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Non-Gaussian fluctuation dynamics in relativistic fluids
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We consider nonequilibrium evolution of non-Gaussian fluctuations within relativistic hydrodynamics rele-
vant for the QCD critical point search in heavy-ion collision experiments. We rely on the hierarchy of relaxation
timescales, which emerges in the hydrodynamic regime near the critical point, to focus on the slowest mode such
as the fluctuations of specific entropy, whose equilibrium magnitude, non-Gaussianity, and typical relaxation
time are increasing as the critical point is approached. We derive evolution equations for the non-Gaussian
correlators of this diffusive mode in an arbitrary relativistic hydrodynamic flow. We compare with the simpler
case of the stochastic diffusion on a static homogeneous background and identify terms which are specific to the
case of the full hydrodynamics with pressure fluctuations and flow.
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I. INTRODUCTION

The physics of thermal fluctuations [1] in hydrodynamics
[2] has received renewed interest recently in the context of
relativistic heavy-ion collision experiments. Hydrodynamics
proved to be remarkably successful in describing the data
from such collisions [3,4]. One of the major goals of heavy-
ion collision experiments is the discovery of the QCD critical
point—the end point of the conjectured first-order transition
separating hadron gas and the quark-gluon plasma phases [5].
This point is characterized by a certain singular behavior of
fluctuations—a universal feature of the critical points [6–8].
Therefore, understanding of fluctuations and, in particular,
of their nonequilibrium evolution in the environment of the
hydrodynamically expanding QCD fireball is important to en-
able the experimental search for the QCD critical point [9,10].

The parameter controlling the importance of fluctuations at
wavelengths of order � is the ratio of the “correlation volume”
of the size of the correlation length ξ to the “homogeneity vol-
ume” of order �3. We shall generically refer to this parameter
as ε. The central limit theorem suppresses the magnitude of
fluctuations as well as their non-Gaussianity by a power of ε.
In a typical condensed matter experiment ε is extremely small
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and thus fluctuations often play a negligible role. In heavy-ion
collisions, where the system size [O(10 fm)] is large com-
pared to the typical correlation length ξ (a fraction of fm),
the parameter ε is small but not negligible. Fluctuations are
observable in heavy-ion collisions and play important role
in understanding the thermodynamic properties of the QCD
fireball.

Furthermore, near the critical point, as the correlation
length becomes longer, the fluctuations grow and play even
more important role. Non-Gaussianity of fluctuations, also
controlled by ε, is increasing even faster at the critical point
than their magnitude [11], and is expected to show a spe-
cific nonmonotonic dependence on the collision energy [12],
which in heavy-ion collisions controls the thermodynamic
conditions at freeze-out. Therefore, non-Gaussian fluctuation
measures have emerged as observables of primary experimen-
tal interest in the search for the QCD critical point [13].

Another effect of the critical point is to slow down the
relaxation towards local thermodynamic equilibrium. The
critical slowing down makes it increasingly important to con-
sider nonequilibrium evolution of fluctuations near the critical
point, as earlier estimates and model calculations demonstrate
[7,14,15]. To make quantitatively reliable predictions, how-
ever, one needs to consider the nonequilibrium behavior of
fluctuations in the “first principle” hydrodynamic approach.

There has been considerable recent effort and progress
towards understanding non-equilibrium evolution of fluctua-
tions in the context of the hydrodynamics of the heavy-ion
collisions with the aim of mapping the QCD phase diagram
(see Ref. [10] and references therein). The focus of this paper
is on the approach where fluctuations are described in terms
of the correlation functions obeying deterministic evolution
equations, i.e., the so-called deterministic (also known as
hydrokinetic) approach. This approach was introduced and
developed recently in the context of relativistic heavy-ion

2469-9985/2023/108(3)/034910(23) 034910-1 Published by the American Physical Society

https://orcid.org/0000-0002-6298-0919
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.108.034910&domain=pdf&date_stamp=2023-09-19
https://doi.org/10.1103/PhysRevC.108.034910
https://creativecommons.org/licenses/by/4.0/
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collisions [16–18], more generally in [19–23], and much
earlier, in the non-relativistic condensed matter context, in
[24,25].

Within the deterministic approach most of the work has
been done on Gaussian fluctuation measures: two-point corre-
lators, or their Wigner transforms. In this approach, the first
step towards the study of the non-Gaussian hydrodynamic
fluctuations out of equilibrium was made in Ref. [22],1 where
the generalized n-point Wigner transform was introduced and
the equations for the corresponding n-point Wigner func-
tions were derived. Reference [22] considered the simplest
hydrodynamic system: nonlinear charge diffusion at con-
stant temperature. Such a system is characterized by a single
hydrodynamic field: conserved charge density. Full hydrody-
namics necessary to describe heavy-ion collisions involves
(at least) five hydrodynamic fields: conserved densities of
energy, baryon charge, and three-momentum of the fluid. The
full theory of hydrodynamic fluctuations is an ambitious goal
and in this paper we shall present another step towards it by
considering fluctuations of both energy and baryon density
in the regime relevant to the critical point search, where the
correlation length becomes large compared to typical micro-
scopic scales (while still being smaller than �) and fluctuations
of a certain critical mode dominate.

In this regime an important hierarchy of scales emerges.
The slowest mode is the diffusive (nonpropagating) mode
m = s/n, i.e., entropy to baryon number ratio, which we shall
refer to as specific entropy. This mode does not mix with prop-
agating sound oscillations, which makes it purely diffusive
(unlike fluctuations of energy and baryon densities on their
own). Furthermore, unlike the case of other diffusive modes,
such as transverse momentum densities, the diffusion constant
for m vanishes at the critical point, making m the slowest mode
in this regime. Such a hierarchy of scales was exploited in
the construction of Hydro+ theory in Ref. [29] as well as in
the Hydro++ theory in Ref. [20], where the next-to-slowest
momentum diffusion modes were also included. In both cases
only two-point correlators were considered. The goal of this
work is to extend the Hydro+ formalism to the non-Gaussian
fluctuation measures, i.e., n-point correlation functions.

As in Ref. [29] we shall focus on fluctuations of m, which
are important for two related reasons. First, as explained
above, this mode and its fluctuations are slowest to relax, and
therefore are most in need of nonequilibrium description. Sec-
ond, the magnitude and non-Gaussianity measures of the fluc-
tuations of this mode diverge with the correlation length most
strongly (with the largest critical exponent), thus providing the
most sensitive observable signatures of the critical point.

Furthermore, in Ref. [22] we considered fluctuations in a
stationary fluid without any flow. Here we shall treat the most
general relativistic flow in a fully Lorentz covariant formal-

1Evolution of non-Gaussian cumulants, i.e., spatial integrals of
the correlation functions we consider here, was studied previously
in Refs. [15,26] and also within the complementary stochastic
approach, e.g., in Ref. [27]. Non-Gaussian correlation functions
introduced in Ref. [22] were also studied in the effective theory
approach in Ref. [28].

ism necessary for applications to heavy-ion collisions. We
review the formalism which was introduced in Ref. [19,20]
for two-point correlators with a specific focus on generalizing
it to non-Gaussian fluctuations. We use the n-point wave-
number dependent correlation functions which we introduced
in Ref. [22] by generalizing the well-known Wigner transform
and show how the confluent formalism of Refs. [19,20] natu-
rally extends to these objects in Sec. II D.

While the simple diffusion problem in Ref. [22] con-
tains only one fluctuating field variable (charge density n),
we find that—even in the regime where the fluctuations of
m are the slowest and the fluctuations of the faster hydro-
dynamic modes, such as pressure p, can be considered as
equilibrated—we cannot neglect these fluctuations, as they
modify equations for the evolution of fluctuations of m via
nonlinearities in the equation of state, or mode coupling. We
discuss this nontrivial part of the derivation in Sec. III B.

We should point out again that we set up the formalism
in the most general form necessary to tackle the full system
of hydrodynamic equations with fluctuations of all hydrody-
namic variables. Our focus on the slowest variable m allows
us to make the logical first step towards considering the full
system. This focus simplifies the calculations and allows us to
hone the tools needed to tackle this ambitious goal.

We shall use the approach of Refs. [19,20], i.e., expand the
stochastic hydrodynamic equations in powers of fluctuation
magnitude. Unlike Refs. [19,20] we shall not consider feed-
back of fluctuations and assume, based on the analysis of these
contributions in Refs. [19,20], that the major effects of these
(UV sensitive) contributions have been absorbed into renor-
malization of hydrodynamic variables, equation of state, and
transport coefficients which, therefore, take physical (cutoff
independent) values. In the diagrammatic representation we
introduced in Ref. [22] such feedback contributions are repre-
sented by loop diagrams. As in Ref. [22], we shall consider
only “tree-level” terms in the evolution equations for non-
Gaussian correlators. Again, this is not a limitation of the ap-
proach, but a natural simplifying first step in its development.

In Sec. II we introduce the general formalism for the
dynamical evolution equations for the n-point correlation
functions in the presence of background hydrodynamic flow.
In Sec. III we focus on the specific entropy fluctuations for
reasons explained above and, by using the results developed in
Sec. II, we derive the evolution equations for the two-, three-,
and four-point functions of the specific entropy fluctuations.
Thus we arrive at the main results of this paper, which can be
found in Sec. III B. We summarize our findings and discuss
the outlook for future developments in Sec. IV.

II. GENERAL DETERMINISTIC FORMALISM
FOR FIELD FLUCTUATIONS

In this section we extend the formalism for the dynamical
evolution equation of relativistic hydrodynamic fluctuations
we developed in Refs. [19,20] to n-point correlation functions.
In particular, we show that the confluent formalism, which
allows us to describe fluctuations in the local rest frame of the
fluid in a natural and fully Lorentz covariant way, generalizes
naturally to n-point functions. We also use the multipoint
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Wigner transform, which we introduced in Ref. [22], to ex-
press the n-point correlators in terms of one spatial coordinate
of the midpoint and n − 1 independent wave vectors. The re-
sults of this section are general, i.e., not limited to a particular
fluctuating variable of variables.

A. Evolution of correlation functions

Let us first derive the evolution equation for the n-point
correlation functions of a set of generic stochastic field
variables ψ̆i where the subscript i labels different local hydro-
dynamic fields (such as entropy per baryon m ≡ s/n, pressure
p, and fluid velocity u as in Refs. [19,20]). Each of those
variables satisfies its own Langevin-type equation that can be
generically written in a covariant form,

ŭ · ∂ψ̆i = F̆i + ξi, with ξi = H̆i jη j, (2.1)

where the symbol “ ”̆ denotes a stochastic quantity. Functions
or functionals, such as ŭ ≡ u(ψ̆i ) or F̆ ≡ F (ψ̆ ) inherit the
stochastic symbol “ ”̆ from their arguments. The four-velocity
obeys ŭ2 = −1, and should be understood as a four-vector
function of ψi’s (or can also be chosen to be among the
variables ψi as in Refs. [19,20]). F̆i is the drift “force” and
ξi is the noise (random “force”) for the variable ψi, expressed
in terms of the canonically normalized local Gaussian noise2:

〈ηi〉 = 0, 〈ηi(x1)η j (x2)〉 = 2δi jδ
(4)(x1 − x2). (2.2)

We include multiplicative noise, since H̆ = H (ψ̆ ), and define
the product H̆η in terms of the It ō calculus.3

The Onsager matrix (operator) Q = QT is the “square” of
H : Qi j ≡ HikHjk .

Denoting fluctuation of a given stochastic quantity X̆ as

: X̆ : ≡ δX ≡ X̆ − 〈X̆ 〉 ≡ X̆ − X, (2.3)

and introducing the fluctuation of the variables ψi,

φi ≡ : ψ̆i : ≡ ψ̆i − ψi, (2.4)

we can expand the stochastic equations (2.1) in powers of φi,
using, e.g.,

F̆i =
∞∑

n=0

1

n!
Fi, j1... jnφ j1 · · · φ jn

= Fi + Fi, j1φ j1 + 1

2
Fi, j1 j2φ j1φ j2 + · · · , (2.5)

2As discussed in Ref. [22], in hydrodynamics, the contribution of
the non-Gaussianity of the noise will not appear in the leading order
in the hydrodynamic (i.e., gradient) expansion.

