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The triaxial projected shell model (TPSM) approach is generalized to investigate the negative parity band
structures in even-even systems. In the earlier version of the TPSM approach, the quasiparticle excitations were
restricted to one major oscillator shell and it was possible to study only positive parity states in even-even
systems. In the present extension, the excited quasiparticles are allowed to occupy two major oscillator shells,
which makes it possible to generate the negative parity states. As a major application of this development, the
extended approach is applied to elucidate the negative parity high-spin band structures in 102–112Ru and it is
shown that energies obtained with neutron excitation are slightly lower than the energies calculated with proton
excitation. However, the calculated aligned angular momentum ix clearly separates the two spectra with neutron
ix , in reasonable agreement with the empirically evaluated ix from the experimental data, whereas proton ix

shows large deviations. Furthermore, we have also deduced the transition quadrupole moments from the TPSM
wave functions along the negative parity yrast and yrare bands and it is shown that these quantities exhibit rapid
changes in the band-crossing region.

DOI: 10.1103/PhysRevC.108.044308

I. INTRODUCTION

To characterize the rich band structures observed in atomic
nuclei is one of the main research themes in nuclear structure
physics [1,2]. Major advancements in the experimental tech-
niques have made it feasible to populate multiple high-spin
band structures, and in some nuclei more than fifty band
structures have been reported [3,4]. The description of this
wealth of nuclear structure information is a major challenge
to nuclear structure models [5]. In recent years, tremendous
progress has been made in the spherical shell model (SSM)
description of the nuclear properties [6–8]. It is now possible
to apply the SSM approach to medium-mass nuclei, but study-
ing high-spin band structures in heavy-mass region is still
beyond the scope of this microscopic model. To describe the
high-spin band structures, it is imperative to include, at least,
two major oscillator shells because aligning particles occupy
the high- j intruder orbitals. To perform the SSM calculations
with two-major oscillator shells for heavier nuclei is beyond
the reach of computational resources presently available [9].

On the other hand, although several major oscillator shells
are considered in density-functional approaches, most of the
calculations are restricted to investigate the ground-state prop-
erties only [10]. To study the high-spin band structures, the
angular-momentum projection must be performed from the
intrinsic mean-field state [11]. However, this approach is
plagued with the singularity problem because most of the
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modern energy density functionals are fit to the experimental
data with fractional density dependence and employ different
forces in particle-hole and particle-particle channels [12–14].
In some recent works [15–17], the angular-momentum pro-
jection has also been performed in density-functional theory
(DFT) with projection after variation and the singularity prob-
lem does not appear to show up in these studies. However,
it has been discussed in Ref. [10] that projected results will
contain spurious components that need to be examined.

Considering the above problems associated with the SSM
and DFT approaches, the triaxial projected shell model
(TPSM) approach has become a tool of choice to investigate
the high-spin band structures in well-deformed and transi-
tional nuclei [18–22]. The advantage of this approach is that
computational resources involved are quite modest and it is
possible to perform a systematic study of a large set of atomic
nuclei. As a matter of fact, several systematic investigations
have been performed for chiral, wobbling, and γ -vibrational
band structures observed in triaxial nuclei [5,19–24]. The
model space in the TPSM approach is spanned by multiquasi-
particle basis states, which allows us to investigate high-spin
band structures. In the original version of the TPSM approach,
the model space was quite limited [18], but in recent applica-
tions [19,20,22,23,25], we have generalized the basis space
to include higher-order quasiparticle states. For instance, for
even-even systems [22], the TPSM approach has been gen-
eralized to include four-neutron and four-proton quasiparticle
basis states. This extension allows us to investigate the high-
spin properties in even-even systems beyond the second band
crossing.
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Nevertheless, in all the extended versions of the TPSM
approach, the basis configurations are constructed from one
major oscillator shell only, although the vacuum configuration
is generated from all the three major shells considered in the
model. The justification is that the aligning particles occupy
high- j intruder subshells and in order to describe band cross-
ing, it suffices to consider quasiparticle excitations only from
one major shell containing the intruder orbital.

For even-even systems, the restriction of the quasiparticle
excitations from one oscillator shell gives rise to only positive
parity states and, in order to generate the negative parity states,
the quasiparticle excitations need to be considered from two
oscillator shells having different parities for the single-particle
states. The purpose of the present work is to develop the gener-
alized TPSM approach with the quasiparticle excitations from
two major oscillator shells. There is a considerable data avail-
able for negative parity bands in even-even systems [26–34].
However, there have been very limited theoretical calculations
to investigate these band structures.

In the present work, we focus on the application of the
new development to neutron-rich nuclei around A ≈ 110. The
properties of these nuclei are studied by measuring prompt
γ rays emitted by secondary fragments produced by spon-
taneous and induced fission of a 252Cf source [26,35]. The
weak transitions in the excited negative parity bands are iden-
tified through triple- and higher-order coincidence techniques
[36] using the state-of-the-art detector arrays. The ground-
state positive parity bands in this region are known to have
strong prolate shapes [37], and the negative parity doublet
bands identified in some nuclei are proposed to originate
from a chiral symmetry-breaking mechanism [26]. In our
earlier publications, we studied the positive parity bands in
this mass region [23,25,38] using the TPSM approach and, in
the present work, we focus on the negative parity band struc-
tures. Some preliminary results of the present approach for
the observed negative parity band structures in 106,108Mo were
published with the experimental group [39]. However, in this
work, only neutron-excitation was considered. In the present
work, both neutron- and proton excitations are included in the
model space.

