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Semiclassical origin of nuclear ground-state octupole deformations
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Background: Ground-state octupole deformations are suggested in nuclei located in the north-east neighbor of
the doubly magic nuclei on the nuclear chart (N, Z ), such as those in Ba and Ra-Th regions. This systematics has
been attributed to the parity mixing of the approximately degenerate Δl = 3 pair of single-particle levels near
the Fermi surface.
Purpose: Nuclear deformations are governed in most cases by the gross shell structures of the single-particle
spectra. I will consider the systematics in octupole deformation from the view point of the gross shell structure
and investigate the mechanism of its manifestation using the semiclassical periodic-orbit theory (POT), which
describes the quantum shell effect by means of the periodic orbits (POs) in the corresponding classical system.
Methods: To focus on the role of deformation, simplified infinite-well (cavity) and radial power-law potential
models are employed taking account of quadrupole and octupole shape degrees of freedom. Nuclear ground-state
deformations are investigated over the nuclear chart, and the properties of the deformed shell structures are
analyzed by means of the semiclassical POT.
Results and conclusions: The systematics in nuclear ground-state octupole deformations are reproduced in
simplified mean-field potential models either with or without parity mixing between Δl = 3 pair of levels. The
strong octupole deformed shell effect at above the spherical shell closures are explained simply and clearly using
the semiclassical periodic-orbit theory. They are associated with the local restoration of dynamical symmetry,
which enhance the contribution of classical POs to the gross shell effect.
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I. INTRODUCTION

Breaking of reflection symmetry is one of the fundamen-
tal problems in nuclear structure physics [1]. In medium- to
heavy-mass nuclei, ground-state octupole deformations are
observed only for a few isotopes such as those around neutron-
rich Ba region and Ra-Th region. Possible static octupole
shapes for even-even nuclei have been systematically inves-
tigated over the nuclear chart by means of various theoretical
approaches [2–6]. All those studies have obtained the results
which are basically consistent with the experiments.

As well as the ground-state deformation, the significance
of the octupole shape degree of freedom in nuclear fission
has been also suggested [7,8]. The reason why the fission-
fragment mass distribution of actinide nuclei is centered at
A ≈ 140, which are slightly larger than that of the doubly
magic 132Sn, can be understood by considering the shell effect
of the pare-shaped prefragment. The octupole shape degree of
freedom should also play role in the process of superasym-
metric fission, referred to as cluster radioactivity, where the
shell effect of doubly magic 208Pb is concerned [9–11].

It has been considered that the nuclear octupole defor-
mations are attributed to the octupole correlation between
the approximately degenerate Δl = 3 pair of single-particle
levels near the Fermi surface. Such pairs of degenerate levels
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arise just above each spherical shell gaps due to the in-
truder levels from the higher oscillator shells in the realistic
nuclear mean-field potential with sharp surface [1]. For in-
stance, proton (h11/2, d5/2) levels above Z = 50 gap and
neutron (i13/2, f7/2) levels above N = 82 gap are thought to
be relevant for the octupole softness in Ba region.

In addition to the above Δl = 3 mixing, I have pointed
out the significance of the gross shell effect for the octupole
deformation [12]. In that work, infinite-well potential (cavity)
model was employed where the surface shape is parametrized
by merging a sphere and a paraboloid. The semiclassical
periodic-orbit theory (POT) [13,14] is successfully utilized to
elucidate the origin of remarkable shell structure for octupole
deformed nuclei. In POT, quantum shell effect is described
by means of the periodic orbits (POs) in the corresponding
classical system. The advantage of such cavity model is that
the contribution of the classical POs to the shell energies
can be obtained by directly evaluating the semiclassical trace
formula, which represents the quantum level density (density
of energy eigenvalues) as the sum over contributions of the
classical POs. For the system with a few particles added to
the spherical closed-shell configurations, octupole shape is
advantageous in gaining large shell energy, and its reason
can be clearly explained using the contribution of degenerate
family of classical POs to the semiclassical density of states.

In this study, I extend the above model a little to consider
the shapes with arbitrary combinations of axially symmetric
quadrupole and octupole deformations. With this extremely
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simplified mean-field model, I would like to focus only on
the effect of deformation. The central aim of this work is to
investigate the role of the gross shell effect to the system-
atic appearance of octupole deformations above the spherical
closed-shell configurations and clarify their origin by the
semiclassical POT. In my previous studies with my collabora-
tors on the cavity- and oscillator-type potential models, it has
been shown that the bifurcations of equatorial orbits at certain
combinations of axially symmetric quadrupole and octupole
deformations provide remarkable shell effects [15,16]. The
PO bifurcations is associated with the local restoration of
symmetry, with which the family of classical POs acquire
extra local degeneracies. Since the oscillator type potential has
no �l = 3 pairs of levels at the spherical shape, it may also
give us information about the relative importance of �l = 3
mixing in octupole deformation.

This paper is organized as follows: In Sec. II, a brief review
on the semiclassical theory of single-particle shell structure is
given. In Sec. III, the mean-field potential models employed
in this work are defined. In addition to the traditional pre-
scription to expand the surface shape by spherical harmonic
functions, a specific way of parametrization is proposed by
merging a spheroid and a paraboloid. In the cavity model
with the latter parametrization, classical POs form continuous
families with higher degeneracy and a stronger deformed shell
effect is expected. Then, systematic calculations of ground-
state deformations over the nuclear chart is performed in
Sec. IV for both parametrizations above. The condition for
nuclei to gain shell energy by octupole deformation is con-
sidered using the relation between the gross shell structure
and classical POs, and the mechanism for the systematic
appearance of octupole deformation at above the spherical
closed-shell configurations is explained. It will be also shown
that the above systematics is reproduced in the oscillator type
potential model, namely, without the help of �l = 3 mix-
ing. Section V is devoted to the summary and concluding
remarks.

II. THEORETICAL FRAMEWORK

A. Periodic-orbit theory

Semiclassical periodic-orbit theory (POT) is the powerful
tool to analyze the gross shell structures [13,14,17], and I
have taken full advantage of it in investigating the microscopic
origin of nuclear deformations and shape stabilities [18,19].
Here, let us briefly review some of the key issues related to
the POT.

