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Quark phases in neutron stars consistent with implications from NICER observations

Y. Yamamoto ,1,* N. Yasutake,2 and Th. A. Rijken 3,1

1RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
2Department of Physics, Chiba Institute of Technology, 2-1-1 Shibazono Narashino, Chiba 275-0023, Japan

3IMAPP, Radboud University, Nijmegen, The Netherlands

(Received 7 June 2023; revised 18 August 2023; accepted 15 September 2023; published 26 September 2023)

The analyses of NICER data imply R2.0M� = 12.41+1.00
−1.10 km and R1.4M� = 12.56+1.00

−1.07 km, indicating the lack
of significant variation of the radii from 1.4M� to 2.0M�. This feature cannot be reproduced by hadronic matter
due to the softening of equation of state (EoS) by hyperon mixing, indicating the possible existence of quark
phases in neutron-star interiors. Two models are used for quark phases: In the quark-hadron transition (QHT)
model, quark deconfinement phase transitions from a hadronic-matter EoS are taken into account so as to give
reasonable mass-radius (MR) curves by adjusting the quark-quark repulsions and the density dependence of
the effective quark mass. In the quarkyonic model, the degrees of freedom inside the Fermi sea are treated
as quarks, and neutrons exist at the surface of the Fermi sea, where MR curves are controlled mainly by the
thickness of neutron Fermi layer. The QHT and quarkyonic EoSs can be adjusted so as to reproduce radii, tidal
deformabilities, pressure, and central densities inferred from the NICER analysis better than the nucleonic matter
EoS, demonstrating the clear impacts of quark phases. Then, the maximum mass for the quakyonic-matter EoS
is considerably larger than that for the QHT-matter EoS.
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I. INTRODUCTION

In studies of neutron stars (NSs), the fundamental role is
played by the equation of state (EoS) for neutron star matter.
Massive neutron stars with masses over 2M� have been re-
liably established by the observations of NSs J1614 − 2230
[1], J0348 + 0432 [2], J0740 + 6620 [3], and J0952 − 0607
[4]. The radius information of NSs has been obtained for
the massive NS PSR J0740+6620, with 2M� and 1.4M� NS
radii,denoted as R2M� and R1.4M� , from the analyses of the
x-ray data taken by the Neutron Star Interior Composition
Explorer (NICER) and the X-ray Multi-Mirror (XMM-
Newton) observatory. The analysis of Miller et al. gives
R2.08M� = 12.35 ± 0.75 km and R1.4M� = 12.45 ± 0.65 km
[5]. The analysis of Riley gives R2.08M� = 12.39+1.30

−0.98 km and
R1.4M� = 12.33+0.76

−0.81 km [6]. Legred et al. investigated these
measurement’s implications for the EoSs, employing a non-
parametric EoS model based on Gaussian processes and com-
bining information from other x-ray and gravitational wave
observations [7].

The purpose of this paper is to demonstrate that the radius
information of massive NSs give important constraints on the
neutron-star EoSs. In our EoS analysis, the following neutron-
star radii are adopted as critical values to be reproduced:

R2.0M� = 12.41+1.00
−1.10 km,

R1.4M� = 12.56+1.00
−1.07 km, (1.1)

*yamamoto@tsuru.ac.jp

with maximum mass Mmax/M� = 2.21+0.31
−0.21, which is given

by the analysis by Legred et al. [7]. The median values of R2M�
and R1.4M� in the three Refs. [5–7] are only a few hundred
meters apart from each other. We set the fitting accuracy to
a few hundred meters in our analysis for R2M� and R1.4M� .
Then, the EoSs obtained from our analysis are not changed,
even if the set of R2M� and R1.4M� in [5] or [6] is used as
the criterion instead of Eq. (1.1) or all three sets in [5–7]
are used. The key feature found commonly in the three sets
is the small variation of radii from 1.4M� to 2M�, namely
R2M� ≈ R1.4M� . The reason why the result in [7] is used in our
present analysis is because they present the inferred values of
maximum masses, radii, tidal deformabilities, pressure, and
central densities obtained from their analysis. These quantities
can be compared with our corresponding results, by which the
features of our EoSs are revealed in detail.

The hyperon mixing in neutron-star matter brings about
a remarkable softening of the EoS, and the maximum mass
is reduced to a value far less than 2M�. The EoS soften-
ing is caused by changing of high-momentum neutrons at
Fermi surfaces to low-momentum hyperons via strangeness
nonconserving weak interactions overcoming rest masses of
hyperons. In order to derive EoSs for massive NSs, it is nec-
essary to solve this “hyperon puzzle in neutron stars.” Possible
mechanisms have been proposed:

(i) more repulsive hyperon-hyperon interactions in rel-
ativistic mean field (RMF) models driven by vector
mesons exchanges [8–11],

(ii) repulsive hyperonic three-body forces [12–19],
(iii) appearance of other hadronic degrees of freedom,

such as � isobars [20] or meson condensates [21–25],
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(iv) existence of quark phases in high-density regions
[26–36].

It should be noted that the criterion for NS radii, Eq. (1.1),
is stricter than the condition of Mmax > 2M� only to solve the
“puzzle,” and the above mechanisms need to be reinvestigated
under this stricter condition.

One of the approaches to (ii) is to assume that three-
nucleon repulsions (TNRs) [37] work universally among
every kind of baryon as three-baryon repulsions (TBRs) [12].
In [14–16], the multi-Pomeron exchange potential (MPP) was
introduced as a model of universal repulsions among three and
four baryons on the basis of the extended soft core (ESC)
baryon-baryon interaction model developed by two of the
present authors (T.R. and Y.Y.) and by Nagels [38–40]. In
the case of this special modeling for hyperonic three-body
repulsions, the EoS softening by hyperon mixing is not com-
pletely recovered by the above universal repulsions, and the
maximum masses become not so large even if universal many-
body repulsions increase. As a result, the maximum masses
for the hyperonic-matter EoS cannot be over 2M�, as found
in [14–16]: It is difficult that criterion (1.1) is realized by this
modeling of hadronic-matter EoSs. A simple way to avoid the
strong softening of the EoS by hyperon mixing is to assume
that �NN repulsions are stronger than NNN repulsions with
neglect of �− mixing [17].

