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Background: Charged-current neutrino-nucleon reactions, generally called Urca processes, are crucial actors of
a neutron star’s thermal evolution. The so-called direct processes show a pronounced threshold under which the
reaction is kinematically suppressed. This suppression does not apply to modified Urca processes, which involve
interaction with an additional nucleon. Calculations of the modified Urca neutrino rates were established for cold
neutron star matter and for dilute hot matter, in both cases under strong assumptions.
Purpose: In this paper, we revise the calculations of the modified Urca neutrino rates for dense and hot
matter, and for different compositions. We study the influence of different approximations used in previous
computations.
Methods: We derive expressions for the rates of modified Urca neutrino emissivity within thermal field theory
and perform the phase space integration numerically using mainly importance sampling Monte Carlo techniques.
The neutrino emissivity of modified and direct processes are established and compared.
Results: We find in particular that the modified Urca process is not necessarily suppressed with respect to the
direct process above the threshold of the latter at moderate densities and temperatures, in contrast to what is
generally assumed. Numerical results are confirmed by an estimation of the ratio of modified to direct Urca rates
with a simple analytic approximation, thereby showing the regimes of suppression for the modified processes
depending on temperature and density.
Conclusion: These results show that modified Urca rates have to be considered carefully upon evaluating
neutrino opacities in dense and warm matter.
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I. INTRODUCTION

Neutron stars (NSs) are compact stars containing matter at
the highest densities in the universe, exceeding the density at
the center of atomic nuclei. In addition, neutron star matter
reaches temperatures as high as several tens of MeV in young
protoneutron stars born in core-collapse supernovae (CCSN)
and in the remnant of a binary neutron star merger (see, e.g.,
Refs. [1–3]). Due to the nonperturbative nature of strong in-
teraction, describing ultradense and hot matter in their interior
remains highly uncertain and model dependent. Confronting
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model predictions to the large variety of astrophysical obser-
vations of CCSN, NS and binary mergers clearly broadens
our knowledge on dense matter physics beyond the regimes
that can be reached in laboratory experiments. Thereby most
observations, such as pulsar masses or NS tidal deforma-
tions from gravitational waves are mainly sensitive to the
equation of state (EoS). On the contrary, the signatures from
neutrino emission or neutron star’s thermal evolution can also
help to understand the various cooling processes, which are
very sensitive to matter composition and weak interaction
rates.

Let us recall that the role of neutrinos and their interaction
with matter in the physics of neutron stars is paramount. First,
the birth of neutron stars in CCSN are extremely bright events,
with several observations reported well before the modern era
of telescopes [4]. Neutrinos play a crucial role in its dynamics,
in particular for the revival of the stalled shock by neutrino
heating and a successful explosion within the neutrino-driven
mechanism [5]. Twenty-four neutrinos were detected from the
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source SN1987a (see Ref. [6] and references therein). For a
galactic event with current neutrino detectors, a huge number
of detected neutrinos is expected to provide information on
the explosion mechanism and on neutrino properties [7]. The
remnant of this event is a protoneutron star, which exhibits
high temperatures and rapidly cools down through neutrino
emission [1,8,9] to become a neutron star. After a few minutes,
the star’s temperature reaches ≈1 MeV and the description
of neutron star matter can be treated in the zero-temperature
limit. This mature neutron star continues to cool down slowly.
Neutrino emission is thereby the dominant process for ≈106

years. Last but not least, in a binary neutron star merger
remnant the thermodynamic conditions are rather similar to
a protoneutron star with matter being slightly more neutron
rich [10]. Neutrinos are less important for the dynamics of
a merger and the evolution of the merger remnant, even if
there is energy and momentum exchange with matter [11].
They, however, determine the neutron to proton ratio in the
ejecta and thus the conditions for the associated heavy element
nucleosynthesis, see, e.g., Refs. [12–16].

There exists a large number of different processes that
occur in dense matter contributing to neutrino emission, see
Refs. [11,17–25] for discussions of the processes at play
within the astrophysical scenarios discussed above. In the
present work, we will concentrate on charged-current reac-
tions on nucleons. A recurring process is the so-called direct
Urca (DUrca) reaction: a nucleon N1 is converted into a nu-
cleon N2 via the charged-current weak interaction, involving
a charged lepton denoted l± and an (anti)neutrino denoted
ν̄l/νl , i.e.,

N1 ↔ N2 + l− + ν̄l , (1)

N2 + l− ↔ N1 + νl , (2)

N1 + l+ ↔ N2 + ν̄l , (3)

N2 ↔ N1 + l+ + νl . (4)

The rates for these reactions have been studied extensively
in the literature with different levels of approximation; both
in the zero-temperature limit, see, e.g., Refs. [21,24,26–29],
and for finite-temperature matter, see, e.g., Refs. [17,30–36].
Due to the kinematics of the reaction, DUrca processes are
exponentially suppressed with the inverse of the temperature
for certain thermodynamic conditions and (anti)neutrino ener-
gies. In the zero-temperature limit and in β equilibrium, i.e.,
for cold neutron stars, this leads to the well-known DUrca
threshold as function of density. It is the matter’s proton
fraction that determines whether the very efficient cooling via
DUrca is active or not. At finite temperature the threshold is
broadened by thermal effects.

The so-called modified Urca (MUrca) [37] reactions entail
a spectator nucleon N interacting via strong interaction with
the baryons involved in the charged-current weak process,

N + N1 ↔ N + N2 + l− + ν̄l , (5)

N + N2 + l− ↔ N + N1 + νl , (6)

N + N1 + l+ ↔ N + N2 + ν̄l , (7)

N + N2 ↔ N + N1 + l+ + νl . (8)

The neutron and proton branches of this process refer to a
neutron or proton as a spectator nucleon, respectively.

The pioneering study on determining the rate for MUrca-
type reactions is that of Friman and Maxwell [26], in which
the neutron branch of the reaction is considered for cold
matter in β equilibrium. Analytic expressions for the rate
have been derived under some assumptions: (i) the strong
interaction is treated within one-pion exchange (OPE) ap-
proximation supplemented with a short-range interaction, (ii)
the electron momentum is neglected, and (iii) all involved
particles are approximated to be on their respective Fermi
surface. Expressions for the proton branch following the same
assumptions can be found in Ref. [29]. In Yakovlev et al. [21]
the matrix element is given in the OPE approximation for
nonzero electron momenta, keeping the approximations for
the phase space in order to still obtain analytic expressions
for the rates.

Since then, much effort has been devoted to investigating
different effects in the dense and cold neutron star matter,
which modify the MUrca rates, see Ref. [24] for a review.
In particular, in Ref. [38] the nucleon-nucleon interaction
is treated in the framework of the nonrelativistic Bruckner-
Hartree-Fock theory and in-medium effects are included in
the energy of nucleons for cold and β-equilibrated matter. The
authors show that the common approach for the propagator of
intermediate nucleons approximated to be the electron energy
Ee misses an enhancement of the MUrca rate close to the
DUrca threshold.

In contrast to the neutral current bremsstrahlung process,
which is known to influence neutrino spectra in CCSN and has
thus received some attention, see, e.g., Refs. [39–43], there are
only a few studies on MUrca reactions at finite temperature.
In Refs. [33,44], the authors include finite-temperature effects
in an effort to accurately compute Urca neutrino emission pro-
cesses for the merger of neutron stars and the conditions for
achieving β equilibrium, but keep the Fermi surface approxi-
mation to compute MUrca rates. A purely phenomenological
approach for the MUrca rates is applied in Ref. [9]. It is
based on the idea that the excitation of two-particle states
required to describe reactions in Eqs. (5)–(8), leads to a
collisional broadening of the quasiparticles and can thus
be simply incorporated as a finite width within DUrca-type
reactions [45].