When one solves the quantum single-particle energy
eigenvalue problem, the distribution of the energy levels gen-
erally show a regular oscillating pattern. However, the origin
for this structure generally cannot be explained by purely
quantum-mechanical concepts alone. Using the semiclassi-
cal approximation to the path-integral representation of the
Green’s function, contribution of classical POs are extracted,
and the level density

g(e) =
∑

i

δ(e − ei ) (1)

is expressed as the sum over the contribution of classical POs

g(e) = ḡ(e) + δg(e),

δg(e) �
∑
PO

APO(e) cos

(
1

h̄
SPO(e) − π

2
μPO

)
, (2)

which is known as the trace formula [14,17]. The average part
ḡ(e) is given by the (extended) Thomas-Fermi approximation.
In the oscillating part δg, SPO = ∮

PO p · dr represents the ac-
tion integral along the PO, μPO is the Maslov index related
to the geometrical character of the orbit, and the amplitude
APO is determined by the degeneracy, period, and stability of
the PO. Since the action integral is generally a monotonically
increasing function of energy e, each contribution of PO in
Eq. (2) gives a regularly oscillating function of e. The orbit
with shorter period TPO = dSPO/de gives the gross structure
of the level density and the longer orbits contribute to the finer
structures. In consideration of gross shell structure, one has
only to take the contributions of a few shortest POs. Under
continuous symmetries, the orbits will form a continuous fam-
ily. This is called a degeneracy of the classical POs. The orbit
with higher degeneracies make more significant contribution
to the level density in the h̄ expansion. The number of continu-
ous parameters KPO for the PO family is called the degeneracy
parameter, and the amplitude factor APO is proportional to
h̄−KPO/2.

Using Eq. (2), one obtains the trace formula for shell en-
ergy as [17,20]

δE (N ) =
∫ eF

(e − eF )δg(e)de

�
∑
PO

h̄2

T 2
PO

APO(eF ) cos

(
1

h̄
SPO(eF ) − π

2
μPO

)
, (3)

where eF is the Fermi energy satisfying

N =
∫ eF

g(e)de. (4)

Due to the additional factor T −2
PO in the amplitudes of the

PO contributions, longer orbits become less important and,
accordingly, one has only to consider the POs that are short
and preferably of higher degeneracies.

Another important aspect of the periodic-orbit contribution
is related to the stability of the orbits. The amplitude factor
APO is proportional to the stability factor as follows:

APO ∝ 1√
| det(I − M̃PO)|

, (5)

where M̃ represents the symmetry-reduced monodromy ma-
trix which describes the linear stability of the orbit. In
calculating the monodromy matrix, one sets a (2 f − 2)-
dimensional “surface of section” � in the classical (2 f −
1)-dimensional phase space with energy constraint H (r, p) =
E , where f is the number of degrees of freedom. Then, con-
sider a trajectory starting off at Z0 on the surface �. Since
the energy surface H (r, p) = E is compact, the trajectory will
intersect the surface � again at Z1 in the same direction. The
successive plots of the intersection points Z1, Z2, . . . is called
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FIG. 1. Calculation of monodromy matrix for PO on the surface �.

a Poincaré surface of section (PSS) plot. The map M from Zk

to Zk+1 [Zk+1 = M(Zk )] defined by the Hamiltonian dynam-
ics is called the Poincaré map. The PO is nothing but the fixed
point Z∗ of the Poincaré map M (or its power Mn in general),
satisfying Z∗ = Mn(Z∗). As shown in Fig. 1, let us consider
a trajectory near the PO, staring off at Z0 = Z∗ + δZ on �. It
is generally nonperiodic and will arrive at Zn = Z∗ + δZ ′ on
�, and δZ ′ can be written as

δZ ′ = MPOδZ + O(δZ2). (6)

The (2 f − 2) × (2 f − 2) matrix MPO, representing a lin-
earized Poincaré map defines the monodromy matrix. MPO

depends on the choice of �, but its eigenvalues are irrelevant
to � and therefore the stability factor (5) does not depend on
�.

For system with continuous symmetries, MPO has trivial
unit eigenvalues, and the symmetry-reduced matrix M̃PO is
obtained by splitting off the degrees of freedom relevant to
those symmetries. It can happen that one of the eigenvalues
of M̃PO becomes equal to 1 with varying parameter of the
Hamiltonian. This corresponds to the bifurcation point of PO,
where dynamical symmetry is locally restored around the PO
and the orbit forms a local continuous family. The orbits
belonging to such a family make coherent contribution to the
level density and bring about a significant enhancement of
the amplitude factor APO. Since the standard stationary phase
approximation (SPA) to derive the trace formula is broken
down at the bifurcation point, the stability factor in Eq. (5)
suffers divergence there. This shortcoming can be remedied
by an appropriate treatment of the higher-order expansions
about the PO, e.g., by the uniform approximations [21–23].
Bifurcation of short PO is often responsible for the emergence
of significant shell effect at exotic shapes. This feature plays
an essential role when I consider the quadrupole-octupole
deformations in the following part.

B. The shell-deformation energy

When one employs an effective mean-field model, shell
energy is extracted from the single-particle spectra by decom-
posing the sum of single-particle energies into the smooth and
oscillating parts as

Esp(Z, N ; q) =
Z∑

i=1

ei(q) +
N∑

j=1

e j (q)

= Ẽsp(Z, N ; q) + δE (Z, N ; q). (7)

ei(q) represents the single-particle energy for deformation q.
In the microscopic-macroscopic model, the oscillating part of
the single-particle energy sum is added to the semi-empirical
liquid-drop model (LDM) energy as

E (Z, N ; q) = ELDM(Z, N ; q) + δE (Z, N ; q). (8)

In the present work, the employed mean field is not a realistic
one, and the use of a realistic LDM is of no importance.
Assuming the single-particle Hamiltonian h = t + u (t and
u being the kinetic energy and mean-field potential, respec-
tively) as what is deduced from the many-body Hamiltonian
with a two-body interaction, the smooth part of the total en-
ergy is expressed as

Ẽ =
N∑

i=1

(
〈ti〉 + 1

2
〈ui〉

)
. (9)

The factor 1
2 in the second term above is to avoid the double

counting of the interaction. When the radial power-law poten-
tial u ∝ rα is employed as the mean-field potential, the Virial
theorem gives the relation

〈t〉 = 1

2
〈r · ∇u〉 = α

2
〈u〉. (10)

Together with the relation 〈h〉 = 〈t〉 + 〈u〉, one obtains

〈t〉 = α

α + 2
〈h〉, 〈u〉 = 2

α + 2
〈h〉.

