term in Eq. (1). In order to keep the
incompressibility unchanged, other coupling constants in the
model should be moderately modified by less than 5% [55].
As a first example, here, we carry out the model adjustment
based on the original parameter sets TM1w02. The readjusted
parameter sets are given in Table II where the sound velocities
at ρ = 2.0ρ0 and 2.5ρ0 are also presented to indicate the
stiffness of EOS, and the corresponding EOSs of TM1w02 are
plotted in Fig. 4. Since the low-density EOS is little changed,

FIG. 4. Relation between the pressure and energy density for
various EOSs with different nonlinear parameters c3 in the TM1w02.

the isospin zero-sound modes just change slightly with the
decrease of c3. As the EOS becomes stiffer by lowering the
parameter c3, we can see from the upper panel of Fig. 5
that the high-density zero-sound modes start to appear at
c3 = 35 with a v2

2.0 = 0.254 and gradually become expanded.
The appearance of the isoscalar-dominant zero sounds at high
density is tightly associated with the nuclear effective in-
teractions, as the reduction of the parameter c3 significantly
lowers the effective mass of the ω meson and strengthens the
contribution from the ω meson propagator in the dielectric
function. More specifically, the appearance of the zero-sound
modes at high density requires the inequality for χω: |χω| >

(1 + 2χρ�L )/[2�L(1 + 2χρ�L )], according to Eq. (16). This
inequality justifies the occurrence of the zero-sound modes
for the stiffer EOS, obtained with the smaller ω effective
mass by reducing the parameter c3. With the FSUGarnet, the
high-density zero sounds appear similarly with a stiffening

FIG. 5. High-density zero-sound modes with various EOSs
based on the TM1w02 and FSUGarnet. With decreasing c3 to 35 in
TM1w02 and 25 in FSUGarnet, the isoscalar-dominant zero sounds
appear.

044312-5



YE, MARGUERON, LI, AND JIANG PHYSICAL REVIEW C 108, 044312 (2023)

FIG. 6. Isoscalar-dominant zero-sound mode with the NL3w03,
GM1, TM1w02, and FSUGarnet. Dot-dashed curves are with scalar-
vector mixing, the dashed curve represents zeros from the vector
meson branch (εv), and the dotted curve shows the zeros from the
scalar meson propagation (εs).

of the EOS by reducing c3. As shown in the lower panel of
Fig. 5, the high-density zero sounds appear once the param-
eter c3 reduces to 25 or less and correspondingly the sound
velocity square v2

2.0 increases up to 0.382, also see Table II for
the readjusted parameters. It is worth noting that the sound
velocity corresponding to the onset of the zero sounds in
FSUGarnet is higher than that in TM1w02. This difference
is mainly attributed to the negative σ meson self-interacting
coupling constant g3 in FSUGarnet that is also quite different
by stiffening the EOS through reducing c3. The various g3

of FSUGarnet in Table II give rise to a much reduced scalar
meson effective mass m∗

σ [see Eq. (3a)] and affect the scalar
meson propagator [see Eq. (14b)]. It is worth mentioning the
role of the scalar-vector mixing polarization (�m) in the onset
of the zero sounds. Without the �m, zero sounds arising from
the poles of the vector meson branch in εv of Eq. (17) appear
even at low densities with all of the parameter sets NL3w03,
GM1, TM1w02, and FSUGarnet, as shown in Fig. 6. The
dotted curve shows the poles from the scalar meson which are
related to the instability mode [26]. Note that, for FSUGarnet,
there are no poles from the vector meson at high density due
to the weak repulsive potential. In comparison to the results
in Fig. 3, we can conclude that the �m plays a necessary role
in the cancellation between the contributions from the vector
and scalar interactions, thereby influencing the onset of the
zero sounds.