3In practice that means that H (ψ̆ ) and η are considered uncor-
related. Under time discretization this corresponds to evaluating
H (ψ (t )) and η(t ) at the same time point t . Different discretization
prescriptions, such as Stratonovich, where H = H ([ψ (t ) + ψ (t +

t )]/2), can be used to describe the same physics with a given
equilibrium distribution of fluctuating variables, as long as the the
drift term is chosen accordingly. Below we shall verify a posteriori
that our equations reproduce the correct equilibrium values of the
fluctuations given by thermodynamics. This provides a check of
the consistency of the implementation of the Ito prescription in our
approach.

where F ≡ F (ψ ), etc., and obtain the evolution equation for
fluctuation field φi:

u · ∂φi = : ŭ · ∂ψ̆i − δu · ∂ψ̆i :

= :
∞∑

n=1

1

n!
Li, j1... jnφ j1 · · · φ jn + ξi : , (2.6)

where the term involving δu in Eq. (2.6) must be kept if the
fluctuation of velocity is taken into account and

Li, j1 j2... jn = Fi, j1 j2... jn − uμ
, j1... jn

(∂μψi )

− [
nδi j1 uμ

, j2... jn
∂ ( j1 )
μ

]
1...n. (2.7)

Here ∂
( j1 )
μ acts on φ j1 only, and the Einstein summation rule

over repeated indices is implied throughout this paper. The
subscript 1 . . . n denotes the “averaging over permutations”,
i.e., the sum over all n! permutations of all composite index-
position labels ( j1, x1), . . . , ( jn, xn) divided by n!,

[. . . ]1...n = 1

n!
[. . . ]P1...n , (2.8)

where we used the notation of Ref. [22], P1...n, to denote
the sum over permutations. Furthermore, since Eqs. (2.1)
that we consider are differential equations, each expansion
coefficient such as Li, j1 j2... jn must be treated as a multilinear
differential operator. These operators are linear in each of
their arguments, which are identified by the matching repeated
indices. It is helpful, in this regard, to think of the argu-
ments xi of the field φi(xi ) as a part of the composite label
(i, xi ) denoting position as well as the name or index of the
variable.

Having this at hand it is straightforward to write down
the evolution equation for the “raw” n-point correlation
functions

Gi1...in ≡ 〈φi1 (x1) · · · φin (xn)〉 (2.9)

by taking the time derivative in the rest frame of the fluid at
midpoint x ≡ ∑n

i=1 xi/n:

u · ∂ (x)Gi1...in

≡
n∑

i=1

u · ∂

∂xi
Gi1...in = n

[
u · ∂

∂x1
Gi1...in

]
1...n

= n

{
− (y1 · ∂u) · ∂

∂x1
Gi1...in

+
∞∑

m=0

1

m!

[
Li1, j1... jm (Gj1... jmi2...in − Gj1... jm Gi2...in )

+ (n − 1)Qi1i2, j1... jm G j1... jmi3...in

]}
1...n

, (2.10)
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where we have used4

u · ∂

∂x1
Gi1...in = [u(x1) − (y1 · ∂u)] · ∂

∂x1
Gi1...in (2.11)

and

u(x1) · ∂

∂x1
Gi1...in = u(x1) · ∂

∂x1
〈φi1 (x1) · · · φin (xn)〉

=
∞∑

m=0

1

m!

〈
:Li1, j1... jm (x1)φ j1 (x1) · · · φ jm (x1) : φi2 (x2) · · · φin (xn)

〉

+ n − 1

m!

〈
Qi1i2, j1... jm (x1, x2)φ j1 (x1) · · · φ jm (x1)φi3 (x3) · · · φin (xn)

〉
2...n

=
∞∑

m=0

1

m!

[
Li1, j1... jm

(
Gj1... jmi2...in − Gj1... jm Gi2...in

)+ (n − 1)
(
Qi1i2, j1... jm G j1... jmi3...in

)
2...n

]
. (2.12)

By the first equality in Eq. (2.10) we defined the differen-
tial operator, which can be understood as the derivative with
respect to the midpoint x [see also Eq. (2.33)]. The subscripts
1 . . . n in Eq. (2.10), and 2 . . . n in Eq. (2.11), denote the
“averaging over permutations” defined in Eq. (2.8). The fac-
tors n = n!/(n − 1)! and n(n − 1) = n!/(n − 2)! in Eq. (2.10)
conveniently match the number of the nonidentical terms
among the n! permutations. The identical terms arise due to
the invariance of the correlators in Eq. (2.9) under the permu-
tation P1...n. The function Q(x1, x2) is the integral kernel of the
Onsager operator, i.e., Q(x1, x2) ≡ Qδ(3)(x1 − x2), where the
delta-function support is a line parallel to u(x), i.e., δ(3)(y) = 0
unless u(x) · y = 0. The first term on the right-hand side of
Eq. (2.10) arises because the velocity at midpoint u(x) on the
left-hand side is different from the velocity u(x1) involved in
the equation of motion for φ(x1) by the amount proportional
to y1.

B. Power counting and perturbation theory

Evolution equations (2.10) form an infinite system of equa-
tions for an infinite set of correlation functions. However, in
the regime of applicability of hydrodynamics, there is a natu-
ral hierarchy in this system which allows us to systematically
truncate and solve these equations. In this section we discuss
this hierarchy and the small power counting parameter(s)
which control it (see also Refs. [20,22]).

Hydrodynamics is an effective theory that emerges when
the thermal state of the system is sufficiently homogeneous.
More precisely, hydrodynamic variables (i.e., conserved den-
sities) characterizing the local thermal state of the system must

4Equation (2.11) assumes that the velocity u varies slowly on the
characteristic scale of the correlations we study, as is the case in
hydrodynamics. This property of hydrodynamics underlines the ap-
proach known as “hydrokinetics” [16–20]. Equations (2.10)–(2.12),
for n = 2 and truncated at m = 1, upon Wigner transform reproduce
the equations for Gaussian fluctuation correlators known as “hy-
drokinetic equations.” Our equations are more general and include
non-Gaussian fluctuations and multiplicative noise.

vary on a scale � much longer than the microscopic scale
�mic, which typically is of order of the correlation length ξ .5

Indeed, without such a scale separation one could not describe
the state of the system entirely in terms of thermodynamic
(conserved) quantities and, e.g., the thermodynamic concept
of equation of state would lose meaning. The scale separation
� � �mic is the essential property of the hydrodynamic regime
and it gives rise to a small parameter �mic/� (Knudsen num-
ber) which controls the gradient expansion of hydrodynamic
equations and ensures their locality.

When we consider fluctuations in hydrodynamics the rel-
evant characteristic inhomogeneity scale is the wavelength of
the fluctuations, or the inverse of their wave number q, and the
corresponding small parameter is εq ≡ q�mic.

The small parameter which controls the magnitude and
importance of fluctuations is closely related to εq. This param-
eter is the inverse of the typical number of the uncorrelated
microscopic cells (of volume ξ 3) in the homogeneity region
(of volume �3, or 1/q3): ε ≡ (ξ/�)3 ∼ (qξ )3. The central limit
theorem guarantees that (1) the magnitude of the fluctuations
averaged over the scale of � ∼ 1/q is suppressed by

√
ε and

(2) the non-Gaussian connected correlators of order n > 2 are
suppressed by εn−1.

Both εq and ε are small in the hydrodynamic regime,
when q�mic 	 1, and ε ∼ ε3

q . However, for the sake of
generality, and to emphasize the difference between the gra-
dient expansion corrections and the fluctuation corrections to
hydrodynamics, we shall treat these two parameters as inde-
pendent.6

5The vicinity of the critical point is characterized by the correlation
length ξ becoming much larger than other microscopic scales. In
this interesting case we still require � � ξ , a reasonable condition
for the scales relevant for the heavy-ion collisions. Dynamic critical
behavior in the regime � ∼ ξ , which is beyond the scope of this work,
can be described by a hydrodynamic-like theory such as model-H
[30]. In this regime the power counting we use begins to break down.

6There are field theories where these two parameters are paramet-
rically different, e.g., in in large N theories where ε ∼ 1/N , while
εq ∼ N0.
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The corresponding power counting for various quantities
involved in our calculation is as follows:

Gi1...in ∼ ε[n/2], Gc
i1...in ∼ εn−1,

Li1, i2...in ∼ εq + O(ε2
q

)
, Qi1i2, j1... jm ∼ ε2

qε,

u · ∂ ∼ ε2
q, (2.13)

where [n/2] = n/2 for even n and (n + 1)/2 for odd n, while
Gc denote connected correlation functions defined below in
Eq. (2.17) or (2.20). The factor (

√
ε)n in G is a consequence

of the suppression of the magnitude of fluctuations aver-
aged over hydrodynamic scale by a factor

√
ε. The factor

εn−1 in Gc results from the requirement that n − 1 internal

correlations are needed for a fully connected n-point corre-
lator (with each internal two-point correlator being of order
ε). The factor εq in L reflects the fact that the rate of
ideal hydrodynamic evolution for fluctuations is first order
in spatial derivatives, while the O(ε2

q ) term in L represents
dissipative terms in hydrodynamic equations which are sec-
ond order (as in diffusion). The εq term is absent for purely
diffusive variables. The factor ε2

q in the Onsager operator Q
controls the magnitude of the noise and is determined by
the fluctuation-dissipation theorem, while the factor ε is due
to the locality (short range correlation) of the noise and its
suppression on the hydrodynamic scale by the central limit
theorem.

The first few equations (with n = 2, 3, 4) of Eq. (2.10) are
truncated in the double expansion of ε and εq, i.e.,

u · ∂ (x)Gi1i2 (x1, x2) = 2

[
−(y1 · ∂u) · ∂

∂x1
Gi1i2 (x1, x2) + Li1, j1 (x1)Gj1i2 (x1, x2)

+ 1

2
Li1, j1 j2 (x1)Gj1 j2i2 (x1, x1, x2) + 1

6
Li1, j1 j2 j3 (x1)Gj1 j2 j3i2 (x1, x1, x1, x2)

+ Qi1i2 (x1, x2) + 1

2
Qi1i2, j1 j2 (x1, x2)Gj1 j2 (x1, x1) + O(ε2

qε
3
)]

12

, (2.14a)

u · ∂ (x)Gi1i2i3 (x1, x2, x3) = 3

[
−(y1 · ∂u) · ∂

∂x1
Gi1i2i3 (x1, x2, x3) + Li1, j1 (x1)Gj1i2i3 (x1, x2, x3)

+ 1

2
Li1, j1 j2 (x1)

[
Gj1 j2i2i3 (x1, x1, x2, x3) − Gj1 j2 (x1, x1)Gi2i3 (x2, x3)

]
+ 2Qi1i2, j1 (x1, x2)Gj1i3 (x1, x3) + O(ε2

qε
3
)]

123

, (2.14b)

u · ∂ (x)Gi1i2i3i4 (x1, x2, x3, x4) = 4

[
−(y1 · ∂u) · ∂

∂x1
Gi1i2i3i4 (x1, x2, x3, x4) + Li1, j1 (x1)Gj1i2i3i4 (x1, x2, x3, x4)

+1

2
Li1, j1 j2 (x1)

[
Gj1 j2i2i3i4 (x1, x1, x2, x3, x4) − Gj1 j2 (x1, x1)Gi2i3i4 (x2, x3, x4)]

+ 1

6
Li1, j1 j2 j3 (x1)Gj1 j2 j3i2i3i4 (x1, x1, x1, x2, x3, x4)

+ 3Qi1i2 (x1, x2)Gi3i4 (x3, x4) + 3Qi1i2, j1 (x1, x2)Gj1i3i4 (x1, x3, x4)

+ 3

2
Qi1i2, j1 j2 (x1, x2)Gj1 j2i3i4 (x1, x1, x3, x4) + O(ε2

qε
4
)]

1234

, (2.14c)

and equations for n � 5 can be obtained accordingly. Here we only consider the first-order hydrodynamics. Thus the equa-
tions for all multipoint functions are truncated at order ε2

q .7 While we keep only the leading order terms in ε in Eqs. (2.14b) and
(2.14c), both leading and next-to-leading order terms are kept in Eq. (2.14a), for the purpose of deriving the evolution equation
for the four-point connected function, Eq. (2.16c).