Inserting them into Eq. (9), one has

Ẽ = α + 1

α + 2

N∑
i=1

〈hi〉 = α + 1

α + 2
Ẽsp. (11)

Consequently, the total energy can be expressed as

E (Z, N ; q) = α + 1

α + 2
Ẽsp(Z, N ; q) + δE (Z, N ; q). (12)

In the cavity limit, α → ∞, one simply has

E (cavity)(Z, N ; q) = Esp(Z, N ; q). (13)

Ground-state deformation q∗ is obtained by minimizing the
total energy E with respect to q = {q2, q3},

Emin(Z, N ) = E (Z, N ; q∗) = min
q2,q3

E (Z, N ; q). (14)

In the analysis of deformation, one has usually considered
the deformation energy Edef which is defined with the energy
at spherical shape as reference;

Edef (Z, N ; q) = E (Z, N ; q) − E (Z, N ; 0). (15)

In this definition, the reference energy is a fluctuating function
of particle numbers Z and N . To investigate the nuclear energy
from a more general point of view, without special reference
to quantum fluctuation at the spherical shape, let us define the
shell-deformation energy, Esh-def, by estimating the total en-
ergy with the smooth part of the spherical energy as reference;

Esh-def(N, Z; q) = E (Z, N ; q) − Ẽ (Z, N ; 0)

= {Ẽ (Z, N ; q) − Ẽ (Z, N ; 0)} + δE (Z, N ; q).

(16)
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As seen from the right-hand side, it consists of the shell energy
and the smooth (LDM) deformation energy. In the following
analysis, the shell-deformation energy (16) shall be referred
rather than the traditional deformation energy (15).

III. SHAPE PARAMETRIZATION WITH OCTUPOLE
AND QUADRUPOLE DEFORMATIONS

A. Stretched octupole parametrization

Various ways of parametrizing the shape of the nuclear
surface have been proposed to discuss the nuclear deforma-
tion. The most commonly used one might be the expansion by
spherical harmonic functions. For axially symmetric shapes,
the surface shape is expressed as

r = rs(θ ) = R0

⎡
⎣1 +

∑
l�2

βlPl (cos θ )

⎤
⎦,

where Pl (x) is the Legendre polynomial. The P1 term is also
considered when one wants to exactly eliminate the center of
mass.

In my recent studies, the above shape function is modified
a little. Instead of quadrupole deformation described by P2

function, I take the spheroidal shape:

r = rs(θ ) = R0
η2/3√

cos2 θ + η2 sin2 θ
,

where η = rs(0)/rs( π
2 ) represents the axis ratio. η > 1 and

η < 1 correspond to prolate and oblate deformations, respec-
tively. Deformations with higher multipoles are considered by
multiplying rs by an exponential function eβl Pl (cos θ ). They are
first taken on the spherical surface, and then stretched (or con-
tracted) in the direction of the symmetry axis. For the octupole
deformation, the surface profile function f (θ ) = rs(θ )/R0 is
expressed as

f (θ ) = c(β3)η−1/3
√

1 + (η2 − 1) cos2 θ ′ eβ3P3(cos θ ′ ),

tan θ ′ = η tan θ. (17)

c3(β3) is given by

c(β3) =
[

1

2

∫ 1

−1
e3β3P3(t )dt

]−1/3

. (18)

so that the volume conservation condition is satisfied. The
center-of-mass condition is satisfied up to the first order of β3

for a uniform rigid body with this surface. By using the above
exponential form, a natural surface shape can be achieved up
to rather large octupole deformations (see Fig. 2).

In displaying the potential-energy surface, I use the di-
mensionless quadrupole and octupole moments as the shape
parameters. They are defined by

q2 = 1

R2
0

〈r2P2(cos θ )〉, q3 = 1

R3
0

〈[r3P3(cos θ )]′〉, (19)

where (rnPn)′ is the stretched multipole operator defined by
the stretched coordinate

(x′, y′, z′) = (η1/3x, η1/3y, η−2/3z). (20)

q2=−0.1

q3=0

q3=0.05

q3=0.1

q2=0 q2=0.1

FIG. 2. Quadrupole-octupole surface by the stretched oc-
tupole parametrization r = R0 f (θ ) [Eq. (17)] at several values of
quadrupole and octupole moments (q2, q3). Horizontal line is the
symmetry axis, and the origin is the center of mass.

By defining the octupole moment q3 in terms of the stretched
coordinate as above, it becomes independent of η and has one-
to-one correspondence with the parameter β3. The shapes of
the surface at several values of (q2, q3) are displayed in Fig. 2.

In the cavity potential with the surface r = R0 f (θ ), one
finds regular polygon orbits on the plane perpendicular to the
symmetry axis, which I have called “the equatorial plane,” al-
though it is slightly translated from the θ = π

2 plane for β3 �=
0. Those orbits form degenerate one-parameter family with
respect to the rotation around the symmetry axis. By varying
the deformation parameters, two main curvature radii at the
equatorial plane coincide with each other for certain combi-
nations of (η, β3) or (q2, q3) (see right panel of Fig. 3). For
such shapes, spherical symmetry is locally restored around the
equatorial plane, and the orbits on it acquire two extra local
degeneracies. This condition is satisfied approximately along
the q3 = q2 line on the shape parameter space.

The local symmetry restoration as discussed above pro-
vides substantial enhancement of the shell effect and plays
significant roles in deformations of the systems [16]. A similar
local symmetry restoration is also found in smooth potential

pure octupole quadrupole+octupolespherical

FIG. 3. Illustration of the local restoration of spherical symmetry
in quadrupole-octupole cavity potential model. Horizontal line repre-
sents the symmetry axis and the cross represents the center of mass.
The vertical line represents the plane referred as the equatorial plane.
The circle with dashed line represents the circle of curvature on the
meridian plane. In the right panel, the shape of a special combination
of quadrupole and octupole deformation is shown where the meridian
curvature radius coincides with the equatorial radius.
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z1

ηa
aκη

z

a

l O

ρ

FIG. 4. Parametrization of quadrupole-octupole surface by
merging a spheroid and a paraboloid.

models, where the symmetries are of the dynamical ones
associated with the PO bifurcations [15].