The remaining paper is organized in the following manner:
In the next section, we provide a few details of the extended
TPSM approach for negative parity bands and some explicit
expressions of the matrix elements are included in the Ap-
pendix. In Sec. III, the results obtained for Ru-isotopes are
presented and discussed, and finally the present work is sum-
marized in Sec. IV.

II. TRIAXIAL PROJECTED SHELL MODEL APPROACH

The TPSM approach is similar to the SSM technique with
the difference that deformed bases are used instead of the
spherical ones [18,41]. The deformed basis are the optimum
basis states to study deformed nuclei and, in the TPSM ap-
proach, these are generated by solving the three-dimensional
Nilsson mean-field potential [42]. The pairing interaction
is then considered in the Bardeen-Cooper-Schrieffer (BCS)
approximation [11]. The Nilsson + BCS wave functions
thus constructed form the basis configuration in the TPSM

approach. The vacuum state is then constructed by consid-
ering valence neutrons and protons to occupy three major
oscillator shells [18]. However, the quasiparticle excitations
are considered from one major oscillator shell only. For in-
stance, to investigate the high-spin band structures in mass
≈110 region, quasiproton (quasineutron) excitations are con-
sidered from the N = 4 (5) shells which contain the 1g9/2

(1h11/2) shell that is responsible for proton (neutron) align-
ments in this region. This restriction allows us to study only
positive parity band structures in even-even systems and, in
order to describe the negative parity band structures, valence
pairs of particles need to be placed in two different oscillator
shells having opposite parities.

In the present work, we have generalized the TPSM ap-
proach with valence neutrons and protons occupying different
shells. The extended basis space is composed of
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where the neutron (proton) major oscillator shells employed
are designated by the quantum numbers n (p) with neutrons
(protons) occupying two different oscillator shells n (p) and
n′ (p′). We have considered excitations in both proton and
neutron sectors; however, the separable interaction employed
does not mix these excitations and the two can be diagonalized
separately. It is demonstrated in the Appendix that matrix
elements between neutron and proton excitations vanish.

It has been demonstrated that two-neutron and two-proton
excitations are almost at the same energy [27]; it is therefore
necessary to consider both neutron and proton excitations in
the TPSM basis. Furthermore, two-neutron and two-proton
aligning configurations have been added as negative parity
bands in some nuclei that have been populated up to quite
high-spin, and the band-crossing phenomenon has been ob-
served. |�〉 in Eq. (1) is the quasiparticle vacuum state,
which has positive parity, and the three-dimensional angular-
momentum projection operator P̂I

MK is given by [11,43,44]

P̂I
MK = 2I + 1

8π2

∫
d�DI

MK (�)R̂(�), (2)

with the rotation operator

R̂(�) = e−ıαĴz e−ıβ Ĵy e−ıγ Ĵz . (3)

Here, “�” represents a set of Euler angles (α, γ =
[0, 2π ], β = [0, π ]) and the Ĵ are angular-momentum
operators.

In the present work we have employed N = 3, 4, 5 (2,3,4)
for neutrons (protons). The two valence neutrons (protons)
are occupying N = 4 (3) and 5 (4) shells that give rise
to the negative parity states. The deformations used to
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TABLE I. Axial and triaxial quadrupole deformation parameters
ε and γ = tan−1 (ε ′/ε) employed in the TPSM calculation. Axial
deformations ε have been considered from Ref. [40] with some
adjustment as discussed in the text. The nonaxial values (γ ) are
chosen in such a way that observed data are reproduced.

102Ru 104Ru 106Ru 108Ru 110Ru 112Ru

ε 0.220 0.270 0.280 0.275 0.275 0.270
γ 30◦ 26◦ 25◦ 26◦ 30◦ 30◦

generate the Nilsson basis configuration are given in Table I
and have been adopted from earlier works [25,38,40]. The
Nilsson intrinsic states are then projected onto the states with
good angular-momentum through three-dimensional projec-
tion.The projected basis states of Eq. (1) are then used to
diagonalize the shell model Hamiltonian. As in our earlier
studies, we have employed the pairing plus quadrupole-
quadrupole Hamiltonian [24,45],

Ĥ = Ĥ0 − 1

2
χ

∑
μ

Q̂†
μQ̂μ − GMP̂†P̂ − GQ

∑
μ

P̂†
μP̂μ. (4)

The corresponding triaxial Nilsson Hamiltonian is the mean-
field of the above model Hamiltonian and is given by

ĤN = Ĥ0 − 2

3
h̄ω

{
εQ̂0 + ε′ Q̂+2 + Q̂−2√

2

}
. (5)

In the above equation, Ĥ0 is the spherical single-particle Nils-
son Hamiltonian [46]. The monopole pairing strength GM of
the standard form

GM =
(

G1 ∓ G2
N − Z

A

)
1

A
(MeV). (6)

In the present calculation, we considered G1 = 22.68 and
G2 = 16.22, which approximately reproduce the observed
odd-even mass difference in the studied mass region. The
quadrupole pairing strength GQ is assumed to be proportional
to GM , and the proportionality constant being fixed as 0.18.
These interaction strengths are consistent with those used
earlier for the same mass region [38,47].

