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Neutron scattering off neutron halos can provide important information about the internal structure of nuclei
close to the neutron drip line. In this work, we use halo effective field theory to study the s-wave scattering of
a neutron and the spin-parity JP = 1

2

+
one-neutron halo nuclei 11Be, 15C, and 19C at leading order. In the J = 1

channel, the only inputs to the Faddeev equations are their one-neutron separation energies. In the J = 0 channel,
the neutron-neutron scattering length and the two-neutron separation energies of 12Be, 16C, and 20C enter as well.
The numerical results show that the total s-wave cross sections in the J = 1 channel at threshold are of the order
of a few barns. In the J = 0 channel, these cross sections are of the order of a few barns for n- 11Be and n- 19C
scattering, and about 60 mb for the n- 15C scattering. The appearance of a pole in p cot δ close to zero in all
three cases indicates the existence of a virtual Efimov state close to threshold in each of the 12Be, 16C, and 20C
systems. Observation of this pole would confirm the presence of Efimov physics in halo nuclei. The dependence
of the results on the neutron-core scattering length is also studied.

DOI: 10.1103/PhysRevC.108.044304

I. INTRODUCTION

Over the last four decades, various nuclei have been dis-
covered where the valence neutron(s) have a large probability
to distribute in the classically forbidden region outside the
range of the core potential [1–4]. To a good approximation,
these nuclei can be described as a compact, structureless core
surrounded by a halo of valence neutron(s). The unusual size
of the halo nuclei can be viewed as a consequence of quantum
mechanical tunneling of the halo neutrons out of the core po-
tential. Understanding the structure of halo nuclei provides a
window to fundamental aspects of the nuclei along the neutron
drip line.

Effective field theory (EFT) provides a powerful tool to
explore nuclear systems where the separation of scales ex-
ists [5,6]. Depending on the desired resolution scale, different
EFTs for nuclear phenomena have been constructed (see
Refs. [7–17] for reviews of these efforts). In an EFT, one
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can construct the most general Lagrangian involving low-
energy degrees of freedom while the short-distance physics
can be described by a derivative expansion of local inter-
actions. Physical observables can be expanded in powers of
the short-distance over large-distance scales. EFT allows a
systematic and controlled approach to investigating nuclear
interactions in low-energy processes. The separation of scales
in halo nuclei implies that one can use an EFT for halo nuclei
(the so-called halo EFT), which uses the core and the halo
nucleons as degrees of freedom [18–20]. Their interaction
is described by contact terms expanded in powers of Q/�,
where Q is a general low-energy momentum scale, while �

is the breakdown scale of halo EFT. It is set by the lowest
scale of physics not explicitly included, such as the pion mass
mπ ≈ 140 MeV or the momentum corresponding to a core
excitation. In halo EFT, the core and valence neutron(s) are
treated as point-like particles. The finite size of the core enters
only in higher-order corrections.

Halo EFT has been used to study a variety of pro-
cesses. The theory was first applied to study the shallow
p-wave neutron-α resonance [18,19] and the s-wave α-α res-
onance [20]. Then, it was extended to investigate three-body
systems. For example, the structure of two-neutron halo nu-
clei and the relevance of the Efimov effect [21–29] were
studied at leading order (LO) in Refs. [30–34] and next-to-
leading order (NLO) in Refs. [35,36]. Halo EFT has also been
used to study the electromagnetic reactions of neutron and
proton halo nuclei including range corrections and higher-
order electromagnetic interactions (see, e.g., Refs. [37–44]).
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Reviews of the applications of halo EFT can be found in
Refs. [16,45].

The halos 11Be, 15C, and 19C with spin-parity JP = 1
2

+
all

have a core with JP = 0+. The lowest excitation energies E∗
c

of the cores 10Be, 14C, and 18C are 3.368, 6.094, and 1.62
MeV according to the Triangle Universities Nuclear Labo-
ratory (TUNL) database [46–49], respectively. Moreover, the
one-neutron separation energies Bσ of 11Be, 15C, and 19C are
0.502, 1.218, and 0.58 MeV from the atomic mass evalua-
tion AME2020 [50,51], respectively. A rough estimate of the
expansion parameters Q/� ∼ √

B1n/E∗
c in halo EFT gives

about 0.39 for 11Be, 0.45 for 15C and 0.60 for 19C, respec-
tively. These estimates of the expansion parameter Q/� are
consistent with an analysis of electromagnetic reactions, as
discussed in Refs. [37,39,40,52,53].

Neutron scattering off halo nuclei can provide important
information about the internal structure of the nuclei in the
neutron drip line region. Such experiments may be performed
with radioactive beams of the halo nuclei [54–58] on a
deuterium target. The reactions can be computed from the
neutron-halo and proton-halo scattering amplitudes. In prin-
ciple, they may also be performed directly at facilities with
neutron beams, such as the China Spallation Neutron Source
(CSNS) [59,60], if appropriate beams of the halo nuclei be-
come available.