B. Spheroid + paraboloid parametrization

Next, I propose another way of shape parametrization. It is
known that the spheroidal cavity model has nontrivial dynam-
ical symmetry [24], and the classical POs form continuous
families with higher degeneracy than the other axial shapes.
Since the orbit family of higher degeneracy has stronger con-
tribution to the quantum shell effect, it would be advantageous
for the octupole deformed surface to include the spheroidal
part in it. For this reason, let us consider axially symmetric
octupole surface by merging a spheroid and a paraboloid as
shown in Fig. 4. In the cylindrical coordinate (ρ, z, ϕ), the
surface shape ρ = ρs(z) is expressed as

ρ2
s (z) =

{
a2 − (

z−l
η

)2
(zmin � z � z1)

2b(zmax − z) (z1 � z � zmax),

zmin = l − ηa, zmax = l + (1 + κ )ηa. (21)

A spheroidal surface (z < z1) and a paraboloidal surface (z >

z1) are smoothly joined at z = z1. The shape of the entire
surface is controlled by the two independent shape param-
eters (η, κ). η is the axis ratio of the spheroidal part, and
κ is the octupole parameter defined by the relative width of
the paraboloidal part raised from the spheroidal surface. For
κ = 0, there is no paraboloidal part and the entire surface is
the pure spheroid. Especially, the entire surface is spherical at
(η, κ ) = (1, 0). The four other parameters a, b, l , and z1 enter-
ing in Eq. (21) are determined by (i) the condition to merge the
two surfaces smoothly at z = z1, (ii) the volume-conservation
condition, and (iii) the center-of-mass condition. The center-
of-mass condition does not affect the energy eigenvalues but
is necessary in obtaining the correct quadrupole and octupole
moments.

In this shape parametrization, the deformed shell structures
are also investigated as functions of quadrupole and oc-
tupole moments (q2, q3) defined by Eq. (19). In this case, the
use of the stretched coordinate in Eq. (19) guarantees that the
octupole moment q3 is independent on η and has one-to-one
correspondence with the parameter κ . The shape of the surface
at several values of (q2, q3) are displayed in Fig. 5.

q2=−0.1

q3=0

q3=0.05

q3=0.1

q2=0 q2=0.1

FIG. 5. Quadrupole-octupole surface by the spheroid +
paraboloid parametrization ρ = ρs(z) [Eq. (21)] at several values of
quadrupole and octupole moments (q2, q3). The cross represents the
center of the spheroid, and the broken line represents the boundary
of the spheroidal and paraboloidal surfaces, z = z1.

In the cavity potential with the surface (21), one expects a
strong shell effect when the spheroidal part of the surface is
spherical (η = 1). For such shape, the equatorial orbits on the
plane z = l that are one-parameter families for η �= 1 becomes
three-parameter families, which are not only local ones but
exist over finite ranges of the rotational angles. This condition
is satisfied for smaller value of q2 for a given q3, compared
with the last parametrization. In my recent analysis [12],
gross shell structures similar to that for the spherical potential
are found to survive up to rather large octupole parameter κ

keeping η = 1.

IV. SYSTEMATICS OF GROUND-STATE OCTUPOLE
DEFORMATIONS IN CAVITY AND OSCILLATOR

POTENTIAL MODELS

A. Semiclassical mechanism of octupole deformation

Based on the semiclassical trace formula, let us con-
sider the condition where the system acquires large shell
energy gain by the octupole deformation. As discussed above,
local symmetry restoration with a special combination of
quadrupole and octupole deformations brings about a strong
shell effect. At those shapes, the POs with extra degeneracies
are expected to make similar contribution to the shell energy
as in the spherical potential.

In the cavity potential model, momentum |p| = h̄k is
constant and the action integral is given by the product of
momentum and the geometric length LPO. The trace formula
(3) is then expressed as

δE (N ) =
∑ h̄2

T 2
PO

APO cos
(

kF LPO − π

2
μPO

)
, (22)

where kF represents the Fermi wave number.
Because of the saturation property, the volume V sur-

rounded by the potential surface is proportional to the particle
number N . According to the Weyl’s formula [25], the level
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density in terms of the variable e = k2 is given by

ρ(e) = V k

4π2
, (23)

with the volume

V = 4π

3
R3

0 = 4π

3
Nr3

0 (R0 = r0N1/3). (24)

From the relation between Fermi wave number kF and particle
number N , one obtains

N =
∫ k2

F

0
ρ(e)de = V k3

F

6π2
= 2N (kF r0)3

9π
,

kF =
(

9π

2

)1/3

r−1
0 .

Thus, the value of the Fermi wave number kF is approximately
independent on the particle number N . Consequently, the shell
energy minimization condition associated with the contribu-
tion of PO in Eq. (22),

cos (kF LPO − πμPO/2) = −1, (25)

is governed solely by the length of the orbit LPO if the change
of the Maslov index is ignored. Concerning to a specific PO,
the above condition is that the radius a of the equatorial plane
to coincide with the radius R0 of the spherical magic nucleus.

Let N0 a spherical magic number and R0 the radius of the
surface for this magic nucleus. For the octupole shape q∗ with
local symmetry (q3 ≈ q2 for stretched octupole, and η = 1
for spheroid + paraboloid parametrization), the radius a of
the equatorial plane is shorter than the radius of the sphere
with the same volume. In order for the radius a to coincide R0

which satisfies the energy minimization condition, the particle
number N should be larger than N0 as

a(N, q∗) = R0 =
(

N0

N

)1/3

a(N, 0),

N = N0

(
a(N, 0)

a(N, q∗)

)3

. (26)

Thus, with increasing octupole deformation q∗, the energy
minimization condition is satisfied in the system with particle
number slightly larger than the spherical magic number. This
argument provides a simple and clear explanation for the
octupole deformation to be found systematically at just above
the spherical magic numbers.

