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Hadron-hadron potentials coupled to quark degrees of freedom for exotic hadrons

Ibuki Terashima * and Tetsuo Hyodo †

Department of Physics, Tokyo Metropolitan University, Hachioji 192-0397, Japan

(Received 4 June 2023; accepted 14 August 2023; published 21 September 2023)

We study the properties of the hadron-hadron potentials and quark-antiquark potentials from the viewpoint of
the channel coupling. We demonstrate that, for finite quark masses, the coupling to the two-hadron continuum
induces the imaginary part of the quark-antiquark potential, in contrast to the string-breaking phenomena in the
static limit. It is also shown that the elimination of the different degrees of freedom induces the nonlocality
and energy dependence of the effective potentials. For the obtained nonlocal potentials, we apply two methods
of the local approximation proposed previously, the formal derivative expansion and the derivative expansion
in the HAL QCD method, by carefully examining the energy dependence of the potential. As an application,
we construct a coupled-channel model of cc̄ and D0D̄∗0 to describe X (3872), and discuss the property of the
effective D0D̄∗0 potentials. We confirm that the local approximation by the HAL QCD method works better than
the formal derivative expansion also for the energy-dependent potential. At the same time, we show that, in the
HAL QCD method, the resulting phase shift is sensitive to the choice of the wave function to construct the local
potential when the system has a shallow bound state such as X (3872).
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I. INTRODUCTION

Focusing on the potentials helps us to reveal an essential
mechanism behind the interactions between hadrons. For ex-
ample, the basic properties of the nuclear force were known
in the early 1930s, but the physical mechanism of the nuclear
force was not clear until Yukawa suggested the π exchange
potential to give a physical picture for the nuclear force [1].
As a result of further developments of research, the realistic
nuclear forces that reproduce experimental observables with
high accuracy were established [2,3], and the nuclear force po-
tentials by chiral effective field theory were also constructed
with similar precision [4–6]. Nowadays, the strong interaction
is described by quantum chromodynamics (QCD), and it is
known that hadrons are composed of quarks. The studies of
hadron interactions based on QCD are actively carried out by
numerical calculations using lattice QCD [7–10].

One way to study the color confinement, a nontrivial
property of QCD, is to examine the potentials between the
infinitely heavy static quarks (QQ̄ potentials). For instance, by
using the analytic methods of the strong coupling expansion
[11], it has been found that the linear behavior of the quark
potential characterizes the color confinement. The authors of
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Ref. [12] proposed the Cornell potential (Coulombic at short
distances and linear at long distances) for the heavy quark
potential. In fact, the charmonium spectrum has been success-
fully reproduced by the Cornell potential [13]. Currently, the
Cornell potential is also obtained by the numerical calcula-
tions by lattice QCD [14].

In this way, researches of quark potentials and hadron
potentials have been developed independently in a framework
with its own degrees of freedom. However, since there is no
restriction in QCD to prohibit the mixing of states with the
same quantum numbers, the study of potentials with mixing
of quark and hadron degrees of freedom should be important
for understanding the strong interaction. In fact, the internal
structure of the exotic hadron X (3872) discovered in 2003
[15] is considered to be a mixture of the cc̄ core state and
the DD̄∗ molecule state [16,17]. Even now, theoretical studies
are intensively performed toward the complete elucidation of
the internal structure of X (3872) [18,19].

As a previous study of potentials with such channel cou-
pling, there is a lattice QCD study that succeeded in describing
the string breaking of the QQ̄ potential in the static limit with
the infinite quark mass [20]. By calculating the QQ̄ potential
with dynamical light quarks, it was shown that when the
potential reaches the meson-meson threshold, a pair creation
of light quarks occurs between the static quarks so that the
potential is flattened at large distance. Meanwhile, for more
realistic quark potentials with a finite mass (qq̄ potentials),
lattice QCD calculations have been performed. It is shown that
the qq̄ potentials are of the Coulomb plus linear form [21–23].
Nevertheless it is not clear how the qq̄ potential is affected by
the channel coupling induced by the quark pair creations.

In this study, we construct a framework where the
quark degrees of freedom couples to the hadron degrees of
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freedom, and consider the contribution of channel coupling in
the effective potentials away from the static limit. As an ap-
plication of the hadron-hadron effective potential that includes
the contribution of the quark degrees of freedom, we discuss
the properties of the effective DD̄∗ interaction for the exotic
hadron X (3872) by using numerical calculations.

In this paper, we first formulate the Hamiltonian that de-
scribes the channel coupling problem in Sec. II A, and derive
the effective potential that contains the contribution from dif-
ferent degree of freedom. Next, in Sec. II B, we introduce
the approximate transformation methods from the obtained
effective nonlocal potential to a local one: the formal deriva-
tive expansion and the derivative expansion by the HAL
QCD method [24]. Furthermore, in Sec. II C, we analytically
derive the effective hadron-hadron potential with the Yukawa-
type transition form factor with energy-dependent strength.
In Sec. III, we apply the approximated local effective poten-
tials to X (3872) in the DD̄∗ scattering. First, in Sec. III A,
we construct a model of X (3872), and then discuss the re-
sults obtained by numerical calculations in Sec. III B. Finally,
we summarize this study in Sec. IV. Preliminarily, results
of the content of Sec. II A are reported in the conference
proceedings [25].