In this paper, we focus on the mechanism (iv). It is possible
to solve the “hyperon puzzle” by taking account of quark
deconfinement phase transitions from a hadronic-matter EoS
to a sufficiently stiff quark-matter EoS in neutron-star inte-
riors, namely by studying hybrid stars having quark matter in
their cores, where repulsive effects in quark phases are needed
to result in massive stars over 2M�. In the Nambu–Jona-
Lasinio (NJL) model, for instance, repulsions to stiffen EoSs
are given by vector interactions. Then, it is known well that
quark-hadron phase transitions should be crossover or at most
weak first order, because strong first-order transitions soften
EoSs remarkably in order to obtain stiff EoSs. In [35], the
authors derived a new EoS within the quark-hadron crossover
(QHC) framework (three-windows model) so as to reproduce
R2.1M� ≈ R1.4M� ≈ 12.4 km. Here, the small variation of radii
indicates that the pressure grows rapidly while changes in
energy density are modest, producing a peak in the speed
of sound [35]. In their QHC framework, the EoSs in the
quark-hadron mixed region of 1.5ρ0–3.5ρ0, playing a decisive
role for the resulting MR curves, are given by the interpolating
functions phenomenologically. Then, it is meaningful to study
other modeling for phase transitions, in which the mixed re-
gions are modeled explicitly. We investigate how the criterion
(1.1) can be realized in the case of using the EoS derived from
our quark-hadron transition (QHT) model for neutron-star
matter in the Bruecner-Hartree-Fock (BHF) framework [36],
which is different from the three-windows model. Here, the
quark-matter EoS is derived from the two-body quark-quark
(QQ) potentials, in which all parameters are on the physical
backgrounds with no room for arbitrary changes: Our QQ po-
tential is composed of meson-exchange, instanton exchange,
one-gluon exchange and multi-Pomeron exchange potentials.
Then, baryonic matter and quark matter are treated in the

common BHF framework, where quark-hadron transitions are
treated on the basis of the Maxwell condition. In this paper, it
is shown that the criterion (1.1) can be realized by our QHT
model for neutron-star matter, as well as the QHC model [35],
by adjusting the QQ repulsion to be strong enough and the
quark-hadron transition density to be about 2ρ0.

In our QHT model the BHF framework is used for deriving
the quark-matter EoS, which is not common. Our treatment
for quark-hadron phase transitions is the same as that in [33],
where the NJL model is adopted for quark matter under the
mean field approximation. In spite of the difference between
quark-matter models, their obtained MR curves are similar
to ours in [36]. Therefore, it is considered that the same
conclusions can be derived also by using their QHT model
instead of ours.

Another type of quark phase in neutron-star interiors is
given by the quarkyonic matter [41–48], where the degrees
of freedom inside the Fermi sea are treated as quarks, and
nucleons exist at the surface of the Fermi sea. The transition
from hadronic-matter phase to the quarkyonic-matter phase
is considered to be in second order. In the quarkyonic mat-
ter, the existence of free quarks inside the Fermi sea gives
nucleons extra kinetic energy by pushing them to higher
momenta, leading to increasing pressure. This mechanism to
realize the criterion (1.1) is completely different from the
QHT matter in which the essential roles for EoS stiffening
are played by the QQ repulsions. Then, it is valuable to study
the characteristic differences between neutron-star mass-
radius (MR) curves obtained from the QHT-matter EoS and
quarkyonic-matter EoS.

This paper is organized as follows: In Sec. II, the hadronic-
matter EoS (II A), the quark-matter EoS (II B), and the
quarkyonic-matter EoS (II-C) are formulated on the basis of
our previous works, where the BHF frameworks with our QQ
potentials are adopted both for baryonic matter and quark
(quarkyonic) matter. Transitions from hadron phases to quark
matter (quakyonic) phases are explained. In Sec. III A, the
calculated results are shown for pressures, energy densities,
and sound velocities. In Sec. III B, the MR curves of hybrid
stars are obtained by solving the Tolmann-Oppenheimer-
Volkoff (TOV) equation. In Sec. III C, the obtained values of
maximum masses, radii, tidal deformabilities, pressure, and
central densities are compared with those inferred from the
NICER-data analysis. The conclusion of this paper is given in
Sec. IV.

II. MODELS OF NEUTRON-STAR MATTER

A. Hadronic matter

The hadronic matter is defined as β-stable hyperonic nu-
clear matter including leptons, composed of n, p+, �, �−,
e−, μ−. We recapitulate here the hadronic-matter EoS. In the
BHF framework, the EoS is derived with use of the ESC
baryon-baryon (BB) interaction model [14–16].

As is well known, the nuclear-matter EoS is stiff enough
to assure neutron-star masses over 2M�, if the strong three-
nucleon repulsion (TNR) is taken into account. However,
there appears a remarkable softening of the EoS by inclusion

035811-2



QUARK PHASES IN NEUTRON STARS CONSISTENT WITH … PHYSICAL REVIEW C 108, 035811 (2023)

of exotic degrees of freedom such as hyperon mixing. One
of the ideas to avoid this “hyperon puzzle” is to assume that
the many-body repulsions work universally for every kind of
baryon [12]. In [14–16], the multi-Pomeron exchange poten-
tial MPP was introduced as a model of universal repulsions
among three and four baryons. This was inspired by the multi-
Reggeon model to describe CERN-ISR pp data [49]. The ESC
work is mentioned in [38–40].