The projected TPSM wave function is then given by

|σ, IM〉 =
∑
Kκ

f σ
Kκ P̂I

MK |φκ〉. (7)

Here, the index σ labels the states with same angular mo-
mentum and κ labels the basis states. In Eq. (7), f σ

Kκ are
the expansion coefficients of the wave function in terms of
the nonorthonormal projected basis states P̂I

MK |φκ〉. These
coefficients are not probability amplitudes in the usual
quantum-mechanical sense and, in the work of Ref. [48],
modified expansion coefficients (gσ

Kκ ) are defined which are
expanded in terms of an orthonormal basis set in the following
manner:

gσ
Kκ =

∑
K ′κ ′

f σ
K ′κ ′ 〈Kκ|P̂I

MK ′ |φκ ′ 〉 =
∑
K ′κ ′

f σ
K ′κ ′N

1/2
KκK ′κ ′ , (8)

where N is the norm matrix and |Kκ〉 is an orthonormal basis
set.

Finally, the minimization of the projected energy with
respect to the expansion coefficient f σ

Kκ leads to the Hill-
Wheeler type equation∑

κ ′
(Hκκ ′ − Eσ Nκκ ′ ) f σ

Kκ ′ = 0, (9)

where the normalization is chosen such that∑
κκ ′

f σ
KκNκκ ′ f σ ′

Kκ ′ = δσσ ′ . (10)

The above equations are then solved to obtain the energies and
the wave functions [41].

In the present work, we also evaluated the transition prob-
abilities using the TPSM wave functions with the effective
charges of 0.5e and 1.5e for neutrons and protons. The details
of the transition-probability calculations with explicit expres-
sions are given in the review article [5].

III. RESULTS AND DISCUSSION

In comparison with the positive parity bands, there have
been only a few theoretical studies to investigate the neg-
ative parity bands in Ru-isotopes and other isotopes in the
A ≈ 110 mass region. The bandheads of the two-quasiparticle

FIG. 1. Energy difference between negative parity yrast and
yrare bands for same spin I , δ(I ) = [E2(I ) − E1(I )] in 112Ru.
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FIG. 2. Comparison of the aligned angular momenta,
iX = ix (ω) − ix,ref(ω), where h̄ω = Eγ /[I i

x (ω) − I f
x ω], Ixω =

[I (I + 1) − K2]1/2, and ix,ref(ω) = ω(J0 + ω2J1). The reference-band
Harris parameters used are J0 = 14 and J1 = 15, obtained from the
measured energy levels as well as those calculated from the TPSM
results for neutron excitation in 112Ru.

structures have been studied using the D1S Gogny force [27],
and it has been discussed that two-proton and two-neutron
bands for Ru isotopes are at a similar excitation energy of
about 2 MeV. In the self-consistent constrained cranking
Skyrme calculations with particle number conserving pairing
[49], it has been shown that calculated moments of iner-
tia of two-neutron quasiparticle configurations are in better
agreement with the experimental data than the two-proton
configuration for 108,110,112Ru isotopes, and the observed
bands have been characterized as neutron-excited bands.

To perform the TPSM study of the negative parity bands,
the input parameters required are deformation values and the
strengths of the monopole- and the quadrupole-pairing inter-
action terms. It is expected that deformation of the negative
parity two-quasiparticle states will be slightly different from
the yrast positive parity band structures. However, in the ab-
sence of any systematic study of the deformation properties of
these band structures, we have adopted the axial deformation
values of the ground-state bands from theoretical studies using
microscopic-macroscopic model predictions [40] with slight
adjustments as in our previous studies [5,39]. The nonaxial

FIG. 3. Comparison of the aligned angular momenta, iX =
ix (ω) − ix,ref(ω), where h̄ω = Eγ /[I i

x (ω) − I f
x ω], Ixω = [I (I + 1) −

K2]1/2, and ix,ref(ω) = ω(J0 + ω2J1). The reference-band Harris pa-
rameters used are J0 = 14 and J1 = 15, obtained from the measured
energy levels as well as those calculated from the TPSM results for
proton excitation in 112Ru.

deformation values have been varied to reproduce the ob-
served properties of these bands. The deformation values
adopted in the present analysis are listed in Table I.

The pairing parameters are clearly expected to be dif-
ferent from the ground-state values because these are two-
quasiparticle states, and it is known that pairing is reduced for
the excited quasiparticle states. However, it is difficult to study
the reduction in the pairing correlations for the quasiparticle
states as in the BCS approximation, the pairing collapses
for the blocked states and it is imperative to perform the
particle-number projected analysis before variation [50]. In
the present work, we investigated the sensitivity of the results
on the pairing correlations by varying the monopole pairing
strengths.