II. FORMULATION

A. Effective potential with channel coupling

In this section, we discuss the effective potentials between
quarks and hadrons using the channel coupling. Deriving an-
alytical expressions, we study the qualitative properties of the
obtained effective potentials. The channel-coupling problem
between quark and hadron degrees of freedom is formulated
in nonrelativistic quantum mechanics. In this study, we fol-
low the Feshbach’s method [26,27] to describe the coupled
channel system. The Hamiltonian H that couples the quark-
antiquark channel with a confinement potential V q and the
two-hadron channel with a scattering potential V h by a transi-
tion potential V t is given by

H =
(

T q 0
0 T h + �

)
+

(
V q V t

V t V h

)
, (1)

where T q and T h are the kinetic energies of the quark and
hadron channels, respectively, and � is the threshold energy
of the hadron channel. Then, the Schrödinger equation is
given by

H |�〉 = E |�〉 , (2)

where the wave function |�〉 is given by

|�〉 =
(

|q〉
|h〉

)
, (3)

and |q〉 and |h〉 are the wave functions of the quark and hadron
channels, respectively.

By eliminating the quark channel, we obtain an effective
Hamiltonian

Hh
eff (E ) = T h + � + V h

eff (E ), (4)

where we define the effective potential between hadrons as

V h
eff (E ) = V h + V t Gq(E )V t , (5)

and the Green’s function for the quark channel as

Gq(E ) = [E − (T q + V q)]−1. (6)

Hh
eff (E ) satisfies the Schrödinger equation for the hadron

channel only

Hh
eff (E ) |h〉 = E |h〉 , (7)

The second term in Eq. (5) is the potential due to the coupling
with the quark channel.

Similarly, by eliminating the hadron channel, we obtain an
effective Hamiltonian for the quark channel

Hq
eff (E ) = T q + V q

eff (E ), (8)

and the effective potential between quarks

V q
eff (E ) = V q + V t Gh(E )V t , (9)

where we define the Green’s function for the hadron channel
as

Gh(E ) = [E − (T h + � + V h)]−1. (10)

Hq
eff (E ) satisfies the Schrödinger equation for the quark chan-

nel only

Hq
eff (E ) |q〉 = E |q〉 . (11)

Since we have not made any approximations in the formu-
lation of the effective potentials, we can obtain wave functions
|q〉 and |h〉 that are equivalent to the original channel-coupled
Schrödinger equation (2) by solving Eqs. (7) and (11). How-
ever, it should be noted that in order to solve Eq. (7), we need
to have obtained the explicit form of the Green’s function for
the quark channel Gq(E ). In other words, we cannot obtain the
effective potential between hadrons without solving the quark
channel.

To obtain a specific form of Green’s functions, we first
consider a system with only quark channels. The Schrödinger
equation for the quark channel in the absence of the channel
coupling is

(T q + V q) |φ〉 = E |φ〉 , (12)

where |φ〉 is the wave function. Since V q is a confinement
potential, there are no scattering solutions, and the eigenstates
are given only by the states |φn〉 with discrete eigenvalues En

with n = 0, 1, 2, . . . . The state vector |φn〉 is defined such that
the normalization and orthogonality are given by

〈φn|φm〉 = δmn. (13)

Furthermore, since there are no eigenstates other than |φn〉,
from the completeness of the basis∑

n

|φn〉 〈φn| = 1q, (14)

the unit matrix 1q of the quark channel is expressed by |φn〉.
To investigate the properties of the effective hadron po-

tential coupled with the quark channels in the coordinate
representation, we sandwich the effective hadron potential (5)
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with the eigenvector |rh〉 of the position operator of the hadron
channel to obtain

〈r′
h|V h

eff (E )|rh〉 = 〈r′
h|V h|rh〉 +

∑
n

F ∗
n (r′)Fn(r)

E − En
. (15)

Here, we use the complete set of the basis Eq. (14), and we
define the form factor Fn(r), which represents the transition
between the nth eigenstate φn of the quark channel and the
scattering state of the hadron channel with the relative coordi-
nate r as

〈φn|V t |rh〉 ≡ Fn(r). (16)

The first term on the right-hand side of Eq. (15) gives the
coordinate representation of the potential originally operated
in the hadron channel. The second term contains information
of the quark degrees of freedom due to the effect of channel
coupling, and is a sum of contributions from discrete eigen-
states because the quark channel has a confinement potential.
Since the numerator of the second term depends on the rel-
ative coordinates r and r′ of the particles before and after
the interaction independently, the matrix elements of V h

eff (E )
represent nonlocal potentials. It can be seen that, regardless
of the properties of the transition potential V t , the matrix
elements of the effective potential between hadrons V h

eff (E )
are always nonlocal due to the channel coupling. Also, from
the denominator of the second term, we find that the poten-
tial strength is energy dependent and diverges at the discrete
eigenenergies in the quark channel E = En.

Next, we investigate the effect of the channel coupling
in the interquark potential. The Schrödinger equation for the
hadron channel without the channel coupling is

(T h + � + V h)|ψ〉 = E |ψ〉, (17)

with the wave function |ψ〉. V h is a scattering poten-
tial, so the Schrödinger equation has continuous eigenstates
|pfull〉 labeled by the momentum p as scattering solutions.
Furthermore, when V h is sufficiently attractive, it can gen-
erate discrete eigenstates |ψn〉. These eigenstates satisfy the
Schrödinger equations

(T h + � + V h)|pfull〉 = Ep|pfull〉, (18)

(T h + � + V h)|ψn〉 = Eh
n |ψn〉, (19)

where Ep = p2/(2m) + � is the eigenenergy of a state with
momentum p and m is the reduced mass of the hadron
channel. Since the energy of a state with zero momentum
is the threshold energy, Ep = � for p = 0. Also, Eh

n < �

is the eigenenergy of the nth state |ψn〉. In this case, we define
the normalization and orthogonality of eigenstates as