In [16] the authors proposed three versions of MPP (MPa,
MPa+, MPb), where MPa and MPa+ (MPb) include the three-
and four-body (only three-body) repulsions. Their strengths
are determined by analyzing the nucleus-nucleus scattering
using the G-matrix folding model under the conditions that the
saturation parameters are reproduced reasonably. The EoSs
for MPa and MPa+ are stiffer than that for MPb, and max-
imum masses and radii of neutron stars obtained from MPa
and MPa+ are larger than those from MPb. The important
criterion for repulsive parts is the resulting neutron-star radii
R for masses of 1.4M�: In the case of using MPb, we obtain
R1.4M� ≈ 12.4 km, similar to the value in the criterion (1.1).
On the other hand, we have R1.4M� ≈ 13.3 (13.6) km in the
case of MPa (MPa+). In this paper, we adopt MPb the as three-
baryon repulsion: Our nuclear interactions are composed of
two-body part VBB and three-body part VBBB, where VBB and
VBBB are given by ESC and MPb, respectively. It is worthwhile
to say that the three-nucleon repulsion in MPb is stronger
than the corresponding one (UIX) in the standard model by
Akmal, Pandharipande, and Ravenhall (APR) [37] giving rise
to R1.4M� ≈ 11.6 km [50].

BB G-matrix interactions GBB are derived from BB bare
interactions VBB or VBB + VBBB [14]. They are given for each
(BB′, T, S, P) state, T , S, and P being isospin, spin, and parity
in a two-body state, respectively, and represented as GT SP

BB′ . The
G-matrix interactions derived from VBB and VBB + VBBB are
called B1 and B2, respectively. In the quarkyonic model, we
need only the neutron-neutron sectors, GSP

nn .
A single baryon potential is given by

UB(k) =
∑

B′=n,p,�,�−
U (B′ )

B (k)

=
∑

B′=n,p,�,�−

∑
k′<k(B′ )

F

〈kk′|GBB′ |kk′〉 (2.1)

with B = n, p,�,�−. Here, 〈kk′|GBB′ |kk′〉 is a BB′ G matrix
element in momentum space, which is derived from VBB or
(VBB + VBBB), and k(B)

F is the Fermi momentum of baryon B.
In this expression, spin and isospin quantum numbers are
implicit.

The baryon energy density is given by

εB = τB + υB

= gs

∫ k(B)
F

0

d3k

(2π )3

{√
h̄2k2 + M2

B + 1

2
UB(k)

}
, (2.2)

where τB and υB are kinetic and potential parts of the energy
density.

In β-stable hadronic matter composed of n, p, e−, μ−, �,
and �−, equilibrium conditions are given as

(1) chemical equilibrium conditions,

μn = μp + μe, (2.3)

μμ = μe, (2.4)

μ� = μn, (2.5)

μ�− = μn + μe, (2.6)

(2) charge neutrality,

ρp = ρe + ρμ + ρ�− , (2.7)

(3) baryon number conservation,

ρ = ρn + ρp + ρ� + ρ�− . (2.8)

Expressions for β-stable nucleonic matter composed of n, p,
e−, and μ− are obtained by omitting hyperon sectors from the
above expressions for β-stable baryonic matter.

B. Quark-hadron transition model

In our treatment of quark matter, the BHF framework is
adopted on the basis of two-body QQ potentials [36]. Here,
correlations induced by bare QQ potentials are renormal-
ized into coordinate-space G-matrix interactions, which are
considered as effective QQ interactions used in quark-matter
calculations.

Our bare QQ interaction is given by

VQQ = VEME + VINS + VOGE + VMPP (2.9)

where VEME, VINS, VOGE, and VMPP are the extended me-
son exchange potential, the instanton exchange potential, the
one-gluon exchange potential and the multi-Pomeron ex-
change potential, respectively. Parameters in our QQ potential
are chosen so as to be consistent with physical observables.
The VEME QQ potential is derived from the ESC BB po-
tential so that the QQM couplings are related to the BBM
couplings through folding procedures with Gaussian baryonic
quark wave functions. In the construction of the relation be-
tween BBM and QQM couplings, the requirement that the
coefficients of the 1/M2 expansion should match is based on
Lorentz invariance, which fixes the QQM couplings and also
determines the (few) extra vertices at the quark level [38].
Then, the VEME QQ potential has basically the same func-
tional expression as the ESC BB potential. Strongly repulsive
components in ESC BB potentials are described mainly by
vector-meson and pomeron exchanges between baryons. This
feature persists in the VEME QQ potential, which includes
the strongly repulsive components originating from vector-
meson and Pomeron exchanges between quarks. Similarly
the multi-Pomeron exchange potentials among quarks, VMPP,
are derived from the corresponding ones among baryons,
giving repulsive contributions. Contributions from VINS and
VOGE on average are attractive and repulsive, respectively. The
strength of VOGE is determined by the quark-gluon coupling
constant αS . In [36] αS is chosen as 0.25, that is VOGE(αS =
0.25), and the three sets are defined as Q0: VEME; Q1:
VEME + VINS + VOGE(αS = 0.25); Q2: VEME + VMPP + VINS +
VOGE(αS = 0.25).

In our QHT model for neutron-star matter, quark-hadron
phase transitions occur at crossing points of hadron pressure
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PH (μ) and quark pressure, which are functions of chemical
potential μ. Positions of crossing points, giving quark-hadron
transition densities, are controlled by parameters ρc and γ

included in our density-dependent quark mass

M∗
Q(ρQ) = M0

1 + exp[γ (ρQ − ρc)]
+ m0 + C, (2.10)

with C = M0 − M0/[1 + exp(−γ ρc)] assuring M∗
Q(0) =

M0 + m0, where ρQ is number density of quark matter, and M0

and m0 are taken as 300 (360) MeV and 5 (140) MeV for u and
d (s) quarks. Here, the effective quark mass M∗

Q(ρQ) should be
used together with B(ρQ) = M∗

Q(0) − M∗
Q(ρQ) + B0, mean-

ing the energy-density difference between the perturbative
vacuum and the true vacuum. A constant term B0 is added
for fine tuning of an onset density. In [36], the values of (ρc,
γ ) without B0 are given for each set of Q0, Q1, and Q2.