Because of vector current conservation, the vector current
contribution to the neutral current rate vanishes in the limit
of zero-momentum transfer, and Friman and Maxwell [26]
have shown that the vector contribution vanishes within their
approximation for the charged-current MUrca reactions too.
Therefore it is generally assumed that the axial current contri-
bution dominates and the vector one is neglected.

The aim of this paper is to compute the rates of the MUrca
processes for finite-temperature neutron star matter composed
of neutrons, protons, electrons, and positrons (npe matter)
lifting most of the above-mentioned approximations. We will
discuss their respective influence on the rates under different
thermodynamic conditions.

The paper is organized as follows. Section II focuses on
the analytical derivation of MUrca neutrino emission. First,
the formulation to compute the neutrino and antineutrino
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emissivity and mean-free path is presented. Then the deriva-
tion for the hadronic part of the process is detailed. Common
approximations taken to compute the MUrca neutrino rates
are also discussed in this section in more detail. In Sec. III,
the results of our calculations are presented. The different
components of the hadronic part of the process are discussed
and results including the leptons are presented.

II. METHODS

Since MUrca processes involve multiple strong interac-
tions between nucleons, a consistent calculation of the rates
with a complete evaluation of in medium effects would be
extremely involved. Here, we will evaluate the rates for matter
at finite temperature using thermal quantum field theory. We
limit ourselves to contributions on the two-loop level, i.e., to
contributions related to two-particle two-hole excitations, and
do not consider multiple scattering effects. Nucleons will be
treated on the mean-field level, such that in-medium effects
are considered via effective masses and chemical potentials.
The matrix element will be derived within the one-pion ex-
change approximation. We have chosen the latter for better
comparison with the existing literature although, as already
discussed in Friman and Maxwell [26], a more complete de-
scription of the interaction is expected to influence the final
rates. This approach allows us not only to consistently include
mean-field effects, is easily generalizable to other prescrip-
tions than OPE for the nucleonic interaction, but in particular,
also allows us, upon performing the respective approxima-
tions, to recover previously established results [26,33,38,44].
In Sec. III A we will discuss in more detail its limitations.

For our numerical computations, we will use the nucleonic
equation of state SRO (APR) [46], which treats non relativistic
particles: the nucleon effective chemical potentials and ef-
fective masses of baryons as a function of the temperature,
density and lepton fraction are provided in the table of the
CompOSE online database [47–49], and both quantities will
be used in our approach to account for in-medium effects.

A. Neutrino emissivity and mean-free path
of modified Urca reactions

The neutrino emissivity and mean-free path can be es-
tablished from the time derivative of the neutrino and
antineutrino distribution functions denoted Fν and Fν̄ , respec-
tively, according to

∂

∂t
Fν = j(Eν )(1 − Fν ) − 1

λ(Eν )
Fν, (9)

∂

∂t
Fν̄ = j̄(Eν )(1 − Fν̄ ) − 1

λ̄(Eν )
Fν̄ , (10)

with Eν the energy of massless (anti)neutrinos. The neutrino
and antineutrino emissivity are denoted j and j̄, respectively,
and the neutrino and antineutrino mean-free paths are denoted
λ and λ̄, respectively. Details of the derivation can be found,
e.g., in Refs. [50–52] or Sec. II A of Ref. [35]. In many
applications the absorption opacity corrected for stimulated

absorption is introduced, see, e.g., Ref. [19],

κ∗
a (Eν ) = 1

1 − F eq(Eν − μν )

1

λ(Eν )
= j(Eν ) + 1

λ(Eν )
,

(11)

κ̄∗
a (Eν ) = 1

1 − F eq(Eν + μν )

1

λ̄(Eν )
= j̄ (Eν ) + 1

λ̄(Eν )
,

where F eq(Eν ± μν ) is the (anti-)neutrino distribution func-
tion (Fermi-Dirac) at equilibrium with μν the neutrino
chemical potential. Speaking about opacities below, we will
always refer to κ∗

a and κ̄∗
a for neutrinos or antineutrinos, re-

spectively. In our derivation, neutrinos and antineutrinos are
treated independently: no interaction between neutrinos and
antineutrinos, nor neutrino oscillations are taken into account.

In this paper, we focus on the MUrca processes involving
neutrons n, protons p, electrons e−, and positrons e+; npe
matter involves the following eight reactions:

N + n ↔ N + p + e− + ν̄, (12)

N + p + e− ↔ N + n + ν, (13)

N + n + e+ ↔ N + p + ν̄, (14)

N + p ↔ N + n + e+ + ν, (15)

with N the spectator nucleon. Modified neutron decay and its
inverse are presented in Eq. (12), modified electron capture
and its inverse are presented in Eq. (13), modified positron
capture and its inverse are presented in Eq. (14), and modified
proton decay and its inverse are presented in Eq. (15). In the
following, each pair of reactions is designated by an index re-
ferring to the leptons involved: [e−ν̄], [e−ν], [e+ν̄], and [e+ν].
Both the neutrino and the antineutrino opacity are contributed
to by processes involving electrons and positrons.

Explicitly, the emissivities for the different reactions (see,
e.g., Ref. [35]) are given by

j[e−ν] = −G2
FV 2

ud

8

∫
d3 �p

(2π )3

Lαβ (Q[e−ν] )Im	αβ (Q[e−ν] )

EeEν

× Fe−
(
1 + FB

(
Q[e−ν]

0

))
, (16)

j[e+ν] = G2
FV 2

ud

8

∫
d3 �p

(2π )3

Lαβ (Q[e+ν] )Im	αβ (Q[e+ν] )

EeEν

× (1 − Fe+ )
(
1 + FB

(
Q[e+ν]

0

))
, (17)

j̄[e− ν̄] = G2
FV 2

ud

8

∫
d3 �p

(2π )3

Lαβ (Q[e−ν̄] )Im	αβ (Q[e−ν̄] )

EeEν

× (1 − Fe− )FB
(
Q[e− ν̄]

0

)
, (18)

j̄[e+ ν̄] = −G2
FV 2

ud

8

∫
d3 �p

(2π )3

Lαβ (Q[e+ ν̄] )Im	αβ (Q[e+ ν̄] )

EeEν

× Fe+FB
(
Q[e+ ν̄]

0

)
, (19)

with �p and Ee the charged lepton (three-)momentum and en-
ergy, FB the Bose-Einstein distribution function, L the lepton
tensor and 	 the retarded hadronic polarization function, GF

the Fermi coupling constant and Vud the up/down component
of the electroweak mixing matrix. Analogous expressions for
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FIG. 1. Feynman representation of MUrca diagrams similar to what is represented in Fig. 3 of Ref. [53]. Plain lines represent nucleons
numbered from (1)–(6), and gray boxes represent the interaction approximated here by one-pion exchange.

the inverse mean-free path can be obtained from detailed
balance relations.