We have considered 112Ru as an illustrative example to
investigate the deformation and pairing dependence of the
TPSM results. The pairing strength parameters that best repro-
duce the experimental data of 112Ru are then used to perform
the TPSM calculations for other Ru-isotopes from A = 102 to
110. The reason that this system has been chosen is because
doublet band structures have been observed for this nucleus up
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FIG. 4. Comparison of the aligned angular momenta, iX =
ix (ω) − ix,ref(ω), where h̄ω = Eγ /[I i

x (ω) − I f
x ω], Ixω = [I (I + 1) −

K2]1/2 and ix,ref(ω) = ω(J0 + ω2J1). The reference-band Harris pa-
rameters used are J0 = 14 and J1 = 15, obtained from the measured
energy levels as well as those calculated from the TPSM results for
neutron excitation in 112Ru.

to quite high spin and the system is well deformed [26]. For
other isotopes, for instance, 102Ru, the data are also available
up to quite high spin. However, this system has vibrational
character in the low-spin region [28] and the application of
the TPSM approach becomes unreliable as a single deformed
mean-field solution is adopted in this model.

It has been proposed that the doublet band structures ob-
served in 112Ru originate from the chiral symmetry-breaking
mechanism [26] because the difference of the energies be-
tween the two bands, δ(I ) = [E2(I ) − E1(I )], is very small.
In Fig. 1, this difference is plotted for different values of
pair gaps � and nonaxial deformation. The differences in
the excitation energies of both two-neutron (left panel) and
two-proton (right panel) quasiparticle configurations are plot-
ted. The results are depicted only for three representative
values of the pair gaps: �n = 0.6 MeV, �p = 1.2 MeV;
�n = 0.6 MeV, �p = 0.6 MeV, and �n = 1.2 MeV, �p =
0.6 MeV. (The TPSM calculations have also been performed
for other values of the pair gaps between 0.6 and 1.2, and the
results are not very different from the three cases depicted in
Fig. 1.) It is evident from the results that γ = 30◦ leads to

FIG. 5. Comparison of the aligned angular momenta, iX =
ix (ω) − ix,ref(ω), where h̄ω = Eγ /[I i

x (ω) − I f
x ω], Ixω = [I (I + 1) −

K2]1/2, and ix,ref(ω) = ω(J0 + ω2J1). The reference-band Harris pa-
rameters used are J0 = 14 and J1 = 15, obtained from the measured
energy levels as well as those calculated from the TPSM results for
proton excitation in 112Ru.

lowest differences in the energies and agrees with the corre-
sponding experimental numbers. Furthermore, the results with
the pairing set of �n = �p = 0.6 MeV appears to be in better
agreement with the data for the neutron excitation case than
the proton excitation.

To further examine the optimum pairing set and the non-
axial deformation parameter that reproduce the experimental
data more accurately, we have evaluated the aligned angular-
momentum values ix for the doublet bands, and the results are
presented in Figs. 2–5. As compared with the energies, ix is
sensitive to the single-particle states occupied by the excited
particles and should provide a better estimate of the optimum
pairing and deformation set. The calculated ix values for the
neutron excited configuration are shown in Fig. 2 for three
different pairing sets but with the same nonaxial deformation
parameter of γ = 30◦. It is evident from the figure that the
pairing set of �n = �p = 0.6 MeV provides a better repre-
sentation of the experimental values as compared with the
other two sets, in particular, the ix values for bands 1 and 2
are reproduced remarkably well with this set. Furthermore,
the slope of the alignment curve, which is the moment of
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FIG. 6. TPSM projected energies after configuration mixing for both neutron and proton excitations are compared with experimental data
[26] for the 112Ru isotope.

inertia, is also in good agreement with the data for this set. The
alignment calculated with the proton excitation is depicted
in Fig. 3 and none of the parameter set is able to reproduce
the experimental values. The calculated ix values depict back-
bending phenomena, whereas the experimental values show
a smooth increase with spin for both the bands. In Figs. 4
and 5, the alignments are displayed for different values of
the nonaxial deformation parameters and with the pairing set
of �n = 0.6 MeV, �p = 0.6 MeV. It is evident from these
figures that γ = 30◦ for the neutron excitation shows the best
agreement with the data.

The lowest-two negative parity bands obtained for 112Ru
after diagonalization of the shell model Hamiltonian, for both
neutron and proton excitations, are compared with the experi-
mental energies in Fig. 6. It has been already stated that the
TPSM Hamiltonian, in the absence of the exchange terms,
does not mix neutron and proton excitations and the two basis
spaces can be diagonalized separately. The calculated band
structures obtained with the neutron excitation are lower in
energy than the band structures with the proton excitation. The
lowest negative band structure (labeled B1 and B2 in Fig. 6)
is quite reasonably reproduced by the TPSM calculations with
neutron excitation, and the deviation for the highest spin,
I = 14, for this band is 0.039 MeV. For the excited band
(labeled B3 and B4), significant deviations are noted for most
of the spin states and, for the highest spin observed, I = 15,
the calculated value has a deviation of 0.704 MeV.

The alignment plotted in Fig. 2 also depicts significant
deviations, although the slope is in agreement. The origin of

this deviation is not evident at this stage and further analy-
sis is needed, for instance, using a self-consistent mean-field
approach. In Fig. 6, we have also provided the energies of
the proton excited bands as in future experimental studies
more band structures will be populated and some of them may
correspond to the proton excitation.