〈ψn|ψm〉 = δnm, (20)

〈p′
full|pfull〉 = δ(p′ − p), (21)

〈ψn|pfull〉 = 0. (22)

Also, due to the completeness of the basis,∑
n

|ψn〉〈ψn| +
∫

d p|pfull〉〈pfull| = 1h, (23)

the identify operator 1h of the hadron channel is expressed
using |pfull〉 and |ψn〉. The coordinate space potential of the
quark channel is obtained as

〈r′
q|V q

eff (E )|rq〉

= 〈r′
q|V q|rq〉 +

∑
n

F h∗
n (r′)F h

n (r)

E − Eh
n

+
∫

d p
〈r′

q|V t |pfull〉〈pfull|V t |rq〉
E − Ep + i0+ , (24)

where the complete set of the basis (23) is used. We define
the form factor F h

n (r), which stands for the transition between
the nth eigenstate ψn of the hadron channel and the scat-
tering state of the quark channel in relative coordinates r as
〈ψn|V t |rq〉 ≡ F h

n (r).
The first term on the right-hand side of Eq. (24) expresses

the coordinate representation of the potential inherent to the
quark channel. The third term represents the effect of chan-
nel coupling, and is an integration of continuous eigenstates
because the interaction in the hadron channel is a scattering
potential. As with the effective interaction between hadrons
in Eq. (15), we find from the numerator of the integrand that
the effective potential between quarks is a nonlocal potential.
It can also be seen from the denominator that it is energy
dependent.

Furthermore, the denominator of the third term shows that
the effective potential has an imaginary part for E � � by
picking up the pole in the |p| integration :

Im
[〈r′

q|V q
eff (E )|rq〉

]
= 4π2m

√
2m(E − �)

× 〈r′
q|V t |pfull〉〈pfull|V t |rq〉�(E − �), (25)

Equation (25) shows the physical process in which the quark
channel decays into a lower-energy scattering state of the
hadron channel. In the case where the quark mass is infinitely
heavy, the string breaking occurs in the static quark potential
due to the coupling with the hadron channel [20], but the
potential does not generate an imaginary part. This is because
the mesons containing the static quark also has an infinitely
heavy mass, and hence no scattering state is generated. On
the other hand, we show that the effective potential between
quarks with finite quark mass (24), gives an imaginary part
at energies higher than the threshold due to the coupling with
scattering states with continuous eigenvalues.

B. Local approximation

In the previous section, we have shown that the coupling
between the quark channel and the hadron channel makes
the effective potentials nonlocal. In this section, we investi-
gate the physical picture of the interaction by approximating
the nonlocal potential to a local one, because the physical
properties of the nonlocal potentials are not clear. First, we
briefly summarize the difference between the nonlocal and the
local potentials with the energy dependence. We define the
state |r〉 as an eigenstate of the relative coordinate operator r̂,
which satisfies the orthonormal conditions 〈r′|r〉 = δ(r′ − r)
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and completeness
∫

d3r|r〉〈r| = 1. By taking the matrix ele-
ments, the energy-dependent potential operator V (E ) in the
coordinate representation is given by

〈r′|V (E )|r〉 = V (r′, r, E ). (26)

We call this the nonlocal potential when the matrix elements
depend on r and r′ independently. As an example of the non-
local potentials, we show a separable potential

V (r, r′, E ) = ω(E )V (r)V (r′), (27)

which is a product of a function of r only and a function of r′
only, with the potential strength ω(E ). In fact, the contribution
from the channel coupling in the effective potentials (15) and
(24) are given in the separable form. On the other hand, a
potential that is proportional to the delta function δ(r′ − r) is
called a local potential:

〈r′|V (E )|r〉 = V (r, E )δ(r′ − r). (28)

The local potentials have an advantage of having a clear phys-
ical picture. For example, the interaction range of the potential
can be seen from the r dependence.

The Schrödinger equation with the energy-dependent non-
local potential is

− 1

2m
∇2ψ (r) +

∫
d3r′ V (r, r′, E )ψ (r′) = Eψ (r). (29)

We see that the above equation contains differentiation, inte-
gration, and the energy dependence. On the other hand, the
Schrödinger equation with the energy-dependent local poten-
tial (28) is given by:

− 1

2m
∇2ψ (r) + V (r, E )ψ (r) = Eψ (r), (30)

which is a differential equation with energy dependence on
both sides. The Schrödinger equation with the local poten-
tial (30) has an advantage of having less computational cost
than the equation with the nonlocal potential (29), because
the integration in the second term on the left-hand side can
be analytically calculated. In order to solve the Schrödinger
equation with energy dependence, it is necessary to first de-
termine the potential V (E ) at a certain energy E , and then
find the eigenenergy E on the right-hand side. In general, the
obtained eigenenergy E does not always coincide with the
energy E , which is used to determine the potential. In order
to obtain the solution, we need to solve the equation self-
consistently so that the energies E on both sides are consistent
with each other.