Our purpose is to derive the evolution equations for connected correlation functions, which can be directly related to the
correlations of particles in experiments [31]. To this end we would need to express the correlation functions G in terms of the
connected correlation functions Gc (and vice versa). The equations relevant for our calculation of evolution equations up to
n = 4 are given by

Gi1i2 = Gc
i1i2 , Gi1i2i3 = Gc

i1i2i3 , Gi1i2i3i4 = [
Gc

i1i2i3i4 + 3Gc
i1i2 Gc

i3i4

]
1234, Gi1i2i3i4i5 = [

Gc
i1i2i3i4i5 + 10Gc

i1i2 Gc
i3i4i5

]
12345,

Gi1i2i3i4i5i6 = [
Gc

i1i2i3i4i5i6 + 15Gc
i1i2 Gc

i3i4i5i6 + 10Gc
i1i2i3 Gc

i4i5i6 + 15Gc
i1i2 Gc

i3i4 Gc
i5i6

]
123456. (2.15)

7The first term on the right-hand side of each equation in (2.14), contains the gradient of the background velocity, ∂u, and is thus of order k,
the characteristic background wave number, which we treat as being of the same order as q2 ∼ ε2

q , as in Refs. [19,20].
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FIG. 1. Diagrammatic representation of the evolution equations (2.16) for multipoint connected correlation functions. The dot on the
left-hand side of each diagrammatic equation represents material derivative u · ∂ . The open half-circle with two legs represents Li1, j1 − δi1 j1 (y1 ·
∂u) · (∂/∂x1), i.e., it includes the first term on the right-hand side of each equation in (2.16). It is straightforward to generate the evolution
equation for Gc

n+1 recursively by adding in each diagram representing equation for Gc
n either one new leg to filled vertices or one new G2

correlator to open vertices. This recursive rule can be readily verified using Eq. (2.23); see also Fig. 2. Similar diagrammatic representation
applies to evolution equations (3.17) we derive below.

Using Eqs. (2.14) and (2.15) and keeping the leading order terms in ε, we obtain the evolution equations for the “raw” connected
functions for n = 2, 3, 4:

u · ∂ (x)Gc
i1i2 (x1, x2) = 2

[
−(y1 · ∂u) · ∂

∂x1
Gc

i1i2 (x1, x2) + Li1, j1 (x1)Gc
j1i2 (x1, x2) + Qi1i2 (x1, x2) + O(ε2

qε
2
)]

12

, (2.16a)

u · ∂ (x)Gc
i1i2i3 (x1, x2, x3) = 3

[
−(y1 · ∂u) · ∂

∂x1
Gc

i1i2i3 (x1, x2, x3) + Li1, j1 (x1)Gc
j1i2i3 (x1, x2, x3)

+ Li1, j1 j2 (x1)Gc
j1i2 (x1, x2)Gc

j2i3 (x1, x3) + 2Qi1i2, j1 (x1, x2)Gc
j1i3 (x1, x3) + O(ε2

qε
3
)]

123

, (2.16b)

u · ∂ (x)Gc
i1i2i3i4 (x1, x2, x3, x4) = 4

[
−(y1 · ∂u) · ∂

∂x1
Gc

i1i2i3i4 (x1, x2, x3, x4) + Li1, j1 (x1)Gc
j1i2i3i4 (x1, x2, x3, x4)

+ 3Li1, j1 j2 (x1)Gc
j1i2 (x1, x2)Gc

j2i3i4 (x1, x3, x4) + Li1, j1 j2 j3 (x1)Gc
j1i2 (x1, x2)Gc

j2i3 (x1, x3)Gc
j3i4 (x1, x4)

+ 3Qi1i2, j1 (x1, x2)Gc
j1i3i4 (x1, x3, x4) + 3Qi1i2, j1 j2 (x1, x2)Gc

j1i3 (x1, x3)Gc
j2i4 (x1, x4) + O(ε2

qε
4
)]

1234

.

(2.16c)

The diagrammatic representation of Eqs. (2.16) is shown in
Fig. 1. We find that the leading terms (of order ε2

qε
n−1) are

represented by connected tree diagrams.

C. Arbitrary n

Our derivation can be extended beyond n � 4 to higher-
order n-point functions, which are also of interest from the
experimental point of view [32]. In this subsection we dis-
cuss generalization of Eqs. (2.15) and (2.16) to multipoint
connected functions of arbitrary order n. In this work we do
not need to use such general-n equations, but these equa-
tions could facilitate the extension of our results to higher n
in future research. They also shed more light on the structure
of the n � 4 equations we do use.

To start, we need to express correlators G in terms of con-
nected correlators Gc, similarly to Eq. (2.15). The correlator
Gi1...in is a sum of all possible nonequivalent products of Gc

with indices i1 . . . in divided between the Gc factors in all pos-
sible ways. As in Eq. (2.15) we can group these terms into sets
within each of which the difference between the terms is a per-
mutation of the indices; e.g., Gi1i2 Gi3i4 + Gi1i3 Gi2i4 + Gi1i4 Gi2i3
is such a set. Using the permutation average notation Eq. (2.8)
we can represent each such a set of terms by a single term. The
resulting combinatorial factors will simply count the number
of terms in each such “equivalent by permutation” set. We thus
find the generalization of Eq. (2.15) in the form

Gi1...in =
n∑

k=1

∑
{n1,...,nk}

{n1, . . . , nk}! Gc
i1 . . . in1︸ ︷︷ ︸

n1

Gc
in1+1 . . . in1+n2︸ ︷︷ ︸

n2

· · · Gc
in−nk+1 . . . in︸ ︷︷ ︸

nk

∣∣∣∣
1...n

, (2.17)
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where the inner sum is over all ordered sets of integer num-
bers {n1, . . . , nk} ∈ Nk , such that n1 � n2 � · · · � nk and n1

+ · · · + nk = n. Each set describes a partition of the n indices
i1, . . . , in into k groups,

i1, . . . , in1︸ ︷︷ ︸
n1

∣∣ in1+1, . . . , in1+n2︸ ︷︷ ︸
n2

∣∣ . . . ∣∣ in−nk+1 . . . in︸ ︷︷ ︸
nk

, (2.18)

in a way that each term in the sum in Eq. (2.17) is different.
The factor {n1, . . . , nk}! is the order of the group of per-

mutations of n indices i1, . . . , in which leaves the product of
Gc’s in Eq. (2.17) unchanged due to the symmetry of each Gc

with respect to its own indices as well as the commutativity
of the product of Gc’s themselves. In other words, the factor
counts how many identical terms of a given type appear in the
sum over all n! permutations of n indices:

{n1, . . . , nk}! ≡ n!

n1! · · · nk! k1! · · · kn!
, (2.19)

where km is the count of times a given integer m appears
in the given set {n1, . . . , nk}; e.g., for n = 7 set {2, 2, 3} the
counts are k1 = 0, k2 = 2 and k3 = 1. The denominator in
Eq. (2.19) can be viewed as a symmetry factor corresponding
to a diagram with k vertices (factors of Gc) with n1, . . . , nk

equivalent legs (indices) each. In this picture, km is the number
of equivalent vertices with m legs.

By definition, km = 0 for m > n and
∑

m mkm = n. For a
given k in the outer sum in Eq. (2.17) all terms must obey k1

+ · · · + kn = k. This ensures that all terms in Eq. (2.17) with
the same k are of the same order in ε, i.e., O(εn−k ), according
to Eq. (2.13).

The inverse of Eq. (2.17) gives connected correlator Gc in
terms of correlators G’s:

Gc
i1...in =

n∑
k=1

∑
{n1,...,nk}

(−1)k−1(k − 1)!{n1, . . . , nk}! Gi1 . . . in1︸ ︷︷ ︸
n1

× Gin1+1 . . . in1+n2︸ ︷︷ ︸
n2

· · · Gin−nk+1 . . . in︸ ︷︷ ︸
nk

∣∣∣∣
1...n

. (2.20)

This relation can be obtained by noting that the connected cor-
relator generating function, gc(μ) = ∑∞

n=1
1
n! G

c
nμ

n, and the
correlator generating function, g(μ) = 1 +∑∞

m=1
1

m! Gmμm,
are related by gc(μ) = ln g(μ); i.e.,

∞∑
n=1

1

n!
Gc

nμ
n = ln

(
1 +

∞∑
m=1

1

m!
Gmμm

)

=
∞∑

k=1

(−1)k−1

k

( ∞∑
m=1

1

m!
Gmμm

)k

, (2.21)

where the logarithmic function is expanded in the last equality.
Equating the terms of order μn on both sides, and noting that
the contributions from (

∑
m

1
m! Gmμm)

k
to the terms of order

μn are simply given by∑
{n1,...,nk}

k!

k1! . . . kn!

1

n1! . . . nk!
Gn1 · · · Gnk μ

n, (2.22)

where n1 + · · · + nk = n and k1 + · · · + kn = k, one obtains
Eq. (2.20) immediately. For the sake of notation simplicity, we
suppress the multivariable indices here, for instance, Gmμm ≡
Gi1...imμi1 · · ·μim .

Using Eqs. (2.10), (2.13), (2.17), and (2.20), we arrive
at the generic equation for n-point connected correlation
function. At leading order (∼ε2

qε
n−1) it can be obtained by

induction from Eqs. (2.16) that

u · ∂ (x)Gc
i1...in (x1, . . . , xn)

= n

⎡
⎢⎢⎣−(y1 · ∂u) · ∂

∂x1
Gc

i1...in (x1, . . . , xn)+
n−1∑
k=1

∑
{n1,...,nk}

n1+···+nk=n−1

{n1, . . . , nk}! Li1, j1... jk (x1)Gc
j1 i2 . . .︸︷︷︸

n1

(x1, x2, . . . ) · · · Gc
jk . . . in︸︷︷︸

nk

(x1, . . . , xn)

+ (n − 1)
n−2∑
k=0

∑
{n1,...,nk}

n1+···+nk=n−2

{n1, . . . , nk}! Qi1i2, j1... jk (x1, x2)Gc
j1 i3 . . .︸︷︷︸

n1

(x1, x3, . . . ) · · · Gc
jk . . . in︸︷︷︸

nk

(x1, . . . , xn)

⎤
⎥⎥⎦

1...n

. (2.23)

The diagrammatic representation of Eq. (2.23) is sketched in
Fig. 2.

D. Confluent formalism for multipoint equal-time correlators

An important ingredient for our derivation of the fluctua-
tion evolution equations in relativistic hydrodynamics is the
confluent formalism, which allows us to covariantly describe

fluctuations in the local rest frame of the fluid. We follow the
approach introduced in Ref. [19] for two-point correlators,
but generalize it here to arbitrary n-point correlators. Most
of the notations in this section are similar to the ones intro-
duced in Ref. [19] and are summarized in Appendix D for
convenience.

The four-velocities u of the flow in two space-time points
x and x + 
x can be related by a Lorentz boost � which we
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FIG. 2. Diagrammatic representation of the evolution equa-
tions for generic multipoint connected correlation functions. Simi-
larly to Fig. 1, the first term on the right-hand side of Eq. (2.23) is
included into the diagram with an open semicircle with two legs.
The last two terms are drawn in this figure, with all possible com-
binatorial arrangements at leading order. See Fig. 1 for the meaning
of the diagram elements, and for the explicit representation of these
diagrams when n = 2, 3, 4.

define as8

�(
x)u(x + 
x) = u(x). (2.24)

For infinitesimal 
x, the four-velocities are different by in-
finitesimal amount 
u = (
x · ∂ )u and the boost can be
represented by the following matrix close to unity

�(
x) = 1 + 
�, where 
�ν
μ(
x) = −uμ
uν + uν
uμ.

(2.25)

For n-point function the fluctuations of the n variables are
evaluated at different points (x1, . . . , xn) with different lo-
cal velocities u(xi ). Before comparing or correlating these
local variables it is natural to boost all of them to the same
local rest frame at the midpoint

x ≡
n∑

i=1

xi

n
. (2.26)

If the variables are components of a four-vector (such as
δuμ), then the boost mixes those components using matrix
� given explicitly in Eq. (2.25). If the variables are scalars
(such as δm or δp) the boost is trivial (identity), or 
� = 0.
To treat these two cases simultaneously in our formalism, we
introduce (as in Ref. [19]) an object ui whose components
equal to uμ when i = 0, . . . , 3, and zero for all other values of
i, corresponding to scalar hydrodynamic variables. Then we
can express infinitesimal boost from x + 
x to x, as a matrix


�
j

i (
x) = −
xμω̄
j
μi, (2.27)

where we defined the confluent connection as in Ref. [19],

ω̄
j
μi = ui∂μu j − u j∂μui. (2.28)

Boosting all variables into the local rest frame at the mid-
point using �(xi − x), we can then define the confluent
n-point correlator Ḡ and express it in terms of the “raw”

8Our notation, �(
x), is shorthand for �(x, 
x), i.e., boosts in
Eq. (2.24) depend on two points x and x + 
x. In all equations below
the first argument is always x, and we do not write it explicitly to
avoid unnecessary clutter.

correlators G:

Ḡi1...in (x1, . . . , xn)

≡ �
j1

i1
(x1 − x) · · · � jn

in
(xn − x)Gj1... jn (x1, . . . , xn)

≈ Gi1...in (x1, . . . , xn) − n
[
(x1 − x)μω̄

j1
μi1

× Gj1i2...in (x1, . . . , xn)
]

1...n, (2.29)

where in the second line we have kept only the leading term
in the expansion in powers of xi − x. The idea of the confluent
correlator is illustrated in Fig. 3.