It needs to be mentioned that TPSM energies in Fig. 6
have been plotted for lower-spin values as well, which are
not known experimentally. The reason is that the studied
negative parity band structures have dominant K = 2 and 3
configurations as is evident from the TPSM wave functions
and, therefore, the band structures will have either I = 2 or
3 as bandheads. The yrast negative parity band has been
plotted from the spin value observed in the experimental data
because the calculated TPSM energy for this state is set equal
to the corresponding experimental value. For the negative
parity yrare band, we have also provided a few low-lying
states which are not known experimentally. The reason that
these low-lying states are not known is probably because they
are mixed with spherical states because many negative parity
states are observed in these nuclei, which are not members
of the rotational bands. We have performed TPSM study for
other Ru isotopes from A = 102 to 110 with the axial and
nonaxial deformation values listed in Table I. The pairing
strengths are same as those adjusted to reproduce the prop-
erties of 112Ru. The results of the energy difference between
the two doublet band, δ(I ), are displayed in Fig. 7 for both
proton and neutron excitations. Neutron excitation energies
are slightly lower than the corresponding proton energies,
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FIG. 7. Energy difference between negative parity yrast
and yrare bands for same spin I , δ(I ) = [E2(I ) − E1(I )] in
102,104,106,108,110Ru.

however, both are compared with the available experimental
data because the proton excitation spectra can become favored
with slight adjustments in the pairing and deformation pa-
rameters. It is noticed from the figure that TPSM calculated
δ(I ) from neutron excitation energies agrees well with the
observed energies of 102Ru, 108Ru, and 110Ru. It is also evident
from the figure that δ(I ) for the lowest two proton bands
also agrees with the data, except for 102Ru, which shows a
staggering pattern. For other isotopes the yrare band has not
been observed.

The alignments of the isotopes are plotted in Fig. 8 for neu-
tron excitation spectra and compared with the corresponding
experimental numbers, wherever available. It is quite remark-
able to note from the figure that ix values are reproduced well
for all the isotopes. For 102Ru, upbend is observed for bands
B1 and B2 at h̄ω ≈ 0.55 MeV and is well described by the
TPSM calculations. For other isotopes, ix depicts a smooth
increase with rotational frequency and is easily understood
as unpaired particles align towards the rotational axis. For
106Ru, TPSM calculated bands B3 and B4 show upbends, but
there is no experimental data to confirm this band-crossing
phenomenon. The alignments for the proton excitation bands
are displayed in Fig. 9 and, in most cases, the band crossing is
expected because either an upbend or a backbend is observed.
These alignments considerably differ with the experimental
values.

FIG. 8. Comparison of the aligned angular momenta,
iX = ix (ω) − ix,ref(ω), where h̄ω = Eγ /[I i

x (ω) − I f
x ω],

Ixω = [I (I + 1) − K2]1/2, and ix,ref(ω) = ω(J0 + ω2J1). The
reference-band Harris parameters used are J0 = 14 and J1 = 15,
obtained from the measured energy levels as well as those calculated
from the TPSM results for neutron excitation in 102,104,106,108,110Ru.

To examine the nature of the band-crossing phenomenon
observed in 102Ru, the wave function probabilities are dis-
played in Fig. 10 for both negative parity yrast and yrare
bands. It is noted from the figure that, for the negative
parity yrast band, the dominant component before I = 14
is a mixture of many (1n1n′) configurations. After I = 14,
the dominant component in the wave function is a four-
quasiparticle state (1n1n′2p′) having K = 2, which is a
two-proton aligned state built on the basic (1n1n′) configu-
ration. It is observed from Fig. 10 that there is a considerable
mixing between the two-quasiparticle and the proton-aligned
four-quasiparticle states and, therefore, an upbend rather than
a backbend is expected and this is what is seen in the align-
ment plot for 102Ru in Fig. 8. For the negative parity yrare
band, band crossing is also expected at I = 14 as the wave
function in the lower panel of Fig. 10 depicts a dominant
(1n1n′) contribution before this spin value and after it, the
wave function is dominated by (1n1n′2p′) four-quasiparticle
state with K = 4.

TPSM calculated energy spectra are compared with the
experimental energies in Figs. 11–15 for 102Ru, 104Ru, 106Ru,
108Ru, and 110Ru, respectively. For 102Ru, the experimental
energies are known up to I = 23, and it is observed that TPSM
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FIG. 9. Comparison of the aligned angular momenta,
iX = ix (ω) − ix,ref(ω), where h̄ω = Eγ /[I i

x (ω) − I f
x ω],

Ixω = [I (I + 1) − K2]1/2, and ix,ref(ω) = ω(J0 + ω2J1). The
reference-band Harris parameters used are J0 = 14 and J1 = 15,
obtained from the measured energy levels as well as those calculated
from the TPSM results for proton excitation in 102,104,106,108,110Ru.