In this work, we study the interaction of the neutron and
the spin-parity JP = 1

2
+

one-neutron halo nuclei 11Be, 15C,
and 19C using halo EFT. There are two channels in the s-wave
scattering corresponding to the total spin J = 1 and J = 0.
Our calculation is performed at LO. At this order, the only
inputs to the Faddeev equations are the one-neutron separation
energies of one-neutron halo nuclei in the total spin J = 1
channel, as well as the two-neutron scattering length and the
two-neutron separation energies of 12Be, 16C, and 20C in the
total spin J = 0 channel. Corrections from higher orders can
be estimated as the theoretical uncertainty.

The paper is organized as follows. In Sec. II, we introduce
the effective Lagrangian for the interactions necessary for
calculating the scattering of neutron and 11Be, 15C, and 19C.
Section III describes how the relevant two-body interactions
emerge from the effective Lagrangian. The three-body interac-
tions are studied in Sec. IV. Numerical results and discussions
are presented in Sec. V. Finally, we summarize our work in
Sec. VI. Some technical details are given in the Appendices.

II. EFFECTIVE LAGRANGIAN

In halo EFT, the relevant degrees of freedom are the core
nucleus (c) and the valence nucleon(s). At LO, the two-body
subsystems nn and nc are described by zero-range interac-
tions. The effective Lagrangian can be written as a sum of
one-body, two-body, and three-body contributions,

L = L1 + L2 + L3. (1)

The one-body Lagrangian is

L1 = �n†

(
i∂0 + ∇2

2mn

)
�n + c†

(
i∂0 + ∇2

2mc

)
c, (2)

TABLE I. The mass of the core nuclei. The data are taken from
AME2020 [50,51].

Nuclei 10Be 14C 18C

mc (MeV) 9327.5 13043.9 16791.8

where c is a scalar field for the core nuclei 10Be, 14C, and 18C
with a mass mc, the masses are taken from Refs. [50,51] as
given in Table I, and �n represents a two-component spinor
field of the valence neutron �n = (n↑ n↓) with a mass mn.
The mass of neutron is taken to be mn = 939.57 MeV [61].
If the effective ranges are positive, the two-body Lagrangian
involving the s-wave nn and nc interactions to NLO can be
written as [37,40,62–64]

L2 = s†

[
�s −

(
i∂0 + ∇2

4mn

)]
s

+ σ
†
i

[
�σ −

(
i∂0 + ∇2

2mσ

)]
σi

− gsC
00
1/2α,1/2β [s†nαnβ + H.c.] − gσ [σ †

i nic + H.c.],
(3)

where s is a scalar dimer field for the two-neutron system, �σ =
(σ↑ σ↓) is a two-component spinor field for 11Be, 15C, and
19C with a mass mσ = mc + mn, and C00

1/2α,1/2β is a Clebsch-
Gordan coefficient. The parameters �s, �σ , gs, and gσ can be
determined by experimental data. At LO, �s,σ and gs,σ are not
independent and only the combinations g2

s,σ /�s,σ enter into
observables.

The three-body interaction Lagrangian L3 can be con-
structed in terms of the s-wave two-neutron dimer and the
core [31,36], which is needed for the renormalization in the
total spin J = 0 channel at LO. It can be written as

L3 = g2
sD0(sc)†(sc) (4)

with D0 a three-body parameter.

III. TWO-BODY INTERACTIONS

At LO, the bare dimer propagators i/�s,σ are dressed by
an infinite number of bubble diagrams as shown in Fig. 1.
Using the Feynman rules, the full nn and nc dimer propagators
consisting of the geometric series represented in Fig. 1 can be

FIG. 1. Dimer propagators at LO from the Lagrangian in
Eqs. (3). The double-dashed line and dashed-solid line are the nn
and nc propagators, respectively. The bare dimer propagator i/�s,σ

is dressed by an infinite number of bubble diagrams. The dashed and
solid lines represent the neutron and the core nucleus, respectively.

044304-2



NEUTRON SCATTERING OFF ONE-NEUTRON HALO … PHYSICAL REVIEW C 108, 044304 (2023)

written as

iDs(p0, p) = −i

−�s + mng2
s/(2π )[−� +

√
mn[p2/(4mn) − p0 − iε]]

,

iDσ (p0, p) = −i

−�σ + μncg2
σ /(2π )[−� +

√
2μnc[p2/(2mσ ) − p0 − iε]]

, (5)

where p0 and p are the energy and the magnitude of
the three-momentum of the dimer field, respectively. μnc =
mnmc/(mn + mc) is the reduced mass of the nc two-body
system, and � is an arbitrary momentum scale in the power
divergence subtraction (PDS) scheme [65,66].