In order to describe the rate of change of a correlation
function such as Ḡn with respect to the midpoint position x,
we want to compare the values of Ḡn at two sets of argu-
ments xi and x′

i . The ordinary derivative would correspond to
x′

i = xi + 
x with the same 
x for all i. A more natural mea-
sure in the context of hydrodynamics, however, would take
into account the change of the four-velocity between the old
midpoint x and the new midpoint x′ = x + 
x. Specifically,
we want to evaluate the function at a new set of arguments
(points x′

i), which are located relative to the new midpoint x′
in exactly the same way (in the sense to be precisely defined
below) as they were around x in the rest frame at midpoint.
This is essential if we want to evaluate the rate of change of
an equal-time correlator.

That rest frame defined by the four-velocity u(x + 
x), in
general, is different from u(x). The relative position of the
points can be described by four-vectors

yi(x) ≡ xi − x. (2.30)

In order to preserve the relative positions in the rest frame at
the midpoint we shall define new relative positions using the
same boost as in Eq. (2.24), i.e., yi(x + 
x) = �(
x)−1yi(x).
This would ensure, in particular, that the time components
of the relative four-vectors yi(x) in the rest frame are pre-
served: yi(x) · u(x) = yi(x + 
x) · u(x + 
x). Which means
that if we define equal-time correlator by yi(x) · u(x) = 0, the
same relation remain true at the new point: yi(x + 
x) · u(x +

x) = 0. In other words, if the points xi are equal-time in the
frame at their midpoint, so are the points x′

i .
Therefore, we define the confluent derivative via the fol-

lowing relation, where 
x is infinitesimal:


x · ∇̄Ḡi1...in ≡ �(
x) j1
i1

. . . �(
x) jn
in

Ḡ j1... jn (x′
1, . . . , x′

n)

− Ḡi1...in (x1, . . . , xn),

where x′
i = x + 
x + �(
x)−1yi(x)

and xi = x + yi(x). (2.31)

Note that the variables which are being correlated are also
boosted accordingly to make sure that only their change with
respect to the local rest frame is measured, and not the change
of the components of these variables due to the change of
the rest frame itself. Taking the limit 
x → 0, we can write
Eq. (2.31) in terms of the partial derivatives of G and the boost
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FIG. 3. An illustration, in space-time, of the process involved in constructing the confluent n-point function Ḡ from the “raw” n-point
function G. All n fluctuation fields are boosted from their respective local rest frames at xi to the same frame at the midpoint x.

connection ω̄:

∇̄μḠi1...in ≡ n

[(
∂

∂xμ
1

− ω̄α
μβyβ

1

∂

∂xα
1

)
Ḡi1...in − ω̄

j1
μi1

Ḡ j1...in

]
1...n

.

(2.32)

At this point it is convenient to introduce the derivative
with respect to the midpoint, x which was already defined in
Eq. (2.10), as well as the derivatives with respect to separation
vectors yi at fixed midpoint x:

∂ (x) ≡
n∑

i=1

∂

∂xi
, ∂ (yi ) ≡ ∂

∂xi
− 1

n

n∑
j=1

∂

∂x j
≡ ∂

∂xi
− 1

n

∂

∂x
.

(2.33)

Note that yi variables are not independent, since
∑n

i=1 yi = 0,
so the derivative ∂ (yi ) has unusual, but simple, properties, e.g.,
∂ (yi )x = 0, ∂ (yi )y j = δi j − 1/n. In terms of such derivatives
Eq. (2.32) reads

∇̄μḠi1...in ≡ ∂ (x)
μ Ḡi1...in − n

[
ω̄α

μβyβ

1 ∂ (y1 )
α Ḡi1...in + ω̄

j1
μi1

Ḡ j1...in

]
1...n

.

(2.34)

Another derivative which will be even more useful when
discussing the Wigner transform is obtained by introducing
the local tetrad consisting of vector u(x) and a triad ea(x),
a = 1, 2, 3, thus expressing vector y in components: y(x) =
ea(x)ya + u(x)yu, where yu = −u(x) · y is the time component
in the local rest frame at point x. In this paper we shall only
consider equal-time correlators, so we work with yu = 0 [cf.
Fig. 5(a)]. We can then define a derivative where ya and yu = 0
are fixed, i.e.,


x · ∂̊Ḡi1...in ≡ Ḡi1...in (x′
1, . . . , x′

n) − Ḡi1...in (x1, . . . , xn), where x′
i = x + 
x + ea(x + 
x)ya

i and xi = x + ea(x)ya
i .

(2.35)

Taking the limit 
x → 0 we find:

∂̊μḠi1...in ≡ n

[{
∂

∂xμ
1

+ ω̊a
μbyb

1
∂

∂xa
1

+ (∂μuλ)yλ
1

(
u · ∂

∂x1

)}
Ḡi1...in

]
1...n

= ∂ (x)
μ Ḡi1...in + n

[
ω̊a

μbyb
1∂

(y1 )
a Ḡi1...in − ω̄ν

μλyλ
1∂

(y1 )
ν Ḡi1...in

]
1...n

, (2.36)

where we introduced

ω̊a
μb ≡ ea

ν∂μeν
b (2.37)

with a, b = 1, 2, 3; the connection associated with the freedom of choice of the local basis triad ea at each point x. Using this
connection we expressed the derivatives of ea appearing in Eq. (2.36) as

∂μeν
a = (

eν
beb

λ − uνuλ

)
∂μeλ

a = eν
bω̊

b
μa + eλ

auν (∂μuλ) = eν
bω̊

b
μa − eλ

aω̄
ν
μλ (2.38)

where we also used Eq. (2.28) and u · yi = 0. We also defined the derivative

∂ (y)
a ≡ eμ

a ∂ (y)
μ , (2.39)
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FIG. 4. The origin of two connections ω̄ and ω̊ in the confluent derivative applying to confluent n-point functions. Panel (a) explains the
origin of boost connection ω̄, brought out by boosting the fluctuation variable φ(x + 
x) from the local rest frame of u(x + 
x) to the local rest
frame of u(x), i.e., �(
x)φ(x + 
x), using the same boost that takes velocity u(x + 
x) to u(x). The action of the boost on φ is determined by
the tensor rank of φ and is illustrated in the figure for the case of a four-vector (e.g., velocity fluctuation). Panel (b) explains the origin of spin
connection due to the confluent motion of equal-time surface and the arbitrariness of the local triad ea choice. Under the boost from the local
rest frame of u(x) to u(x + 
x) every coordinate vector y in the local equal-time three-hyperplane (represented by the blue rectangle), subject
to the constraint u(x) · y = 0, must also be boosted simultaneously by �(
x)−1. This includes the basis ea(x) in that hyperplane (red vectors;
only two dimensions a = 1, 2 are shown). Upon the boost the basis vectors map onto �(
x)−1ea(x) (dashed red vectors) at point x + 
x. The
additional rotation (indicated by the red circular arrow) in the equal-time plane needed to align the boosted basis (dashed red) with the local
basis ea(x + 
x) (solid red) gives rise to the ω̊ connection.

which is essentially the derivative with respect to three-component vector ya, which, similarly to ∂
(yi )
μ defined in Eq. (2.33), is

preserving the constraint
∑n

i=1 yi = 0.
Substituting Eq. (2.36) into Eq. (2.34), we find the relationship between the derivatives we defined:

∇̄μḠi1...in ≡ ∂̊μḠi1...in − n
[
ω̊a

μbyb
1∂

(y1 )
a Ḡi1...in + ω̄

j1
μi1

Ḡ j1...in

]
1...n

. (2.40)

The confluent derivative in Eq. (2.40) incorporating the two connections defined in Eqs. (2.28) and (2.37) is illustrated in
Fig. 4.

Considering now a connected correlation function, Gc(x1, . . . , xn) [see Eq. (2.15)], and using the generalized Wigner
transform introduced in Ref. [22], we define the Wigner function

Wn(x; q1, . . . , qn) =
∫ [

n∏
i=1

d3ya
i e−iqiaya

i

]
δ(3)

(
1

n

n∑
i=1

ya
i

)
Ḡc

n(x + eaya
1, . . . , x + eaya

n ), (2.41)

where qa denote components of three-vector q = {qa} ∈ R3 with a = 1, 2, 3 which is the wave-number conjugate to vector ya.
To avoid clutter in our notation, we replaced the indices i1, . . . , in, which are the same on Wi1...in and Ḡc

i1...in , with a single index
n. The inverse transformation of Eq. (2.41) is given by

Ḡc
n

(
x + eaya

1, . . . , x + eaya
n

) =
∫ [

n∏
i=1

d3qi

(2π )3
eiqiaya

i

]
δ(3)

(
n∑

i=1

qi

2π

)
Wn(x; q1, . . . , qn). (2.42)

Some of the features of this transformation of variables are
illustrated in Fig. 5. In particular we note that, due to the
constraint

∑
i yi = 0 implemented by the delta function in

Eq. (2.41), the Wigner function is invariant with respect to
the shift of all wave numbers qi by the same vector. That
means we can constrain the value of

∑
i qi without losing

any information about the dependence of W on its arguments
(of course, this is related to the fact that Wn has one argu-
ment more than Gn). The natural choice of the constraint is∑

i qi = 0 as in Eq. (2.42). An intuitive way to understand
this is to think of Wn as an n-point “amplitude” and of qi as
the corresponding “momenta” flowing in. Then the constraint
is simply a reflection of “momentum” conservation.

It is easy to see that the derivative of the Wigner function
with respect to x at fixed qi’s,


x · ∂̊Wn(x; q1, . . . , qn)

= Wn(x + 
x; q1, . . . , qn) − Wn(x; q1, . . . , qn), (2.43)

is the Wigner transform of ∂̊Ḡc; i.e., the derivative ∂̊ com-
mutes with the Wigner transform.

It is also easy to see that the derivative defined in
Eqs. (2.39) and (2.33) upon Wigner transform becomes sim-
ply the multiplication by the corresponding iqa:

∂ (yi )
a

W.T.−−−→ iqia. (2.44)
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FIG. 5. An illustration of the vectors relevant to the Wigner transform of equal-time confluent correlators living in coordinate y-space
[shown in panel (a)] to Wigner functions living in wave-number q-space [shown in panel (b)]. The wave numbers drawn in the figure are
four-vectors eμ

a qa ≡ qμ. The nature of the constraint
∑

i qi = 0 is discussed in the text.

We shall define ∇̄W as Wigner transform of ∇̄Ḡc. Using Eq. (2.34) it is then easy to show that

∇̄μWi1...in = ∂̊μWi1...in + n

(
ω̊a

μbq1a
∂

∂q1b
Wi1...in − ω̄

j1
μi1

Wj1i2...in

)
1...n

. (2.45)

Now let us turn to the derivation of the evolution equation of connected Wigner functions. Applying the confluent derivative
in Eq. (2.45) along u(x) to Eq. (2.41), we express the result in terms of the “raw” connected correlation functions Gc as follows:

u · ∇̄Wi1...in (x; q1, . . . , qn)

= u · ∂̊Wi1...in − nuμ

(
ω̄

j1
μi1

Wj1i2...in − ω̊a
μbq1a

∂

∂q1b
Wi1...in

)
1...n

=
∫ [

n∏
i=1

d3yi e−iqiaya
i

]
δ(3)

(
1

n

n∑
i=1

yi

){
u · ∂Gc

i1...in − n
[(

uμω̄ν
μλyλ

1∂
(y1 )
ν δ

j1
i1

+ yμ
1 ω̄

j1
μi1

u · ∂ + uμω̄
j1
μi1

)
Gc

j1i2...in

]
1...n

}
, (2.46)

where we used Eqs. (2.29), (2.34), and (2.36).
We then apply the evolution equations (2.16) [and, gener-

ically, Eq. (2.23)] for Gc
n to convert local rest frame time

derivatives u · ∂ into spatial derivatives and perform the in-
verse Wigner transform using Eq. (2.42). As a result, we
express the confluent local rest frame time derivative of the
Wigner function on the left-hand side of Eq. (2.46) in terms of
the Wigner functions themselves, thus obtaining a set of local
evolution equations.

The explicit form of the evolution equations for Wigner
functions will depend on the explicit form of multilinear op-
erators L and Q in Eqs. (2.16) that need to be substituted into
Eq. (2.46). Below we shall obtain this explicit form for an
important subset of correlators in hydrodynamics.