Let us focus on the typical result for Q2 + H1 in [36].
The QQ interaction Q2 is the most repulsive among Q0, Q1,
and Q2. The BB interaction H1 consists of ESC and MPb,
and results in the reasonable value of R1.4M� . In this case of
Q2+H1, we obtain the maximum mass of 2.25M� and the
reasonable value of R1.4M� = 12.5 km, in which the quark-
hadron transition occurs at a density of 3.5ρ0. Then, we have
R2.0M� = 12.0 km, which is rather smaller than 12.4 km in
the criterion (1.1). In order to reproduce a larger value of
R2.0M� ≈ 12.4 km, we make VOGE more repulsive by taking
larger values of αS = 0.36 and 0.49. It is not suitable for such
a purpose to strengthen the VMPP repulsion, because VMPP is
essentially of three-body interaction and the contributions in
the low-density region are small. On the other hand, VOGE is
of two-body interaction, and its repulsive contributions are not
small even in low density region, which is important for a
large value of R2.0M� . Another condition to make R2.0M� larger
is to lower quark-hadron transition densities by adjusting
the parameters (ρc, γ , B0) included in the density-dependent
quark mass, Eq. (2.10).

We define the following three sets with the fixed value of
γ = 1.2:

Q2: VEME + VMPP + VINS + VOGE(αS = 0.25)
with ρc = 6.9ρ0 and B0 = 8.5,

Q3: VEME + VMPP + VINS + VOGE(αS = 0.36)
with ρc = 6.9ρ0 and B0 = 7.5,

Q4: VEME + VMPP + VINS + VOGE(αS = 0.69)
with ρc = 7.5ρ0 and B0 = 10.0,

where the values of ρc and B0 for each set are chosen so as to
give quark-hadron transition densities of ∼2ρ0.

G-matrix interactions Gqq′ with q, q′ = u, d, s are derived
from the above bare QQ interactions. They are given for
each (qq′, T, S, P) state, T , S, and P being isospin, spin and
parity in a two-body state, respectively, and represented as
GT SP

qq′ . Hereafter, Q2, Q3, and Q4 represent corresponding QQ
G-matrix interactions, not only bare QQ interactions. The QQ
G-matrix interactions are used also in the quarkyonic matter
calculations.

A single quark potential is given by

Uq(k) =
∑

q′=u,d,s

U (q′ )
q (k) =

∑
q′=u,d,s

∑
k′<kq′

F

〈kk′|Gqq′ |kk′〉 (2.11)

FIG. 1. Potential energies per particle U/A as a function of the
baryon number density ρB in the case of ρu = ρd = ρs. The short-
dashed, long-dashed, and solid curves are obtained by using Q2, Q3,
and Q4, respectively.

with q = u, d, s, where kq
F is the Fermi momentum of quark

q. Spin and isospin quantum numbers are implicit.
The quark energy density is given by

εq = gsNc

∑
q=u,d,s

∫ kFq

0

d3k

(2π )3

×
{√

h̄2k2 + M2
q + 1

2
Uq(k)

}
. (2.12)

Fermion spin and quark color degeneracies give rise to gs = 2
and Nc = 3.

In order to demonstrate the features of our QQ interactions
(Q2, Q3, Q4), we show the potential energy per particle U/A
as a function of the baryon number density ρB = 1

3ρQ in the
case of taking ρu = ρd = ρs. In Fig. 1, the short-dashed, long-
dashed, and solid curves are obtained by using Q2, Q3, and
Q4, respectively. The repulsions are found to be strong in the
order of Q4, Q3, Q2. This difference of repulsions among Q4,
Q3, and Q2 comes from the different values of αS included in
VOGE. In the figure, it should be noted that the difference is not
small even in the low-density region.

In the EoS of β-stable quark matter composed of u, d , s,
e−, the equilibrium conditions are given as

(1) chemical equilibrium conditions,

μd = μs = μu + μe, (2.13)

(2) charge neutrality,

0 = 1
3 (2ρu − ρd − ρs) − ρe, (2.14)

(3) baryon number conservation,

ρB = 1
3 (ρu + ρd + ρs) = 1

3ρQ. (2.15)

In order to construct the hybrid EoS including a transition
from hadronic phase to quark phase, we use the replacement
interpolation method [33,36], which is a simple modification
of the Maxwell and the Glendenning (Gibbs) constructions
[51]. The EoSs of hadronic and quark phases and that of mixed
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phase are described with the relations between pressures and
chemical potentials PH (μ), PQ(μ), and PM (μ), respectively.
The critical chemical potential μc for the transition from
the hadronic phase to the quark phase is obtained from the
Maxwell condition

PQ(μc) = PH (μc) = Pc. (2.16)

The pressure of the mixed phase is represented by a polyno-
mial ansatz. The matching densities ρH and ρQ are obtained
with use of ρ(μ) = dP(μ)/dμ.

C. Quarkyonic matter

In the BHF framework, we derive the EoS of quarkyonic
matter composed of neutrons and quarks with flavor q = u, d
in the simplest form by McLerran and Reddy [43]. In charge-
less two-flavor quarkyonic matter, strongly interacting quarks
near the Fermi sea form interacting neutrons, and the remain-
ing d and u quarks fill the lowest momenta up to kFu and kFd ,
respectively. The quark mass is taken to be Mq = Mn/3 con-
stantly, Mn being the neutron mass. In calculations of quarky-
onic matter, we use B1 (Vnn) and B2 (Vnn + Vnnn) for nuclear
interactions, and Q0 for QQ interactions for simplicity.