For the nn two-body system, the parameters �s and gs can
be matched to the experimentally known scattering length as,

a−1
s = 2π

mng2
s

�s + �, (6)

and we take the value as = −18.6 fm [67]. The full renormal-
ized nn dimer propagator can then be written as

iDs(p0, p) = 2π

mng2
s

−i

−1/as +
√

mn[p2/(4mn) − p0 − iε]
.

(7)

For a negative scattering length as, the pole of the propagator
is on the second Riemann sheet of the complex energy plane
and the residue at the pole is negative,

Z−1
s = m2

ng2
sas

4π
. (8)

For the nc two-body system, the parameters �σ and gσ are
connected to the scattering length aσ by

a−1
σ = 2π

μncg2
σ

�σ + �, (9)

and the full renormalized nc dimer propagator can then be
written as

iDσ (p0, p) = 2π

μncg2
σ

−i

−1/aσ +
√

2μnc[p2/(2mσ ) − p0 − iε]
.

(10)

The nc dimer propagator has a pole at

p0 − p2

2mσ

= − 1

2μnca2
σ

= −Bσ , (11)

where Bσ is the separation energy between the core and the
valence neutron of the one-neutron halo nucleus. The input pa-
rameters for the nc two-body interaction are given in Table II.
For positive scattering length aσ , the pole of the propagator is

TABLE II. EFT inputs for the nc two-body interactions. The data
are taken from AME2020 [50,51].

Halo nuclei 11Be 15C 19C

Bσ (MeV) 0.502 1.218 0.58
aσ (fm) 6.741 4.27 6.142

on the first Riemann sheet of the complex square root and the
residue at the pole is positive,

Z−1
σ = μ2

ncg2
σ aσ

2π
. (12)

In our calculation, we stay at LO in the power counting of
halo EFT, and the effective range corrections arising from the
kinetic terms of the dimers in Eq. (3) are not included [68–71].

IV. THREE-BODY INTERACTION

In this work, we are interested in the s-wave scattering of
the neutron and the one-neutron halo nuclei 11Be, 15C, and
19C in halo EFT. The Efimov effect appears in three-body
systems when the scattering length of the two-body subsystem
is much larger than the range of the forces [21–26,28]. The
condition for the appearance of the Efimov state in halo nuclei
was first studied in Ref. [25]. The Efimov effect in 12Be
and 20C was studied in the renormalized zero-range model in
Ref. [27]. In Refs. [30,35] it was investigated in halo EFT at
LO and NLO. Taking the values of the nc two-body binding
energy Bσ from the TUNL database [47–49], the numerical
calculations at LO indicate that only 20C with the n- 18C
bound state energy Bσ = (0.162 ± 0.112) MeV has a possible
excited Efimov state, with an energy less than 14 keV in
Ref. [27] and 7 keV in Ref. [30] below the n- 19C threshold.
The shift in the excited state binding energy is found less
than 0.5 keV at NLO in Ref. [35]. However, recent evaluation
in AME2020 [50,51] finds Bσ = (0.58 ± 0.09) MeV for the
n- 18C interaction, which does not support an excited Efimov
state in 20C. Experiments on neutron scattering off halo nuclei
provide important information about the internal structure of
the nuclei, and can put constraints on the possible existence of
excited Efimov states in these nuclei.

The radius of halo nuclei is much larger than the radius
of their core, and the core can be assumed as point-like. This
separation of scales allows for a description of the low-energy
properties of halo nuclei using contact interactions between
the halo neutrons and between the neutrons and the core. The
T matrix for scattering of a neutron and a one-neutron halo
nucleus will be calculated at LO in halo EFT, by solving the
corresponding Faddeev integral equation. The integral equa-
tion was first derived in Ref. [72] for the neutron-deuteron
system and is identical to the result given in Ref. [73] if
contact interactions are considered. Including only two-body
interactions, the numerical results for s-wave observables in
the three-body system of two neutrons and the core nucleus in
the total spin J = 0 channel, where three-body bound states
appear, suffer from a peculiar cutoff dependence. This behav-
ior was already observed in Refs. [74–76] for the J = 1/2
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FIG. 2. Faddeev equation for the nσ scattering in the total spin J = 1 channel at LO. The notations are the same as those in Fig. 1.

neutron deuteron system and also occurs in the three-boson
system. This cutoff dependence can be removed by intro-
ducing a three-body force that runs log-periodically with the
cutoff [64,77,78]. Fixing the three-body force from a single
three-body observable, all other observables can be predicted
at LO. In our calculations, the three-body forces in the J = 0
channel are fixed with the 12Be, 16C, and 20C ground state two-
neutron separation energies, and the log-periodic behavior of
the three-body forces is also observed as expected (see below).