The four-momentum denoted Q = (Q0, �Q) corresponds to
energy and momentum exchanged in the reaction; its depen-
dence on the individual particle’s momenta depends on the
reaction at hand. We denote | �Q| the momentum norm and the
minimum or maximum possible value for transferred energy
is denoted Q0;ext such that

| �Q|2 = ( �p + s1s2 �q)2,

Q0 = s1Ee + s2Eν − μe + μν,

Q0;ext = s1me + s2Eν − μe + μν, (20)

with μe the electron chemical potential and �q the
(anti)neutrino momentum with | �q| = Eν . The signs s1, s2 for
the different reactions are given by

(s1, s2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(+1,+1) for Eq. (12),

(+1,−1) for Eq. (13),

(−1,+1) for Eq. (14),

(−1,−1) for Eq. (15)).

The lepton tensor that appears in the expression of the
neutrino emissivities in Eqs. (16)–(19) reads

Lαβ = 8(pαqβ + qα pβ − p · q gαβ − iερλαβ pρqλ),

with g the Minkowski metric in (+,−,−,−) signature, ε the
Levi-Civita symbol, p the charged lepton four-momentum,
and q the (anti)neutrino four-momentum.

B. Hadronic polarization function

The hadronic polarization function can be understood as
a weak boson (in the case of the charged current a W
boson) self-energy. The lowest-order contribution thereby cor-
responds to a DUrca reaction [52] and for MUrca reactions
two types of contributions must be taken into account: correc-
tions due to a nucleonic self-energy insertion and corrections
to the vertex relating the weak boson and the nucleons. We
can distinguish two self-energy diagrams later on referred to
as diagrams D and E , and three vertex-correction diagrams
later on referred to as diagrams V1, V2, and V3, see Fig. 1.
Vertex V2 is not shown since it is obtained from V1 simply by
exchange of particles labeled (3) and (4), respectively, and its
contribution is equal to that of V1. The retarded polarization
function can thereby be decomposed in a very general way
into a vector component denoted 	V , an axial transverse com-
ponent denoted 	T , an axial longitudinal component denoted
	L, and a mixed component denoted 	AV as

	00(Q) = c2
V 	V (Q),

	i j (Q) = c2
A

(
δi j − QiQ j

�Q2

)
	T (Q) + c2

A

QiQ j

�Q2
	L(Q),

	i0(Q) = icAcV 	AV (Q)
Qi

| �Q| ,

	0 j (Q) = icAcV 	AV (Q)
Q j

| �Q| , (21)
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with cA and cV the axial and vector nucleon form factors,
respectively, which we assume to be constants. For the interac-
tions in play, the mixed contribution vanishes and we will not
discuss it any further. Upon taking the imaginary part in order
to evaluate the opacities, there are cuts, which correspond to
corrections related to the DUrca processes and cuts corre-
sponding to genuine MUrca reactions with two incoming and
two outgoing nucleons as well as two intermediate (virtual)
nucleons. In the following we will only consider the latter
cuts.

As mentioned above, we treat the strong interaction be-
tween nucleons indicated as gray boxes in Fig. 1 within the
one-pion exchange approximation; note that this approach
might overestimate the matrix element by a factor of a few as
found for cold β-equilibrated neutron star matter, see Ref. [24]
and references therein. The corresponding matrix T , is given
as

T i j
ab;cd (p1, p3; p2, p4) = −T̄ab(p1, p3)τ i × T̄cd (p2, p4)τ j,

(22)
with τ the Pauli matrices associated to isospin, pk designating
the nucleonic four-momenta, and the spin indices denoted
{a, . . . , d}. The nucleons are treated here as nonrelativistic
particles, which should be justified since their masses are
much higher than typical energies. As a remark of caution, let
us mention that relativistic corrections were shown to become
important already at moderate densities the DUrca process
[54–56]. We, however, keep the nonrelativistic approximation
for simplicity. The quantity T̄ is given by

T̄ab( �pk, �pl ) = fπNN

mπ

[
�σ · ( �pl − �pl )√

( �pl − �pk )2 + m2
π

]
ab

. (23)

with σ the Pauli matrix associated to spin, fπNN the pion-
nucleon-nucleon coupling constant, and mπ the pion mass;

for numerical applications, we will take fπNN = 1.01 and
mπ = 140 MeV [57]. Considering all possible direct and ex-
change contributions for the couplings of the nucleons, there
are four different contributions to each diagram.

We then write the nucleon propagators as

Sab(k) = 1

2

∑
x=n,p

Sab
x (k)(12 + txτ

3), (24)

with tx the third component of isospin with the convention
that for neutrons tn = +1 and for protons tp = −1, k is the
four-momentum of the nucleon, 12 is the two-dimensional
identity matrix. In the mean-field approximation, the nucleon
propagator for each isospin assumes the form of a free one,

Sab
x (k) = δab

k0;x − E�k;x

, (25)

with the particle energies denoted as E�k;x given by

E�k;x = Ex(k) − μ∗
x = �k2

2m∗
x

+ m∗
x − μ∗

x , (26)

containing effective masses m∗
x and chemical potentials μ∗

x ,
which describe the in-medium effects on the nucleon propa-
gators due to interactions on the mean-field level.

Finally, the last element that appears in the expression of
the hadronic polarization function is the vertex between the
weak boson and nucleon-nucleon coupling denoted � and
given by

�±;ab = [(cV + cA �σ )τ±]ab, (27)

with τ± = 1/2(τ 1 ± iτ 2).
In practice, we will calculate first the temperature polariza-

tion function in Matsubara formalism and then use analytical
continuation to obtain the retarded one, see Appendix A for
details. It can then be written in the following form:

Im	αβ (Q) =
(

4∏
j=1

∫
d3 �p j

(2π )4

) ∑
X=D,E ,V1,V2,V3

∑
I (X )

ImMI (X )
X (Q, �p1, �p2, �p3, �p4)X αβ

X (Q, �p1, �p2, �p3, �p4)δ( �Q + �p1 + �p2 − �p3 − �p4),

(28)

where the explicit form of each term is obtained by perform-
ing the traces in spin and isospin space for each diagram,
and then the sum over Matsubara frequencies. The function
M thereby contains different combinations of the nucleonic
distribution functions for two incoming and two outgoing
nucleons, see Appendix A for explicit expressions. It is also
affected by the various isospin combinations I (X ) associated
to each diagram {X = D, E ,V1,V2,V3}, see Appendix B for
details. The tensor X comprises the results from the trace
in spin space for the different diagrams including the four
different direct and exchange contributions {a, . . . , d}, it is de-
tailed in Appendix C. This complete expression is integrated
numerically using a Monte Carlo method with importance
sampling, for which details are discussed in Appendix D.

C. Common approximations

As discussed in Sec. I, rates for MUrca processes have
been previously obtained in the literature, but only applying
several approximations to the full expression in Eq. (28) in
order to simplify the calculations. Let us start with the two
most commonly used ones.

1. Propagator of intermediary particles

The functions M presented in the Appendix A contain a
function SX , which has the typical structure

SX = 1

(E �pk ;w − E �pl ;x − Q0)(E �pm;y − E �pn;z − Q0)
, (29)

035803-5



SULEIMAN, OERTEL, AND MANCINI PHYSICAL REVIEW C 108, 035803 (2023)

from the propagators of intermediate nucleons involved in the
DUrca cuts of the respective diagrams. It is common in the
literature to use a simple approximation for S , the same for
all diagrams:

(1) S = 1/E2
e , see, e.g., Refs. [21,26,29,33],

(2) S = 1/Q2
0, see, e.g., Ref. [53].