In the following, we introduce the formal derivative expan-
sion and the derivative expansion by the HAL QCD method
for potentials with energy dependence based on Ref. [24].
First, we formulate the formal derivative expansion, which is
the method of approximating a nonlocal potential (27) to a
local one by expanding it in powers of the derivative ∇ by
the Taylor expansion. The Taylor expansion of the separable

nonlocal potential around r′ = r is

ω(E )V (r)V (r′)

=
∞∑

n=0

V i1···in
n (r, E )∇r

i1 · · ·∇r
inδ

3(r − r′), (31)

where the expansion coefficients are

V i1···in
n (r, E )

= 1

n!
ω(E )V (r)

∫
d3r′ V (r′)(r′ − r)i1 · · · (r′ − r)in . (32)

Since n is the order of derivative, the higher-order terms of
the expansion can be neglected for small momenta. The most
dominant contribution at low energies is given by the n = 0
term:

V0(r, E ) = ω(E )V (r)
∫

d3r′ V (r′). (33)

Finally, we obtain the general form of the lowest-order local
potential that approximates the separable nonlocal potential
(31) by the formal derivative expansion as

V (r, r′, E ) = V0(r, E )δ(r′ − r) + O(∇1). (34)

We find that the local approximated potential by the formal
derivative expansion V0(r, E ) also has energy dependence
when the nonlocal potential has energy dependence.

Next, we consider the derivative expansion by the HAL
QCD method (hereafter referred to as the HAL QCD method).
We first assume that the wave function of the nonlocal poten-
tial satisfies the Schrödinger equation with a local potential.
We then solve inversely the Schrödinger equation for the
local potential with the given wave function of the nonlo-
cal potential. In the following, we describe the procedure
of the HAL QCD method for the energy-dependent nonlo-
cal potential. We consider the case where the wave function
ψk (r) at energy E has already been obtained for a certain
nonlocal potential where the eigenmomentum is k = √

2mE .
First, we prepare wave functions ψki (r) at n + 1 points of
eigenmomenta ki, (i = 0, 1, · · · , n). We assume that the wave
functions satisfy the Schrödinger equation with the local po-
tential Vn(r,∇) without energy dependence:(

− 1

2m
∇2 + Vn(r,∇)

)
ψki (r) = Ekiψki (r), (35)

where Eki is the energy Eki = k2
i /2m at the momentum ki.

Furthermore, the expansion of the potential Vn(r,∇) in powers
of the derivative with n + 1 terms leads to

Vn(r,∇) =
n∑

i=0

Vn,i(r)(∇2)i. (36)

The n + 1 expansion coefficients Vn,i(r) are determined by
the n + 1 Schrödinger equations (35). Here, we adopt the
formulation with only even powers of derivatives following
Ref. [24]. We find from Eq. (35) that the expansion coeffi-
cients of the potential Vn,i(r) satisfy

n∑
j=0

Ti j (r)Vn, j (r) = Ki(r), (37)
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Ti j (r) ≡ ∇2 jψki (r), (38)

Ki(r) ≡ 1

2m

(
k2

i + ∇2)ψki (r). (39)

Therefore, Vn,i(r) is obtained as

Vn,i(r) =
n∑

j=0

[T −1(r)]i jKj (r). (40)

The approximated local potential (36) obtained by the HAL
QCD method is an energy-independent potential even when
the nonlocal potential has energy dependence. This is because
when the potential Vn(r,∇) includes energy Eki dependence,
(n + 1)2 simultaneous equations are required to determine
the expansion coefficients of the potential. However, we can
only have n + 1 Schrödinger equations (35), so we cannot
solve all the expansion coefficients. It should be noted that
the potential Vn in Eq. (36) is an approximated potential that
depends on the selection of ki (i = 0, 1, 2, . . . , n). Although
the approximated potential is guaranteed to give the correct
phase shift at the points k = ki (i = 0, 1, 2, . . . , n), it provides
approximated values at the other momenta.

At the lowest order of derivatives (n = 0), we can only take
i = j = 0 in Eq. (40), so the local approximated potential is
given only by the wave function at a single momentum k0 as

V0(r,∇; k0) = V0,0(r; k0) = k2
0

2m
+ ∇2ψk0 (r)

2mψk0 (r)
. (41)

Thus, we obtain the lowest order of local approximated poten-
tial by the HAL QCD method as

V0(r, r′, E ) = V0,0(r; k0)δ(r′ − r) + O(∇2). (42)

The error of the approximation is of the second order or higher
because the local approximated potential by the HAL QCD
method (36) is defined not to include the odd powers of deriva-
tives. It is notable that although the local potential by the HAL
QCD method is energy independent, the potential depends
on the momentum k0 that specifies the wave function ψk0

used to determine the potential V0(r, r′, E ). The Schrödinger
equation with the local potential obtained by the HAL QCD
method (42) is given by[

− 1

2m
∇2 + V0,0(r; k0)

]
ψ (r) = Eψ (r). (43)

When we solve this equation at the energy E = k2
0/(2m),

we obtain the wave function ψ = ψk0 and the phase shift is
equivalent to that obtained from the nonlocal potential. The
exact wave functions, however, are not always obtained when
we solve the Schrödinger equation (43) at E 
= k2

0/(2m) in
general.

C. Analytic form with Yukawa form factor

In order to analytically discuss the properties of the local
approximated potentials, we consider the separable nonlocal
potential (27) with the Yukawa-type function as the form
factor

V (r) = e−μr

r
, (44)

V (r, r′, E ) = ω(E )V (r)V (r′) = ω(E )
e−μr

r

e−μr′

r′ , (45)

where r = |r|, μ is a cutoff constant, and ω(E ) is an energy-
dependent coefficient that determines the strength of the
interaction, where a positive sign indicates the repulsion and
a negative sign the attraction. The nonlocal potential with the
Yukawa-type form factor (45) is a special example of nonlocal
potentials that can be solved analytically. In fact, in Ref. [24],
the local potential was analytically obtained by two methods,
the formal derivative expansion and the HAL QCD method,
for the energy-independent potential strength ω.