A. Total spin J = 1 channel

The T matrix for lth partial wave nσ scattering in the total
spin J = 1 channel is given by the integral equation displayed
in Fig. 2. Since the spin of the core nucleus of interest is
zero, the total spin of the two neutrons should be one for
this channel. Such a configuration is not forbidden by the
Pauli exclusion principle because one of the neutrons is bound
inside the neutron halo nucleus. Thus the identical fermions
are not localized in a point. Three-body contact terms without
derivatives, however, are forbidden by the exclusion principle.
Indeed one finds that no three-body force contribution at LO is
needed to achieve a cutoff independent solution. The integral

equation for this channel can be written as

iT l
σσ (k, p, E ) = iV l

σσ (k, p, E ) −
∫ �

0

q2dq

2π2
V l

σσ (k, q, E )

× Z−1
σ Dσ

(
E − q2

2mn
, q

)
iT l

σσ (q, p, E ),

(13)

where p and k are the magnitudes of the incoming and out-
going momenta of the spectator neutron in the three-body
center-of-mass frame, respectively, and the upper index l
denotes the partial wave. The total nonrelativistic on-shell
energy is

E = p2

2μnσ

− 1

2μnca2
σ

= p2

2μnσ

− Bσ , (14)

where

μnσ = mnmσ

mn + mσ

(15)

is the nσ reduced mass. Notice that when all external legs are
on-shell, the momenta p and k are equal.

The lth partial wave projection of the core-exchange po-
tential can be written as

V l
σσ (k, q, E ) = Zσ g2

σ · 1

2

∫ +1

−1

Pl (cos θ ) d cos θ

E − k2/(2mn) − q2/(2mn) − (�q + �k)2/(2mc) + iε
,

= Zσ g2
σ · mc

qk
Ql

(
mcE − mσ /(2mn)(q2 + k2) + iε

qk

)
, (16)

where θ is the angle between �q and �k, the Legendre polynomial of the second kind with complex argument is

Ql (z) = 1

2

∫ +1

−1

Pl (cos θ ) d cos θ

z − cos θ
, (17)

and the analytic expressions of the first few Ql (z) are given in Appendix A.

FIG. 3. Faddeev equation for the nσ scattering in the total spin J = 0 channel at LO. The notations are the same as those in Fig. 1.
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B. Total spin J = 0 channel

The T matrix for the lth partial wave nσ scattering in the total spin J = 0 channel is given by the integral equation shown in
Fig. 3. The integral equation for this channel can be written as(

iT l
σσ (k, p, E )

iT l
sσ (k, p, E )

)
=

(
−iV l

σσ (k, p, E )

i2V l
sσ (k, p, E )

)
−

∫ �

0

q2dq

2π2

(
−V l

σσ (k, q, E ) 2V l
σ s(k, q, E )

2V l
sσ (k, q, E ) 0

)

×
⎛
⎝Z−1

σ Dσ

(
E − q2

2mn
, q

)
0

0 Z−1
s Ds

(
E − q2

2mc
, q

)
⎞
⎠(

iT l
σσ (q, p, E )

iT l
sσ (q, p, E )

)
. (18)

The lth partial wave projection of the core-exchange potential has been given in Eq. (16). The lth partial wave projection of the
neutron-exchange potential can be written as

V l
σ s(k, q, E ) = (

√
Zσ Zsgσ gs) · 1

2

∫ +1

−1

Pl (cos θ )d cos θ

E − k2/2mn − q2/2mc − (�q + �k)2/2mn + iε
,

= (
√

Zσ Zsgσ gs) · mn

qk
Ql

(
mnE − k2 − mσ /(2mc)q2 + iε

qk

)
, (19)

and

V l
sσ (k, q, E ) = V l

σ s(q, k, E ). (20)

For this channel, a three-body force is required for renormal-
ization at LO. For clarity, however, the three-body force terms
are omitted in Fig. 3 and Eq. (18). Their contribution will be
included in the calculations below.

The integral equations in the J = 0 and J = 1 channels are
solved numerically. Details of the numerical solution method
are given in Appendix B.

V. NUMERICAL RESULTS AND DISCUSSION

At LO of halo EFT, the only input parameter in the J = 1
channel is the neutron-core s-wave scattering length or the
one-neutron separation energy of the one-neutron-halo nu-
cleus. The values for the 11Be, 15C, and 19C nuclei are listed
in Table II. In addition, to understand the dependence of the
results from the variation of the nc scattering length aσ , its
values will be varied by ±0.5 fm. In the J = 0 channel, two
additional parameters are needed to fix the interactions: the
two-neutron scattering length as and the two-neutron separa-
tion energies B2n of 12Be, 16C, and 20C to fix the three-body
force. We use the values given in the AME2020 [50,51] as
shown in Table III.

A. Cutoff dependence in the J = 0 channel

Using a sharp cutoff � to regularize the Faddeev equa-
tion in Eq. (18) and omitting the three-body force, the cutoff
dependence of the three-body binding energies in the J = 0

TABLE III. Two-neutron separation energies B2n. The data are
taken from AME2020 [50,51].

