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α-cluster microscopic study of 12C + 12C fusion toward the zero energy limit
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The carbon burning process is a fundamental step of stellar evolution and governs the synthesis of chemical
elements important for the formation of life. In this work, we utilize the microscopic hybrid α-cluster (HαC)
model and an analytical approach, both in the framework of the imaginary time method (ITM), to study the
carbon fusion reaction towards zero energy. We obtain the values of the cross sections and astrophysical factors
and we correlate our results to collective motion. We also include a calculation for the 2+ carbon fusion and
discuss a possible experimental investigation. Our results confirm direct experimental and theoretical results
close to the barrier, while suggesting possible 2+ mixtures in the indirect experimental data. Our study offers an
accurate view of the burning process in the somewhat unexplored low energy region.
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I. INTRODUCTION

The carbon burning process (12C + 12C) is a key step in
the evolution of massive stars and is the central theme of sev-
eral recent studies. From a chemical perspective, this reaction
plays a central role in the natural synthesis and abundances
of the low mass elements of carbon, magnesium, oxygen, and
sodium, all of them important for the formation of life. From
the astrophysical point of view, this fusion is dominant in
heavier stars with masses ≈ 8M� and temperatures greater
than 50 keV [1,2], as well as in x-ray bursts from accreting
neutron stars [3,4]. The investigation of the cross sections and
thus, reaction rates are important in our efforts to understand
these phenomena. More specifically, the stellar reaction rates
peak around the so-called Gamow energy [5], which for this
case is below the Coulomb barrier, in the region of 1–2 MeV.

From the perspective of nuclear physics, carbon burning
has already been investigated from the late 1960s [6]. Since
then, several studies, both theoretical [7,8] and experimen-
tal [9–12], have been conducted for energies greater than ≈
2.5 MeV. In this region, the theoretical results are more or less
in agreement with the experimental data and show interesting
collective characteristics [13].

The direct study of carbon fusion near the Gamow energy
is experimentally challenging, as the cross section is an ex-
ponentially decreasing function of energy. Recent efforts by
Tumino et al. [14], though, changed the situation. In their
work, they studied the low energy fusion with the indirect
Trojan horse method (THM) and were able to reach energies
below 1 MeV [14]. This has opened the way for thorough in-
vestigations of the resonant structures that occur in this region
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[7,15–17] and interesting discussions regarding the analysis
of the relevant experimental data [10].

In this work, we aim to contribute to the study of the
carbon fusion reaction, from a theoretical perspective, close
to the region of zero energy. To achieve this, we employ mi-
croscopic and analytical models coupled with the imaginary
time method (ITM) [7]. This has already been used success-
fully for fusion [7,13], fission [18], and multifragmentation
reactions [19].

II. THEORETICAL FRAMEWORK

The hybrid α-cluster (HαC) model is a molecular dy-
namics approach, where the α particles are the fundamental
degrees of freedom. The model Hamiltonian contains a po-
tential energy with the following form [20]:

V = VB + VC . (1)

The VB term is the A = 4 Bass potential [21] that describes
the nuclear interaction between the α particles, and VC is the
Coulomb potential, in the monopole-monopole approxima-
tion. To simulate the increase of the Fermi energy when the
α particles are overlapping (due to the Pauli and Heisenberg
correlations of their internal neutrons and protons), an extra
kinetic energy term is added to the effective potential. This
term has the form [20]

EF = 4xF εF ρ2/3, (2)

where εF = 21 MeV is the average kinetic energy due to
internal Fermi motion and xF ≈ 0.65 is taken from reference
[22]. This parameter is fixed for the α particles and takes into
account both the Heisenberg and Pauli principles. The density
of the α particles is defined as ρ = 2e−β(r/rα )2

, with β = 1.22,
rα = r041/3, and r0 = 1.15 fm [20]. The β parameter has been
fitted to the ground state (g.s.) of 12C, while the error of the
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model binding energies for many α-cluster nuclei is ≈2%
[20]. The time evolution of the system is given by Hamiltonian
equations of motion,

d pi

dt
= F i = −∇ri (V + EF ), (3)

dri

dt
= pi

m
, (4)

where F i is the total force that acts upon the particle i.
The ground state coordinates, i.e., ri(t = 0), are obtained

via the solution of the equations of motion with a friction
parameter. The ground state energies are reproduced well in
the model for a wide range of N = Z nuclei, with discrepancy
of ≈2% [20]. After the aforementioned “initialization” stage,
the positions are randomly rotated and then are used as the
initial conditions of Eqs. (3) and (4). The initial momenta are
taken as zero. Each different set of random initial conditions is
termed as a “random event.” Our results come from an average
of a few hundred random events.