We can obtain the analytical form of the local approx-
imated potential in the formal derivative expansion, by
substituting Eq. (44) into Eq. (33), and the approximation at
the lowest order of derivatives gives

V(r, r′, E ) = V formal(r, E )δ(r − r′) + O(∇),

V formal(r, E ) = ω(E )
4π

μ2

e−μr

r
. (46)

Equation (46) is consistent with the result given in Ref. [24],
where the energy dependence of ω is simply included. We find
that the local potential by the formal derivative expansion has
the same energy dependence as the original nonlocal potential.
Therefore, we need to solve the Schrödinger equation (30)
self-consistently for the energy dependence. Also, focusing
on the r dependence, we see that the range of the potential is
1/μ, just like the properties of the Yukawa-type potential. The
cutoff μ is the momentum that characterizes the form factor
of the transition potential caused by the channel coupling. It
is noteworthy that the range of the hadron-hadron potential is
determined also by μ.

Next, we first obtain the scattering wave function and
phase shift of the nonlocal potential for the application of
the HAL QCD method. By solving the Lippmann-Schwinger
equation for the positive energy E , as in Ref. [24] for the
energy-independent potential, we obtain the scattering wave
function analytically as

ψk (r) = sin[kr + δ(k)] − sin δ(k)e−μr

kr
, (47)

where the magnitude of momentum is k = √
2mE , and the

scattering phase shift δ(k) is given as

k cot δ(k) = −μ[4πmω(E ) + μ3]

8πmω(E )

+ 1

2μ

[
1 − 2μ3

4πmω(E )

]
k2 − 1

8πmω(E )
k4.

(48)

Furthermore, from Eq. (48), the scattering length a0 is ob-
tained as

a0 = + 8πmω(E = 0)

μ[4πmω(E = 0) + μ3]
. (49)

We find that the analytical solution can be obtained for the
energy-dependent potential by replacing ω → ω(E ) in the ex-
pressions for energy-independent potentials. This is because
the energy is fixed when we solve for the scattering wave

035204-5



IBUKI TERASHIMA AND TETSUO HYODO PHYSICAL REVIEW C 108, 035204 (2023)

function, so that the self-consistency of the energy is not
necessarily imposed in the Lippmann-Schwinger equation.
On the other hand, it is necessary to solve self-consistently the
Schrödinger equation for the bound state. Therefore, it should
be noted that the wave function of the bound state cannot be
obtained by the simple replacement of ω → ω(E ).

We next obtain the local approximation by the HAL QCD
method analytically at the lowest order, by substituting the
wave function (47) into Eq. (42) as

V HAL(r; k0) = k2
0

2m

+ −k2
0 sin [k0r + δ(k0)] − μ2 sin δ(k0)e−μr

2m{sin [k0r + δ(k0)] − sin δ(k0)e−μr} .

(50)

Here, the phase shift δ(k0) is given by Eq. (48). In this way,
we derive an explicit expression for the local approximated
potential by the HAL QCD method.

To investigate the low-energy scattering, we show the k0 →
0 limit of the local approximated potential by the HAL QCD
method (50) with the scattering length a0 as

V HAL(r; k0 = 0) = a0μ
2e−μr

2m(r − a0 + a0e−μr )
. (51)

Similarly, we obtain the wave function (47) in the k0 → 0
limit with the scattering length a0 as

lim
k0→0

ψk0 (r) = r − a0 + a0e−μr

r
. (52)

Here, we have used the relation that limk→0 sin δ(k) = −ka0.

III. APPLICATION TO X (3872)

A. Model for X (3872)

In this section, we first construct a model of X (3872) to
apply the formulation of Sec. II. The most plausible possibility
of the structure of the exotic hadron X (3872) is a mixture of
the cc̄ quarkonium state with the quark degrees of freedom
and the DD̄∗ molecular component with the hadron degrees
of freedom [16,17]. In this work, we consider only the cou-
pling between the neutral channel (D0D̄∗0) having the closest
threshold to X (3872) and the cc̄ state to focus on the effect
of the channel coupling to the quark degrees of freedom in
the hadron-hadron potential. We do not consider the coupling
to the charged channels (D±D∗∓), decay channels (Jψππ ,
etc.), and the direct interactions between the heavy mesons
for simplicity.

We apply the formulation of the channel coupling in
Sec. II A to X (3872). Here, we take cc̄ as the quark channel |q〉
and D0D̄∗0 as the hadron channel |h〉. To achieve JPC = 1++
of X (3872), the D0D̄∗0 channel is combined in the s wave1

and the cc̄ channel is combined into the 3P1 state. Equation (1)

1Hereafter, “D0D̄∗0” stands for the abbreviation of the linear combi-
nation (|D0D̄∗0〉 + |D∗0D̄0〉)/

√
2 with the charge conjugation C = +.

gives the Hamiltonian H for these channels as

H =
(

T cc̄ 0
0 T D0D̄∗0 + �

)
+

(
V cc̄ V t

V t 0

)
. (53)

For the description of the dynamics in the quark channel
T cc̄ + V cc̄, we consider constituent quark model. In a standard
constituent quark model with the Cornell potential in the cc̄
channel, one obtains the χc1(1P) charmonium as the ground
state, and the χc1(2P) state at slightly higher than the D0D̄∗0

threshold energy as the first excited state. Hereafter, we denote
the χc1(2P) state, which has the strongest effect on the D0D̄∗0

channel, as φ0 and consider only |φ0〉 among the eigenstates
in the |q〉 channel. Denoting the mass of φ0 as mφ0 , we define
the energy relative to the threshold of the D0D̄∗0 channel
as E0:

E0 = mφ0 − (mD̄∗0 + mD0 ), (54)

where mD̄∗0 and mD0 are the masses of D̄∗0 and D0, respec-
tively.