Halo nuclei 12Be 16C 20C

B2n (MeV) 3.672 5.468 3.560

channel are shown in Fig. 4. One can see that the energies
have a strong cutoff dependence. Asymptotically, they grow
with �2. In addition, the binding energies are insensitive to the
masses of different nuclei for the given scattering lengths aσ .
This fact can be expected as the core nuclei considered here
are much heavier than the neutron, and thus the core kinetic
energies are much smaller than that of the neutron.1

Following Refs. [30,77], one may add a three-body coun-
terterm to the Faddeev equation (18) to cancel this cutoff
dependence,

Vss (k, p, E ) = Zsg
2
sD0. (21)

1When the core nucleus is much heavier than the nucleon, one may
construct an EFT treating the core nucleus as static at LO, similar
to the heavy quark effective theory [79] and heavy baryon chiral
perturbation theory [80,81].

FIG. 4. Cutoff dependence of the three-body binding energy in
the J = 0 channel without a three-body counterterm. The red, blue,
and black lines correspond to the bound states generated from the
nn 10Be, nn 14C, and nn 18C three-body interactions, respectively.
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FIG. 5. The three-body parameter D0 as a function of the cutoff �. D0 is tuned to reproduce the ground state two-neutron separation energy
for each of 12Be (left), 16C (middle), and 20C (right).

The counterterm parameter D0 is tuned to reproduce the
ground state two-neutron separation energy for each of 12Be,
16C, and 20C. Once this renormalization is done, all other
three-body observables, such as scattering cross sections are
also cutof independent. The cutoff dependence of the three-
body parameter D0 is shown in Fig. 5. One can see that the
three-body parameter D0 has a quasiperiodic behavior in ln �.
Similar to the three-boson case [77,82], the function �2D0 is
log-periodic in � (see Ref. [16] for a detailed investigation of
this behavior for different core masses).

B. Amplitudes and total cross sections in the J = 1 channel

The on-shell amplitudes for scattering of neutrons from
the neutron halo nuclei, T , are related to the scattering phase
shifts through the relation

T l
σσ (p, p, E ) = 2π

μnσ

1

p cot δ l (p) − ip
, (22)

where the reduced mass μnσ is defined in Eq. (15). The differ-
ential cross section for a given spin state in terms of the phase

shifts can be written as [83]

dσ

d�
=

∑
l

∣∣∣∣ 2l + 1

p cot δ l (p) − ip
Pl (cos θ )

∣∣∣∣
2

. (23)

Then the total cross section is

σ (p, p, E ) =
∑

l

(2l + 1)μ2
nσ

π

∣∣T l
σσ (p, p, E )|2. (24)

In the J = 1 channel, no three-body bound states in the
nn10Be, nn14C, and nn18C systems exist. The equations for
the amplitudes of n- 11Be, n- 15C, and n- 19C scattering have a
unique solution as � → ∞. We take the values in Table II as
input for the the nc scattering length aσ and vary it by ±0.5 fm
to show the dependence of the results on this input. The results
of p cot δ0(p) for the s-wave scattering defined in Eq. (22)
are shown in Fig. 6. One can see that p cot δ0(p) [and also
the phase shift δ0(p)] is real below the breakup threshold of
the one-neutron halo nucleus and develops a small imaginary
part above since the neutron-core continuum channel is open.
The real part of p cot δ0(p) is essentially constant over the full
range of p considered, resulting in a very small nσ effective
range. Finally, the results depend only weakly on aσ .

FIG. 6. Real and imaginary parts of p cot δ0(p) for the s-wave scattering of neutron and one-neutron halo nuclei in the J = 1 channel.
The left, middle, and right panels correspond to the n- 11Be, n- 15C, and n- 19C scattering processes, respectively. The solid lines represent
the results using the scattering lengths aσ in Table II as inputs, while the dashed/dotted curves correspond to aσ ± 0.5 fm, respectively. The
vertical dot-dashed lines in the plots indicate the threshold for breakup into the neutron core continuum.

044304-6



NEUTRON SCATTERING OFF ONE-NEUTRON HALO … PHYSICAL REVIEW C 108, 044304 (2023)

FIG. 7. The total s-wave cross sections for the scattering of neutron and one-neutron halo nuclei in the J = 1 channel: n- 11Be (left), n- 15C
(middle), and n- 19C (right). The notations of the solid, dashed, and dotted curves are the same as those in Fig. 6.

The total s-wave scattering cross sections σ are shown in
Fig. 7. One can see that there is a bump at threshold in each
of the total cross sections of the n- 11Be, n- 15C, and n- 19C
scattering processes, and the total cross sections have a small
change in the ranges of aσ we considered. Our numerical
results suggest that the total cross sections at threshold are
of the order of a few barns for the n- 11Be, n- 15C, and n- 19C
scattering.