The total baryon number density is given by

ρB = ρn + Nc

3
(ρu + ρd )

= gs

6π2

[
k3

Fn − k3
0n + Nc

3

(
k3

Fu + k3
Fd

)]
, (2.17)

where kFn, kFu, and kFd are the Fermi momenta of neutrons
and u and d quarks, respectively. Fermion spin and quark
color degeneracies give rise to gs = 2 and Nc = 3. Neutrons
are restricted near the Fermi surface by k0n, assumed to be

k0n = kFn − �qyc,

�qyc = �3

h̄c3k2
Fn

+ κ
�

N2
c h̄c

, (2.18)

where �qyc for the thickness of Fermi layer includes the two
parameters � and κ . In this work, we take the fixed value of
κ = 0.3.

Then, kFd and kFu are related to k0n by kFd = 1
Nc

k0n and
kFu = 2−1/3kFd .

A single neutron potential is given by

Un(k) =
∑

k0n<k′<kFn

〈kk′|Gnn|kk′〉 (2.19)

with nn G-matrix interactions Gnn.
The neutron energy density is given by

εn = τn + υn

= gs

∫ kFn

k0n

d3k

(2π )3

{√
h̄2k2 + M2

n + 1

2
Un(k)

}
. (2.20)

Additionally, another form of the neutron potential energy
density is defined as

ῡn = gs

∫ kn

0

d3k

(2π )3

{
1

2
Un(k)

}
, (2.21)

which is used in [43] instead of υn.

Single quark potentials for q = u, d are given by

Uq(k) =
∑

q′=u,d

U (q′ )
q (k)

=
∑

q′=u,d

∑
k′<kFq

〈kk′|Gqq′ |kk′〉, (2.22)

U (n)
q (k) =

∑
k0n<k′<kFn

〈kk′|Gqn|kk′〉, (2.23)

with G-matrix interactions Gqq′ and Gqn. Here, Gqn is the
quark-neutron (Qn) interaction: We assume the simple model
in which the potentials Gqq′ are folded into the potentials Gqn

with Gaussian baryonic quark wave functions. In Eqs. (2.19),
(2.22), and (2.23) spin quantum numbers are implicit.

The quark energy density is given by

εq = gsNc

∑
q=u,d

∫ kFq

0

d3k

(2π )3

×
{√

h̄2k2 + M2
q + 1

2
Uq(k) + Uqn(k)

}
, (2.24)

where values of kFq are determined by

NckFq = k0n. (2.25)

Thus, our total energy density is given by

ε = εn + εd + εu. (2.26)

The chemical potential μi (i = n, d, u) and pressure P are
expressed as

μi = ∂εi

∂ni
, (2.27)

P =
∑

i=n,d,u

μini − ε, (2.28)

where ∂εi
∂ni

= ∂εi
∂nB

∂nB
∂ni

.
In our model, the phase transition from β-stable nucleonic

matter to the quarkyonic matter occurs in second order, re-
sulting in a hybrid EoS including hadronic and quarkyonic
EoSs. Then, the transition densities are controlled mainly by
the parameter �: In this work, we choose the three values of
� = 380, 350, and 320 MeV with the fixed value of κ = 0.3.
The transition densities for these values are 0.28–0.38 fm−3

(0.28–0.36 fm−3) in the case of using B1 (B2) for nuclear
interactions. Hereafter, when a value of � = 380 MeV is
used, for instance, it is denoted as �380.

III. RESULTS AND DISCUSSION

A. EoS

In Fig. 2, pressures P are drawn as a function of baryonic
number density ρB. The dot-dashed curve is for the β-stable
nucleonic-matter EoS, and the dotted one is for the β-stable
hadronic-matter EoS with hyperon mixing. The latter is sub-
stantially below the former, demonstrating the EoS softening
by hyperon mixing. Thin (thick) solid curves in the upper side
are pressures in the quarkyonic matter for �350 and �320
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FIG. 2. Pressures P as a function of baryonic number density ρB.
The dot-dashed (dotted) curve is for β-stable nucleonic (hadronic)
matter. Upper thin (thick) solid curves are pressures in the quarky-
onic matter for �350 and �320 (�380) with B1. Lower thin (thick)
short-dashed curves are for the QHT matter with Q2 and Q3 (Q4).

(�380) with use of B1 for nuclear interactions. At the crossing
points with the dot-dashed curve in the low-density side, there
occur second-order transitions from β-stable nucleonic to
quarkyonic phases: The transition densities ρt are 0.38, 0.33,
0.28 fm−3 (2.2ρ0, 1.9ρ0, 1.6ρ0) in the cases of �380, �350,

and �320, respectively. Thin (thick) short-dashed curves are
for the QHT models with Q2 and Q3 (Q4). It should be noted
that pressures in the quarkyonic matter increase more rapidly
with density than those in the QHT matter. As discussed later,
the rapid growth of pressure with density in the range of
2ρ0–4ρ0 is an important feature of the quarkyonic model. This
rapid increase of pressure at onset of the quarkyonic phase
influences significantly the neutron-star MR curves.

FIG. 3. Pressures P as a function of the energy density ε. The
dot-dashed (dotted) curves are for β-stable nucleonic (hadronic)
matter. Thin (thick) solid curves show pressures in quarkyonic phases
for �350 and �320 (�380) with B1. The short-dashed curve is for
the QHT model with Q4.

FIG. 4. The square of the sound speed, c2
s , in units of c2 as a

function of baryonic number density ρB. The dot-dashed (dotted)
curve is that in β-stable nucleonic (hadronic) matter. Solid curves
are pressures in quarkyonic matter for �380, �350 and �320 with
B1. The dashed curve is for the QHT matter with Q4.