Next, we define the matrix element of the transition poten-
tial V t between φ0 and D0D̄∗0 in the coordinate representation
to be of Yukawa type as

〈rD0D̄∗0 |V t |φ0〉 = g0
e−μr

r
, (55)

where μ is a cutoff, which is a parameter that gives the
range of the interaction as 1/μ. The coupling constant g0 is
determined in this study to reproduce the mass of X (3872) as

g2
0 = mφ0 − mX (3872)

I
, (56)

I =
∫ ∞

0

dk 8k2

mD0 + mD∗0 + k2

2m − mX (3872)

(
1

k2 + μ2

)2

, (57)

where mX (3872) is the mass of X (3872) and m is the reduced
mass of the D̄∗0 and D0 system.

In this setup, we obtain the nonlocal effective D0D̄∗0 poten-
tial coupled with the φ0 state by applying the hadron-hadron
effective potential (15) developed in Sec. II to the model of
X (3872) as

V D0D̄∗0

eff (r, r′, E ) = g2
0

E − E0

e−μr

r

e−μr′

r′ . (58)

We find that this potential is classified as the separable and the
Yukawa-type potential by identifying the potential strength as

ω(E ) = g2
0

E − E0
, (59)

in Eq. (45). The local potential by the formal derivative ex-
pansion can be obtained from the nonlocal effective potential
of X (3872) in Eq. (58), by substituting the potential strength
ω(E ) of Eq. (59) into the general form of Eq. (46).

The local potential by the HAL QCD method (50) and
its zero-energy limit (51) are also obtained for the nonlocal
effective potential of X (3872) in the same expressions. Here,
substituting Eq. (59) into Eq. (48) we obtain the explicit ex-
pression of the phase shift δ(k0), which is given up to the sixth
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FIG. 1. The local potentials by the formal derivative expansion
V formal(r, E ) as functions of the relative distance r with E = 0 (solid
line), E = Eμ/2 (dashed line), and E = Eμ (dotted line).

order of k0 as

k0 cot δ(k0)

= −μ

2

[
1 − μ3E0

4πmg2
0

]
+ 1

2μ

[
1 − μ5

8πm2g2
0

+ μ3E0

2πmg2
0

]
k2

0

+
[
− μ2

8πm2g2
0

+ E0

8πmg2
0

]
k4

0 − 1

16πm2g2
0

k6
0, (60)

The scattering length a0 is determined from the constant term
in Eq. (60) as

a0 = 8πmg2
0

μ
(
4πmg2

0 − μ3E0
) . (61)

B. Numerical results

In this section, we study the properties of the local ap-
proximated effective D0D̄∗0 potentials for X (3872) by the
numerical calculations. We also compare the scattering phase
shifts calculated from the local potentials with the exact
scattering phase shift calculated from the original nonlocal
potential. The hadron masses are taken from the central val-
ues in PDG [28], which gives the binding energy BX (3872)

of X (3872) as BX (3872) = mD0 + mD̄∗0 − mX (3872) 
 40 keV.
Namely, X (3872) is a very shallow bound state. Since the bare
mass of the χc1(2P) state mφ0 is not an observable quantity,
we determine it to be 3.950 GeV based on the quark model
in Ref. [13]. In this case, we obtain E0 
 0.078 GeV and
the bare state appears above the threshold. The cutoff μ is
chosen as the mass of π , which is the lightest exchange meson
between D0D̄∗0, or as the mass of ρ for the description of the
shorter-range potential. Since there are no analytic solutions
of the phase shift both from the local potentials obtained by
the formal derivative expansion (46) and by the HAL QCD
method (50), we evaluate the phase shift by the numerical
calculation.

Figure 1 shows the local D0D̄∗0 potentials by the formal
derivative expansion (46) as functions of the relative distance
r with μ = 0.14 GeV. Its enlargement around r = 0.3 fm is
shown in Fig. 2. We set the upper bound of the energy in this

FIG. 2. The enlargement of Fig. 1 around r = 0.3 fm.

model Eμ as that corresponding to the momentum cutoff μ as

Eμ = μ2

2m
. (62)

To investigate the energy dependence of the potential, we
show V formal(r, E ) with three different values, E = 0, Eμ/2,
and Eμ. We see from Fig. 1 that the potentials are attractive be-
cause the potential strength in Eq. (59) is negative for E � E0

as a consequence of the second-order perturbations, which act
attractively on the ground state in quantum mechanics. It is
also seen that the local potentials show the Yukawa-type r
dependence as indicated in Eq. (46).

We find from Fig. 1 that the energy dependence of the
potentials (46) with (59) on energy E is not very strong.
This is because the energy of the potential is chosen for E =
Eμ 
 0.01 GeV at the maximum, which is much smaller than
the bare energy E0 
 0.078 GeV. In this case, the potential
strength (59) shows a weak energy dependence in the range of
0 � E � Eμ. The local potential would show a strong energy
dependence near E 
 E0 if a larger cutoff μ were chosen such
that E0 < Eμ. Although the energy dependence of the local
potential with μ = 0.14 GeV is small, the enlarged Fig. 2
shows that the potential becomes more attractive as the energy
E increases. This is because the factor of E − E0 in the de-
nominator of the potential strength (59) enlarges the attraction
as the energy E increases, in the range of E � E0.