Figure 6 illustrates the above argument from another
perspective. If n particles are added to the spherical magic nu-
cleus with particle number N0, system will favor the octupole
shape with local symmetry whose radius of the equatorial
plane coincides with the radius of spherical magic nucleus.
With more particles (n′ > n) attached, larger octupole defor-
mation will occur. The middle panels of Fig. 6 display the case
of the stretched octupole parametrization, for which one finds
only local families of the quasi-periodic orbits around the
shaded area in vicinity of the equatorial plane. For the sphere
+ paraboloid surface, POs form three-parameter families over
the larger area in the sphere part, as depicted by the shaded
area in the right panels of Fig. 6. It would be also interesting

local symmetry truncated sphere

n′′n

n+ n

N0

N0

+ 0

0

N

N

FIG. 6. Conceptual illustration of the mechanism of octupole de-
formation for a systems with N0 + n nucleons, N0 being the spherical
magic number and n a small even integer. Classical PO families
residing in the shaded area in the octupole cavity give the shell
effect similar to spherical magic nuclei with particle number N0. With
increasing n (as illustrated in the upper panel with n′ > n), larger
octupole deformation is expected to keep the radius and the curvature
radius of the equatorial plane identical to the radius of the spherical
magic nucleus.

to examine how these difference in PO families might affect
the octupole shell effect.

B. Cavity model with the stretched octupole parametrization

Let us first consider the cavity model with the surface shape
parametrized by Eq. (17). Figure 7 displays the single-particle
spectra. In the left panel, single-particle level diagrams for
pure quadrupole and pure octupole deformations are shown.
The integers put in the middle of the figure indicate the
spherical magic numbers, namely, the number of levels below
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FIG. 7. Single-particle level diagram for spheroidal-octupole
cavity model with the stretched octupole parametrization. Solid and
broken curves represent degenerate (magnetic quantum number K �=
0) and nondegenerate (K = 0) levels, respectively. The left panel
shows single-particle level diagrams for pure quadrupole and for pure
octupole deformations. Spherical-shape magic numbers are indicated
in italics. In the right panel, the level diagram is shown for deforma-
tions along q3 = q2, close to the local symmetry condition.
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FIG. 8. Ground-state quadrupole moment q2 (upper panel) and
octupole moment q3 (lower panel) in cavity potential model with
stretched octupole parametrization are shown on the (N, Z ) plane.
Horizontal and vertical dotted lines indicate magic numbers, 8, 20,
34, 58, 92, 138, of the spherical cavity model.

the energy gap. They are close to the real nuclear magic
numbers, although slightly deviate from them mainly due
to the absence of spin-orbit coupling. The doubly magic
nuclei 132Sn and 208Pb correspond to (Z, N ) = (58, 92) and
(92,138), respectively, in the cavity model. The degeneracies
of levels at the spherical shape are broken with increasing
deformation without forming noticeable structure for both q2

and q3.
In the right panel of Fig. 7, level diagram is shown along

the deformations with q3 = q2. A remarkable feature for such
shapes is the existence of equally spaced strongly bunched
upward-right levels, and it is expected that a significant
amount of the spherical shell effect will survive up to large de-
formations. The spherical symmetry is locally restored around
the equatorial plane as illustrated in the middle panels of Fig. 6
for the shapes with q3 ≈ q2, and the above shell effect should
be associated with the contribution of degenerate families of
POs in the semiclassical trace formulas (2) and (3).

With this single-particle spectra, energies of nuclei given
by Eq. (13) is calculated over the nuclear chart (in the
range Z � N � 2Z which is approximately corresponding
to the region between proton and neutron drip lines) as
functions of q2 and q3, and ground-state deformations are
obtained. The upper panel of Fig. 8 shows the quadrupole
moment q2 of the ground-state shapes. The horizontal and
vertical dotted lines indicate the spherical magic numbers.
One obtains nearly spherical shapes along those magic lines.
In most of the other regions, q2 takes positive values,
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FIG. 9. Potential-energy surfaces for the doubly magic nu-
clei (Z, N ) = (58, 92), (92, 138) and their north-east neighbors
on the nuclear chart. Cavity potential with the stretched oc-
tupole parametrization is employed. Contour curves of the shell-
deformation energy Esh-def in (q2, q3) plane are drawn at intervals of
2 MeV. The thick broken line represents the bifurcation deformation
for equatorial orbits. Large cross represents the ground-state defor-
mation and small crosses are other local minima. Square represents
the semiclassical guess of the ground-state deformation.

which reproduces the feature of prolate-shape predomi-
nance in the ground-state deformations [19,26–29]. In the
lower panel of Fig. 8, octupole moment q3 is plotted. One
will find that the octupole deformations systematically ap-
pear at the north-east neighbors of the doubly closed-shell
configurations. This qualitatively reproduces the results of
experiments and realistic calculations. The essential mecha-
nism to explain the systematics of the octupole deformation
seems to be already involved in this simplified cavity
model.

Figure 9 shows the potential-energy surfaces of doubly
magic nuclei (Z, N ) = (58, 92) and (92,138) and their north-
east neighbors on the nuclear chart. Contour plot of the
shell-deformation energy (16) are shown as functions of
(q2, q3), and the ground-state deformations and other local
minima are marked with the cross symbols. Adding a few
neutrons and protons to the spherical doubly magic nucleus,
the system tends to take octupole shapes accompanied by pro-
late quadrupole deformation. The thick broken line indicate
the bifurcation line of the equatorial orbit where one has the
local symmetry restoration. As expected from the POT, nu-
clear shape evolves along this bifurcation line with increasing
proton and neutron numbers.

In each panel of Fig. 9, the semiclassical guess of the
ground-state deformation is indicated by the square symbol,
where the radius of the equatorial plane coincides with the
radius of the spherical doubly magic nucleus. The agreement
with the quantum result is not bad but overestimating the
deformation a little. It might be improved by taking the change
of the Maslov index properly.
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FIG. 10. Single-particle level diagram for the cavity potential
model with the spheroid + paraboloid parametrization. The left panel
is plotted in the same way as Fig. 7. In the right panel, levels are
plotted against q2, where q3 is varied with q2 so that η = 1 is satisfied.