The former is justified by the fact that upon neglecting
mean-field effects and the neutrino energy, the difference of
the two nucleon energies in Eq. (29) reduces to ≈μp − μn

and the entire denominator thus to ≈E2
e , the energy of the

charged lepton squared. In Ref. [53], the authors perform their
calculations in pure neutron matter and neglect the momentum
exchange, i.e., �Q = 0, such that naturally the denominator in
Eq. (29) reduces to Q0. We will discuss the validity of these
approximations in Sec. III.

2. Fermi surface and β-equilibrium approximations

In the seminal work of Friman and Maxwell [26] and many
subsequent studies, nucleons and charged leptons are assumed
to reside on their respective Fermi surface, which tremen-
dously simplifies the phase space integrations in Eq. (28) and
Eqs. (16)–(19). The Fermi surface is well defined in the zero-
temperature limit and this approximation is then perfectly
valid. Thermal broadening of the Fermi-Dirac distribution at
finite temperature, however, complicates the definition of the
Fermi surface and renders the approximation for the phase
space integration questionable. However, for the sake of ob-
taining an analytical expression for MUrca rates, it is still
applied in the literature. The distribution function of a nucleon
FF ;x of isospin nature x is then still reduced to a Heaviside step
function with the Fermi momentum of the particle denoted
pF,x defined as, see, e.g., Refs [33,44]

pF,x = (3π2nx )1/3, (30)

with nx the number density of the nucleon. The individ-
ual number densities are thereby determined from the EoS
with given thermodynamic conditions. Assuming matter in
β equilibrium simplifies the calculations because at a given
temperature and density, it determines the charged lepton
(electron) fraction; together with charge neutrality, the Fermi
momenta of the different particles species are effectively re-
lated. Most of the time the β-equilibrium condition is thereby
implemented assuming matter to be transparent to neutrinos,
i.e., with vanishing neutrino equilibrium chemical potential,
see Ref. [33] for corrections in the case of a nonzero μν .

3. Additional approximations

Many works apply additional approximations on the phase
space as well as on the matrix element. Most commonly
the matrix element is determined neglecting the momentum
exchange �Q. This arises as a combination of two assumptions:
first neutrino momentum is considered as much smaller as
all other momenta and then electron momentum is neglected
for the matrix element. In this case, the vector contribution
to the hadronic polarization function vanishes in the OPE
approximation as already shown in Friman and Maxwell [26].
Together with the argument of vector current conservation

valid for the corresponding neutral current bremsstrahlung
processes, most of the time only the axial part is considered.
Additionally, for the phase space, very often an averaging is
performed over the orientations of the neutrino momentum.
Combining the above assumptions, analytical expressions of
the MUrca rates can be obtained, see Yakovlev et al. [21]; in
Ref. [58] details on angular integrations can be found.

A last point to be mentioned here is that it has been
shown for DUrca processes that including mean-field effects
via effective masses and chemical potentials has an impor-
tant effect on the rates, see Refs. [45,59]. The reason is that
in asymmetric matter, the interaction potential entering the
effective chemical potentials is different for neutrons and
protons, thus modifying the energy difference between neu-
tron and proton states, and consequently the available energy
for a charged-current process. A similar reasoning applies to
MUrca reactions in asymmetric matter, but up to now effec-
tive masses and chemical potentials have not been largely
considered in determining MUrca rates. An exception is the
work by Alford et al. [44], which includes these effects and
discusses using relativistic kinematics for the single-particle
energies, which can become important at high densities upon
the effective masses being very small in many equation-of-
state models.

III. RESULTS

A. Intermediary propagator above the DUrca threshold

Before discussing the results for the hadronic polarization
function, we must first discuss its value close to the direct
Urca threshold in our approach. As already mentioned in
Sec. I, in Ref. [38] the authors show that approximating the
denominator of the intermediate nucleons propagator to the
squared charged lepton energy E2

e misses an enhancement of
the MUrca rate close to the DUrca threshold. This effect can
be understood as follows: the structure of the denominators
arising from the propagators of the intermediate nucleons, see
Eq. (29), clearly shows that above the corresponding DUrca
threshold, the intermediate particles can become on-shell,
leading to poles in the contribution to MUrca processes. Close
to the threshold an enhancement is observed as in Shternin
et al. [38] because the denominator approaches the poles.
However, the divergence is an artifact of our treatment consid-
ering nucleons in mean-field approximation as intermediate
particles. If we had correctly included dressed nucleons with a
nonzero lifetime, the divergence would disappear. Performing
this operation correctly is a formidable task, which we will
not attempt to do here. Instead we choose a simple way to cir-
cumvent the divergence inspired by the above reasoning: we
introduce a parameter � in the intermediate propagators of all
diagrams. It would correspond to a constant imaginary part of
a nucleon self-energy in the intermediate particle propagators
of the vertex correction diagrams. The function S in Eq. (29)
then assumes the form

SX = (EA − EB ± Q0)(EC − ED ± Q0)

[(EA − EB ± Q0)2 + �2][(EC − ED ± Q0)2 + �2]
,

(31)
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FIG. 2. Vector component of the imaginary part of the hadronic
polarization function as a function of energy exchange Q0, for the
maximum value of | �Q| allowed in the case of an electron capture.
This quantity is represented for different values of the parameter
� (see text for details). Results are presented for a Monte Carlo
method with 5 × 105 points and the numerical error of this approach
is represented in the width of the line (see Appending D).

which reduces to Eq. (29) in the limit � → 0. A similar
strategy has been followed in Ref. [40] for the neutral current
bremsstrahlung process to cure the divergence, which appears
at Q0 → 0 in that case. The authors have been able to de-
termine the value of � from sum rules, which unfortunately
do not apply in our case. The transport approach developed
for neutral currents in Ref. [53,60], allows us to include con-
sistently the collisional broadening due to multiple scattering
effects within a quasiparticle lifetime for the nucleons. This
approach has been implemented in a purely phenomenolog-
ical way to the charged-current MUrca reactions in Ref. [9]
following Roberts et al. [45]. A consistent generalization of
this approach to the charged current could indeed be a promis-
ing possibility to avoid the artifact and the divergence, but is
beyond the scope of the present paper, see Ref. [61] for a first
attempt. Here, awaiting for a consistent way to determine its
value, see also Refs. [62,63], our results will depend on the
value chosen for �. We will choose a value, which allows us
to compute results around and beyond the DUrca threshold
while not affecting the calculation far from the threshold.

To that end, we have performed computations with dif-
ferent values of �. As an example, in Fig. 2, the vector
component of the imaginary part of the hadronic polariza-
tion function is displayed for a neutrino energy of 5 MeV ;
the thermodynamic conditions are T = 50 MeV for the tem-
perature, nB = 0.4 fm−3 for the baryon density and Ye =
0.07 for the electron fraction. In Fig. 2, Im	V is pre-
sented for � = 1, 10, 50 MeV and a range of energy transfers
Q0 = [−200 : 10] MeV in which kinetics are in favor of elec-
tron captures and neutron decays. The momentum transfer | �Q|
has been chosen at the maximum value | �Q| = Qe−ν

ext = Qmax

FIG. 3. Vector, axial longitudinal and axial transverse compo-
nents of the imaginary part of the polarization function as a function
of Q0. Results are presented for | �Q| = Qe−ν

ext = Qmax and for | �Q| = 0.
They were established with a Monte Carlo approach with 5 × 105

points; for clarity in this figure, the numerical error is not represented
and a fit has been performed for each curve; the numerical error are
of the same order as that presented in Fig. 2.

for an electron capture reaction. The DUrca threshold is rep-
resented by a black vertical dashed line at Q0 = −150 MeV.
In the range Q0 = [−200 : −150] MeV, close to the DUrca
threshold, the three curves differ by orders of magnitude, and
the parameter � plays a role in the results. This is also the case
in the range Q0 = [−150 : 100] MeV. However, for larger Q0,
the curve for � = 1 MeV and � = 10 MeV join, while the
curve for � = 50 MeV remains different. For the remaining
results, we will set the parameter to � = 10 MeV.