III. SPECIFIC ENTROPY FLUCTUATIONS
IN RELATIVISTIC HYDRODYNAMICS

A. Stochastic equation for specific entropy fluctuations

With the generic formalism established, we now apply it
to a more specific hydrodynamic framework governed by the
local equations for the conservation of energy, momentum,
and charge:

∂μT̆ μν = 0, (3.1a)

∂μJ̆μ = 0, (3.1b)

supplemented by constitutive relations for the stress tensor
T μν and charge current Jμ in the Landau frame for the
stochastic relativistic hydrodynamics [33],

T̆ μν = ε̆ŭμŭν + p̆
̆μν + �̆μν + S̆μν, (3.2a)

J̆μ = n̆ŭμ + ν̆μ + Ĭμ, (3.2b)

where ε and n are the energy density and charge density
respectively, measured in the local rest frame; u is the four-
velocity already introduced in Eq. (2.1); 
μν = gμν + uμuν

is the transverse projection operator satisfying 
μνuν = 0;
the pressure p, appearing as the coefficient of 
μν in the
ideal part of the stress tensor, is determined by chosen pri-
mary hydrodynamic variables (such as ε and n) through the
equation of state. The explicit forms of the dissipative parts,
denoted by �μν and νμ for stress tensor and charge current
respectively, are determined by applying the second law of
thermodynamics [2]:

�μν ≡ −2ησμν − ζθ
μν, νμ ≡ −λ
μ
ν ∂να, (3.3)

where α ≡ βμ ≡ μ/T is the chemical potential to tempera-
ture ratio, and gradients of velocity are decomposed into the
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traceless and trace parts where

σμν ≡ θμν − 1
3θ
μν, θμν ≡ 1

2
μα
νβ (∂αuβ + ∂βuα ),

θ ≡ θμ
μ = ∂ · u. (3.4)

The transport coefficients, denoted by η, ζ , and λ above,
are shear viscosity, bulk viscosity, and charge conductivity
respectively.

Equations (3.2), accompanied by the constitutive equa-
tions (3.2) become stochastic due to the presence of the
microscopic scale noises Ĭμ and S̆μν . They noises are defined
similarly to Eqs. (2.1) and (2.2):

Ĭμ = H̆ I
μ

a ηI
a, where

〈ηI
a(x1)ηI

b(x2)〉 = 2δabδ
(4)(x1 − x2) and HI μ

a =
√

λeμ
a ,

(3.5)

with a = 1, 2, 3 since there are three independent noises (ran-
dom currents) in the local rest frame, and eμ

a is an arbitrary
spatial basis triad in the local rest frame: ea · u = 0 (as already
defined and discussed in Ref. [19] and in the previous section).
As a result (HI μ

a )HI ν

a = λ
μν (note that the choice of the
triad ea does not matter, since eμ

a eν
a = 
μν). We define S̆μν

accordingly. Since there are six independent noise variables
(corresponding to random stress tensor in local rest frame),
the components of S̆μν are expressed in terms of a symmetric
rank-three random matrix ηS

ab, i.e.,

S̆μν = H̆S
μν

ab ηS
ab,

where
〈
ηS

ab(x1)ηS
cd (x2)

〉 = (δacδbd + δadδbc)δ(4)(x1 − x2) and

HSμν

ab =
√

T η

2

(
eμ

a eν
b + eμ

b eν
a − 2

3

μνδab

)

+
√

T ζ

3

μνδab. (3.6)

Similarly to Eqs. (3.5) and (3.6), isotropy requires that the
random current and stress noises are statistically independent:〈

ηI
a(x1)ηS

bc(x2)
〉 = 0. (3.7)

We now turn our focus to the fluctuations of specific en-
tropy (i.e., ratio of entropy density s to charge density n),
m ≡ s/n, which is parametrically the slowest and also the
most significant hydrodynamic mode near a liquid-gas critical
point, as we already discussed in Sec. I, Such a focus also
underlies the Hydro+ approach in Ref. [29].

Specifically, we are going to derive deterministic equa-
tions of motion for the correlators of m. To achieve this, we
first obtain the stochastic equation for the evolution of m̆
starting from the conservation equation (3.1). We find

ŭ · ∂m̆ = m̆n∂
μλ̆
̆μν∂

νᾰ + 2m̆ε η̆σ̆ μνσ̆μν + m̆ε ζ̆ θ̆2 + ξm,

(3.8)

where

mn ≡
(

∂m

∂n

)
ε

= −βw

n2
, mε ≡

(
∂m

∂ε

)
n

= β

n
(3.9)

are expressed in terms of independent thermodynamic deriva-
tives chosen in the set I given by Table I in Appendix A, and

ξm = −m̆n∂μ Ĭμ + m̆ε ŭν∂μS̆μν. (3.10)

Equaiton (3.8) has a form similar to Eq. (2.1) with ψ =
m. Therefore the formalism of the previous section can be
applied. To obtain the equation corresponding to Eq. (2.6),
we expand Eq. (3.8) in the fluctuation field, δm, as well as
in derivatives applying to fluctuation fields, such as ∂δm =
O(q), up to O(q2).9 It is sufficient to truncate the expansion
at order δm3 to obtain equations for the four-point connected
functions.10

While we are interested in correlators of δm, the evolution
of δm also depends on fluctuations of other hydrodynamic
variables, in particular on fluctuations of pressure, δp.11 As
a result, the evolution of the correlators of δm will depend
on correlators of δp as well.12 As we shall see below, to the
leading order in hydrodynamic (gradient) expansion and in the
regime we consider, we only need to include terms linear in
δp. Correspondingly, if we only write the terms which will
contribute to the correlator evolution equations in the regime
we consider [e.g., Eqs. (3.15) or (3.17)], we find

u · ∂δm =: u · ∂m̆ : ≡ u · ∂m̆ − 〈u · ∂m̆〉
=: Lm,mδm + Lm,pδp + 1

2 Lm,mmδmδm + Lm,mpδmδp

+ 1
6 Lm,mmmδmδmδm + 1

2 Lm,mmpδmδmδp + ξm :
(3.11)

9We keep in mind that fluctuations, such as δm, are characterized by
wave number q which is parametrically larger than the wave number
k characterizing the background of mean quantities, such as m. Thus
∂δm ∼ q ∼ εq, while ∂m ∼ k ∼ ε2

q . In the following equation the
viscous terms contribute at order higher than ε2

q if we focus on the
correlators of m only.

10To obtain the evolution equation for an n-point connected func-
tion at leading order, one needs to expand in fluctuation fields,
Eq. (2.6), up to order φn−1, according to Eq. (2.10).

11We choose m and p as the independent variables in order to profit
from the fact that the fluctuations of m and p are uncorrelated in equi-
librium. In addition, m and p represent the basis of normal modes in
the ideal hydrodynamics. This significantly simplifies the correlator
evolution equations, as we have already observed in Ref. [20]. The
simplification is even more significant for non-Gaussian fluctuations.

12In the regime we consider, transverse velocity correlators, which
ordinarily would mix with the correlators of specific entropy (as
in the equation for two-point correlator derived in Ref. [20]), can
be considered relaxed (on a parametrically faster timescale) to their
equilibrium values. These values are zero by isotropy and, therefore,
we need not consider velocity fluctuations in this regime. Correlators
involving pressure also relax faster, but their equilibrium values are
not zero, as we shall discuss in more detail below.
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The multilinear operators Lm,m...m serving as expansion coefficients are more explicitly written as13

Lm,mδm ≡ Lm,m[δm] = mn∂
μλ
μν∂

ναmδm + mn∂
μλmδm
μν∂

να + (mn),mδm∂μλ
μν∂
να

= mnλαm
μν∂
μ∂νδm + O(kq), (3.12a)

Lm,pδp ≡ Lm,p[δp] = mn∂
μλ
μν∂

ναpδp + mn∂
μλpδp
μν∂

να + (mn),pδp∂μλ
μν∂
να

= mnλαp
μν∂
μ∂νδp + O(kq), (3.12b)

Lm,mmδmδm ≡ Lm,mm[δm, δm]

= mnλαmm
μν∂
μ∂νδm2 + 2mnλmαm
μν∂

μδm∂νδm + 2(mn),mλαm
μνδm∂μ∂νδm + O(kq), (3.12c)

Lm,mpδmδp ≡ Lm,mp[δm, δp]

= mnλαmp
μν∂
μ∂νδmδp + mnλmαp
μν∂

μδm∂νδp + mnλpαm
μν∂
μδp∂νδm

+ (mn),mλαp
μνδm∂μ∂νδp + (mn),pλαm
μνδp∂μ∂νδm + O(kq), (3.12d)

Lm,mmmδmδmδm ≡ Lm,mmm[δm, δm, δm]

= mn∂
μλαmmm
μν∂

νδm3 + 3mnλmαmm
μν∂
μδm∂νδm2

+ 3(mn),mλαmm
μνδm∂μ∂νδm2 + 3mnλmmαm
μν∂
μδm2∂νδm + 6(mn),mλmαm
μνδm∂μδm∂νδm

+ 3(mn),mmλαm
μνδm2∂μ∂νδm + O(kq), (3.12e)

where

αm...m︸︷︷︸
k

p...p︸︷︷︸
�

≡
(

∂�

∂ p�

(
∂ (k)α

∂mk

)
p

)
m

, λm...m︸︷︷︸
k

p...p︸︷︷︸
�

≡
(

∂ (�)

∂ p�

(
∂ (k)λ

∂mk

)
p

)
m

. (3.13)

In Eqs. (3.12) derivative ∂ applies to all factors to the right of it, and, since we only consider fluctuations of m, i.e., i, j1, . . . , jn =
m and u,m...m = 0 in Eq. (2.7), we have Lm,m...m = Fm,m...m.

The noise introduced in Eq. (3.10) satisfies

Qmm(x1, x2) = 1
2 〈ξm(x1)ξm(x2)〉 = 1

2 〈(−m̆n∂μ Ĭμ + m̆ε ŭκ∂λS̆λκ )(x1)(−m̆n∂ν Ĭν + m̆ε ŭβ∂α S̆αβ )(x2)〉
≈ 1

2 〈(m̆n∂μĬμ)(x1)(m̆n∂ν Ĭν )(x2)〉 = mn(x1)mn(x2)∂ (x1 )
μ ∂ (x2 )

ν λ(x1)
μν (x1)δ(3)(x1 − x2), (3.14)

where in the absence of velocity fluctuation δu, terms involving stress noises Sμν are of a higher order in the gradient expansion,
i.e., they are at least of order kq ∼ ε3

q whereas we truncated Eq. (3.14) at order q2 ∼ k ∼ ε2
q .

B. Evolution of non-Gaussian correlation functions

The evolution equations for Gc
m...m can be readily obtained by setting external indices i’s = m and internal indices j’s = (m, p)

in Eq. (2.16):

u · ∂Gc
mm(x1, x2) = 2

[
−(y1 · ∂u) · ∂

∂x1
Gc

mm(x1, x2) + Lm,m(x1)Gc
mm(x1, x2) + Qmm(x1, x2)

]
12

, (3.15a)

u · ∂Gc
mmm(x1, x2, x3) = 3

[
−(y1 · ∂u) · ∂

∂x1
Gc

mmm(x1, x2, x3) + Lm,m(x1)Gc
mmm(x1, x2, x3)

+ Lm,p(x1)Gc
pmm(x1, x2, x3) + Lm,mm(x1)Gc

mm(x1, x2)Gc
mm(x1, x3)

+ 2Qmm,m(x1, x2)Gc
mm(x1, x3)

]
123

, (3.15b)

u · ∂Gc
mmmm(x1, x2, x3, x4) = 4

[
−(y1 · ∂u) · ∂

∂x1
Gc

mmmm(x1, x2, x3, x4) + Lm,m(x1)Gc
mmmm(x1, x2, x3, x4)

+ Lm,p(x1)Gc
pmmm(x1, x2, x3, x4) + 3Lm,mm(x1)Gc

mm(x1, x2)Gc
mmm(x1, x3, x4)

13Note that the last two terms on the first line in Eq. (3.12) are of order kq and k2, respectively, and are neglected on the second line, since
they are parametrically smaller than the leading terms of order q2 being kept.
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+ 3Lm,mp(x1)Gc
mm(x1, x2)Gc

pmm(x1, x3, x4) + Lm,mmm(x1)Gc
mm(x1, x2)Gc

mm(x1, x3)Gc
mm(x1, x4)

+ 3Qmm,p(x1, x2)Gc
pmm(x1, x3, x4) + 3Qmm,m(x1, x2)Gc

mmm(x1, x3, x4)

+ 3Qmm,mm(x1, x2)Gc
mm(x1, x3)Gc

mm(x1, x4)