The HαC model has already been used to study 12C + 12C
fusion above the Coulomb barrier [20]. Microscopically, for
the reaction a + b → c we consider the relative momentum P
and position R of the system as

P = μA(Pa − Pb), (5)

R = Ra − Rb, (6)

where Pa/b = 1
Aa/b

∑
i∈a/b Piz, Ra/b = 1

Aa/b

∑
i∈a/b Riz are the

collective degrees of freedom of the system in the reaction
axis, μA = AaAb

Aa+Ab
is the reduced mass number, while Aa/b is

the number of α particles located in the Rz > 0 or Rz < 0
plane respectively, with z being the reaction axis. The calcu-
lations start in real time until the system reaches the classical
turning point [7]. In order to extend the use of the model into
sub-barrier energies, we employ the Feynman path integral
imaginary time method (ITM), first introduced in Ref. [7] for
mean-field calculations. When the system reaches the outer
classical turning point, we enter the imaginary time t = iτ
and the collective momentum becomes P = −i�. The equa-
tions of motion below the barrier result in a change of the sign
to the forces, i.e., F = −d�/dτ . The equations of motion
[Eqs. (3) and (4)] of the particle i in the nucleus a/b below
the barrier are rewritten as

d pi∈a/b

dt
= F i − Fa/b

Aa/b
ẑ, (7)

where Fa/b

Aa/b
= 1

Aa/b

∑
i∈a/b Fiz is the collective force per particle.

This ansatz simulates the sign inversion of only the collective
part of the total force Fi that is exerted upon the particle i dur-
ing imaginary times. In the analysis of fusion, the collective
force comes from the Coulomb and Bass interactions, while
the EF interaction does not contribute, since it corresponds to
the internal Fermi motion of the nuclei.

The probability of fusion in the different l channels is
calculated from the relation [7]

Tl (EC.M.) =
⎧⎨
⎩

(1 + e2A/h̄)−1, l = 0,

T0

(
EC.M. − l (l+1)h̄2

2μR2
N

)
, l > 0,

(8)

where A = ∫
� dR is the action of the collective motion dur-

ing imaginary time evolution. The probabilities for higher
angular momenta are approximated by a l (l+1)h̄2

2μR2
N

shift in the
energy [7]. This term represents the semiclassical centrifu-
gal potential, and RN = Ra + Rb = 2rg121/3 and rg = 1.4 fm,
which takes into account the range of the nuclear force that
extends farther than the nuclear density. With the use of the
probabilities [Eq. (8)], the cross section for the center-of-mass
energy EC.M. is obtained via the formula

σ (EC.M.) = π h̄2

μEC.M.

∞∑
l=0

(2l + 1)Tl (EC.M.)δl,even, (9)

where l can only take even values, since the two reacting
12C are identical bosons and thus, parity must be positive.
We define the astrophysical S(EC.M.) factor and its modified
version S∗(EC.M.) as [6]

S∗(EC.M.) = EC.M.σ (EC.M.)e
ξ/

√
EC.M.+0.46EC.M.

= S(EC.M.)e
0.46EC.M. , (10)

where ξ = ZaZbπe2√2μ/h̄ = 87.23 MeV1/2.
We also extend the analytical approach of Ref. [23], with

the use of the ITM. Specifically, by considering a square
well nuclear potential with radius RN , the action below the
Coulomb barrier is written as

A =
∫

� dR =
√

2μEC.M.

∫ Rc

RN

dR

√
ZaZbe2

REC.M.

− 1

=
√

2μEC.M.

∫ Rc

0
dR

√
ZaZbe2

REC.M.

− 1

−
√

2μEC.M.

∫ RN

0
dR

√
ZaZbe2

REC.M.

− 1

≡ AG − AN , (11)

where AG is the action in the Gamow limit (i.e., only
Coulomb) and AN is the nuclear contribution to the action.
The values of AG [23] and A are respectively

AG = h̄ξ

2EC.M.

= ZaZbπe2
√

μ

2EC.M.

, (12)

A = ZaZbe2

√
2μ

EC.M.

tan−1

⎛
⎝

√
ZaZbe2

EC.M.RN
− 1

⎞
⎠

− RN

√
2μ

(
ZaZbe2

RN
− EC.M.