B. Different components of the hadronic polarization function

The hadronic polarization function can be decomposed into
a vector component, a transverse and a longitudinal axial
component, and a mixed vector-axial component, see Eq. (21).
As mentioned before, most evaluations ignore the vector com-
ponent and only compute the transverse axial one. Here we
want to assess to which extent this assumption is valid. The
mixed contribution vanishes and we will not consider it further
here.

The vector component and the two axial components of the
imaginary part of the hadronic polarization function, Im	, are
presented in Fig. 3. The axial components are of the same
order and dominate the vector component by a factor of a
few. In Fig. 3, results for the axial and vector components
of the imaginary part of the hadronic polarization function
are presented for a momentum transfer | �Q| = Qmax and for
| �Q| = 0. In the former case it is evident that the vector com-
ponent cannot be neglected. In the latter case, results for both
the axial and vector components are reduced by a factor of
≈2.5 compared to | �Q| = Qmax, but the vector component is
not strictly vanishing, as would have been expected from the

035803-7



SULEIMAN, OERTEL, AND MANCINI PHYSICAL REVIEW C 108, 035803 (2023)

FIG. 4. Axial longitudinal component of the imaginary part of
the polarization function as a function of the energy transfer Q0.
Results are presented for different choices for the intermediary prop-
agators: our approach (Full), S = 1/E 2

e and S = 1/Q2
0.

results in Friman and Maxwell [26]. It can indeed be shown
that the sum of all diagrams for the vector component vanishes
in the limit �Q → 0 if in addition the denominator of the
intermediate particles is assumed the same for all diagrams.
This is the case in Friman and Maxwell [26], where it has
been assumed to be ≈E2

e , see the discussion in Sec. II C 1. As
a check of our numerical results we have verified that taking
S = 1/E2

e for all diagrams, the vector component vanishes to
very good precision.

C. Approximations for the intermediary propagators

As mentioned before, a common approximation used to
simplify the calculation of the MUrca rates relies on choosing
a simple form for the intermediary propagators, i.e., the func-
tion S as discussed in Sec. II C 1. In our approach, later on
referred to as the “full” approach, S in Eq. (31) includes the
full dependence on energy and momentum of the intermediary
particles. In addition we include in-medium effects on the
mean-field level via effective masses and chemical potentials.
The parameter � is introduced to mimic in a very simple way
a nucleonic quasiparticle lifetime. In Ref. [38], the authors
already put into light the role of the poles of these intermediate
propagators in the enhancement of the MUrca rate when the
kinematic conditions are close to the DUrca threshold, an
effect that is missed within the common approximations.

Let us now compare the results for the imaginary part
of the hadronic polarization function within the different ap-
proaches. It is displayed as a function of energy exchange Q0

in Fig. 4 for a neutrino energy 5 MeV, a temperature T = 5
MeV, a baryon number density nB = 0.2 fm−3 and an electron
fraction Ye = 0.3. Results for the full approach do show an
enhancement of the results close to the DUrca threshold as
discussed before. In many works, e.g., Refs. [21,26,29,33],
the denominator of S is reduced to the energy of the charged

leptons squared. This case is represented in Fig. 4 as a
dotted orange line. Because the denominator of the inter-
mediary propagator is reduced to the energy of the charged
lepton, a divergence appears when it approaches zero. This
is the case close to the thresholds for the different pro-
cesses. Here we show the results as a function of the energy
transfer Q0. For the present thermodynamic conditions and
a neutrino energy Eν = 5 MeV, the electron capture opens
at Q[e− ν̄]

0;ext = −57.51 MeV and the positron capture stops at

Q[e+ ν̄]]
0;ext = −58.49 MeV. Thus positron capture exists on the

left-hand side of the divergence, and the neutron decay on
the right-hand side. The region in between these two values
is not physical for any MUrca process. Clearly, close to the
thresholds of the different processes, in this approach the re-
sult is largely overestimated compared with the full approach
and remains for the present conditions dominant over a large
range of Q0 values.

Another common approximation is to assume S = 1/Q2
0

as, for instance, applied in Ref. [53]. In Fig. 4 the corre-
sponding results are shown as a black dashed line. For the
present conditions the approach underestimates results by a
factor of three. As for the approach with S = 1/E2

e , there is
an unphysical divergence, this time around Q0 = 0, which is,
however, not visible in the range of values shown in the figure.

D. Suppression of MUrca processes with respect to DUrca ones

It is in general assumed that MUrca-type reactions are
strongly suppressed with respect to DUrca-type reactions
when the latter is kinematically possible. In this section, we
will review this question in the different regimes of temper-
ature and density and corroborate our numerical results with
a simple analytical estimation, which allows us to understand
the reasons for the relative importance of MUrca and DUrca
in the different regimes.

1. Low-temperature and high-density regime

For low temperatures (T � 0.1 MeV) and high densities,
that is to say in thermodynamic conditions relevant for cold
neutron stars, the ratio between the MUrca and DUrca neu-
trino emission rates was thoroughly discussed in Yakovlev
et al. [21]. The authors derive Urca neutrino rates at β equilib-
rium in the Fermi surface approximation, with an intermediary
propagator reduced to the inverse of the electron energy. In
these conditions, they found a suppression of the MUrca pro-
cess with respect to DUrca of six orders of magnitude.

In Fig. 5 (right panel), we present results for the imaginary
part of the hadronic polarization function for both the DUrca
and MUrca process, for a low temperature T = 0.1 MeV, a
relatively high baryon number density of nB = 0.1 fm−3 typ-
ical of the values in the neutron star interior. The charged
lepton fraction has been chosen Ye = 0.3, a value, which is
higher than typical values in a cold and β-equilibrated neutron
star, however, different values of Ye lead to similar results. In
accordance with Yakovlev et al. [21], we find that MUrca is
suppressed with respect to DUrca by six to eight orders of
magnitude. Our calculations are performed with a full numer-
ical computation, thus in particular we use the full expression
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FIG. 5. Imaginary part of the hadronic polarization function as a function of the weak boson energy for the maximum value of the weak
boson momentum norm. This quantity is represented for the modified Urca process and the direct Urca process.

for the intermediate propagators and do not apply the Fermi
surface approximation. The latter should of course be a very
good approximation for these conditions. The reason for this
strong suppression at low temperatures and high densities
confirmed by our full calculation is the reduced phase space
for MUrca processes, which becomes very pronounced at
low temperature with the distribution functions approaching
a Heaviside step function.