]
1234

, (3.15c)

where Lm,m...m’s and Qmm are given by Eqs. (3.12) and (3.14) respectively. In deriving Eqs. (3.15), we have used Gc
mp = 0

following Ref. [20].
Moreover, for ψi being scalars, Eq. (2.46) is simplified to

u · ∇̄Wi1...in (q1, . . . , qn) =
∫ [

n∏
i=1

d3yi e−iqiaya
i

]
δ3

(
1

n

n∑
i=1

yi

){
u · ∂Gc

i1...i1 + n
[
(u · ∂u) · y1u · ∂ (y1 )Gc

i1...in

]
1...n

}
, (3.16)

where we suppressed the argument x of W . Equation (3.16) applies to our situation when ψi = (m, p). Following the procedure
discussed at the end of Sec. II, we substitute Eqs. (3.15) into Eq. (3.16) and perform the inverse Wigner transform using
Eq. (2.42). We then arrive at

L[Wmm(q1, q2)] = θWmm(q1, q2) + 2[Lm,m(q1,−q1)Wmm(q1, q2) + Qmm(q1, q2)]12, (3.17a)

L[Wmmm(q1, q2, q3)] = 2θWmmm(q1, q2, q3) + 3[Lm,m(q1,−q1)Wmmm(q1, q2, q3) + Lm,p(q1,−q1)Wpmm(q1, q2, q3)

+ Lm,mm(q1, q2, q3)Wmm(−q2, q2)Wmm(−q3, q3) + 2Qmm,m(q1, q2, q3)Wmm(−q3, q3)]123, (3.17b)

L[Wmmmm(q1, q2, q3, q4)] = 3θWmmmm(q1, q2, q3, q4) + 4[Lm,m(q1,−q1)Wmmmm(q1, q2, q3, q4)

+ Lm,p(q1,−q1)Wpmmm(q1, q2, q3, q4) + 3Lm,mm(q1, q2, q3 + q4)Wmm(−q2, q2)

×Wmmm(−q3 − q4, q3, q4) + 3Lm,mp(q1, q2, q3 + q4)Wmm(−q2, q2)Wpmm(−q3 − q4, q3, q4)

+ Lm,mmm(q1, q2, q3, q4)Wmm(−q2, q2)Wmm(−q3, q3)Wmm(−q4, q4)

+ 3Qmm,m(q1, q2, q3 + q4)Wmmm(−q3−q4, q3, q4)+3Qmm,p(q1, q2, q3+q4)Wpmm(−q3−q4, q3, q4)

+ 3Qmm,mm(q1, q2, q3, q4)Wmm(−q3, q3)Wmm(−q4, q4)]1234, (3.17c)

where

L[W ] ≡
(

u · ∇̄ − (∂νuμ)eμ
a eν

bqa
i

∂

∂qib

)
W (3.18)

is the Liouville-like operator for the scalar Wigner function [19,20], and

Lm,m(q1, q2) = γmmq1 · q2, Lm,p(q1, q2) = γmpq1 · q2,

Lm,mm(q1, q2, q3) = −(γmm),mq2
1 + 2(ln mn),mγmmq2 · q3,

Lm,mp(q1, q2, q3) = (γmm),pq1 · q2 + (γmp),mq1 · q3 + [(ln mn),mγmp + (ln mn),pγmm]q2 · q3,

Lm,mmm(q1, q2, q3, q4) = −(γmm),mmq2
1 + 2((ln mn),mγmm),m(q2 · q3 + q3 · q4 + q4 · q2),

Qmm(q1, q2) = −m2
nλq1 · q2, Qmm,m(q1, q2, q3) = −(m2

nλ
)
,m

q1 · q2 + (ln mn),mm2
nλ(q1 + q2)2,

Qmm,p(q1, q2, q3) = −(m2
nλ
)
,pq1 · q2 + (ln mn),pm2

nλ(q1 + q2)2,

Qmp,m(q1, q2, q3) = −(mn pnλ),mq1 · q2 − (ln pn),mmn pnλq1 · q3 − (ln mn),mmn pnλq2 · q3,

Qmm,mm(q1, q2, q3, q4) = −(m2
nλ
)
,mmq1 · q2 + (

(ln mn),mm2
nλ

)
,m

(q1 + q2)2 − 2((ln mn),m)2m2
nλq3 · q4, (3.19)

where the coefficients in front of qi · q j are thermodynamic derivatives of transport coefficients and thermodynamic quantities.
In terms of the independent thermodynamic derivatives chosen from set I in Table I, they are given by

γmm = mnλαm, γmp = mnλαp, (γmm),m =
(

λm

λ
+ αmm

αm
+ αp

βmn
− 2 + αm

nmn

)
γmm,

(γmm),p =
(

λp

λ
+ αmp

αm
− αp

nmn
− εp

w

)
γmm, (γmp),m =

(
λm

λ
+ αmp

αm
+ αp

βmn
− 2 + αm

nmn

)
γmp,

(γmm),mm =
[

λmm

λ
+ 2

(
αmm

αm
+ αp

βmn
− 2 + αm

nmn

)
λm

λ
+ αmmm

αm
+
(

2αp

βmn
− 4 + 3αm

nmn

)
αmm

αm
+ αmp

βmn
− 2αp

βnm2
n

+ 2 + αm

n2m2
n

]
γmm,

(ln mn),m = αp

βmn
− 2 + αm

nmn
, (ln mn),p = − αp

nmn
− εp

w
,
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FIG. 6. Diagrammatic representation of the evolution equations (3.17). Similarly to Fig. 1, the solid circles with k legs represent k-point
Wigner functions Wk , while the open half-circles represent Lm,... [the open half-circles with two solid legs in the equation for Wk represent
∼kLm,m + (k − 1)θ ], and open triangles represent Qmm,.... The dot on the left-hand side of the diagrammatic equation represents the Liouville
operator in Eq. (3.18). A dashed line leg corresponds to index p replacing index m in each of the above objects. In the regime we consider,
the Wigner functions involving pressure fluctuations (p index, or dashed line leg) can be replaced by their partial equilibrium values given in
Eq. (3.22) and represented diagrammatically in Fig. 7. Note that the diagrams with two-point correlator Wmp are not shown, since this correlator
vanishes in the regime we consider.

(ln mn),mm = αmp

βmn
− αmm

nmn
+ αp

βnm2
n

(
2 + 2αm − nαp

β

)
− (1 + αm)(2 + αm)

n2m2
n

,

(
m2

nλ
)
,m

=
(

λm

λ
+ 2αp

βmn
− 4 + 2αm

nmn

)
m2

nλ, (m2
nλ),p =

(
λp

λ
− 2αp

nmn
− 2εp

w

)
m2

nλ,

(
mn pnλ

)
,m =

[
λm

λ
+ αmp

αp
+ αp

βmnεp

(
wαpp

αp
− 2nαp

β
+ 2εp + 2

)
− 2

nmn

]
mnwαp

βεp
λ,

pn = wαp

βεp
, (ln pn),m = αmp

αp
+ αp

βmnεp

(
wαpp

αp
− 2nαp

β
+ εp + 2

)
+ αm

nmn
,

(
m2

nλ
)
,mm

=
[

λmm

λ
+ 4

(
αp

βmn
− 2 + αm

nmn

)
λm

λ
− 2αmm

nmn
+ 2αmp

βmn
− 2αp

βnm2
n

(
6 + 2αm − nαp

β

)
+ 2(2 + αm)(3 + αm)

n2m2
n

]
m2

nλ.

(3.20)

The corresponding expressions written in terms of indepen-
dent thermodynamic derivatives from set II given by Table I
are given in Eq. (C1). It is worthwhile to mention the follow-
ing relations:

m2
nλ = κ

n2
, αm = −βw

cp
, γmm = κ

cp
, (3.21)

where κ is the thermal conductivity and cp ≡ T n(∂m/∂T )p is
the fixed pressure heat capacity per unit volume. Eqs. (3.17)
are represented diagrammatically in Fig. 6.

Note that the arguments qi in each function (W , L, and
Q) in Eq. (3.17) sum up to zero, according to the constraint∑

i qi = 0 discussed in Sec. II D and illustrated in Fig. 5.
Diagrammatically, this can be understood as the conservation
of “momenta” qi in each element of the diagram.

In order to close Eqs. (3.17) we need to supply the values
of Wmmp and Wmmmp, i.e., cross-correlators involving fluctu-
ations of pressure. We have not written terms in which the

linear (Gaussian) correlator Wmp appears, because this cor-
relator vanishes upon averaging over the timescales longer
than the period of sound oscillation, as already observed in
Ref. [20]. The vanishing of the linear correlator Wmp signifi-
cantly simplifies equations (3.17). However, we cannot drop
the nonlinear correlators Wmmp and Wmmmp, since they do not
average to zero. This can be easily seen by computing [cf.
Eqs. (3.23) and (A8)] the equilibrium values of Wmmp and
Wmmmp, which are not zero, unlike the equilibrium value of
Wmp.

Outside of the regime we consider (i.e., at faster
timescales) these nonlinear cross-correlators obey dynamic
equations which will be a part of the full system of equa-
tions for fluctuation correlators. In this paper we do not intend
to derive this full system. Instead, we use the fact that different
correlators relax on parametrically different timescales, with
correlators of the specific entropy fluctuations being the slow-
est. We use this hierarchy of scales and observe that pressure
fluctuations (upon averaging over the sound oscillations) relax
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FIG. 7. Diagrammatic representation for the partial equilibrium values of the correlators involving pressure fluctuation, as given by
Eqs. (3.22). An open circle with k legs represents the derivative of entropy with respect to k variables, e.g., S,mmp for k = 3, with solid
and dashed lines representing derivatives with respect to m and p, respectively. The solid gray circle with two dashed line legs represents
−S−1

,pp = W eq
pp , the equilibrium value of Wpp.

parametrically faster (i.e., on the timescale of sound attenua-
tion) than the timescale of the evolution of the specific entropy
fluctuations on which we focus. This parametric separation of
scales enables the regime we consider, i.e., Hydro+ regime
with only one parametrically slow nonhydrodynamic mode.
Effectively, we can consider the fluctuations δm frozen when
we determine the fluctuations of δp.

This means that, while in complete equilibrium, by defini-
tion, δp = δm = 0, we can also consider partial equilibrium

where δm is not zero, i.e., not in equilibrium, and determine
the “equilibrium” value of δp under these (slowly varying)
conditions. Since fluctuations δp relax faster than fluctuations
δm, the value of δp becomes a function of δm, and not an
independent variable, in the regime we consider. That function
is the partial equilibrium value (δp)peq, which we derive in
Appendix B. Consequently, the correlators Wmmp and Wmmmp

can be expressed in terms of the specific entropy correlators
as follows:

W peq
pmm(q1, q2, q3) = −S,mmpS−1

,ppWmm(−q2, q2)Wmm(−q3, q3),

W peq
pmmm(q1, q2, q3, q4) = −3S,mmpS−1

,ppWmm(q2,−q2)Wmmm(−q3 − q4, q3, q4) − (
S,mmmpS−1

,pp − 3S,mmpS,mppS−2
,pp

)
× Wmm(−q2, q2)Wmm(−q3, q3)Wmm(−q4, q4). (3.22)

where S,... are derivatives, given by Eqs. (A4), of the entropy functional S that is maximized in equilibrium, as discussed in
Appendix A. These equations are represented diagrammatically in Fig. 7. Substituting partial equilibrium values for the cross-
correlators Wpmm and Wpmmm from Eq. (3.22) into Eqs. (3.17), we now obtain a closed system of equations for correlators of the
specific entropy.14

In order to check the validity of Eqs. (3.17)–(3.20) together with (3.22) we verified that they are solved by the following
space-time and wave-number independent values:

W eq
mm = mn

αm
, W eq

mp = 0, W eq
pp = w

βεp
,W eq

mmm = −
(

mn

αm

)2(
αmm

αm
+ 4 + 2αm

nmn
− 3αp

βmn

)
, W eq

mmp = − mn

βαm
,

W eq
mmmm =

(
mn

αm

)3[
−αmmm

αm
+ 3

(
αmm

αm

)2

+ 2αmm

nmnαm

(
9 + 3αm − 7nαp

β

)
+ 6αmp

βmn
+ 3αmεp

βwmn

+ 3(2 + αm)(5 + 2αm)

n2m2
n

− αp

βnm2
n

(
44 + 16αm − 15

nαp

β

)]
,

W eq
mmmp = 2

β

(
mn

αm

)2(
αmm

αm
+ 4 + 2αm

nmn
− 3αp

βmn

)
, (3.23)

which, of course, can be obtained from an independent calculation based on thermodynamics (see Appendix A). This is a highly
nontrivial check of the evolution equations, since it involves cancellations of many terms, including the contribution of the
pressure fluctuations discussed above.