calculations with neutron excitation reproduces the data quite
well, the deviations for most of the states is less than 0.2 MeV.
The proton excitation bands at low spin are almost degenerate
with the neutron bands but, at higher spins, they become unfa-
vored. In the case of 104Ru and 106Ru, the data is available up
to I = 13 and only one band is known. The TPSM results are
in reasonable agreement with the data for both the nuclei. For
108Ru and 110Ru, doublet negative parity bands have been ob-
served and TPSM calculations reproduce the low-lying states
in both the nuclei quite well; however, deviations are noted for
the excited states. Because transition probabilities are more
sensitive to any structural changes, we have also evaluated the
transition quadrupole moment Qt for the negative parity yrast
and yrare bands for all the studied isotopes, and the results are
presented in Figs. 16 and 17. It is evident from the figures that
in the band-crossing region Qt depicts large changes since the
wave functions are mixed in this region. For 102Ru, the drop is
observed at I = 20 and 21 for the two signature branches and
these are the spin values for which large changes are observed
in the aligned angular-momentum, as seen from Fig. 8. It is
noted from Fig. 17 that the negative parity yrare band for
112Ru also depicts a large drop at I = 10 and substantiates
the occurrence of band crossing at this spin value with the

FIG. 10. Probabilities of various projected K configurations in
the orthonormal wave functions of the negative parity yrast and
yrare bands after diagonalization for 102Ru. The curves are labeled
by three quantities: quasiparticle character, K quantum number and
energy of the quasiparticle state. For instance, [(1n1n′), 3, 2.3] des-
ignates two–quasineutron state with K = 3 having intrinsic energy of
2.3 MeV. Even- and odd-spin states correspond to α = 0 (solid lines)
and α = 1 (dashed lines), respectively.

FIG. 11. TPSM projected energies after configuration mixing for
both neutron and proton excitations are compared with experimental
data [28] for 102Ru isotope.
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FIG. 12. TPSM projected energies after configuration mixing for
both neutron and proton excitations are compared with experimental
data [27] for the 104Ru isotope.

aligned angular momenta showing a rapid increase in Fig. 2
for the corresponding angular-frequency value.

IV. SUMMARY AND CONCLUSIONS

In the present work, the TPSM approach has been extended
to investigate the negative parity bands in even-even systems.
In all the previous versions of the model, the quasiparticle
excitations were considered from a single oscillator shell and
it was possible to investigate only positive parity bands. Here,
we extended the model space by considering a quasiparticle
basis from two different oscillator shells, and a detailed in-
vestigation has been performed for the negative parity bands
observed in 102–112Ru because considerable data are available
for these isotopes.

FIG. 13. TPSM projected energies after configuration mixing for
both neutron and proton excitations are compared with experimental
data [27] for the 106Ru isotope.

FIG. 14. TPSM projected energies after configuration mixing for
both neutron and proton excitations are compared with experimental
data [26] for the 108Ru isotope.

Both proton and neutron quasiparticle excitations have
been considered in the present analysis and it has been ob-
served that neutron spectra are slightly lower than the proton
spectra. However, the comparison of alignments clearly delin-
eated the two spectra with neutron alignment observed to be
in better agreement with the data, and proton alignment shows
significant deviations. Furthermore, transition quadrupole mo-
ments for both negative parity yrast and yrare bands have
been evaluated and depict large changes in the band-crossing
region.

To improve the predictive power of the present inves-
tigation, deformation and pairing parameters need to be
determined for the negative parity bands. It is quite ev-
ident that parameters known for the yrast positive parity

FIG. 15. TPSM projected energies after configuration mixing for
both neutron and proton excitations are compared with experimental
data [26] for the 110Ru isotope.
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FIG. 16. TPSM calculated transition quadrupole moments
Qt (e fm2) for the negative parity yrast band in 102–112Ru isotopes.

configurations cannot be used for the two-quasiparticle neg-
ative parity states. It is essential to deduce these parameters
from the microscopic models, for instance, the energy density-
functional approaches with the blocking technique [51]. We
are planning to perform this study using the Skyrme density-
functional approach [52], and these parameters will then be
used to evaluate the properties of negative parity band struc-
tures more accurately and will allow us to investigate the
chiral symmetry origin proposed for some of the studied iso-
topes.

In some of the nuclei studied, the octupole deformation
is predicted to be an important degree of freedom [28,34],
and the TPSM approach needs to be augmented to include
the octupole deformation. We are considering including the
octupole correlations in the TPSM framework. This can
be achieved in two phases. In the first phase, the octupole-
octupole interaction will be included in the Hamiltonian
with the mean-field having well-defined parity. In this way,
the octupole correlations will be added as a perturbation
correction. In the second phase, the octupole mean field
will be considered in the Nilsson state with the explicit
breaking of the reflection symmetry. This broken symme-
try can then be restored using the standard-parity projection
formalism [53–56].

FIG. 17. TPSM calculated transition quadrupole moments
Qt (e fm2) for the negative parity yrare band in 102–112Ru isotopes.