We next show the local potentials by the HAL QCD
method (50) in Fig. 3 and its enlargement around r =
0.2 fm in Fig. 4. The HAL QCD method yields an energy-
independent potential unlike the formal derivative expansion
discussed above. However, the potential depends on the mo-
mentum k0 that specifies the wave function in constructing
the potential, as seen in Eq. (41). Therefore, we show three
different potentials with k0 = 0, μ/2, μ to investigate the k0

dependence. We find from Fig. 3 that the potentials by the
HAL QCD method (50) do not strongly depend on the mo-
mentum k0. The enlarged Fig. 4 indicates that the attractive
potential strength decreases, as k0 increases.

In both the approximation methods, there exists a set of
parameters with which the potential strength diverges. The
potential by the formal derivative expansion (46) diverges at
E = E0 due to the E − E0 factor in the denominator. There
are, however, no signs of the divergence in Fig. 1 because
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FIG. 3. The local potentials by the HAL QCD method
V HAL(r; k0 ) as functions of the relative distance r with k0 = 0 (solid
line), k0 = μ/2 (dashed line), and k0 = μ (dotted line).

the chosen energy is sufficiently smaller than the bare energy,
E � E0. Because the potential by the HAL QCD method (41)
contains the wave function in the denominator, it diverges at
the nodes of the wave function [ψk0 (r) = 0] [23]. The first
divergence of the potential occurs at r 
 4.5 fm and 3.8 fm
for k2

0/(2m) = Eμ/2 and Eμ, respectively. As we increase k0,
the potential diverges at smaller r as the nodes of the wave
function move toward the origin due to the rapid oscillations
of the wave function for the larger wave number k0. Therefore,
one should cautious about the choice of the momentum k0

in the HAL QCD method in order to avoid the pathological
behavior of the potential in the small r region.

Furthermore, we compare the local potential by the formal
derivative expansion with E = 0 (dashed line) and the one by
the HAL QCD method with k0 = 0 (dashed-dotted line) in
Fig. 5. We find the quantitative difference of the potentials,
even though both are constructed from the same original non-
local potential. In particular, the difference is pronounced in
the short distance region of r � 0.4 fm. From the results in
Figs. 1 and 3, we find that the difference between the two local
potentials is larger than the deviation due to the choice of the
energy E and the momentum k0.

We next investigate how the difference of the local poten-
tials affect on physical quantities by numerical calculation
of the phase shift δ(k). We calculate the phase shit at the
momentum k by varying the energy E = k2/(2m) in the po-
tential by the formal derivative expansion. In contrast, the

FIG. 4. The enlargement of Fig. 3 around r = 0.2 fm.

FIG. 5. The comparison of the local potentials by the formal
derivative expansion V formal(r, E = 0) (dashed line) and by the HAL
QCD method V HAL(r; k0 = 0) (dashed-dotted line) as functions of
the relative distance r.

energy-independent potential by the HAL QCD method is
treated in a standard for a given momentum k0.2 We show
the phase shifts δ by the formal derivative expansion (dashed
line) and by the HAL QCD method (dashed-dotted line) as
functions of the dimensionless momentum k/μ with the cutoff
μ in Fig. 6. By comparing the dashed line with the dashed-
dotted line, we find that the difference in potentials seen in
Fig. 5 affects the phase shifts quantitatively.

We also show the exact phase shift δ (solid line) by the
original nonlocal potential (60) in Fig. 6. We find that the
exact phase shift is better approximated by the HAL QCD
method than the formal derivative expansion. In particular,
the potential by the HAL QCD method works well in the
small k region, indicating that the scattering length defined
by the slope of the phase shift at k = 0 is also reproduced.
In Table I, we summarize the exact scattering length (61)

2If we use the potential with k0 = k for the calculation of the
phase shift at k as in the energy-dependent case, the exact phase
shift is obtained for any k. Here we consider the fixed-k0 potential
to examine the accuracy of the local approximation.

FIG. 6. The phase shifts from the local potentials by the formal
derivative expansion (dashed line) and by the HAL QCD method
(dashed-dotted line) as functions of the dimensionless momentum
k/μ with the cutoff μ = 0.14 GeV in comparison with the exact
phase shift (solid line).
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TABLE I. The scattering lengths from the local potentials by the
formal derivative expansion (formal) and by the HAL QCD method
with k0 = 0 (HAL QCD), in comparison with the exact scattering
length from the original nonlocal potential.

formal HAL QCD exact

scattering length [fm] 6.55 24.48 24.48

and those by the local potentials numerically calculated by
limk→0 k cot δ(k) = −1/a0. While the result of the formal
derivative expansion differs from the exact scattering length
by about factor four, we find that the HAL QCD method gives
the equivalent value with the exact one. This indicates that
the choice of k0 = 0 in the HAL QCD method gives a good
description not only for the value of the phase shift (which is
by definition δ = 0) but also for its slope at k = 0.

It is worth examining the k0 dependence of the local poten-
tial by the HAL QCD method again, from the perspective of
the phase shift. We show the phase shifts by the potentials with
momentum k0 = 0, μ/2, and μ, together with the exact one
in Fig. 7. Although the potentials in Fig. 3 do not show strong
dependence on k0, Fig. 7 demonstrates that the behavior of the
phase shift drastically changes for different values of k0. This
is because, the binding energy of X (3872) is so small that even
tiny change of the potential strength can make X (3872) from
bound to unbound. In fact, we see that the system has a bound
state for k0 = 0 and μ as indicated by the negative slope at
k = 0, but the bound state disappears for k0 = μ/2. Table II
shows the detailed k0 dependence of the scattering length a0 of
the potential by the HAL QCD method. We find from the table
that the scattering length does not behave monotonically with
respect to k0. This reflects the fact that the HAL QCD method
is formulated to reproduce the exact phase shift at k = k0, but
the phase shift is also fixed to be δ = 0 at k = 0, and therefore
the interpolation between k = 0 and k = k0 gives the strong
k0 dependence of the scattering length.