)
. (13)

In order to take into account the finite sizes of the nuclei,
we introduce a screening to the Coulomb potential, of the
form

Vsc = ZaZbe2

R
(1 − e−λR). (14)

The value of screening parameter λ is estimated via the
difference of the compound and reactant nuclei Coulomb
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contributions. From the semiempirical mass formula in the
limit of small distances,

Vsc ≈ ZaZbe2

R
(1 − 1 + λR) = λZaZbe2

= |EC (Ac c) − EC (Aa a) − EC (Abb)|, (15)

or equivalently

λ = ac

ZaZbe2

∣∣∣∣ (Za + Zb)(Za + Zb − 1)

(Aa + Ab)1/3

− Za(Za − 1)

A1/3
a

− Zb(Zb − 1)

A1/3
b

∣∣∣∣, (16)

with ac = 0.75 MeV. For Za = Zb = Z = 6 and Aa = Ab =
A = 12, the screening parameter takes the value

λ = 2ac

ZA1/3e2
|(22/3 − 1)Z + 1 − 2−1/3| = 1

3.535 fm
. (17)

The actions that correspond to the Coulomb (ASC) and Nuclear
(AN,SC), as well as the total contributions (Aeff ), are given by
the following integrals:

Aeff =
√

2μEC.M.

∫ Rc

0
dR

√
ZaZbe2

REC.M.

(1 − e−λR) − 1

−
√

2μEC.M.

∫ RN

0
dR

√
ZaZbe2

REC.M.

(1 − e−λR) − 1

≡ ASC − AN,SC . (18)

These integrals are solved numerically. The value of the
Gamow energy in different approximation schemes is given
by the dominant contribution to the reaction rate integral
[Ref. [5], Eq. (1)]

〈σv〉 =
√

8

μπ (kT )3

∫ ∞

0
S(E )e− ξ√

E
− E

kT dE . (19)

The dominant contribution is then taken from the maximiza-
tion of the integrand:

ξE−3/2

2
S(E ) + dS

dE
= S(E )

kT
, (20)

where the usual temperature in stellar scenarios is kT ≈ 50
keV, for carbon stars [1]. In the pure Coulomb limit [i.e.,
Eq. (12)] the Gamow energy is EG = 1.682 MeV; consid-
ering the nuclear contribution [i.e., Eq. (13)] it is EG+N =
1.634 MeV. The screened Coulomb potential with the nu-
clear contribution [i.e., Eq. (18)] gives ESC = 1.711 MeV
and ESC+N = 1.643 MeV. The small differences among the
various approximations indicate that most of the action contri-
bution comes from Coulomb force at large distances. Thus it is
important that our simulations are stable for long times, which
correspond to large distances and very small beam energies (in
the keV region).

III. RESULTS AND DISCUSSION

Within the HαC model, at a given beam energy, the nuclei
move towards each other until they stop at the outer turning

point due to the Coulomb force. We switch to imaginary
time, by inverting the collective forces [Eq. (7)], until they
stop at the inner turning point. A typical example for EC.M. =
3.5 MeV is shown in Fig. 1. The total energy of the system
during the imaginary time evolution is not conserved due to
the work done by the collective forces. The final energy (i.e.,
in real time) corresponds to the 24Mg ground state and the
reaction Q value, experimentally measured as Qexp = 13.933
MeV, a value reproduced in the model within a few keV; see
Fig. 2. In contrast, the energy is conserved during real time
evolution, as expected. We present calculations of the action
for several energies in the aforementioned range with the HαC
model. We fit this, opportunely normalized by AG [Eq. (12)],
as an exponential function of the energy [16]. The calculated
points and the numerical fit are shown in Fig. 3. From this,
we extract the value of the effective Coulomb barrier (which
comes from the interplay of Coulomb force with the nuclear
potential) at 5.89 MeV. This is defined as the energy where the
system fuses without entering into imaginary time, i.e., A = 0,
and its value is close to the one reported in Ref. [16]. The ac-
tion is a simpler function and thus could be used instead of the
S and S∗ factors to report the data as well [16]. Furthermore,
we obtain the cross sections and the astrophysical factors
for several energies from 0 to 7 MeV. We note that, in the
energy range specified, there are no contributions for l > 6.
Our results for different l values obtained with the HαC model
and the corresponding results from the analytical approach
[l = 0, with free and screened Coulomb force, Eqs. (13) and
(18)] are shown in Fig. 4 (top). The analytical approach gives
results that are generally similar to the HαC model, except
for some oscillations of collective nature. Additionally, we see
that the l = 0 wave is dominant up to 4.5 MeV and the l = 2
wave dominates up to 6.5 MeV. At higher energies, we see
the increase of l = 4 contributions. The l = 6 result is off the
scale of Fig. 4 (top), since it only contributes up to 0.08% of
the total S∗ factor.