Eqations (3.23) are expressed in terms of independent thermodynamic derivatives from set I in Table I. This is useful for
verifying that equilibrium correlators in Eqs. (3.23) satisfy evolution equations. An alternative representation of Eqs. (3.23)
using the independent thermodynamic derivatives from set II is given by Eqs. (C2).

14Interestingly, this substitution generates terms with Wm...m correlators similar to the ones already present in Eqs. (3.17). One could say that
the effect of the pressure fluctuations is to redefine, or renormalize, the coefficients Lm,m...m and Qmm,m...m.
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The terms involving θ reflect trivial expansion effect on the Wigner function described by the equation u · ∂Wk = (k − 1)θWk .
This effect was already discussed in Ref. [20] for k = 2, where it was absorbed by rescaling Wk by a factor of the density n which
also obeys a similar equation due to expansion: u · ∂n = −nθ . Generalizing this approach to arbitrary k we can eliminate the
terms with θ and simplify the expressions by writing the evolution equations in terms of rescaled Wigner functions N :

Nm...m︸︷︷︸
k

= nk−1Wm...m︸︷︷︸
k

, Npm...m︸︷︷︸
k

= nk−1Wpm...m︸︷︷︸
k

. (3.24)

In terms of N , Eqs. (3.17) retain exactly the same form, but without θ terms (and with extra factor of n for each Qmm,m..., which
is understandable recalling that Qmm is a two-point Wigner function), i.e.,

L[Nmm(q1, q2)] = 2[Lm,m(q1,−q1)Nmm(q1, q2) + nQmm(q1, q2)]12, (3.25a)

L[Nmmm(q1, q2, q3)] = 3[Lm,m(q1,−q1)Nmmm(q1, q2, q3) + Lm,p(q1,−q1)Npmm(q1, q2, q3)

+ Lm,mm(q1, q2, q3)Nmm(−q2, q2)Nmm(−q3, q3) + 2nQmm,m(q1, q2, q3)Nmm(−q3, q3)]123,

(3.25b)

L[Nmmmm(q1, q2, q3, q4)] = 4[Lm,m(q1,−q1)Nmmmm(q1, q2, q3, q4) + Lm,p(q1,−q1)Npmmm(q1, q2, q3, q4)

+ 3Lm,mm(q1, q2, q3 + q4)Nmm(−q2, q2)Nmmm(−q3 − q4, q3, q4)

+ 3Lm,mp(q1, q2, q3 + q4)Nmm(−q2, q2)Npmm(−q3 − q4, q3, q4)

+ Lm,mmm(q1, q2, q3, q4)Nmm(−q2, q2)Nmm(−q3, q3)Nmm(−q4, q4)

+ 3nQmm,m(q1, q2, q3 + q4)Nmmm(−q3 − q4, q3, q4)

+ 3nQmm,p(q1, q2, q3 + q4)Npmm(−q3 − q4, q3, q4)

+ 3nQmm,mm(q1, q2, q3, q4)Nmm(−q3, q3)Nmm(−q4, q4)]1234. (3.25c)

The equilibrium solutions for Eqs. (3.25) can be obtained
accordingly, using Eqs. (3.23) [or Eqs. (C2)] and (3.24).

It is instructive to compare Eqs. (3.17) or (3.25) for fluctu-
ations of m to similar evolution equations for the fluctuations
of n at fixed T in the charge diffusion problem derived in
Ref. [22]. The following map between the two problems was
conjectured in Ref. [22] (this substitution correctly reproduces
the equation for the two-point correlator in Eq. (3.17a), al-
ready known from Ref. [20]):

n → m, γ → κ

cp
, α′ → n2

cp
. (3.26)

While the substitution (3.26) reproduces the terms in
Eqs. (3.17) or (3.25), the expressions for the coefficients
in these equations given by Eqs. (3.19) contain terms with
derivatives of ln mn which are not reproduced by the simple
map (3.26). These terms reflect the fact that the q = 0 mode
of n, i.e.,

∫
d3x n, is a constant of motion, while

∫
d3x m is not

[see Eq. (3.8)], unless m happens to be a linear function of n,
of course, in which case the derivatives of ln mn vanish. Also,
the contributions of the pressure fluctuations (the terms with
Wpm...m) are not captured by the replacement in Eq. (3.26).15

IV. CONCLUSIONS AND OUTLOOK

We have generalized the fully Lorentz covariant deter-
ministic approach to relativistic fluctuating hydrodynamics

15One could note, however, that the leading critical (ξ → ∞) be-
havior of the coefficients in Eqs. (3.19) is reproduced correctly by
the substitution (3.26).

to non-Gaussian fluctuations. While the full system of equa-
tions involving correlators of all hydrodynamic variables
is still a work in progress, here we demonstrate how this
approach allows us to derive the relativistically covariant
equations for the fluctuations of the slowest hydrodynamic
mode, which is specific entropy, or m = s/n, in a fluid with
arbitrary relativistic flow. Such fluctuations are of special sig-
nificance near a critical point, in particular, the QCD critical
point, for two reasons. First, the equilibrium fluctuations of
m are the largest near the critical point: 〈δm2〉 ∼ cp ∼ ξ 2−η.
In that sense, this is the “soft” direction and the source of the
most prominent critical point signatures. Second, this mode is
also the slowest (not only it is diffusive, but its diffusion coef-
ficient γλ = κ/cp vanishes at the critical point as cp diverges)
and, thus, it is the furthest from equilibrium. Therefore, the
nonequilibrium dynamics of this mode of fluctuations are
the most consequential from the point of view of predicting
the dynamical effects on the signatures of the QCD critical
point.

Similar evolution equations for non-Gaussian correlators in
a static (nonflowing) fluid at given temperature were derived
in Ref. [22]. In this paper we consider diffusion of the slowest
diffusive mode in a flowing fluid, more relevant for the de-
scription of the dynamics of critical fluctuations in heavy-ion
collisions.

Comparing evolution equations (3.17) to the results of
Ref. [22], we observe many similarities, which were already
anticipated in Ref. [22]. In fact, Eqs. (3.17) can be obtained
from those in Ref. [22] by a substitution, Eq. (3.26), as conjec-
tured in Ref. [22]. However, the terms containing derivatives
of ln mn appearing in the coefficients given by Eqs. (3.19)
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cannot be obtained that way. Their appearance is related to the
qualitative difference between the density n, whose space inte-
gral is a conserved quantity, and the specific entropy m, whose
space integral (i.e., q = 0 mode) is generally not conserved.
We have also found nontrivial contributions of pressure fluc-
tuations to the evolution of the specific entropy correlators due
to nonlinearities of the equation of state (i.e., mode coupling).

As a very nontrivial check of the evolution equations (3.17)
and (3.19), we verified that the equilibrium (thermodynamic)
correlators in Eq. (3.23) solve the evolution equations. This
requires multiple cancellations which cannot be achieved
without the terms with derivatives of ln mn as well as the
contributions of pressure fluctuations.

As we pointed out in the Introduction, our equations in-
clude only tree-level contributions (as did the equations de-
rived in Ref. [22]). It could potentially be interesting to extend
this analysis to one-loop order and consider “long-time tail”
effects on the evolution of fluctuations. The resulting theory
would represent the generalization of Hydro+ [29] to non-
Gaussian fluctuations.

Although we limited our analysis to the slowest diffusive
mode, we presented our derivation in a sufficiently general
form to facilitate the extension to fluctuations of faster hy-
drodynamic modes. The next-to-slowest modes correspond to
fluctuations of the transverse velocity of the fluid. The theory
describing fluctuations of all diffusive hydrodynamic modes
(specific entropy and transverse velocity) was referred to as
Hydro++ in Ref. [20]. Finally, the full set of hydrodynamic
modes includes pressure/longitudinal velocity fluctuations,
i.e., they include sound—the fastest hydrodynamic mode. We
leave the development of such a full hydrodynamic theory of
fluctuations to further work.

Despite the focus on the slowest hydrodynamic mode, we
believe the equations presented in this paper are valuable
for more realistic simulations of the dynamical evolution of
fluctuations in heavy-ion collisions (as a first step one can
consider extending exploratory Hydro+ calculations, such as
in Refs. [34–36], to non-Gaussian fluctuations). The ingre-
dients required are the same as in the usual hydrodynamic
simulation: equation of state, e.g., as in Refs. [37–39], and
kinetic coefficients.
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APPENDIX A: NON-GAUSSIAN CORRELATORS
IN THERMODYNAMICS

In the local rest frame, the total entropy subject to the
conservation of charge and energy are given by

S(m, p) =
∫

x
s(m, p) + ᾱn(m, p) − β̄ε(m, p), (A1)

where we choose our two independent thermodynamic vari-
ables as the specific entropy density m and pressure p
associated with conserved quantities n and ε, i.e., m =
m(n, ε), p = p(n, ε) and the variable associated with momen-
tum (e.g., velocity u) is absent due to the fact that we choose
the local rest frame. ᾱ and β̄ are the local chemical potential
per temperature and inverse of temperature of the heat bath
respectively.

For a system with two independent thermodynamic vari-
ables (such as m and p), there are n + 1 independent nth-order
thermodynamic derivatives of entropy. It is convenient for
calculations to choose a basis set of independent deriva-
tives for each order to make sure that cancellations are
easier to carry out. Table I provides two such basis sets
(set I and II) for derivatives up to fourth order. In set I
and II we have primarily chosen the derivatives of α and
ln mn, respectively. Of course, one can relate the indepen-
dent thermodynamic derivatives from set I to those from
set II. Taking the second-order derivative as an example, we
have

εp = 2 + αm + nmn(ln mn),m − w(ln mn),p,
(A2)

αp = βmn(ln mn),m + β

n
(2 + αm),

while αm and mn/αm are simply functions of each other
and the first-order derivative mn = −βw/n2, so we can also
treat αm instead of mn/αm as an independent thermodynamic
derivative in set II.

As a consequence, all thermodynamic derivatives can be
expressed solely in terms of the independent ones such as
those listed in Table I. In terms of the independent derivatives
from set I given by Table I, useful expressions for some
second-, third-, and fourth-order thermodynamic derivatives
are presented below:

nm = 1

mn

(
1 − nαp

β

)
, np = nεp

w
, εm = −wαp

βmn
, βm = nαm

w
, βp = − β

w

(
1 − nαp

β

)
,

nmm = 1

mn

[
−nαmp

β
+ 2nα2

p

β2mn
+ 2 + αm

nmn

(
1 − 2nαp

β

)]
, npp = − n

w2
(wεpp − εp),
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TABLE I. Two sets of independent thermodynamic derivatives chosen in this work. The derivative of quantity X with respect to m (or p)
while keeping p (or m) fixed is denoted by Xm (or Xp).

Order Independent derivatives (set I) Independent derivatives (set II)

2nd εp, αm, αp
mn
αm

, (ln mn),m, (ln mn),p

3rd εpp, αmm, αmp, αpp

(
ln mn

αm

)
,m

, (ln mn),mm, (ln mn),mp, (ln mn),pp

4th εppp, αmmm, αmmp, αmpp, αppp

(
ln mn

αm

)
,mm

, (ln mn),mmm, (ln mn),mmp, (ln mn),mpp, (ln mn),ppp

εmm = −wαp

βmn

[
αmp

αp
+ 2

nmn

(
1 + αm − nαp

β

)]
, εmp = − αp

βmn

[
wαpp

αp
+ 2

(
1 + εp − nαp

β

)]
,

nmmm = 1

mn

[
− nαmmp

β
+ αmm

nmn

(
1 − 2nαp

β

)
− αmp

βmn

(
7 + 4αm − 6nαp

β

)

+ 6

(
αp

βmn

)2(
3 + 2αm − nαp

β

)
+ (2 + αm)(3 + 2αm)

n2m2
n

(
1 − 3αpn

β

)]
,

εmmm = −wαp

βmn

[
αmmp

αp
+ 2αmp

nmnαp

(
2 + 2αm − 3nαp

β

)
+ 6

(
1 + αm − αp

βmn

)2
]
. (A3)

Applying the derivative with respect to m or p to the entropy given by Eq. (A1), we obtain

S, m = 0, S, p = 0, S, mm = −αm

mn
, S, mp = 0, S, pp = −βεp

w
, S, mmp = −αmεp

wmn
,

S, mmm = −αm

mn

(
αmm

αm
+ 2(2 + αm)

nmn
− 3αp

βmn

)
, S, mpp = αp

wmn

(
wαpp

αp
− 2nαp

β
+ εp + 2

)
,

S, mmmp = αm

mn

[
3αpp

βmn
−
(

αmm

αm
+ 2 + αm

nmn
− 6αp

βmn

)
εp

w
+ 6αp

βwmn

(
1 − nαp

β

)]
,

S, mmmm = −αm

mn

[
αmmm

αm
+ 2αmm

nmnαm

(
3 + 3αm − 2nαp

β

)
− 6αmp

βmn
+ 3(2 + αm)(3 + 2αm)

n2m2
n

− 4αp

βnm2
n

(
7 + 5αm − 3nαp

β

)]
. (A4)

The above expressions for entropy derivatives are evaluated at the maximum of the entropy S (i.e., in equilibrium), which
corresponds to α = ᾱ and β = β̄. As in Ref. [19,20], the choice of m and p as independent thermodynamic variables makes the
second-order entropy derivative quadratic form diagonal, i.e., S,mp = 0.