Above is the analysis in symmetric matter, and now we
turn to the results in asymmetric matter. Since the RMF ap-
proximation almost gives rise to the same nucleon as that
in symmetric matter, the main difference of the dielectric
function arises from the separate proton and neutron Fermi
momenta in the integrations of the polarizations and from
the isospin asymmetry dependence of the meson effective
masses due to the isoscalar-isovector coupling. As a result,
the zero-sound modes in asymmetric matter, obtained from

FIG. 7. Zero-sound modes with various asymmetry parameters α

in the NL3w03 and GM1. Damped and undamped zero-sound modes
are distinguished by different colors and line types.

the zeros of the dielectric function, can be more than those
in symmetric matter, as shown in Fig. 7. Figure 7 shows
that the density profiles of the isoscalar-dominant zero sounds
with the stiff models NL3w03 and GM1 are quite different
at various isospin asymmetries [α = (ρn − ρp)/ρB]. This dif-
ference arises primarily from the diverse values of m∗

σ and
correspondingly different scalar meson propagators in two
models. Meanwhile, no zero sounds are found in soft models
TM1w02 and FSUGarnet in asymmetric matter. Accordingly,
in asymmetric matter the soft and stiff EOSs can be similarly
distinguished with the onset of the zero-sound modes. In mod-
els with the soft EOS, the occurrence of zero-sound modes in
asymmetric matter needs the stiffening of the EOS, similar
to that in symmetric matter. For instance, at α = 0.5, the
zero-sound modes in TM1w02 (FSUGarnet) start to appear,
as shown in Fig. 8, with stiffening the EOS by reducing the
value of the parameter c3 to 20 (10). On the other hand, the
isospin zero-sound modes vanish gradually with increasing α,
independent of EOS stiffness. We will leave a detailed check
for the isospin zero sounds in a separate work, since it is a little
digressive of the theme of this work concerning the sensitivity
to the EOS stiffness.

The dependence of the zero sound occurrence on the stiff-
ness of the EOS in dense asymmetric matter has experimental
implications to possible observables concerning the heavy ion
collisions. As the centroid energy of zero sounds is compara-
ble with the temperature or some thermalized energy of the
colliding system, the formation of dense matter, the subse-
quent thermalization, and the late relaxation period with the
particle emissions, evaporations and fragmentation ought to
be affected by the zero-sound modes and may have signals
from the emitted particles [72]. An intensive investigation of
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FIG. 8. Zero-sound modes in asymmetric nuclear matter (α =
0.5) with the readjusted parameter c3 in the TM1w02 and
FSUGarnet.

the heavy ion collision and detailed comparison with the ex-
perimental signals can hopefully be used for detecting the zero
sound occurrence and its relation to the stiffness of the EOS.
In addition, it is interesting to note that zero-sound modes
are important in the low-energy fusion reactions near thresh-
old. At astrophysical energies, various zero-sound modes can
strikingly enhance the subthreshold fusion rate in the astro-
physical nucleosynthesis [73,74]. In the hot-fusion reactions
for the synthesis of superheavy nuclei, it also shows some
evidence that the zero-sound modes might take a part in in-
creasing the survival rate of the compound nucleus prior to
the fission [75].

Below, we discuss the behavior of zero-sound modes in
neutron star matter with the simple composition of neutrons,
protons, and electrons at β equilibrium. Zero-sound modes
in neutron stars can possibly be associated with neutron star
cooling [32–34] and pulsar radiation [76], their correlation
with the sound velocity can directly point to the stiffness
of the EOS [35,36]. Therefore, investigating the connection
between zero-sound modes and the EOS of neutron star mat-
ter during the multimessenger era is of significance for our
understanding of relevant astrophysical phenomena. Shown in
Fig. 9 are the zero-sound modes in neutron star matter with
various soft and stiff models. As shown in Fig. 9, damped
zero-sound modes are similar with various RMF models, al-
most independent of the stiffness of the EOS, while undamped
modes exhibit diverse results. Undamped zero-sound modes
exist only in the stiff models NL3w03 and GM1. Even the
models with the soft EOS are made much stiffer by reducing
c3, undamped zero-sound modes still do not come up. Due
to the complexity of neutron stars, including the variations
in the isospin-dependent interactions, isospin asymmetry, and
internal compositions with different models, the correlation
between zero-sound modes and the stiffness of the EOS is
weakened. Numerically, the weakening of the correlation is
not surprising, since the subtle cancellation for the zeros in
the dielectric function in asymmetric matter, see Eqs. (16)

FIG. 9. Zero-sound modes with various RMF models in neutron
star matter. Presented in the lowest panels (c) and (f) are zero-sound
modes in the stiffened TM1w02 with c3 = 20 and FSUGarnet with
c3 = 15, respectively.

and (15), is violated by including the electrons and photon
exchange in neutron star matter at high isospin asymmetry.