2. High- and moderate-temperature regime

Before discussing the full numerical results, we present a
simple approximation in this high- and moderate-temperature
regime, which allows us to estimate the ratio between the
MUrca and DUrca rates. While the DUrca process involves
one incoming particle and one outgoing particle, the MUrca
process involves two incoming and two outgoing particles,
such that the integrands, denoted IDu and IMu for DUrca and
MUrca processes, respectively, recover from phase space the
following structure:

IMu ∝ (m∗
1T )3/2(m∗

2T )3/2(m∗
3T )3/2

(2π2)3
F1F3(1 − F2)(1 − F4),

IDu ∝ (m∗
1T )3/2

2π2
F1(1 − F2). (32)

m∗
i represents the effective mass of the nucleon i. The Fermi-

Dirac distribution Fi of particle i is given by

Fi = 1

1 + eβEi−ηi
, (33)

with ηi = (μ∗
i − m∗

i )/T and β = 1/T . For sufficiently hot and
dilute matter, this distribution function can be approximated
by its Maxwell-Boltzmann expression,

FHt
i = e−βEi eηi , (34)

and be neglected in Eq. (32) with respect to one (i.e., there
is no Pauli blocking for outgoing nucleons). The ratio of the
integrands then becomes

IMu

IDu
∝ eη3

(m∗
2T )3/2(m∗

3T )3/2

(2π2)2
e−βEi . (35)

To estimate the ratio of the rates, we can assume that the inte-
gration over the kinetic energy term with the matrix elements
is of the same order for both MUrca and DUrca. Then, the
factor containing mi

∗T is of order O(1) such that the main
factor determining the ratio of MUrca and DUrca rates in
this regime is the exponential factor eηi , which gives us an
indication of the order of magnitude of the ratio. To get an idea
of the expected importance of MUrca with respect to DUrca,
we thus represent the quantity ηn for neutrons in Fig. 6 in the
temperature-baryon number density plane. For the electron
fraction we have chosen a typical value of Ye = 0.3 and the
EoS is SRO (APR); the qualitative conclusions are the same
for a different value of the charged lepton fraction, for protons
and for a different EoS.

From the behavior of ηn in Fig. 6, we can identify different
regimes in temperature and baryon number density where we
either expect MUrca processes to be of the same order or
dominant with respect to DUrca, or to be clearly suppressed.
We can conclude the following:

(1) Along the contour lines for which η is negative or very
small, i.e., at very low densities, the MUrca processes
are strongly suppressed relative to DUrca. Our rough

FIG. 6. Contour representation of the quantity
ηn(T, nB ) = (μ∗

n(T, nB ) − m∗
n (T, nB ))/T .

035803-9



SULEIMAN, OERTEL, AND MANCINI PHYSICAL REVIEW C 108, 035803 (2023)

estimate is confirmed by the full numerical results.
As an example, we show the imaginary part of the
hadronic polarization function for the thermodynamic
conditions T = 5 MeV, nB = 10−4 fm−3 and Ye = 0.3
in Fig. 5 (left panel). The MUrca one is indeed sup-
pressed by five orders of magnitude with respect to
DUrca. In these conditions, it is reasonable to neglect
the calculation of the MUrca processes upon DUrca
being active. The reason is obviously that a process in-
volving two incoming nucleons as for MUrca becomes
increasingly difficult in dilute matter even if the distri-
bution functions are subject to thermal broadening.

(2) Around the zero contour line of η, the leading factor
eη and therefore the ratio IMu/IDu is of order O(1). In
that case, we expect both MUrca and DUrca rates to
be of the same order of magnitude. This expectation is
again confirmed by our numerical results, illustrated in
Fig. 5 (middle panel), where we show the hadronic po-
larization function for the thermodynamic conditions
T = 5 MeV, nB = 0.4 fm−3, and Ye = 0.3. We thus
find a regime at moderate temperatures and densities
where due to the thermal effects in not too dilute
matter, the MUrca rates are not necessarily suppressed
with respect to DUrca and it is important to compute
the MUrca rates when DUrca is active.

E. Neutrino and antineutrino absorption opacity

Up to now we have only discussed results for the imaginary
part of the hadronic polarization function associated either to
MUrca- or to DUrca-type reactions. But of course, the final
rates for the different processes do not depend only on Im	,
but on the kinematic conditions for each reaction, which deter-
mine the relevant range for energy and momentum transfer. At
high density and low temperature as well as for dilute matter,
where Im	 is suppressed for MUrca with respect to DUrca
by several orders of magnitude upon the latter being active,
the different energy and momentum transfer conditions will
not change anything and the MUrca rates will be suppressed
by several orders of magnitude whenever DUrca reactions are
possible. Then computing MUrca reaction rates is pertinent
only for conditions where DUrca is kinematically forbidden
or strongly suppressed as previously assumed in the literature.

This is not the case in the moderate temperature and den-
sity regime identified above. Let us therefore discuss MUrca
and DUrca opacities in this regime in more detail now. The
neutrino and antineutrino absorption opacities as function of
the (anti)neutrino energy are displayed in Fig. 7 for modified
and direct electron captures and neutron decays for the same
thermodynamic conditions T = 5 MeV, nB = 0.4 fm−3 and
Ye = 0.3 as before. From Fig. 5 (middle panel), where the
imaginary part of the hadronic polarization function is shown
for these thermodynamic conditions and a fixed value of the
neutrino energy (5 MeV), we had argued that the modified
and direct processes should be of the same order. As can be
seen, this is indeed the case for electron capture at not too
small neutrino energies. However, the direct neutron decays
are completely suppressed for these conditions. The modified
neutron decay is not, and its absorption opacity remains more

FIG. 7. Absorption opacity for direct and modified electron cap-
ture and neutron decays.

or less constant for the range of antineutrino energies shown.
The direct electron capture is suppressed for values of the
neutrino energy below ≈15 MeV and then starts to increase. It
is largely dominated by the modified electron capture opacity
at low energies and becomes comparable to it for energies
slightly above roughly 20 MeV.

The behavior of the opacities in Fig. 7 can be under-
stood by considering the energy transfers relevant for the
corresponding process. For instance, for electron captures at
Eν = 5 MeV, positive values of the energy transfer Q0 largely
contribute to the rate. We therefore redisplay the imaginary
part of the hadronic polarization function as function of the
energy transfer in Fig. 8, this time the absolute value on a
logarithmic scale and for a larger range of energy transfers. It
is obvious that for Q0 > 0 the DUrca one is much smaller than
in the case of MUrca, which explains the dominant opacity
contribution from MUrca for this neutrino energy. Similar
arguments can be applied to all other processes.

IV. SUMMARY AND CONCLUSION

In this work we have a performed for the first time a full
numerical evaluation of rates for MUrca-type processes in hot
and dense matter. We have discussed the impact of several
commonly used approximations on the computation of these
rates. Our main findings are the following. (i) Contrary to
what has been common practice in the literature, the vector
contribution cannot be generally neglected. (ii) Approximat-
ing the propagators of intermediate nucleons by the charged
lepton’s energy or the energy transfer misses an enhancement
close and above the DUrca threshold. We thereby confirm
the results of Shternin et al. [38] and show that this en-
hancement is due to the opening of the DUrca channel for
the intermediate propagators of the MUrca reactions. It is
probably overestimated by the infinite nucleonic quasiparticle
lifetime considered in Ref. [38]. The effect is similar to the
enhancement of the neutral current Bremsstrahlung rate close
to Q0 → 0 as already discussed in Ref. [40]. For our further
numerical evaluations we have assumed a constant imaginary
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FIG. 8. Absolute value of the imaginary part of the hadronic
polarization function as a function of the energy transfer for the
maximum value of the norm of momentum transfer. This quan-
tity is represented corresponding to MUrca reactions and DUrca
ones, respectively, for the thermodynamic conditions T = 5 MeV,
nB = 0.4 fm−3 and Ye = 0.3.