In Fig. 3, pressures P are drawn as a function of the energy
density ε, which are related closely to neutron-star MR curves.
The dot-dashed (dotted) curve shows pressures in β-stable
nucleonic (hadronic) matter. Thin (thick) solid curves show
pressures in quarkyonic matter for �350 and �320 (�380)
with B1. The short-dashed curve is for the QHT matter with
Q4. Though the curves for Q4 and �380 are rather similar
to each other in comparison with the corresponding curves
in Fig. 2, the former is still less steep than the latter in the
region of low energy density. As shown later, the EoSs for
the QHT model Q4 and the quarkyonic model �380 lead to
neutron-star MR curves consistent with the criterion (1.1).

In Fig. 4, sound velocities are drawn as a function of ρB.
The dot-dashed curve is sound velocity in β-stable nucleonic
matter. Solid curves are those in quarkyonic matter for �380,
�350, and �320 with B1. There appear peak structures in the
solid curves, which are related to rapid increase of pressures
in the range 2ρ0–4ρ0. The dashed curve is sound velocity in
the QHT matter with Q4 and the dotted one is that in β-stable
hadronic matter with hyperon mixing, in which there appears
no peak structure. The dashed curve becomes cs > c in the
high-density region. Also, the peak regions of solid curves
become cs > c, if B2 is used instead of B1 for nuclear parts.
In such regions of cs > c, sound velocities are approximated
to be cs = c.

It is interesting to notice that the peak structures in
our quarkyonic-matter results are somewhat similar to those
for the QHC-matter EoS (QHC21) found in [35]. Our
QHT-matter EoS gives no peak structure in sound velocities,
which is different from both of them.

In the left panel of Fig. 5, solid curves show pressures
in quarkyonic matter for �380 in the cases of using B1 and
B2 for nuclear interactions, and short-dashed (dashed) curves
are partial pressures of neutrons (quarks) in respective cases.
The dot-dashed curve is pressure in β-stable nucleonic matter.
Pressures in quarkyonic matter are found to be completely
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FIG. 5. In the left panel, solid curves are pressures P in quarkyonic phases as a function of baryonic number density ρB for �380 in the
cases of using B1 and B2, and short-dashed (dashed) curves are partial pressures of neutrons (quarks) in respective cases. The dot-dashed
curve is for β-stable nucleonic matter. In the right panel, solid (dot-dashed) curves are neutron chemical potentials μn in quarkyonic (β-stable
nucleonic) phases as a function of ρB for �380 in the cases of using B1 and B2. The dot-dashed curve gives the neutron chemical potential in
β-stable nucleonic matter.

dominated by neutron partial pressures. In order to reveal the
reason why neutron pressures in quarkyonic matter are far
higher than those in β-stable nucleonic matter, we show the
neutron chemical potentials in the cases of using B1 and B2
for nuclear interactions: In the right panel of Fig. 5, neutron
chemical potentials μn are drawn as a function of ρB. Lower
and upper solid curves give neutron chemical potentials in
quarkyonic matter for �380 in the cases of using B1 and B2,
respectively. The dot-dashed curve gives the neutron chemical
potential in β-stable nucleonic matter. The neutron chemical
potentials in quarkyonic matter are far higher than those in
the β-stable nucleonic matter, which makes neutron pressures
in the former far higher than those in the latter. The reason
for higher chemical potentials in the quarkyonic matter is
because the existence of free quarks inside the Fermi sea gives
nucleons extra kinetic energies by pushing them to higher
momenta [43].

B. MR diagrams

We have the two types of hybrid EoSs: the QHT-matter
EoS and the quarkyonic-matter EoS. They are combined with
the β-stable nucleonic-matter EoS and connected smoothly
to the crust EoS [52,53] on the low-density side. The MR
relations of hybrid stars can be obtained by solving the TOV
equations with these hybrid EoSs.

In Fig. 6, star masses are given as a function of radius R.
The dot-dashed curves are obtained by the β-stable nucleonic
matter EoS. In the left panel, thin (thick) solid curves are
obtained by the QHT-matter EoSs with Q2 and Q3 (Q4).

The dotted curve is by the hadronic-matter EoS including
hyperons. In the cases of Q2, Q3, and Q4, the maximum
masses are Mmax/M� = 2.23, 2.30, 2.40, respectively, and
the radii at 2.0M� are 11.8, 12.2, 12.5 km, respectively. In
the right panel, thin (thick) solid curves are obtained by the
quarkyonic-matter EoSs for �350 and �320 (�380) using
B1 for nuclear interactions. In the cases of �380, �350, and
�320, the maximum masses are Mmax/M� = 2.64, 2.79, 2.76,
respectively, and the radii at 2.0M� are 12.6, 13.1, 13.5 km,
respectively. In both panels, the horizontal lines indicates
R1.4M� = 12.56+1.00

−1.07 km and R2.0M� = 12.41+1.00
−1.10 km, and the

rectangle indicates the region of mass Mmax/M� = 2.21+0.31
−0.21

[7]. The thick solid curve for Q4 in the left panel and that
for �380 in the right panel are found to be consistent with
the criterion (1.1), and the key features of R2M� ≈ R1.4M� are
found in these cases.

Then, it should be noted that the maximum mass 2.64M�
for �380 is substantially larger than the value 2.40M� for Q4.
The reason for such a difference between maximum masses
can be understood by comparing the P(ρB) curves in Fig. 2,
where the solid curve for �380 increases more rapidly at the
onset of quakyonic matter than the dashed curve for Q4 at
the onset of quark matter. This means that the stiffness for the
former is larger than that for the latter. In the case of QHT
matter, it is not possible to obtain such a rapid increase of
P(ρB) in the low-density region, even if the QQ repulsions are
strengthened.