C. Cavity model with spheroid + paraboloid parametrization

Next I examine the cavity model with spheroid +
paraboloid parametrization (21). Since the spherical sym-
metry is maximally restored in the quadrupole-octupole
deformed cavity, more significant effect of the symmetry
restoration is expected.

Let us first look at the single-particle spectra in Fig. 10.
In the left panel, single-particle energies for pure quadrupole
and pure octupole shapes are shown. There seems no notice-
able differences compared with those for the previous shape
parametrization. (The pure quadrupole shape is spheroidal and
the diagram is equivalent to the previous one.) In the right
panel, levels are plotted against q2, with q3 varied with q2 so
that the spheroidal part of the surface is kept spherical (η = 1).
Again one finds bunches of strongly degenerate upward-right
levels, indicating the effect of local spherical symmetry.

The obtained ground-state deformations are shown in
Fig. 11. The results are qualitatively the same as the previous
parametrization. The octupole deformations are found sys-
tematically at the north-east neighbors of each doubly magic
nucleus.

Figure 12 shows the potential-energy surfaces for the
same nuclei as those shown in Fig. 9. In the present
parametrization, one has highly degenerate POs in the
spheroid part of the potential, and more significant shell ef-
fect due to those orbits is expected. The thick broken line
represents the shape where the spheroidal part of the surface
is spherical and involves triply degenerate POs. In the same
reason as discussed in the previous section, one has shell
energy minima when the radius of the spheroid part is equal to
that of the spherical magic nucleus. This condition gives the
semiclassical guess of the ground-state deformation, whose
position is marked with the square symbol in each panel of
Fig. 12. Since there is no change of the Maslov index in this
case, the agreement of the semiclassical guess (26) with the
quantum results is almost perfect.
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FIG. 11. Same as Fig. 8 but with spheroid + paraboloid
parametrization.

Figure 13 compares the octupole energy gain in the
two parametrizations. The upper panel displays the shell-
deformation energy for neutrons or protons. The lower panel
displays the octupole energy gain with respect to the lowest
energy in case of the spheroidal deformation alone. One finds
a systematic energy gain due to the octupole deformation at
just above the spherical shell closures for both parametriza-
tions.
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FIG. 12. Same as Fig. 9 but with the spheroid + paraboloid
parametrization. The thick broken line represents the shape with the
spheroidal parameter η = 1.

044311-8



SEMICLASSICAL ORIGIN OF NUCLEAR GROUND-STATE … PHYSICAL REVIEW C 108, 044311 (2023)

-20

-10

 0

 10

 20

 60  80  100  120  140  160  180

(a)

E s
h

-d
ef

N

spheroid+paraboloid
stretched octupole

spheroid

-4

-2

 0

 60  80  100  120  140  160  180

(b)

ΔE
o
ct

/h
ex

N

spheroid+paraboloid
stretched octupole

hexadecapole

FIG. 13. The upper panel (a) shows the shell-deformation en-
ergy of the ground states of nuclei along the N = Z line. Solid
and broken curves represent the results for the stretched octupole
parametrization and spheroid + paraboloid parametrization, respec-
tively. Dotted curve is for the pure spheroidal deformation. The
lower panel (b) compares the octupole energy gain for the two shape
parametrizations. The result for hexadecapole energy gain is also
shown.

In terms of the order of semiclassical expansion, the
PO families with higher degeneracies in the spheroid +
paraboloid parametrization should provide more significant
shell effect than those in the stretched-octupole shape. From
the quantum-mechanical results shown in Fig. 13(b), one
finds that the shell effect for the spheroid + paraboloid
parametrization becomes more significant with increasing N
as the semiclassical expansion becomes better. The number of
particle N is limited to N1/3 � 5 for nuclear systems and the
difference is not so clear, but it will become more pronounced
in systems with much larger numbers of particles, e.g., in
metallic clusters.

Besides the octupole deformation, reflection-symmetric
hexadecapole deformation combined with quadrupole defor-
mation can also cause the same local symmetry. I have also
examined the shell effect for the cavity potential models by
parametrizing the quadrupole + hexadecapole shapes in the
ways analogous to Eq. (17) or (21). The quantum-mechanical
results show similar shell effects just above the spherical
closed-shell configurations as expected. However, the ef-
fects were considerably smaller than those obtained for the
octupole shapes. For a stretched hexadecapole shape, where
P3 in Eq. (17) is replaced by P4, the energy gain due to
the hexadecapole deformation is also plotted in Fig. 13(b).
To understand this difference, one will have to consider the
higher-order expansion of the action integral around the PO
and evaluate the so-called diffraction catastrophe integral [30]
as in the uniform approximation [21], which shall be left for
the future subject. I have also considered a shape analogous
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FIG. 14. Single-particle level diagrams same as Fig. 7 but for
the radial power-law potential model with α = 2. The numbers in
italics put in the plots indicate the magic numbers of the spherical
harmonic-oscillator potential model.

to Fig. 4 but another paraboloid is joined on the left side in a
symmetric way. The obtained shell effect was smaller than the
case of a single paraboloid, possibly because of the smaller
parameter space occupied by a triangular orbit family in the
sphere part due to the truncations of the sphere on both sides.

D. Oscillator-type potential model

The cavity potential model is very useful when I make a
semiclassical analysis because of the simple form of the trace
formula (22). Without losing this simplicity, the potential can
be made more realistic by generalizing it to the radial power-
law potential [18,31]. The deformed power-law potential with
the shape (17) is expressed as

V (r) = U0

(
r

rs(θ )

)α

. (27)

The power parameter α controls the radial dependence of
the potential. The limit α → ∞ corresponds to the cavity
and α = 2 corresponds to the harmonic oscillator. It is well
known that all degenerate levels in the spherical harmonic-
oscillator potential consist of identical parities, respectively.
In the following, let us consider the case α = 2. This will
help us verify the importance of the Δl = 3 mixing for oc-
tupole deformation. Single-particle level diagrams are shown
in Fig. 14. Because of no octupole matrix elements between
levels within each shell, the spectrum is stiffer against pure
octupole deformation compared with the cavity case.