Furthermore, a major deficiency of the present approach
is that deformation and pairing fields are kept fixed irrespec-
tive of the angular momentum and quasiparticle configuration
because the projection is carried out after variation. This
is a gross simplification since it is known that the mean
field is modified for multiquasiparticle and higher angular-
momentum states. It is highly desirable that the generator
coordinate method (GCM) [57,58] be developed with the
TPSM wave functions as the basis configuration. In recent
years, considerable progress has been made in the imple-
mentation of GCM-related techniques in nuclear physics, and
the microscopic structure of various phenomena have been
explored [59–64].
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APPENDIX

The Hamiltonian in terms of proton and neutron degrees of
freedom employed in the TPSM approach is given by

Ĥ = Ĥ0 − χpp

2

∑
μ

Q̂†
μ(p)Q̂μ(p) − χnn

2

∑
μ

Q̂†
μ(n)Q̂μ(n)

− χnp

∑
μ

(Q̂†
μ(p)Q̂μ(n) + Q̂†

μ(n)Q̂μ(p))

− Gp
MP̂†

0 (p)P̂0(p) − Gn
MP̂†

0 (n)P̂0(n)

− Gp
Q

∑
μ

P̂†
μ(p)P̂μ(p) − Gn

Q

∑
μ

P̂†
μ(n)P̂μ(n), (A1)

where the labels n (p) denote neutron (proton) states. The ex-
plicit form of the one-body operators in the above equation are
given by

Q̂†
μ =

∑
αβ

Qμαβc†
αcβ, P̂†

0 = 1

2

∑
α

c†
αc†

ᾱ, P̂†
μ=1

2

∑
αβ

Qμαβc†
αc†

β̄
.

(A2)

Here the quadrupole matrix elements Qμαα′ =
δNN ′ 〈N jm|Qμ|N ′ j′m′〉 with α = {N jm}, ᾱ represents
the time-reversed state of α, and the dimensionless mass
quadrupole operator is [41]

Qμ =
√

4π

5

mωr2

h̄
Y2μ. (A3)

In the evaluation of the matrix elements of the Hamiltonian
of Eq. (A1), the exchange terms are disregarded. Applying
Wick’s theorem to one of the terms in Eq. (A1) with |�〉 as
the reference state, we have

Ô†Ô =〈�|Ô|�〉2 + 〈�|Ô|�〉(: Ô† : + : Ô :)

+ : Ô† :: Ô := Ĥ (0) + Ĥ (1) + Ĥ (2). (A4)

Now using the generalized Wick’s theorem [43,44,65], we
evaluate the matrix elements between the projected quasipar-
ticle states of Eq. (A4). First of all, for the vacuum state, we
have

〈�|Ĥ (0)[�]|�〉 = 〈�|Ô|�〉2
,

〈�|Ĥ (1)[�]|�〉 = 〈�|Ô|�〉(〈�| : Ô† : [�]|�〉
+ 〈�| : Ô : [�]|�〉),

〈�|Ĥ (2)[�]|�〉 = 〈�| : Ô† : [�]|�〉〈�| : Ô : [�]|�〉, (A5)

where the operator [�] is defined as

[�] = R̂(�)

〈�|R̂(�)|�〉 .

The rotation operator R̂(�) is defined in Eq. (3) and the oper-
ator Ô†Ô can be of any one of the forms Ô†

nÔn, Ô†
pÔp, Ô†

pÔn,
or Ô†

nÔp. In the following, it is shown that the basic matrix
element between neutron and proton quasiparticle excitations
vanish. All higher-order matrix elements between the two
excited configurations can be expressed in terms of this basic
matrix elements and, therefore, all of them vanish:

〈�|an′
2
an1 Ĥ [�]a†

p3
a†

p′
4
|�〉 = 〈�|an′

2
an1 Ĥ (0)[�]a†

p3
a†

p′
4
|�〉

+ 〈�|an′
2
an1 Ĥ (1)[�]a†

p3
a†

p′
4
|�〉

+ 〈�|an′
2
an1 Ĥ (2)[�]a†

p3
a†

p′
4
|�〉,
(A6)

where

〈�|an′
2
an1 Ĥ (0)[�]a†

p3
a†

p′
4
|�〉

= 〈�|Ô|�〉2〈�|an′
2
an1 [�]a†

p3
a†

p′
4
|�〉

= 〈�|Ô|�〉2
[〈�|an′

2
an1 [�]|�〉〈�|[�]a†

p3
a†

p′
4
|�〉

− 〈�|an′
2
[�]a†

p3
|�〉〈�|an1 [�]a†

p′
4
|�〉

+ 〈�|an′
2
[�]a†

p′
4
|�〉〈�|an1 [�]a†

p3
|�〉] = 0. (A7)

Above, the terms of the type 〈�|an′
2
[�]a†

p′
4
|�〉,

〈�|an1 [�]a†
p3

|�〉, and 〈�|an′
2
[�]a†

p3
|�〉 vanish since |�〉

is a product of neutron and proton vacuum states, i.e.,

|�〉 = |�n〉|�p〉,

and

〈�|an′
2
[�]a†

p′
4
|�〉 = 〈�n|an′

2
[�]|�n〉〈�p|[�]a†

p′
4
|�p〉,

since |�n〉 and |�p〉 have positive parity, both the overlaps on
the right-hand side vanish due to parity symmetry.