In the case of hadronic (nucleonic) matter, shown by the
dotted (dot-dashed) curve in the left panel, the maximum
mass is 1.82M� (2.19M�). The reduction of 0.37M� is due
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FIG. 6. Star masses as a function of radius R. The dot-dashed curves are from using the β-stable nucleonic matter EoS. In the left
panel, thin (thick) solid curves are from the QHT-matter EoSs with Q2 and Q3 (Q4). The dotted curve is from the hadronic matter EoS
including hyperons. In the right panel, thin (thick) solid curves are by the quarkyonic-matter EoSs for �350 and �320 (�380) with B1. In
both panels, the horizontal lines indicates R1.4M� = 12.56+1.00

−1.07 km and R2.0M� = 12.41+1.00
−1.10 km, and the rectangle indicates the region of mass

Mmax/M� = 2.21+0.31
−0.21 [7].

to the EoS softening by hyperon (� and �−) mixing. This
softening is mainly caused by �− mixing: If only � mixing is
taken into account, the maximum mass is obtained as 2.06M�,
which is close to the value of 2.19M� without hyperon mixing
(dot-dashed curve). Thus, massive stars with M > 2M� can-
not be obtained by the hadronic matter EoSs with hyperon
(� and �−) mixing [14–16]. On the other hand, the value of
R1.4M� is 12.4 (12.5) km in the case of hadronic (nucleonic)
matter, which means that the hyperon mixing does not depend
much on R1.4M� .

In Fig. 7, star masses are given as a function of central
baryon density ρBc. The dot-dashed curves are by the β-stable
nucleonic matter EoS. The solid curve is obtained by the
quarkyonic-matter EoS for �380 with B1, and the dashed
curve is by the QHT-matter EoS for Q4, where the onset den-
sity in the former (latter) 0.39 (0.33) fm−3. Both of them are
consistent with Eq. (1.1), but the former mass curve for ρBc is
considerably above the latter one, as well as the corresponding
MR curves.

In Fig. 8, star masses are given as a function of radius
R. The solid curve is obtained by the quarkyonic-matter EoS
for �380 with use of B1 (Vnn) for nuclear interactions, given
also in Fig. 6. Dashed and short-dashed curves are by the
quarkyonic-matter EoSs for �380 and �400, respectively, in
the case of using B2 (Vnn + Vnnn) instead of B1. The difference
between solid and dashed curves demonstrates the effect of
the three-neutron repulsion Vnnn, giving the larger maximum
mass and larger value of R2.0M� . The short-dashed curve for
�400 indicates that this effect of Vnnn to increase mass and
radius is canceled out by taking larger values of �.

In Fig. 9, star masses are given as a function of radius R.
The solid curve is obtained by the quarkyonic-matter EoS for
�380 with κ = 0.3 in the case of using B1, given also in
Fig. 6. The dashed curve is obtained by the approximation
used in [43], where the QQ interactions are neglected and
the quark energy density Eq. (2.24) is replaced by the kinetic
energy density. Then, the difference between short-dashed and
dashed curves is due to this approximation. The short-dashed

FIG. 7. Star masses as a function of central baryon density ρBc.
The dot-dashed curves are from using the β-stable nucleonic EoS.
The solid curve is from the quarkyonic-matter EoS for �380 in the
case of using B1. The short-dashed curve is from the QHT-matter
EoS for Q4.
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FIG. 8. Star masses as a function of radius R. The dot-dashed
curves are from using the β-stable nucleonic matter EoS. The solid
curve is for �380 with B1. Dashed and short-dashed curves are from
the quarkyonic-matter EoSs for �380 and �400 with B2, respec-
tively. The horizontal dotted lines indicate R1.4M� = 12.56+1.00

−1.07 km
and R2.0M� = 12.41+1.00

−1.10 km.

curve is obtained by taking κ = 0.4 under this approximation.
The similarity between solid and short-dashed curves means
that the deviation due to this approximation is canceled out
by adjusting the value of κ . In the same case of �380 and
κ = 0.3 with B1, the dotted curve is obtained by replacing
the potential energy density in Eq. (2.20) with Eq. (2.21),
which is the approximated treatment in [43]. This approx-
imation using Eq. (2.21) is found to reduce masses and to
increase radii.

FIG. 9. Star masses as a function of radius R. The dot-dashed
curves are from using the β-stable nucleonic matter EoS. The solid
curve is obtained by the quarkyonic-matter EoS for �380 with
κ = 0.3 in the case of using B1. The dashed (short-dashed) curve
is for �380 with κ = 0.3 (κ = 0.4) using the approximation to
neglect potential sectors in quark energy densities. The dotted curve
is obtained by replacing the potential energy density in Eq. (2.20)
with Eq. (2.21). The horizontal lines indicate R1.4M� = 12.56+1.00

−1.07 km
and R2.0M� = 12.41+1.00

−1.10 km.

TABLE I. Maximum masses Mmax, pressures p at ρ0, 2ρ0, and
6ρ0, radii R and tidal deformabilities � at 1.4M� and 2.0M�, and
central densities ρc at 1.4M�, 2.0M�, and Mmax. Results for the
β-stable nucleonic matter EoS denoted as NUC, the QHT-matter
EoS Q4, and the quarkyonic matter EoS �380 are compared with
the values taken from [7].