Ground-state deformations are determined by minimizing
the energy (12) as before. In the upper panel of Fig. 15,
ground-state quadrupole moment is shown. In this case, pro-
late and oblate shapes appear approximately at equal rates.
Looking at the octupole moment in the lower panel of Fig. 15,
one again finds systematic appearance of octupole deforma-
tions just above the doubly magic nuclei. This is related to the
shell effect associated with the PO bifurcation which occur
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FIG. 15. Same as Figs. 8 and 11 but for the radial power-law
potential model with the power parameter α = 2. Spherical magic
numbers are 8, 20, 40, 70, 112, 168, . . . .

for certain combinations of quadrupole and octupole defor-
mations [15].

In investigating the classical PO bifurcation, Poincaré sur-
face of section (PSS) plot (see Sec. II A) around the PO
is useful. Stable (regular) trajectories are confined on the
so-called KAM torus and the PSS plots for such trajectory
accumulate on a closed curve corresponding to the intersec-
tion of the torus and the surface of section �. Thus, concentric
structures are formed in the PSS plot around the stable POs,
as illustrated in Fig. 16(a). On the other hand, the PSS for
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Γ
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(a)

(b)
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stable manifold

unstable manifold

FIG. 16. Illustration of Poincaré surface of section plot around
(a) stable and (b) unstable POs. Z∗ represents the section of the PO.
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FIG. 17. Poincaré surface of section (PSS) plots (left panels) and
simple classical POs (right panels) for the radial power-law potential
model with α = 2, q2 = 0.05 and several values of q3. The PSS
plots are for the planer classical trajectories in (x, z) plane with the
section � : x = 0. Stable and unstable fixed points corresponding to
the stable and unstable POs are marked with solid circles and crosses,
respectively. As for the names of the POs, L and R stand for the
acronyms “linear” (or “librating”) and “rotating,” respectively.

an unstable (chaotic) trajectory fills a certain region of the
surface � in a random manner. Unstable POs are generally
buried in chaotic region, but just after their birth through the
bifurcations, they can be easily found as the intersection of the
stable and unstable manifolds, as illustrated in Fig. 16(b).

Figure 17 shows the PSS plots and the relevant classical
POs. In the upper panels, at q3 = 0.03, one has a stable linear
orbit LA which forms a one-parameter family with respect to
the rotation about the symmetry axis. With increasing q3, one
finds in the middle panels, at q3 = 0.04, a new 1-parametric
orbit RA which has emerged through the bifurcation of LA,
after which the orbit LA becomes unstable. In the bottom
panels, at q3 = 0.05, another new linear 1-parametric orbit LC
has emerged through the second bifurcation of LA. For these
orbits, symmetry-reduced monodromy matrices are (2 × 2)
real symplectic ones, and their eigenvalues appear either in
a pair (eiα, e−iα ) for stable orbits or (eβ, e−β ), (−eβ,−e−β )
for unstable orbits, where α and β are real numbers. Using
these properties, the stability factor (5) is expressed as

1√
| det(I − M̃PO)|

= 1√
|2 − Tr M̃PO|

. (28)
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FIG. 18. Traces of the symmetry-reduced monodromy matrices
for the orbit LA and its bifurcation daughters, plotted as the functions
of the octupole parameter q3 with fixed quadrupole parameter q2 =
0.05.

| Tr M̃PO| = |2 cos α| < 2 for a stable PO and | Tr M̃PO| =
2 cosh β > 2 for an unstable PO, and the bifurcation of PO
occurs at Tr M̃PO = 2 where the eigenvalues of M̃PO become 1
(α = 0 or β = 0). Thus, the history of the bifurcations can be
clearly examined by looking at the trace of the monodromy
matrix. Figure 18 shows the trace of the symmetry-reduced
monodromy matrix as the function of the octupole parameter
q3, with quadrupole parameter is fixed to q2 = 0.05. With
increasing q3, the orbit LA causes bifurcation and a new orbit
RA emerges at q3 = 0.0323. Then, LA causes the second
bifurcation and another new orbit LB emerges at q3 = 0.0451.
The occurrence of such successive bifurcations in close prox-
imity is known as the codimension-two bifurcation [32,33].
It indicates a restoration of dynamical symmetry with higher
dimension, and one can expect more significant influence on
the shell effect than the simple bifurcations.

In the right panel of Fig. 14, single-particle diagram for
the deformation q3 = q2 is shown, which approximately along
the bifurcation points. One finds bunched upward levels
in the same manner as the cavity models, and the considerable
amount of the spherical shell effect is expected to survive for
finite octupole deformation along q3 ≈ q2.

Figure 19 shows the potential-energy surfaces for doubly
magic configurations (Z, N ) = (70, 112) and (112,168), and
their upper-right neighbors on the nuclear chart. Two broken
curves in each panel indicate the lines of two bifurcation
points of the orbit LA which generate the orbits RA and LB,
respectively. One sees that the ground-state deformation is
approximately evolving along these bifurcation lines as the
particle numbers deviate from the spherical magic numbers.
The semiclassical prediction of the optimum shape can be
made in the same way as for the cavity model, by gener-
alizing the wave number k and the orbit length LPO into
the scaled energy E = (E/U0)1/α+1/2 and the scaled action
τPO = SPO/h̄E , respectively [18]. In this case, the semiclassi-
cal guess of the optimum shape underestimate the deformation
a little. This might be also related to the change of the Maslov
index but in the way different from the case of the cavity
model.
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FIG. 19. Same as Fig. 9 but for the radial power-law potential
model with the power parameter α = 2. Results for doubly magic
nuclei (N, Z ) = (78, 112), (112,168) and some of their upper-right
neighbors in the nuclear chart are shown. Two thick broken curves
in each panel represent the first and the second bifurcations of the
symmetric self-retracing orbit LA.

Figure 20 shows the shell energy as function of particle
number. Along the bifurcation line, regular oscillating struc-
ture similar to that for the spherical shape is preserved up
to large deformations. This can be clearly understood by the
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FIG. 20. Shell energies for the radial power-law potential model
along the deformations q2 = q3, which are approximately corre-
sponding to bifurcation deformations.
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significant contribution of the bifurcating PO, relevant to the
gross shell structure.