IV. SUMMARY

In this work, we have investigated in the RMF theory the
properties of zero-sound modes in nuclear matter through the
response function in the relativistic RPA. The nuclear models
we choose are roughly classified into two categories of the
soft and stiff EOSs, and the readjustment of the meson self-
interaction couplings is conducted to modulate the stiffness of
EOS. It shows that in symmetric nuclear matter all selected
RMF models produce the isospin zero-sound modes at low
density similarly, and the isoscalar-dominant zero sound is
absent at low density. It is found that sharp difference exists in
the zero-sound modes at high density due to different stiffness
of the EOS. The zero sounds at high density appear for the
stiff EOS and in contrast are absent for the soft EOS. As
the density increases, the contribution of the ρ meson to the
zero-sound modes diminishes, while the interaction of the ω

meson develops gradually to be dominant. At high density,
the isoscalar-dominant zero sounds arise in the stiff models
NL3w03 and GM1 with their repulsive ω field being linear
in density. As the repulsion is weakened by the nonlinear
self-interaction of the ω meson, the zero sounds disappear at
high density, as typically manifested by the models TM1w02
and FSUGarnet that are characteristic of the softening of the
repulsion. In these soft models, the high-density zero sound
reappears when the EOS stiffens by reducing the nonlinear
self-interaction of the ω meson appropriately. Apparently,
whether the isoscalar-dominant zero sounds occur at high
density or not can serve as a significant probe to categorize
the stiffness of the high-density EOS which suffers the large
uncertainty. It also indicates that the density spread of the
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isoscalar-dominant zero sounds at high density is sensitive to
the stiffness of EOS. In addition, the implications and effects
of zero sounds are also discussed in heavy ion collisions and
neutron stars. In particular, for the zero-sound mode with the
centroid energy being comparable with the temperature of
compressed matter, detecting the zero sound occurrence and
its relation to the stiffness of the EOS can be hopeful through
intensive investigation of the heavy ion collision and detailed
comparison with the experimental signals.

ACKNOWLEDGMENTS

We thank Dr. Rong-Yao Yang, Dr. Si-Na Wei, Profs. Gao-
Chan Yong, and Zhao-Qing Feng for useful discussions. This
work was supported in part by the National Natural Science
Foundation of China under Grants No. 11775049 and No.
12375112. The Big Data Computing Center of Southeast Uni-
versity is acknowledged for providing the facility support on
the partial numerical calculations of this work.

[1] C. J. Horowitz and J. Piekarewicz, Phys. Rev. Lett. 86, 5647
(2001).

[2] W.-Z. Jiang, Phys. Rev. C 81, 044306 (2010).
[3] R. Wang and L.-W. Chen, Phys. Rev. C 92, 031303(R) (2015).
[4] G. Shen, C. J. Horowitz, and E. O’connor, Phys. Rev. C 83,

065808 (2011).
[5] J. M. Lattimer, Annu. Rev. Nucl. Part. Sci. 62, 485 (2012).
[6] M. Oertel, M. Hempel, T. Klähn, and S. Typel, Rev. Mod. Phys.

89, 015007 (2017).
[7] Ch. Hartnack, H. Oeschler, and J. Aichelin, Phys. Rev. Lett. 96,

012302 (2006).
[8] P. Danielewicz, R. Lacey, and W. G. Lynch, Science 298, 1592

(2002).
[9] J. M. Lattimer, Gen. Relativ. Gravit. 46, 1713 (2014).

[10] B.-A. Li, L.-W. Chen, and C. M. Ko, Phys. Rep. 464, 113
(2008).

[11] A. W. Steiner, J. M. Lattimer, and E. F. Brown, Astrophys. J.
722, 33 (2010).

[12] T. E. Riley, A. L. Watts, P. S. Ray, S. Bogdanov, S. Guillot,
S. M. Morsink, A. V. Bilous, Z. Arzoumanian, D. Choudhury,
J. S. Deneva et al., Astrophys. J. Lett. 918, L27 (2021).

[13] M. C. Miller, F. K. Lamb, A. J. Dittmann, S. Bogdanov, Z.
Arzoumanian, K. C. Gendreau, S. Guillot, A. K. Harding, W.
C. G. Ho, J. M. Lattimer et al., Astrophys. J. Lett. 887, L24
(2019).