C. Amplitudes and total cross sections in the J = 0 channel

In the J = 0 channel, the amplitudes of the n- 11Be, n- 15C,
and n- 19C scattering do not have a unique solution as � → ∞
if the D0 term in Eq. (4) is neglected. For finite �, they display
a strong cutoff dependence. The three-body counterterm D0 is
required for renormalization, as discussed in Sec. V A, and
the value for each of the 12Be, 16C, and 20C systems is fixed
through the two-neutron separation energies listed in Table III.

The results for the s-wave scattering p cot δ0(p) in the
J = 0 case are shown in Fig. 8, where the solid lines represent
the results using the aσ values in Table II as inputs and the
dashed (dotted) lines correspond to those obtained by increas-
ing (decreasing) aσ by 0.5 fm.

The values of p cot δ0(p) are real below the threshold for
breakup of the one-neutron halo nuclei in the scattering pro-
cess. They become complex above since the breakup channel
is open, and compared to the J = 1 channel the imaginary
parts of p cot δ0(p) are much larger. Alternatively, the on-shell
amplitudes T can be related to real-valued scattering phase
shifts δR

l (p) through the relation

T l
σσ (p, p, E ) = 2π

μnσ

ηe2iδR
l (p) − 1

2ip
(25)

with η as the inelasticity factor. With this definition η = 1
below the breakup threshold and 0 � η < 1 above. Thus a
large inelasticity corresponds to small values of η. Our results
for η are shown in Fig. 9. The inelasticity grows rapidly when
the momentum p is increased beyond the breakup threshold.

The most interesting feature of our results is that for all the
considered processes, there is a pole in p cot δR

0 (p), and thus
a zero of the T matrix when this pole is below the breakup
threshold. The T matrix almost vanishes at the pole position
when the inelasticity is small. The pole position is sensitive to
aσ . It can be seen from, e.g., the results for n- 15C scattering
(the middle plot in Fig. 8), that the pole disappears when aσ

FIG. 8. Real and imaginary parts of p cot δ0(p) for the s-wave scattering of neutron and one-neutron halo nuclei in the J = 0 channel. The
left, middle, and right panels correspond to the n- 11Be, n- 15C, and n- 19C scattering processes, respectively. The three-body forces are fixed
through the two-neutron separation energies of 12Be, 16C, and 20C in Table III. The notations of the solid, dashed, dotted, and dot-dashed lines
are the same as those in Fig. 6.
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FIG. 9. Inelasticity factor for s-wave scatterings of the neutron and one-neutron halo nuclei in the J = 0 channel: n- 11Be (left), n- 15C
(middle), and n- 19C (right). The notations of the solid, dashed, dotted, and dot-dashed lines are the same as those in Fig. 6.

decreases from 4.27 fm in Table II to 3.77 fm. Increasing aσ

pushes the pole to larger values of p, as can be seen from
Fig. 10 which shows the location of the pole in p cot δR

0 (p) as a
function of 1/aσ . Our results are in qualitative agreement with
the findings of Refs. [84–86] for the case of n- 19C scattering.

The appearance of this pole indicates the presence of an
excited virtual Efimov state close to the scattering threshold.
As aσ is increased the virtual excited state turns into a real ex-
cited state that becomes part of the bound state spectrum (this
can be understood from, e.g., Fig. 23 of Ref. [28]). Indeed, an
excited bound state is found as aσ is increased. We calculate
the value of the excited state energy as a function of 1/aσ , with
the three-body force fixed through the two-neutron separation
energies of 12Be, 16C, and 20C in Table III. The dependence of
the binding energy of the excited state as a function of 1/aσ

is plotted in Fig. 11. We find that for 12Be the first excited
state appears when aσ is increased beyond the physical value,
viz. 1/aσ � 16.9 MeV, while for 16C and 20C the excited
state appears for 1/aσ � 21.5 MeV and 1/aσ � 17.2 MeV,
respectively. The appearance of the excited three-body bound
state is also signaled by a sign change of the s-wave scattering
length for scattering of neutrons from the neutron halo, a,

defined as p cot δ0(p)
p→0= −1/a: a is negative if there is only

the three-body ground state of the halo nucleus and turns
positive when the virtual three-body state becomes a bound
excited state. The results for the s-wave n- 11Be, n- 15C, and
n- 19C scattering length a are shown in Fig. 12. Thus the exper-
imental observation of such a pole in p cot δR

0 (p) could serve
as a confirmation of Efimov physics in halo nuclei, even if no
bound excited state is present. Up to higher order corrections,
the energy of the virtual state is completely determined by
the ground state energies of the one- and two-neutron halo
nuclei under consideration and the neutron-neutron scattering
length.