V. SUMMARY

Ground-state octupole deformations are systematically in-
vestigated by the simple cavity models, taking into account
the quadrupole and octupole shape degrees of freedom in
two different ways of parametrizations. The systematic ap-
pearance of octupole deformations just above the spherical
closed-shell configurations are understood as the gross shell
effect related to the classical PO contributions enhanced by
the local symmetry restorations.

The above systematics can be also reproduced without the
help of �l = 3 mixing in the oscillator-type potential model.
This strongly suggests the significance of the gross shell effect
as playing an essential role in the mechanism causing octupole
deformation.

In spite of the extreme simplification of the model, it
helps our qualitative understanding of the microscopic mecha-
nism for the breaking of reflection symmetry. The mechanism
described in this paper should also apply to more realistic
mean-field potential models.

For the breaking of reflection symmetry, the importance
of nonaxial octupole degrees of freedom is also suggested

[34–37]. The effect of the point-group symmetry and the gross
shell effect in tetrahedral deformation is of particular interest
[31,38,39]. The extension of this work to other exotic shape
degrees of freedom would be also an interesting subject for
the future study.

As discussed in the end of Sec. IV B, reflection-symmetric
hexadecapole deformation combined with quadrupole de-
formation can also cause the same local symmetry. The
quantum-mechanical results show similar shell effects just
above the spherical closed-shell configurations, but they are
considerably smaller than those obtained for the octupole
shapes. Possible semiclassical reasons have been given but
they apply only to the current schematic models, and more
careful study on the competition with hexadecapole shape
degree of freedom might be necessary when one consider the
breaking of reflection symmetry in realistic models.

ACKNOWLEDGMENTS

The author would like to thank the members of the Nagoya
Nuclear Physics Colloquium for helpful discussions. Part of
the numerical calculations are carried out at the Yukawa Insti-
tute Computer Facility.

[1] P. A. Butler and W. Nazarewicz, Rev. Mod. Phys. 68, 349
(1996).

[2] P. Möller, R. Bengtsson, B. Carlsson, P. Olivius, T. Ichikawa, H.
Sagawa, and A. Iwamoto, At. Data Nucl. Data Tables 94, 758
(2008).

[3] L. M. Robledo and G. F. Bertsch, Phys. Rev. C 84, 054302
(2011).

[4] S. E. Agbemava, A. V. Afanasjev, and P. Ring, Phys. Rev. C 93,
044304 (2016).

[5] S. Ebata and T. Nakatsukasa, Phys. Scr. 92, 064005 (2017).
[6] Y. Cao, S. E. Agbemava, A. V. Afanasjev, W. Nazarewicz, and

E. Olsen, Phys. Rev. C 102, 024311 (2020).
[7] G. Scamps and C. Simenel, Nature (London) 564, 382

(2018).
[8] G. Scamps and C. Simenel, Phys. Rev. C 100, 041602(R)

(2019).
[9] M. Warda, A. Staszczak, and W. Nazarewicz, Phys. Rev. C 86,

024601 (2012).
[10] M. Warda, A. Zdeb, and L. M. Robledo, Phys. Rev. C 98,

041602(R) (2018).
[11] Z. Matheson, S. A. Giuliani, W. Nazarewicz, J. Sadhukhan, and

N. Schunck, Phys. Rev. C 99, 041304(R) (2019).
[12] K.-i. Arita, Phys. Rev. C 108, 014303 (2023).
[13] R. Balian and C. Bloch, Ann. Phys. (NY) 69, 76 (1972).
[14] M. C. Gutzwiller, J. Math. Phys. 12, 343 (1971).
[15] K.-i. Arita and K. Matsuyanagi, Nucl. Phys. A 592, 9 (1995).
[16] A. Sugita, K.-i. Arita, and K. Matsuyanagi, Prog. Theor. Phys.

100, 597 (1998).
[17] M. Brack and R. K. Bhaduri, Semiclassical Physics (Westview

Press, Boulder, 2003).
[18] K.-i. Arita, Phys. Rev. C 86, 034317 (2012).
[19] K.-i. Arita, Phys. Scr. 91, 063002 (2016).
[20] V. M. Strutinsky and A. G. Magner, Sov. J. Part. Nucl. 7, 138

(1976).

[21] H. Schomerus and M. Sieber, J. Phys. A: Math. Gen. 30, 4537
(1997).

[22] M. Sieber, J. Phys. A: Math. Gen. 29, 4715 (1996).
[23] A. M. Ozorio de Almeida and J. H. Hannay, J. Phys. A: Math.

Gen. 20, 5873 (1987).
[24] A. G. Magner, K.-i. Arita, S. N. Fedotkin, and K. Matsuyanagi,

Prog. Theor. Phys. 108, 853 (2002).
[25] R. Balian and C. Bloch, Ann. Phys. (NY) 60, 401 (1970).
[26] A. Bohr and B. R. Mottelson, Nuclear Structure (Benjamin,

Reading, 1975), Vol. II.
[27] N. Tajima, Y. R. Shimizu, and N. Suzuki, Prog. Theor. Phys.

Suppl. 146, 628 (2002).
[28] S. Takahara, N. Tajima, and Y. R. Shimizu, Phys. Rev. C 86,

064323 (2012).
[29] H. Frisk, Nucl. Phys. A 511, 309 (1990).
[30] R. Gilmore, Catastrophe Theory for Scientists and Engineers

(Wiley, New York, 1981).
[31] K.-i. Arita and Y. Mukumoto, Phys. Rev. C 89, 054308 (2014).
[32] H. Schomerus, J. Phys. A: Math. Gen. 31, 4167 (1998).
[33] K.-i. Arita and M. Brack, Phys. Rev. E 77, 056211 (2008).
[34] I. Hamamoto, B. R. Mottelson, H. Xie, and X. Z. Zhang, Z.

Phys. D: At. Mol. Clusters 21, 163 (1991).
[35] F. Frisk, I. Hamamoto, and F. R. May, Phys. Scr. 50, 628 (1994).
[36] J. Yang, J. Dudek, I. Dedes, A. Baran, D. Curien, A. Gaamouci,
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