[14] B. P. Abbott, R. Abbott, T. Abbott, F. Acernese, K. Ackley,
C. Adams, T. Adams, P. Addesso, R. Adhikari, V. Adya et al.,
Phys. Rev. X 9, 011001 (2019).

[15] B. P. Abbott, R. Abbott, T. Abbott, F. Acernese, K. Ackley,
C. Adams, T. Adams, P. Addesso, R. X. Adhikari, V. B. Adya
et al., Phys. Rev. Lett. 121, 161101 (2018).

[16] B. P. Abbott, R. Abbott, T. Abbott, F. Acernese, K. Ackley, C.
Adams, T. Adams, P. Addesso, R. Adhikari, V. B. Adya et al.,
Phys. Rev. Lett. 119, 161101 (2017).

[17] A. Perego, D. Logoteta, D. Radice, S. Bernuzzi, R. Kashyap,
A. Das, S. Padamata, and A. Prakash, Phys. Rev. Lett. 129,
032701 (2022).

[18] X. Roca-Maza and N. Paar, Prog. Part. Nucl. Phys. 101, 96
(2018).

[19] J. R. Stone, N. J. Stone, and S. A. Moszkowski, Phys. Rev. C
89, 044316 (2014).

[20] U. Garg and G. Colo, Prog. Part. Nucl. Phys. 101, 55 (2018).
[21] L. Trippa, G. Colo, and E. Vigezzi, Phys. Rev. C 77, 061304(R)

(2008).
[22] J. M. Lattimer and Y. Lim, Astrophys. J. 771, 51 (2013).
[23] M. N. Harakeh and A. Woude, Giant Resonances: Fundamental

High-Frequency Modes of Nuclear Excitation, Vol. 24 (Oxford
University Press on Demand, New York, 2001).

[24] X. Roca-Maza, M. Brenna, B. K. Agrawal, P. F. Bortignon, G.
Colo, L.-G. Cao, N. Paar, and D. Vretenar, Phys. Rev. C 87,
034301 (2013).

[25] S. A. Chin, Ann. Phys. 108, 301 (1977).
[26] K. Lim and C. J. Horowitz, Nucl. Phys. A 501, 729 (1989).
[27] L. Landau, Soviet Phys. JETP-USSR 5, 101 (1957).
[28] P. R. Roach and J. B. Ketterson, Phys. Rev. Lett. 36, 736

(1976).
[29] W. R. Abel, A. C. Anderson, and J. C. Wheatley, Phys. Rev.

Lett. 17, 74 (1966).
[30] R. Dobbs, Helium Three (Oxford University Press, New

York, 2000).
[31] A. Karch, D. T. Son, and A. O. Starinets, Phys. Rev. Lett. 102,

051602 (2009).
[32] P. F. Bedaque, G. Rupak, and M. J. Savage, Phys. Rev. C 68,

065802 (2003).
[33] D. N. Aguilera, V. Cirigliano, J. A. Pons, S. Reddy, and R.

Sharma, Phys. Rev. Lett. 102, 091101 (2009).
[34] L. B. Leinson, Phys. Rev. C 83, 055803 (2011).
[35] I. Tews, J. Carlson, S. Gandolfi, and S. Reddy, Astrophys. J.

860, 149 (2018).
[36] P. Bedaque and A. W. Steiner, Phys. Rev. Lett. 114, 031103

(2015).
[37] W. D. Myers, W. J. Swiatecki, T. Kodama, L. El-Jaick, and E. R.

Hilf, Phys. Rev. C 15, 2032 (1977).
[38] H. Hofmann, C. Grégoire, R. Lucas, and C. Ngô, Z. Phys. A

293, 229 (1979).
[39] M. Di Toro and C. Gregoire, Z. Phys. A: At. Nucl. 320, 321

(1985).
[40] C. Yanhuang and M. Di Toro, Phys. Rev. C 39, 105 (1989).
[41] V. M. Kolomietz and S. Shlomo, Phys. Rev. C 64, 044304

(2001).
[42] M. Papa, W. Tian, G. Giuliani, F. Amorini, G. Cardella, A. D.