Because of the existence of near-threshold bound states in
the J = 0 channel for the n- 11Be, n- 15C, and n- 19C systems in
question, namely, 12Be, 16C, and 20C, respectively, and virtual
excited states, the total cross sections shown as red curves in
Fig. 13 have much more prominent threshold enhancement in
comparison with those in the J = 1 channel shown in Fig. 7.
The obtained total cross sections in the near-threshold region
are of the order of a few barns for the n- 11Be and n- 19C
scattering and less than 1 barn for the n- 15C scattering. The
threshold enhancement for the n- 15C scattering is milder than

FIG. 10. Location of the pole in p cot δR
0 (p) as a function of 1/aσ : n- 11Be (left), n- 15C (middle), and n- 19C (right). The dashed line

represents the threshold for breakup into the neutron core continuum.
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FIG. 11. Binding energy of the excited state as a function of 1/aσ : 12Be (left), 16C (middle), and 20C (right). The dashed line represents the
scattering threshold which is given by B(1) = Bσ .

the other two cases because the 16C is more deeply bound than
the 12Be and 20C (see the two-neutron separation energies in
Table III). One also sees that the pole of p cot δR

0 (p) shows up
as a zero in the s-wave cross section for each of the considered
processes; see the red curves in Fig. 13. We note that this
zero in the cross section is an artefact of including only the
contribution of s-wave scattering. If the contributions from
higher partial waves are included these zeros will be filled
up. However, as can be seen from the black curves in Fig. 13,
which include contributions with l < 5, they remain visible as
pronounced minima in the total cross section. The observation
of such minima at the predicted positions would provide clear
evidence of the Efimov effect in halo nuclei.

Analog phenomena exist in other systems. In a recent study
of the double-charm tetraquark Tcc in the DD∗ scattering with
the DDπ three-body dynamics, a similar pole of p cot δR

0 (p)
was also found [87]. In fact, the existence of a similar pole
in p cot δR

0 (p) for the neutron-deuteron scattering in the tri-
ton channel was already observed more than half a century
ago [88,89]. An effective field theory treatment of the excited
Efimov state in the triton was presented in Ref. [90].

VI. SUMMARY

In recent years, various halo nuclei with a tightly bound
core surrounded by weakly bound valence nucleon(s) have
been found. Exploring the structure and reactions of halo
nuclei will help us understand fundamental aspects of nuclear
forces and nuclei at the edge of stability.

In the present work, the s-wave interactions of neutron and
spin-parity JP = 1

2
+

one-neutron halo nuclei 11Be, 15C, and
19C are studied using halo EFT at LO. In the total spin J = 1
channel, the only input to the Faddeev equation is the one-
neutron separation energy for each one-neutron halo nucleus.
The total cross sections at threshold are of the order of a few
barns for all the considered n- 11Be, n- 15C, and n- 19C scatter-
ing processes. In the total spin J = 0 channel, the amplitudes
of the n- 11Be, n- 15C, and n- 19C scatterings do not have a
unique solution as the cutoff � → ∞. Following Ref. [77] a
three-body counterterm D0 is introduced to absorb the cutoff
dependence and to achieve a unique solution of the Faddeev
equation. The D0 values are tuned to reproduce the 12Be, 16C,
and 20C ground state two-neutron separation energies. The
numerical results show that the total s-wave cross sections at

FIG. 12. Inverse of the scattering length 1/a of the s-wave scatterings of the neutron and one-neutron halo nuclei in the J = 0 channel:
n- 11Be (left), n- 15C (middle), and n- 19C (right). The inset shows the transition of 1/a from positive to negative values in more detail.
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FIG. 13. Total cross sections considering only s-wave (red curves) and including higher partial waves with l < 5 (black curves) of the
neutron and one-neutron halo nuclei in the J = 0 channel: n- 11Be (left), n- 15C (middle), and n- 19C (right). The notations of the solid, dashed,
and dotted curves are the same as those in Fig. 6.

threshold are of the order of a few to ten barns for the n- 11Be
and n- 19C scattering, and is much smaller (≈60 mb) for the
n- 15C scattering. This is because is the latter case, the 16C
is more deeply bound than the other two cases and thus its
enhancement effect at threshold is smaller.

We also find that for the neutron-core scattering length in
a certain range, the s-wave neutron-halo-nucleus scattering
amplitude has a zero, corresponding to a pole of p cot δR

0
near threshold on the real positive p axis. The location of
the T -matrix zero depends on the neutron-core scattering
length. This zero is a manifestation of the presence of an
excited virtual Efimov state close to the scattering threshold.
Our results for n- 19C scattering are in qualitative agreement
with the work of Refs. [84] in the renormalized zero-range
model. The qualitative features are unchanged by finite-range
effects [85,86]. In contrast to Refs. [91,92], we find no evi-
dence for a scattering resonance.