part for the nucleonic self-energy in the intermediate propaga-
tors, with a value of 10 MeV, adjusted such that MUrca rates
far from the DUrca threshold are only marginally affected. A
more thorough investigation of this point and in particular a
consistent determination of the quasiparticle lifetime is left
for future work. (iii) The Fermi surface approximation works
very well at low temperatures, but thermal effects become
important already at moderate temperatures. In particular we
show that there is a regime at moderate temperatures and den-
sities, where MUrca reactions are not necessarily suppressed
with respect to DUrca ones when the latter process is active.
This regime is potentially relevant to determine β-equilibrium
conditions in binary neutron star merger remnants or the late
cooling of a protoneutron star. Our results show that a careful
evaluation of MUrca rates is in order for these conditions.
We have shown that this finding is mainly explained by phase
space effects and thus do not expect a significant change in our
conclusion upon improving on our approach, e.g., by going
beyond the one-pion exchange approximation we have used.
We should, however, be careful since the OPE is known to
overestimate the matrix element. Another open question is
here the importance of the quasiparticle lifetime in the inter-

mediate propagators. A very short lifetime could suppress the
MUrca opacity, but for realistic values we do not expect an
order of magnitude change. Thus we expect our findings to be
robust, and our conclusion is that work should be dedicated to
the MUrca reactions.
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APPENDIX A: MATSUBARA FORMALISM FOR THE
HADRONIC POLARIZATION FUNCTION

The imaginary part of the retarded hadronic polarization
function is established in several steps. First we compute the
relevant traces in spin and isospin space for each diagram.
These traces imply a product of all the components described
in Sec. II B: the nucleon propagators, the strong interaction
matrix in OPE and the weak boson to nucleon vertex, for
details see Appendix C and Appendix B. Then we obtain
an expression for the temperature polarization function in
Matsubara formalism (see Ref. [64]). Since the zero com-
ponent of the pion four-momenta has been neglected in our
study (a common feature of the OPE approximation), the sum
over Matsubara frequencies involves only the denominators of
nucleon propagators. It can be treated conveniently with the
MATSUBARASUM package for the Mathematica algebra soft-
ware and analytic expressions are obtained. Then an analytic
continuation can be performed to obtain the retarded function.

Only the imaginary part of the retarded hadronic polariza-
tion function enters the rates. Since only the part obtained
from the Matsubara sum has an imaginary part, the operation
can be done easily. As mentioned before, we only keep the
cuts related to MUrca-type reactions and neglect the cuts
contributing to corrections to the DUrca rates. The result of
the above steps leads to the functions M presented in Eq. (28),
which are given by the following expressions for the different
diagrams (diagram V1 and V2 are identical and we only list the
expressions for V1 in the following discussion)

ImMD = π
G(E �p1;x,E �p2;y,E �p3;z,E �p4;u)

(E �p6;w + E �p2;y − E �p3;z − E �p4;u)2
δ(E �p1;x + E �p2;y + Q0 − E �p3;z − E �p4;u), (A1)

ImME = −π
G(E �p1;x,E �p2;y,E �p3;z,E �p4;u)

(E �p6;w + E �p2;y − E �p3;z − E �p4;u)2
δ(E �p1;x + E �p2;y − Q0 − E �p3;z − E �p4;u) (A2)

ImMV1 = π
1

(E �p5;v + E �p2;y − E �p3;z − E �p4;u)(E �p1;x + E �p2;y − E �p4;u − E �p6;w )

× g(G(E �p1;x,E �p2;y,E �p3;z,E �p4;u)δ(E �p1;x + E �p2;y + Q0 − E �p3;z − E �p4;u)

−G(E �p5;v,E �p2;y,E �p6;w,E �p4;u)δ(E �p4;u + E �p6;w + Q0 − E �p2;y − E �p5;v )g), (A3)
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ImMV3 = −π
1

(E �p3;z + E �p4;u − E �p1;x − E �p6;w )(E �p5;v + E �p2;y − E �p3;z − E �p4;u)

× (G(E �p5;v,E �p6;w,E �p3;z,E �p4;u)δ(E �p6;w + E �p5;v − Q0 − E �p3;z − E �p4;u)

−G(E �p1;x,E �p2;y,E �p3;z,E �p4;u)δ(E �p1;x + E �p2;y + Q0 − E �p3;z − E �p4;u)). (A4)

The indices {x, y, z, u, v,w} refer to the isospin nature of the
nucleons (1), (2), (3), (4), (5), and (6), respectively, and �p1, �p2,
�p3, �p4, �p5, and �p6 label the nucleon momenta. Conservation
of three-momenta for the hadron part of the MUrca process is
presented in Table I. The function G is expressed in terms of
the nucleonic Fermi-Dirac distribution functions FF as

G(α, β, γ , δ) = FF (α)FF (β )[1 − FF (γ )][1 − FF (δ)]

− [1 − FF (α)][1 − FF (β )]FF (γ )FF (δ).

and clearly shows the structure of the reactions with two
incoming and two outgoing nucleons.

APPENDIX B: TRACE IN ISOSPIN SPACE

Among the different elements of the hadronic polarization
function presented in Sec. II B, only the weak boson to nu-
cleon vertex and the nucleon propagators contain terms to be
traced in the isospin space. Operating the trace and summing
over all the possible isospin natures of nucleons in play gives
us the expression of I (X ), with X referring to the diagram. For
example, the explicit formulation for one of the subdiagrams
(ways nucleons can be exchanged in the diagrams) of the first
self-energy contribution, here denoted I (Da), is given by

I (Da) = 1

64

∑
{tx,ty,tz,tu,tv ,tw}

Tr[(1 + tyτ
3)τi(1 + tzτ

3)τ j]

Tr[τ+(1 + txτ
3)τ−(1 + tvτ

3)τ i(1 + tuτ
3)τ j (1

+ twτ 3)]Sx(p1)Sy(p2)Sz(p3)Su(p4)Sv (p5)Sw(p6)

= Sn(p6)2[Sn(p2)Sn(p3)Sn(p4)

+ Sp(p2)(4Sn(p3)Sp(p4) + Sp(p3)Sn(p4))]Sp(p1).

For each diagram, we can present the authorized isospin com-
binations as a vector whose components correspond to the
different subdiagrams (a . . . d ). In the following, the notation
(xyzuvw) designates the isospin nature of nucleons (1), (2),
(3), (4), (5), and (6) presented in the diagrams of Fig. 1, in

TABLE I. Momenta of the intermediate nucleons via three-
momentum conservation for the self-energy corrections D and E and
the vertex corrections V1 and V3.