Pietro, P. P. Figuera, G. Lanzalone, S. Pirrone, F. Rizzo, and D.
Santonocito, Phys. Rev. C 72, 064608 (2005).

[43] V. Baran, C. Rizzo, M. Colonna, M. D. Toro, and D.
Pierroutsakou, Phys. Rev. C 79, 021603(R) (2009).

[44] H. L. Wu, W. D. Tian, Y. G. Ma, X. Z. Cai, J. G. Chen, D. Q.
Fang, W. Guo, and H. W. Wang, Phys. Rev. C 81, 047602
(2010).

[45] W. B. He, Y. G. Ma, X. G. Cao, X. Z. Cai, and G. Q. Zhang,
Phys. Rev. Lett. 113, 032506 (2014).

[46] A. Bracco, E. G. Lanza, and A. Tamii, Prog. Part. Nucl. Phys.
106, 360 (2019).

[47] P. Ring, Z.-y. Ma, N. Van Giai, D. Vretenar, A. Wandelt, and
L.-g. Cao, Nucl. Phys. A 694, 249 (2001).

[48] D. Vretenar, A. V. Afanasjev, G. A. Lalazissis, and P. Ring,
Phys. Rep. 409, 101 (2005).

044312-8

https://doi.org/10.1103/PhysRevLett.86.5647
https://doi.org/10.1103/PhysRevC.81.044306
https://doi.org/10.1103/PhysRevC.92.031303
https://doi.org/10.1103/PhysRevC.83.065808
https://doi.org/10.1146/annurev-nucl-102711-095018
https://doi.org/10.1103/RevModPhys.89.015007
https://doi.org/10.1103/PhysRevLett.96.012302
https://doi.org/10.1126/science.1078070
https://doi.org/10.1007/s10714-014-1713-3
https://doi.org/10.1016/j.physrep.2008.04.005
https://doi.org/10.1088/0004-637X/722/1/33
https://doi.org/10.3847/2041-8213/ac0a81
https://doi.org/10.3847/2041-8213/ab50c5
https://doi.org/10.1103/PhysRevX.9.011001
https://doi.org/10.1103/PhysRevLett.121.161101
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.129.032701
https://doi.org/10.1016/j.ppnp.2018.04.001
https://doi.org/10.1103/PhysRevC.89.044316
https://doi.org/10.1016/j.ppnp.2018.03.001
https://doi.org/10.1103/PhysRevC.77.061304
https://doi.org/10.1088/0004-637X/771/1/51
https://doi.org/10.1103/PhysRevC.87.034301
https://doi.org/10.1016/0003-4916(77)90016-1
https://doi.org/10.1016/0375-9474(89)90158-9
https://doi.org/10.1016/B978-0-08-010586-4.50096-1
https://doi.org/10.1103/PhysRevLett.36.736
https://doi.org/10.1103/PhysRevLett.17.74
https://doi.org/10.1103/PhysRevLett.102.051602
https://doi.org/10.1103/PhysRevC.68.065802
https://doi.org/10.1103/PhysRevLett.102.091101
https://doi.org/10.1103/PhysRevC.83.055803
https://doi.org/10.3847/1538-4357/aac267
https://doi.org/10.1103/PhysRevLett.114.031103
https://doi.org/10.1103/PhysRevC.15.2032
https://doi.org/10.1007/BF01435592
https://doi.org/10.1007/BF01881282
https://doi.org/10.1103/PhysRevC.39.105
https://doi.org/10.1103/PhysRevC.64.044304
https://doi.org/10.1103/PhysRevC.72.064608
https://doi.org/10.1103/PhysRevC.79.021603
https://doi.org/10.1103/PhysRevC.81.047602
https://doi.org/10.1103/PhysRevLett.113.032506
https://doi.org/10.1016/j.ppnp.2019.02.001
https://doi.org/10.1016/S0375-9474(01)00986-1
https://doi.org/10.1016/j.physrep.2004.10.001


ZERO-SOUND MODES FOR THE NUCLEAR EQUATION OF … PHYSICAL REVIEW C 108, 044312 (2023)

[49] M. Cavinato, M. Marangoni, P. L. Ottaviani, and A. M. Saruis,
Nucl. Phys. A 373, 445 (1982).

[50] C. De Conti, A. P. Galeao, and F. Krmpotić, Phys. Lett. B 444,
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