Up to higher order corrections, the position of the pole
of p cot δR

0 is fully determined by the separation energies of
the corresponding one- and two-neutron halo nuclei and the
neutron-neutron scattering length. If it can be observed, e.g.,
through a minimum in the scattering cross section, it could
serve as an experimental confirmation of Efimov physics in
halo nuclei, even if bound excited states are absent. Thus
it provides an alternative to previous proposals to observe
the Efimov effect in halo nuclei [93] and the standard ap-
proach to observe excited states that satisfy the universal
scaling relations [16,25,27,30,94]. While there is evidence
that finite-range effects do not remove the minima [85,86], the
calculation of higher-order corrections to their position would
be valuable.

Despite the significant experimental challenges which the
neutron-halo scattering approach poses, a theoretical explo-
ration is nonetheless useful at this time. It is a basic ingredient
of the scattering of one-neutron halo nuclei off deuteron tar-
gets, which is directly accessible in experiment. It would be
interesting to elucidate whether the effects of virtual Efimov
states in two-neutron halo nuclei persist in deuteron reactions
by performing a four-body calculation.
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APPENDIX A: LEGENDRE POLYNOMIALS OF THE
SECOND KIND WITH COMPLEX ARGUMENT

The Legendre polynomials of the second kind with com-
plex argument are

Q0(z) = 1

2
ln

z + 1

z − 1
, (A1)

Q1(z) = z

2
ln

z + 1

z − 1
− 1, (A2)

Q2(z) = 1

4
(3z2 − 1) ln

z + 1

z − 1
− 3

2
z, (A3)

Q3(z) = 1

4
(5z3 − 3z) ln

z + 1

z − 1
− 5

2
z2 + 2

3
, (A4)

Q4(z) = 1

16
(35z4 − 30z2 + 3) ln

z + 1

z − 1
− 35

8
z3 + 55

24
z.

(A5)

APPENDIX B: NUMERICAL SOLUTION METHODO

The Faddeev equation can be solved using the matrix
inversion method [95]. When the total energy E is above
the two-body nσ threshold, the σ dimer can be on-shell.
And the logarithmic singularities in the s-wave projection
core-exchange and neutron-exchange potentials in Eqs. (16)
and (19) will also be in the integration region when E
is above the three-body nnc threshold. Both of these will
cause numerical instabilities as the integration in Eqs. (13)
and (18) is performed along the positive real momentum axis.
To overcome that problem, we use the contour deformation
method [96–99]. The basic idea is that the integration contour
in Eqs. (13) and (18) can be distorted from its original position
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Im (q)

Re (q)Λ

C

θ

FIG. 14. The integration contour C for the evaluation of Eq. (B1).

along the positive real axis into the complex momentum plane
without changing the results. One should note that the angle
of the deformed contour should be large enough in order to
avoid the singularities on the real axis but small enough in
order not to cross the singularities in the core-exchange and
neutron-exchange potentials. Using Cauchy’s theorem, the
relation between the solution of the Faddeev equation for real
momentum and complex momentum can then be obtained.

To be concrete, we take the single channel case with J = 1
as an example, and the extension to the coupled-channel case
is straightforward. First, the Faddeev equation is analytically
continued into the complex momentum plane using Cauchy’s
theorem,

iTσσ (k′, p, E ) = iVσσ (k′, p, E ) −
∫

C

q′2dq′

2π2
Vσσ (k′, q′, E )

× Z−1
σ Dσ

(
E − q′2

2mn
, q′

)
iTσσ (q′, p, E ),

(B1)

where k′ and q′ are complex momenta. And now the integra-
tion is along the deformed contour C, which will be discussed

later. We can see that the Faddeev equation in Eq. (B1) is free
of singularity for E on the real axis, and this equation can
be solved using the matrix inversion method without any
difficulty. The T matrix for real momentum k can then be
obtained.

Since we are interested in the on-shell T matrix, we put the
outgoing momentum k on the energy shell, which leads to

k =
[

2μnσ

(
E + 1

2μnca2
σ

)]1/2

, (B2)

where μnσ is defined in Eq. (15). Inserting this into Eqs. (16)
gives the logarithmic branch points of q satisfying

E − mσ /(2mnmc)(q2 + k2) ± qk/mc + iε = 0, (B3)

and the solutions of this equation give the locations of four
branch points of q in the complex momentum plane,

q = ±mnk ± imσ /aσ

mσ

. (B4)

In addition to these branch points, the dimer propagator has a
pole at

q =
[

2μnσ

(
E + 1

2μnca2
σ

+ iε

)]1/2

. (B5)

In our calculations, we rotate the integration contour into
the lower half q plane, and q′ is along the contour C as shown
in Fig. 14 to avoid singularities in the dimer propagator and
the core-exchange potential in Eq. (B1). The locations of the
logarithmic branch points place an upper limit on θ , which is
the angle between the clockwise-rotated integration path and
the real q axis,

0 < θ < arctan

(
mσ /aσ

mnk

)
. (B6)

We have checked that the numerical results are independent
of the choice for θ as long as its value satisfies the above
constraint.
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