Therefore,

〈�|an′
2
[�]a†

p′
4
|�〉 = 0. (A8)
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The second term of Eq. (A6) is

〈�|an′
2
an1 Ĥ (1)[�]a†

p3
a†

p′
4
|�〉 = 〈�|Ô|�〉〈�|an′

2
an1 (:Ô†: + :Ô:)[�]a†

p3
a†

p′
4
|�〉

= 〈�|Ô|�〉[〈�|an′
2
an1 : Ô† : [�]|�〉〈�|[�]a†

p3
a†

p′
4
|�〉 + 〈�|an′

2
an1 : Ô : [�]|�〉〈�|[�]a†

p3
a†

p′
4
|�〉

+ 〈�|an′
2
an1 [�]|�〉〈�| : Ô† : [�]a†

p3
a†

p′
4
|�〉 + 〈�|an′

2
an1 [�]|�〉〈�| : Ô : [�]a†

p3
a†

p′
4
|�〉

− 〈�|an′
2

: Ô† : [�]a†
p3

|�〉〈�|an1 [�]a†
p′

4
|�〉 − 〈�|an′

2
: Ô : [�]a†

p3
|�〉〈�|an1 [�]a†

p′
4
|�〉

− 〈�|an′
2
[�]a†

p3
|�〉〈�|an1 : Ô† : [�]a†

p′
4
|�〉 − 〈�|an′

2
[�]a†

p3
|�〉〈�|an1 : Ô : [�]a†

p′
4
|�〉

+ 〈�|an′
2

: Ô† : [�]a†
p′

4
|�〉〈�|an1 [�]a†

p3
|�〉 + 〈�|an′

2
: Ô : [�]a†

p′
4
|�〉〈�|an1 [�]a†

p3
|�〉

+ 〈�|an′
2
[�]a†

p′
4
|�〉〈�|an1 : Ô† : [�]a†

p3
|�〉 + 〈�|an′

2
[�]a†

p′
4
|�〉〈�|an1 : Ô : [�]a†

p3
|�〉

+ (〈�| : Ô† : [�]|�〉 + 〈�| : Ô : [�]|�〉)〈�|an′
2
an1 [�]a†

p3
a†

p′
4
|�〉] = 0. (A9)

All the above terms vanish due to Eqs. (A7) and (A8). The third term of Eq. (A6) is

〈�|an′
2
an1 Ĥ (2)[�]a†

p3
a†

p′
4
|�〉 = 〈�|an′

2
an1 (: Ô† :: Ô :)[�]a†

p3
a†

p′
4
|�〉

= 〈�|an′
2
an1 : Ô† : [�]|�〉〈�| : Ô : [�]a†

p3
a†

p′
4
|�〉+〈�|an′

2
an1 : Ô : [�]|�〉〈�| : Ô† : [�]a†

p3
a†

p′
4
|�〉

− 〈�|an′
2

: Ô† : [�]a†
p3

|�〉〈�an1 : Ô : [�]a†
p′

4
|�〉

− 〈�|an′
2

: Ô : [�]a†
p3

|�〉〈�an1 : Ô† : [�]a†
p′

4
|�〉

+ 〈�|an′
2

: Ô† : [�]a†
p′

4
|�〉〈�|an1 : Ô : [�]a†

p3
|�〉

+ 〈�|an′
2

: Ô : [�]a†
p′

4
|�〉〈�|an1 : Ô† : [�]a†

p3
|�〉

+ 〈�| : Ô† : [�]|�〉[〈�|an′
2
an1 : Ô : [�]|�〉〈�|[�]a†

p3
a†

p′
4
|�〉

+ 〈�|an′
2
an1 [�]|�〉〈�| : Ô : [�]a†

p3
a†

p′
4
|�〉

− 〈�|an′
2

: Ô : [�]a†
p3

|�〉〈�an1 [�]a†
p′

4
|�〉 − 〈�|an′

2
[�]a†

p3
|�〉〈�an1 : Ô : [�]a†

p′
4
|�〉

+ 〈�|an′
2

: Ô : [�]a†
p′

4
|�〉〈�|an1 [�]a†

p3
|�〉 + 〈�|an′

2
[�]a†

p′
4
|�〉〈�|an1 : Ô : [�]a†

p3
|�〉]

+ 〈�| : Ô : [�]|�〉[〈�|an′
2
an1 : Ô† : [�]|�〉〈�|[�]a†

p3
a†

p′
4
|�〉

+ 〈�|an′
2
an1 [�]|�〉〈�| : Ô† : [�]a†

p3
a†

p′
4
|�〉

− 〈�|an′
2

: Ô† : [�]a†
p3

|�〉〈�an1 [�]a†
p′

4
|�〉 − 〈�|an′

2
[�]a†

p3
|�〉〈�an1 : Ô† : [�]a†

p′
4
|�〉

+ 〈�|an′
2

: Ô† : [�]a†
p′

4
|�〉〈�|an1 [�]a†

p3
|�〉 + 〈�|an′

2
[�]a†

p′
4
|�〉〈�|an1 : Ô† : [�]a†

p3
|�〉]

+ [〈�| : Ô† : [�]|�〉〈�| : Ô : [�]|�〉]〈�|an′
2
an1 [�]a†

p3
a†

p′
4
|�〉 = 0. (A10)

Again all the above terms vanish due to Eqs. (A7) and (A8). Therefore, we have

〈�|an′
2
an1 Ĥ [�]a†

p3
a†

p′
4
|�〉 = 0.
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