Finally, we study the μ dependence of the approximation
methods of the formal derivative expansion and the HAL
QCD method. Here, we vary only the cutoff μ, with fixing

FIG. 7. The phase shifts δ(k) from the potentials by the HAL
QCD method with k0 = 0 (dashed-dotted line), k0 = μ/2 (dashed
line), and k0 = μ (dotted line), as functions of the dimensionless
momentum k/μ with the cutoff μ = 0.14 GeV in comparison with
the exact phase shift (solid line).

TABLE II. The k0 dependence of the scattering length a0 from
the potential by the HAL QCD method, with μ = mπ = 0.14 GeV
and μ = mρ = 0.77 GeV.

k0/μ [dimensionless] a0(μ = mπ ) [fm] a0(μ = mρ ) [fm]

0 24.48 22.36
0.1 24.14 8.32
0.2 21.38 2.84
0.3 22.68 1.34
0.4 17.17 0.79
0.5 −63.97 0.71
0.6 9.33 0.01
0.7 5.88 0.23
0.8 −0.78 0.60
0.9 −1.27 −0.13
1 5.21 −0.20

the binding energy of X (3872) as BX (3872) = 40 keV and
the momentum k0 for the HAL QCD method as k0 = 0. We
note that in this case the exact phase shift from the nonlocal
potential depends on μ as indicated in Eq. (48). We show
the phase shifts as functions of momentum k in Fig. 8 with
μ = mπ = 0.14 GeV, and in Fig. 9 with μ = mρ = 0.77 GeV.
We see that the k dependence of the phase shifts changes
for μ = 0.77 GeV, including the exact one. We find from
the figures that the HAL QCD method better reproduces the
exact phase shift than the formal derivative expansion at low
momentum region, irrespective of the value of the cutoff μ.
We also show the k0 dependence of the scattering length a0 at
μ = 0.77 GeV in Table II. As in the case of μ = 0.14 GeV,
we see that the k0 dependence of a0 shows the nonmonotonic
behavior also at μ = 0.77. In this way, the properties of the
local approximation discussed above does not depend on μ.

IV. SUMMARY

In this paper, we have discussed the properties of the
effective potentials with the channel coupling of the quark
and hadron degrees of freedom. We examine the local

FIG. 8. The phase shifts from the local potentials by the formal
derivative expansion (dashed line) and by the HAL QCD method
(dashed-dotted line) as functions of the momentum k with the cutoff
μ = 0.14 GeV in comparison with the exact phase shift (solid line).
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FIG. 9. The same with Fig. 8 but with the cutoff μ = 0.77 GeV.

approximation methods of the obtained effective potential
using the model of X (3872).

First, we have formulated the Hamiltonian that describes
the coupled-channel problem between the quark and hadron
degrees of freedom, and then have derived an effective po-
tential that contains the channel-coupling contribution in the
Feshbach’s method. As a result, it is found that the effective
potential is obtained as an energy-dependent and nonlocal
potential. We show that the quark-antiquark potential devel-
ops an imaginary part due to the coupling to the two-hadron
scattering states at finite quark masses.

In order to extract the physical mechanism of the interac-
tion, we discuss the approximation of the nonlocal effective
potential into a local one. In this study, we introduce two ap-
proximation methods: the formal derivative expansion and the
HAL QCD method. Analytic expressions of the approximated
local potentials by these methods are derived for an energy-
dependent separable potential with the Yukawa form factor,
which is a prototype of the effective nonlocal potentials.

Finally, we apply the framework of the hadron-hadron
effective potential to X (3872), one of the prominent exam-
ples of the exotic hadrons. We construct the nonlocal D0D̄∗0

potential coupled with the χc1(2P) bound state of cc̄ to repro-
duce the mass of X (3872). The approximated local potentials

and the scattering phase shifts from the potentials are com-
puted numerically. We show the quantitative deviation of the
obtained local potentials and phase shifts for different ap-
proximation methods. Through the comparison with the exact
solution obtained from the original nonlocal potential, we find
that the HAL QCD method better reproduces the exact phase
shift than the formal derivative expansion, in the presence of
the energy dependence. However, it should be noted that the
observable quantities such as the phase shift and scattering
length are sensitive to the changes of the momentum k0 for
the system with a shallow bound state like X (3872), although
the approximated local potential has a weak k0 dependence.

As future prospects, it is important to apply the present
results to more realistic models of X (3872). For example,
the coupling to the charged D±D∗∓ channel and to the decay
channels of J/ψρ and J/ψππ , the inclusion of the additional
cc̄ bound states, and the use of the 3P0 model for the transition
potential V t will improve the theoretical model of X (3872).
While we have focused on the hadron-hadron effective po-
tentials for the application, the framework presented here can
also be used to investigate the influence of the hadron degrees
of freedom on the quark-antiquark effective potentials. In
addition, the application to the other exotic hadrons, such as
the H dibaryon in the ��-N
 system [29–31] and Tcc in the
DD∗ scattering [32,33], can be pursued in the framework of
the present work.
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