The connected n-point correlation functions in thermodynamic equilibrium are given by

W eq
i1i2

= −S−1
, i1i2

, W eq
i1i2i3

= −S−1
, i1 j1

S−1
, i2 j2

S−1
, i3 j3

S, j1 j2 j3 ,

W eq
i1i2i3i4

= [
S−1

, i1 j1
S−1

, i2 j2
S−1

, i3 j3
S−1

, i4 j4
S, j1 j2 j3 j4 − 3S−1

, i1 j1
S−1

, i2 j2
S, j1 j2 j3 S−1

, j3 j4
S, j4 j5 j6 S−1

, j5i3
S−1

, j6 j4

]
i1i2i3i4

, (A5)

and generically

W eq
i1...in

= [
W eq

i1 j1
W eq

i2...in, j1

]
i1...in

, (A6)

where indices in label the external points while indices jn label the internal ones. The relation given by Eq. (A6) easily follows
from the cumulant generating function gc(μ1, . . . , μn) such that W eq

i1...in
= dngc/dμ1 · · · dμn. Indeed, using the chain rule on the

μ derivative in W eq
i1...in

= [dW eq
i2...in

/dμ1]1...n and the fact that (susceptibility) dψ j/dμi = W eq
i j , we obtain Eq. (A6).

In the discussion presented in Sec. III, the indices are chosen as i = m and j = (m, p), thus the connected n-point functions
are (see Fig. 8 for diagrammatic representation)

W eq
mm = −S−1

, mm, W eq
mp = 0, W eq

pp = −S−1
, pp, W eq

mmm = −S−3
, mmS, mmm, W eq

mmp = −S−2
, mmS−1

pp S, mmp,

W eq
mmmm = S−4

, mmS, mmmm − 3S−5
, mm(S, mmm)2 − 3S−4

, mmS−1
, pp(S, mmp)2,

W eq
mmmp = S−3

, mmS−1
, ppS, mmmp − 3S−4

, mmS−1
, ppS, mmmS, mmp − 3S−3

, mmS−2
, ppS, mmpS, mpp, (A7)

where we have used the fact that S,mp = 0 given in Eq. (A4), which largely simplifies our calculation. Now substituting Eq. (A4)
into Eq. (A7) one immediately obtains Eq. (3.23).
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FIG. 8. Diagrammatic representation of the equilibrium correlation functions in Eq. (A7). A solid (dashed) line entering a vertex denotes
the m (p) index. Open circles represent entropy derivatives. The solid gray circles with two legs are equilibrium two-point correlators expressed
in terms of the second derivatives of the entropy: W eq

mm = −S−1
mm and W eq

pp = −S−1
pp . Note the absence of the cross-correlator W eq

mp = 0, which
simplifies the calculation.

Interestingly, one can infer the following relations from the above expressions:

W eq
mmp = − 1

β
W eq

mm, W eq
mmmp = − 2

β
W eq

mmm. (A8)

The above relations, similarly to W eq
mp = 0, are consequences of choosing m and p as our independent thermodynamic variables.

APPENDIX B: PARTIAL EQUILIBRIUM FOR PRESSURE FLUCTUATIONS

We shall now use the equilibrium entropy functional given by Eq. (A1) to determine the partial equilibrium value of δp. This
value, (δp)peq, maximizes the entropy functional S under the condition that δm is fixed. Thus, (δp)peq is determined by solving
S,p(m + δm, p + (δp)peq ) = 0, were m and p are full equilibrium values, determined by S,m(m, p) = S,p(m, p) = 0. As a result
we obtain

(δp)peq = − 1
2 S−1

,ppS,mmpδm2 − (
1
6 S−1

,ppS,mmmp − 1
2 S−2

,ppS,mmpS,mpp
)
δm3, (B1)

where we truncated the solution to the order we need to calculate the third- and fourth-order correlators. Notice that the absence
of a term linear in δm is a consequence of the well-known fact that the fluctuations of pressure and specific entropy are not
correlated, or S,mp = 0. This lack of correlation, however, does not persist beyond the linear order. This observation is important
for the non-Gaussian fluctuation equations we derive in this paper.

Using Eq. (B1), we can now calculate partial equilibrium values of the cross-correlators of pressure and specific entropy, such
as

Gc,peq
pmm (x1, x2, x3) ≡ 〈: (δp)peq(x1) : δm(x2)δm(x3)〉c = − 1

2 S−1
,ppS,mmp〈:δm(x1)2 : δm(x2)δm(x3)〉c

= − S−1
,ppS,mmpGc

mm(x1, x2)Gc
mm(x1, x3),

Gc,peq
pmmm(x1, x2, x3, x4) ≡ 〈: (δp)peq(x1) : δm(x2)δm(x3)δm(x4)〉c

= − 1
2 S−1

,ppS,mmp〈: δm(x1)2 : δm(x2)δm(x3)δm(x4)〉c

− (
1
6 S−1

,ppS,mmmp − 1
2 S−2

,ppS,mmpS,mpp
)〈:δm(x1)3 : δm(x2)δm(x3)δm(x4)〉c

= − 3S−1
,ppS,mmpGc

mm(x1, x2)Gc
mmm(x1, x3, x4)

− (
S−1

,ppS,mmmp − 3S−2
,ppS,mmpS,mpp

)
Gc

mm(x1, x2)Gc
mm(x1, x3)Gc

mm(x1, x4)|x2x3x4 , (B2)

where in the second equality of each above equation we neglected the terms which contribute to higher order in fluctuation
expansion parameter ε. Finally, taking the n-point Wigner transform (2.41), we obtain Eqs. (3.22).
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APPENDIX C: ALTERNATIVE EXPRESSIONS IN TERMS OF INDEPENDENT THERMODYNAMIC DERIVATIVES

We have expressed Eqs. (3.20) and (3.23) in terms of the independent thermodynamic derivatives chosen from set I given by
Table I. There are, of course, numerous different choices for the independent thermodynamic derivatives in terms of which our
equations can be formulated. In this section we provide alternative expressions for these equations, which are instead expressed
in terms of independent thermodynamic derivatives specified in set II, where all independent derivatives of ln mn (with respect
to m or p) are chosen as the independent thermodynamic derivatives.

The presence of the derivatives of mn reflects the fact that the volume integral of m is not a constant of motion, in
contrast to the volume integral of n. The choice of the independent thermodynamic derivatives given by set II allows
us to quantify such a difference. For example, if m were to be a linear function of n, mn would be a constant and
all thermodynamic derivatives acting on would mn vanish, significantly simplifying above equations. In this case, there
is only one independent nth-order thermodynamic derivative (cf. Table I), as in the charge diffusion problem studied in
Ref. [22].

The alternative expressions for Eqs. (3.20), in terms of the independent thermodynamic derivatives from set II,
read

γmm = mnλαm, γmp =
(

2 + αm

nmn
+ (ln mn),m

)
βm2

nλ, (γmm),m =
(

(ln λ),m + 2(ln mn),m −
(

ln
mn

αm

)
,m

)
γmm,

(γmm),p =
[

(ln mn),mm − αm

nmn

(
ln

mn

αm

)
,m

+
(

2 + αm

nmn
+ (ln mn),m

)
(ln mn),m

+ αm

βmn

[
(ln λ),p + (ln mn),p

]+ 2 + αm

n2m2
n

]
βm2

nλ,

(γmp),m =
[

(ln mn),mm − αm

nmn

(
ln

mn

αm

)
,m

+
(

2 + αm

nmn
+ (ln mn),m

)
[(ln λ),m + 2(ln mn),m] + 2 + αm

n2m2
n

]
βm2

nλ,

(γmm),mm =
[

(ln λ),mm + 2(ln mn),mm −
(

ln
mn

αm

)
,mm

+
(

(ln λ),m + 2(ln mn),m −
(

ln
mn

αm

)
,m

)2]
γmm,

(
m2

nλ
)
,m = [(ln λ),m + 2(ln mn),m]m2

nλ,
(
m2

nλ
)
,p = [(ln λ),p + 2(ln mn),p]m2

nλ,

(mn pnλ),m = [(ln λ),m + (ln mn),m + (ln pn),m]mn pnλ, pn = w

n
− w

β
(ln mn),p

(
(ln mn),m + n(ln mn),p

β
+ 2 + αm

nmn

)−1

,

(ln pn),m = − 2

nmn
+

nmn(ln mn),mm − αm
(

ln mn
αm

)
,m

+ 2+αm
nmn

nmn(ln mn),m + 2 + αm

+
αm
(

ln mn
αm

)
,m − nmn(ln mn),mm + w(ln mn),mp − w(ln mn),p

(
(ln mn),m + 2+αm

nmn

)+ (ln mn),m

nmn(ln mn),m − w(ln mn),p + 2 + αm
,

(
m2

nλ
)
,mm = {(ln λ),mm + 2(ln mn),mm + [(ln λ),m + 2(ln mn),m]2}m2

nλ. (C1)

Note again that we also treat αm as an independent second-order thermodynamic derivative as mn/αm, since they are different by
mn = −βw/n2 which is only a first-order thermodynamic derivative.

The alternative expressions for Eqs. (3.23) likewise read

W eq
mm = mn

αm
, W eq

mp = 0, W eq
pp = − n

β2

(
2 + αm

nmn
+ (ln mn),m − w

nmn
(ln mn),p

)−1

,

W eq
mmm =

(
mn

αm

)2
[(

ln
mn

αm

)
,m

+ 2(ln mn),m + 2 + αm

nmn

]
, W eq

mmp = − mn

βαm
,

W eq
mmmm =

(
mn

αm

)3
[(

ln
mn

αm

)
,mm

+ 2

((
ln

mn

αm

)
,m

+ 5(ln mn),m + 5 + αm

nmn

)(
ln

mn

αm

)
,m
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+ 5(ln mn),mm + 9

(
(ln mn),m + 2 + αm

nmn

)
(ln mn),m − 3αm

βmn
(ln mn),p + (2 + αm)(7 + 2αm)

n2m2
n

]
,

W eq
mmmp = − 2

β

(
mn

αm

)2
[(

ln
mn

αm

)
,m

+ 2(ln mn),m + 2 + αm

nmn

]
. (C2)

APPENDIX D: NOTATIONS

This Appendix summarizes the notations introduced in
Sec. II D.

∇̄μ: confluent derivative, Eqs. (2.31), (2.45);
ω̄ν

λμ: confluent connection, Eq. (2.28);
ω̊a

μb: spin connection for local triad ea, Eq. (2.37), Fig. 4;

∂̊μGn(x1, . . . , xn): derivative with respect to the midpoint x
at fixed ya

i , Eq. (2.35);
∇̄μḠn: confluent derivative of Ḡn, Eq. (2.31);
Gn ≡ Gi1...in : “raw” n-point correlator, Eq. (2.9);
Gc

n ≡ Gc
i1...in : connected n-point correlator, Eqs. (2.15),

(2.17), (2.20);

Ḡn ≡ Ḡi1...in : confluent correlator, Eq. (2.29), Fig. 3;
Wn ≡ Wi1...in : Wigner transform of connected confluent cor-

relator Ḡc
n, Eq. (2.41);

∂̊μWn(x; q1, . . . , qn): partial x derivative at fixed qi’s
(Wigner transform of ∂̊μḠc

n), Eq. (2.43);
∇̄μWn: confluent derivative of Wn (Wigner transform of

∇̄μḠc
n), Eq. (2.45);

x: midpoint space-time vector, Eq. (2.26);
yi ≡ xi − x: separation four-vector, Eq. (2.30);
ya

i ≡ ea · yi: components of the separation vector in the
local triad basis ea(x), a = 1, 2, 3.
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