In the bottom panel of Fig. 4, we plot the S∗ factors
versus energy from several experimental [9,11,12,14,24,25]
and theoretical [7,26] approaches. The results from this work
(HαC model) are represented by the red curve, for all l values.
Similarly to the results obtained with the neck model (NM)
[15,27], time dependent Hartree-Fock [28], and the Vlasov [7]
approaches (dark green, Fig. 4), our calculations yield S∗ as a
smooth function of energy, except for some small oscillations,
within the range ≈1015–1017 MeV b. The general trend of the
experimental data in the E > 2.5 MeV region is followed,
while the discrepancies from the Tumino data [14] are ex-
plained by the absence of the 24Mg resonant levels [15,27]
in the semiclassical HαC model. We note that our S∗ results
depend somewhat on the choice of the nuclear equation of
state (EoS), i.e., the values of β and r0 in Eq. (2). For the
purpose of the present study, we used the EoS of Ref. [20].
Interestingly, with our approach no hindrance effects are ob-
served [8], as also seen in the macroscopic study of Ref. [29].
The antisymmetrized molecular dynamics (AMD) approach
[26] also gives a smooth function of S∗, although with larger
oscillations and generally lower values (crosses in Fig. 4
bottom panel). This might be due to an overestimation of
binding energies with the AMD model, at variance to other
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FIG. 1. Evolution of the 12C + 12C fusion in the xz plane with EC.M. = 3.5 MeV. The cyan points are the densities of the α particles from
300 event calculations with the HαC model, while the reaction axis is defined to be the z axis.

dynamical approaches like the constrained molecular dynam-
ics (CoMD) model [30,31].

The orange curve in Fig. 4, bottom panel, represents the
results of the 12C(g.s.) + 12C(4.44 MeV, 2+) reaction, with
the HαC model. To prepare the excited state, we consider a
linear configuration, with the quantized-rotation scheme given
by Eq. (5) of Ref. [20], while the initial α − α distances are
fitted to the binding energy. We observe that the S∗ factors
are enhanced when compared to the g.s. reaction, while sim-
ilar oscillations are also present. Such situations may occur

FIG. 2. Evolution of the total energy (green line) of the system
during fusion with EC.M. = 3.5 MeV, as calculated with the HαC
model. The blue and red lines correspond to the ground state energies
of 24Mg and 12C + 12C, respectively. The dashed orange line, corre-
sponds to the final energy with the experimental Q = 13.933 MeV
value.

in stars despite being highly improbable for carbon-burning
stars. However, they are important for α-burning stars where
12C is formed through triple α reactions in an excited state
and possibly reacts with lighter particles (p, n, or α). These
effects can influence the carbon decay width into 3α or via γ

emission [32,33].
The goal of the present excited-state calculations is to

stimulate some experimental investigations using the THM.
For instance in Ref. [14] the reaction 14N + 12C was used,
with the deuteron in 14N being the spectator. In these

FIG. 3. The l = 0 channel action A normalized by the same
quantity in the Gamow limit [AG, Eq. (12)] as function of energy
(red points), as obtained via the HαC model. The dashed line corre-
sponds to an exponential fit. We indicate the value of the effective
Coulomb barrier at 5.89 MeV.
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FIG. 4. Top panel: The S∗ factors as a function of energy for
different l values (points) obtained via the HαC model and via the an-
alytical approach with free and screened Coulomb (lines), according
to the key. Bottom panel: The S∗ factors as a function of energy from
several experimental [9,11,12,14,24,25] and theoretical [7,26] data
sets. This work corresponds to the red curve for all l values (g.s.) and
the orange curve (4.44 MeV, 2+), as obtained with the HαC model.
The pink arrow corresponds to the lowest energy direct measurement
[25] and represents an upper limit.

reactions it may happen that the deuteron carries some angular
momentum, leaving the 12C in the 2+, 4.44 MeV excited level.
The authors of Ref. [14] were aware of this possibility and
they investigated the angular distribution of fusion events at
the lowest C.M. energies [34] and found those events to be
compatible with l = 0 angular momenta. Nevertheless, our
result suggests otherwise. Similar indications can be inferred
also from coupled-channels calculations [35]. There, several
excited states have been taken into account, with the justifi-
cation that the carbon atoms could be initially in an excited
state, due to Coulomb excitation. The enhancement of the
astrophysical factor of 2+ fusion by a factor of ≈ 10–100
results in a ≈ 10–100 times increased reaction rates. Using

FIG. 5. The reaction rate 〈σv〉 scaled by the corresponding rate
〈σv〉0 obtained via a constant factor S0 = 1016 MeV b, as a function
of temperature. The dashed lines denote regions of astrophysical
interest [14].