Nucleon D E V1 V3

(5) �p1 + �Q �p4 − �Q �p1 + �Q �p1 + �Q
(6) �p1 + �Q �p4 − �Q �p3 − �Q �p2 + �Q

that order

I (D) =

⎛
⎜⎜⎜⎝

(pnnnnn) + 4(ppnpnn) + (pppnnn)

(pnnnnn) + 4(pppnnn) + (ppnpnn)

(pnnnnn) − 2(ppnpnn) − 2(pppnnn)

(pnnnnn) − 2(ppnpnn) − 2(pppnnn)

⎞
⎟⎟⎟⎠, (B1)

I (E ) =

⎛
⎜⎜⎜⎝

(pppnpp) + 4(npnnpp) + (pnnnpp)

(pppnpp) + 4(pnnnpp) + (npnnpp)

(pppnpp) − 2(npnnpp) − 2(pnnnpp)

(pppnpp) − 2(pnnnpp) − 2(npnnpp)

⎞
⎟⎟⎟⎠, (B2)

I (V1) =

⎛
⎜⎜⎜⎝

2(ppnpnp) + 2(pnnnnp)

−(pnnnnp) − (ppnpnp)

2(pnnnnp) − (ppnpnp)

−(pnnnnp) + 2(ppnpnp)

⎞
⎟⎟⎟⎠, (B3)

I (V3) =

⎛
⎜⎜⎜⎝

−2(ppnpnn) − 2(pppnnn)

−2(ppnpnn) − 2(pppnnn)

4(pppnnn) + (ppnpnn)

4(ppnpnn) + (pppnnn)

⎞
⎟⎟⎟⎠, (B4)

It is interesting to note that I (X ) can be deduced from Fig. 1,
by respecting the isospin conservation in the diagrams.

APPENDIX C: TRACE IN SPIN SPACE

The strong interaction matrix in the OPE approximation
and the weak boson to nucleon vertex enter the trace in spin
space. As introduced in Eq. (28), X αβ

Y ;spin(�k, �k′) depends on the

momenta �k and �k′ of the exchanged pions. We understand
that Greek indices are ∈ [0, 1, 2, 3] and Latin indices refer
to space components ∈ [1, 2, 3]. Let us introduce the follow-
ing notation for the pion momenta in terms of the momenta
of the involved nucleons �k1 = �p3 − �p2 and �k2 = �p4 − �p2,
�k3 = �p1 − �p3, �k4 = �p4 − �p1, as well as the following func-
tions:

N (�k, �k′) = 1(|�k|2 + m2
π

)(|�k′|2 + m2
π

) ,

f1(�k, �k′) = 4(�k · �k′)2,

f2(�k, �k′) = 2(2(�k · �k′)2 − |�k|2|�k′|2),

f3(�k, �k′) = 4 �k2 �k′2,

h j (�k, �k′) = 4i (�k · �k′) (�k ∧ �k′) j,

gi j
1 (�k, �k′) = 4(�k ∧ �k′)i (�k ∧ �k′) j,

gi j
2 (�k, �k′) = 4(�k · �k′) ki(k′) j,

gi j
3 (�k, �k′) = 4|�k|2 (k′)i(k′) j .
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The spin traces then lead to the following terms for the self-energy diagram D:1

X αβ
D,a(�k1) =

(
fπNN

mπ

)4

N (�k1, �k1)

(
f1(�k1, �k1)c2

V 0
0 f1(�k1, �k1)δi jc2

A

)
, (C1)

X αβ

D,b(�k2) =
(

fπNN

mπ

)4

N (�k2, �k2)

(
f1(�k2, �k2)c2

V 0
0 f1(�k2, �k2)δi jc2

A

)
, (C2)

X αβ
D,c(�k1, �k2) = −

(
fπNN

mπ

)4

N (�k1, �k2)

(
f2(�k1, �k2)c2

V 0
0 f2(�k1, �k2)δi jc2

A

)
(C3)

X αβ

D,d (�k1, �k2) = −
(

fπNN

mπ

)4

N (�k1, �k2)

(
f2(�k1, �k2)c2

V 0
0 f2(�k1, �k2)δi jc2

A

)
. (C4)

The spin trace for diagram E leads to the same terms as diagram D except that for the pion momenta �k2 → �k3.
The spin trace for V1 gives the following terms:

X αβ
V1,a

(�k1, �k4) =
(

fπNN

mπ

)4

N (�k1, �k4)

(
f1(�k1, �k4)c2

V 0
0 gi j

1 (�k1, �k4)c2
A

)
, (C5)

X αβ

V1,b
(�k2) =

(
fπNN

mπ

)4

N (�k2, �k2)

(
f1(�k2, �k2)c2

V 0
0

[− f1(�k2, �k2)δi j + 2gi j
2 (�k2, �k2)

]
c2

A

)
, (C6)

X αβ
V1,c

(�k2, �k4) = −
(

fπNN

mπ

)4

N (�k2, �k4)

(
f2(�k2, �k4)c2

V 0
0

[− f2(�k2, �k4)δi j + gi j
2 (�k2, �k4) + gji

2 (�k2, �k4) − gi j
3 (�k4, �k2)

]
c2

A

)
, (C7)

X αβ

V1,d
(�k1, �k2) = −

(
fπNN

mπ

)4

N (�k1, �k2)

(
f2(�k1, �k2)c2

V 0
0

[− f2(�k1, �k2)δi j + gi j
2 (�k1, �k2) + gji

2 (�k1, �k2) − gi j
3 (�k1, �k2)

]
c2

A

)
, (C8)

and for diagram V3 the following terms are obtained from the spin trace:

X αβ
V3,a

(�k2, �k3) =
(

fπNN

mπ

)4

N (�k2, �k3)

(
f1(�k2, �k3)c2

V 0
0 −gi j

1 (�k2, �k3)c2
A

)
, (C9)

X αβ

V3,b
(�k1, �k4) =

(
fπNN

mπ

)4

N (�k1, �k4)

(
f1(�k1, �k4)c2

V 0
0 −gi j

1 (�k1, �k4)c2
A

)
, (C10)

X αβ
V3,c

(�k2, �k4) = −
(

fπNN

mπ

)4

N (�k2, �k4)

(
f2(�k2, �k4)c2

V 0

0
[−gi j

1 (�k2, �k4) + δi j f3(�k2,�k4 )
2

]
c2

A

)
, (C11)

X αβ

V3,d
(�k1, �k3) = −

(
fπNN

mπ

)4

N (�k1, �k3)

(
f2(�k1, �k3)c2

V 0

0
[−gi j

1 (�k1, �k3) + δi j f3(�k1,�k3 )
2

]
c2

A

)
. (C12)

APPENDIX D: NUMERICAL INTEGRATION

The calculation of the MUrca neutrino rates involves in
addition an integral over phase space which is performed
numerically. The integral, which is required to compute the
hadronic part of the process, is eight dimensional and the
lepton part adds two more dimensions. The numerical cost
of this multidimensional integration is one of the reasons why
approximations are often taken to simplify the calculation and
obtain an analytical expression of the MUrca rates. In this
paper, we do not provide analytical expressions for the MUrca

1Since the mixed terms proportional to cAcV vanish upon summing
up the different diagrams and contracting with the lepton tensor, we
do not list them here and put the corresponding elements to zero.

process to avoid approximations, and provide results based on
numerical integration.

The Monte Carlo approach [65] is particularly well suited
to operate highly dimensional integrals. We use this method to
compute the eight-dimensional integral related to the hadronic
part of the MUrca processes. In practice, an importance
sampling Monte Carlo method is used with the Fermi-Dirac
distribution functions of the incoming nucleons as weights for
the integration over energies and a uniform distribution is used
to operate the angular integration in φ and cos θ in spherical
coordinates. The figures presented in this paper are based
on calculations with 105–106 points. Note that the Fermi-
Dirac distribution at low temperatures resembles a Heaviside
function, such that a large number of points lead to a zero
contribution in the integral, compared to high-temperature cal-
culations in which temperature broadening applies. Therefore,
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at fixed accuracy, more points are required at low temperatures
compared to high temperatures. The remaining integration

over the leptonic phase space for obtaining the opacities is
done with a two-dimensional Gauss-Legendre quadrature.
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