NUC Q4 �380 Ref. [7]

Mmax/M� 2.19 2.40 2.64 2.21+0.31
−0.21

p(ρ0) (1033dyn/cm2) 5.27 5.27 5.27 4.30+3.37
−3.80

p(2ρ0) (1034dyn/cm2) 2.76 5.09 4.42 4.38+2.46
−2.96

p(6ρ0) (1035dyn/cm2) 6.94 12.0 22.6 7.41+5.87
−4.18

R1.4M� (km) 12.5 12.7 12.5 12.56+1.00
−1.07

R2.0M� (km) 11.8 12.5 12.6 12.41+1.00
−1.10

R2.0M� − R1.4M� (km) −0.72 −0.14 +0.03 −0.12+0.83
−0.85

�1.4 779 525 473 507+234
−242

�2.0 128 46 49 44+34
−30

ρc(1.4M�) (1014g/cm3) 7.9 6.6 6.8 6.7+1.7
−1.3

ρc(2.0M�) (1014g/cm3) 12. 9.1 8.0 9.7+3.6
−3.1

ρc(Mmax) (1015g/cm3) 1.8 1.6 1.3 1.5+0.3
−0.4

C. Discussion

In [7], the authors present neutron-star properties such
as maximum mass, radius, tidal deformability, pressure, and
central density inferred from their analysis, for which the
median and 90% highest-probability-density credible regions
are given. From Table II of [7], we choose the quantities in the
case labeled w/J0740 + 6620 Miller + in order to compare
with the corresponding values obtained from our QHT-matter
and the quarkyonic matter EoSs. In Table I we tabulated
maximum masses Mmax, pressures p at ρ0, 2ρ0, and 6ρ0, radii
R and dimensionless tidal deformabilities � at 1.4M� and
2.0M�, and central densities ρc at 1.4M�, 2.0M�, and Mmax.
Here, our results are for the β-stable nucleonic matter EoS
denoted as NUC, the QHT-matter EoS Q4, and the quarkyonic
matter EoS �380. These EoSs are adjusted so as to reproduce
R1.4M� with an accuracy of a few hundred meters. Then, the
key feature of R2M� ≈ R1.4M� is found in the cases of Q4
and �380 EoSs, in contrast to the case of the nucleonic EoS
giving R2M� < R1.4M� . The values of R2.0M� , central densi-
ties, and tidal deformabilities for Q4 and �380 EoSs are far
closer to the median values than those for the nucleonic EoS,
demonstrating the clear impacts of quark phases in Q4 and
�380 EoSs. The deviations from the median values in the
latter case are considerably larger than those in the former
cases. Especially, the values of �1.4 and �2.0 for the nucleonic
EoS are noted to be out of 90% credible regions.

In the case of the quarkyonic matter EoS for �380, the
values of Mmax and p(6ρ0) are found to be far larger than
that for the nucleonic EoS. It is interesting that such a
large value of Mmax can be obtained straightforwardly from
the quarkyonic-matter EoS, considering the implication of
the large mass (2.35 ± 0.17)M� for PSR J0952−0607 [4].
The reason why a large value of Mmax is obtained in the case
of the quarkyonic matter EoS is because the pressure rises
rapidly in the region of ρB ∼ 2ρ0, as found in Fig. 2. In the
McLerran-Reddy model of the quarkyonic matter, the
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resulting EoS is mainly controlled by the one parameter �qyc

for Fermi-layer thickness. Then, it is difficult to reproduce
simultaneously Mmax = 2.2M� and R2.0M� = 12.4 km.

IV. CONCLUSION

The observed masses and radii of neutron stars give con-
straints on the dense matter EoSs and resulting MR diagrams.
In this sense, the observations of massive stars over 2M�
and the NICER implication of R2M� ≈ R1.4M� are critically
important for restricting neutron-star matter EoSs. In the case
of hadronic matter, even if the nucleonic matter EoS is con-
structed so as to be stiff enough to give the maximum mass
over 2M�, the hyperon mixing brings about a remarkable
softening of the EoS. The EoS-softening by hyperon mix-
ing can be reduced, for instance, by introducing many-body
repulsions which work universally for every kind of baryon.
However, such a repulsive effect does not cancel out com-
pletely the EoS softening by hyperon mixing: In the case
of hadronic matter EoS with hyperon mixing, it is difficult
to obtain maximum masses over 2M�. The most promising
approach to solve this “hyperon puzzle” is to assume the exis-
tence of quark phases in inner cores of neutron stars, namely
hybrid stars having quark matter in their cores.

When quark deconfinement phase transitions from a
hadronic-matter EoS to a sufficiently stiff quark-matter EoS
are taken into account in the neutron-star interiors, repulsive
effects such as QQ repulsions in quark phases are needed
in order to obtain sufficiently stiff EoSs resulting in massive
hybrid stars with masses over 2M�. In our QHT matter, it
is possible to reproduce maximum masses over 2M� consis-
tently with the NICER implication, where the QQ repulsion
is taken to be strong enough and the quark-hadron transition

density is adjusted so as to be about 2ρ0 by tuning of the
density dependence of effective quark mass.

In the quarkyonic matter, the degrees of freedom inside
the Fermi sea are treated as quarks, and nucleons exist at the
surface of the Fermi sea. The existence of free quarks inside
the Fermi sea gives nucleons extra kinetic energy by push-
ing them to higher momenta. This mechanism of increasing
pressure is completely different from the above mechanism of
EoS stiffening by strong QQ repulsions in the QHT matter.
In calculations of MR diagrams with the quarkyonic-matter
EoS, the critical quantity is the thickness �qyc of the Fermi
layer controlled by the parameters � and κ . With a reasonable
choice of these parameters, the MR curves of quarkyonic
hybrid stars are obtained so as to be consistent with the
NICER implication.

As well as R2.0M� , central densities and tidal deformabil-
ities are inferred from the analysis of the NICER data. The
QHT-matter and quarkyonic EoSs can be adjusted so as to
reproduce these inferred quantities far closer to the median
values than those for the nucleonic matter EoS, demonstrating
the clear impacts of quark phases in these cases..

Thus, the reasonable MR curves of neutron stars can be
derived from both QHT-matter and quarkyonic-matter EoSs,
having completely different mechanisms to stiffen EoSs.
However, when both EoSs are adjusted so as to be consis-
tent with the NICER implication, the maximum mass for the
quakyonic-matter EoS is considerably larger than that for the
QHT-matter EoS.
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