Eq. (19), we calculate the value of 〈σv〉 as a fraction of the
corresponding quantity (〈σv〉0) calculated via the constant
S0 = 1016 MeV b. Our results as a function of temperature, for
both the ground state and 2+ fusion, are presented in Fig. 5.
We also indicate several important astrophysical regions. The
higher reaction rates have serious implications for the natural
relative element abundances in stars. In Fig. 6 we present
our attempt to correlate the oscillation of S∗ with resonances

FIG. 6. The ratio of S∗ values calculated via the HαC model di-
vided by the corresponding analytical values [Eqs. (10) and (18)], for
different l values (solid lines) as a function of E∗ = EC.M. + Q. The
points represent the experimental isoscalar monopole (E0) spectrum
of 24Mg [37]. We indicate the energy of isoscalar 24Mg quadrupole
(E2) peak [37] with a red arrow. We also include the position of the
0+ experimental levels of 24Mg with red arrows [36]. The experimen-
tal points are normalized to the intersection with the l = 0 curve at
16.4 MeV.
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FIG. 7. The transverse mean radius 〈Rxy〉 = √〈x2 + y2〉 of the
EC.M. = 3.5 MeV reaction, for two single events (dashed curves) and
as an average of 300 events (solid curve). The vertical lines show the
average turning points of the carbon-carbon system, as calculated via
the HαC model.

of 24Mg. The differences in S∗ between the HαC model
and the analytical formulas mostly come from the collective
motions of the constituent α particles, that naturally arise in
our dynamical approach. In that sense, the ratio of S∗ values
obtained via the HαC model divided by its counterpart from
the analytical formulas [Eqs. (10) and (18)] represents the
collective contributions of the compound 24Mg nucleus to
the astrophysical factor. The polarity of the giant resonant
motion comes from the l value of the reaction. The spectra
for l = 0 and l = 2 as functions of the excitation energy, i.e.,
E∗ = EC.M. + Q, are shown by the solid lines in Fig. 6. The
arrows are the 0+ excited levels of 24Mg [36] (the question
mark shows a level with uncertainty to its spin-parity). As
we have already mentioned, these levels do not appear in our
semiclassical model. The points correspond to a part of the
isoscalar monopole (E0) spectrum of 24Mg [37], while the
maximum of the isoscalar quadrupole (E2) response is also
denoted with an arrow [37]. The l = 0 oscillations qualita-
tively show a trend similar to that of the E0 peaks, while the
l = 2 peak represents quite accurately the maximum of the
E2 spectrum. The E0 in the experimental data [37], might

not represent a monopole response, but a coupling of K0 of
the quadrupole mode of magnesium [38]. The nature of the
aforementioned collective oscillations can be understood in
terms of the mean transverse radius, i.e., 〈Rxy〉 =

√
〈x2 + y2〉,

averaged over the α particle coordinates. In Fig. 7, we plot
〈Rxy〉 over time for the EC.M. = 3.5 MeV reaction. The solid
curve corresponds to the moment averaged over 300 events (in
a manner similar to Fig. 1), while the dashed curves describe
the moment for two single events and the vertical lines show
the average turning points. The oscillations of these curves
signify a transverse oscillation of the system during imaginary
time, which gives rise to oscillations in action and in turn to
the S∗ factor.

IV. CONCLUSION

To conclude, we studied the 12C + 12C fusion at sub-barrier
energies within the 0–7 MeV region. Our approach is based
on a microscopic dynamical model with α degrees of freedom
(HαC) and an analytical approach including the screening of
the Coulomb potential. Both of these processes are performed
in the framework of the imaginary time method (ITM). With
both numerical and analytical approaches we obtain the values
of S∗(E ). Our results agree with recent experimental data,
apart from resonant peaks, while we confirm theoretical ap-
proaches performed via the Vlasov [7], AMD [26], and NM
[15,27] methods. The evolution of the system during imag-
inary time shows some interesting physical characteristics,
such as the involvement of isoscalar giant resonance modes,
during the imaginary evolution. Predictions for fusion of 12C
nuclei in excited levels are also included and we suggest
investigating this case with the THM. Finally, the coupling
of the HαC model with the ITM opens the way for theoretical
investigation of other N = Z fusions involving both ground
and excited nuclear states.
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