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Sensitivity of Au + Au collisions to the symmetric nuclear matter equation
of state at 2–5 nuclear saturation densities
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We demonstrate that proton and pion flow measurements in heavy-ion collisions at incident energies ranging
from 1 to 20 GeV per nucleon in the fixed target frame can be used for an accurate determination of the symmetric
nuclear matter equation of state at baryon densities equal 2–4 times nuclear saturation density n0. We simulate
Au + Au collisions at these energies using a hadronic transport model with an adjustable vector mean-field
potential dependent on baryon density nB. We show that the mean field can be parametrized to reproduce a given
density dependence of the speed of sound at zero temperature c2

s (nB, T = 0), which we vary independently
in multiple density intervals to probe the differential sensitivity of heavy-ion observables to the equation of
state at these specific densities. Recent flow data from the STAR experiment at the center-of-mass energies√

sNN = {3.0, 4.5} GeV can be described by our model, and a Bayesian analysis of these data indicates a hard
equation of state at nB ∈ (2, 3)n0 and a possible phase transition at nB ∈ (3, 4)n0. More data at

√
sNN = 2–5 GeV,

as well as a more thorough analysis of the model systematic uncertainties will be necessary for a more precise
conclusion.

DOI: 10.1103/PhysRevC.108.034908

I. INTRODUCTION

The baryon density is approximately nB ≈ 0.16 fm−3 at
the center of a nucleus and averages to about 0.12 fm−3 over
its entire volume, almost independently of the size of the
given nucleus [1]. Neglecting the finite size effects in nuclei
as well as Coulomb interactions, one arrives at an idealized
theoretical concept of nuclear matter, which is in equilibrium
at density n0 ≈ 0.16 fm−3, often called the nuclear matter
saturation density [1,2]. The only way of obtaining a substan-
tially more dense nuclear matter in a laboratory is to collide
heavy nuclei at relativistic incident velocities. Such collisions
of two nuclei result in a rapid (timescales on the order of a few
fm/c) compression and heating, followed by expansion and
cooling of the produced fireball. The outcomes of both the
compression and the expansion phase depend on the strong
interactions between the constituents of the fireball. In equi-
librium, the influence of these interactions on the properties
of the medium is described by the equation of state (EOS),
that is, by the dependence of the equilibrium pressure P on
temperature T , net baryon density nB, net strangeness density
nS , and net charge density nQ.1

*dmytrooliinychenko@gmail.com
†agnieszka.sorensen@gmail.com
1Depending on the problem at hand, it is sometimes more conve-

nient to represent the EOS in the form P(T, μB, μS, μQ ), where μi

denotes the chemical potential associated with the conserved charge
ni and i ∈ {B, S, Q}; in the form P(E, nB, nS, nQ), where E is the
energy density; or in the form P(E, nB, nS, nI3), where instead of

We note that while the EOS is only defined in equi-
librium, the systems created in heavy-ion collisions may
well be out of equilibrium. To incorporate nonequilibrium
effects in simulations, one can either introduce viscous cor-
rections to a fluid-dynamic description, which works well
for small deviations from equilibrium, or one can resort
to transport theory, which accounts for the full nonequilib-
rium dynamics governed by the Boltzmann equation. Within
transport-theoretical approaches, the model parameters (in
particular, the mean-field interaction) can be adjusted to repro-
duce relevant observables measured in heavy-ion reactions,
such as flow. The EOS is then obtained by using these model
parameters in the transport equation, which under the assump-
tion that the system is in equilibrium can be used to calculate,
e.g., the pressure.

Ultimately, one of the major goals of heavy-ion collision
experiments is to extract the EOS within the experimentally
accessible domain. This domain is, admittedly, limited; for
example, nS ≈ 0 in heavy-ion collisions. Even more impor-
tantly, compression is always accompanied by heating, and
as a result regions characterized by high nB and low T are
not probed at any collision energy [3]. This can be seen in
Fig. 1, which shows phase trajectories of the central region of
a heavy-ion collision at different values of the incident kinetic
energy per nucleon (excluding the rest mass) Elab, obtained

the charge density nQ one considers the isospin projection density
nI3, with the two densities closely related through the relation be-
tween the electric charge and the isospin projection of a hadron,
Q = I3 + 1

2 (B + S).
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FIG. 1. Trajectories of a central region (i.e., a sphere of radius
r = 2 fm located at the event-averaged center of mass of the col-
lision system) in Au + Au collisions at impact parameter b = 6 fm,
obtained from simulations in SMASH. The contours demonstrate qual-
itatively which ranges of densities are probed at which collision
energies. The simulations are performed in the center-of-mass frame
and the time t is also given in that frame; the time difference between
the shown data points is 1 fm/c, and the first points shown are for
t = −2 fm/c when nuclei are not yet touching (by the convention
used in SMASH, t = 0 is the time at which nuclei would touch in a
central collision; note that for mid-central collisions, the center of
mass of the system at t = 0 is between the nuclei, which explains the
corresponding low values of density). For collisions at Elab = 1 and
2 GeV/nucleon (red and blue marks, respectively) the trajectories
are traversed in the counterclockwise direction with increasing time,
while for collisions at 4 GeV/nucleon and above the trajectories
are traversed in the clockwise direction. The energy density E is
calculated from the 00 component of the energy-momentum tensor
T μν in the Landau frame; note that mean-field contributions are not
taken into account in this calculation of T μν , that is E = Ekin, to
enable a clearer inference of the different temperatures reached in
collisions at different energies. The simulations used a mean-field
potential parametrized to reproduce the standard Skyrme EOS at
nB ∈ [0, 2]n0 and requiring that c2

s (nB, T = 0) = 0.3 at higher den-
sities (see Sec. II B for details of the EOS construction). Changes in
the trajectories due to employing different EOSs are shown in Fig. 2.

from simulations using the hadronic transport code SMASH [4]
(version 2.1 [5]).

The role of the EOS in heavy-ion collisions is intuitively
understandable: a stiffer EOS (meaning an EOS with a rel-
atively large ∂P/∂nB or ∂P/∂E) leads to less compression,
less heating, and a faster transverse expansion than a softer
EOS (see, e.g., [7]). In Fig. 2, we not only demonstrate that
this is indeed the case in our simulations, but we also show
that there is a large sensitivity to changing the stiffness of the
EOS only in a specific density region (we will elaborate on
this point in the following sections). In terms of observables,
the slower expansion characterizing a softer EOS is expected
to produce lower mean transverse momenta (see, e.g., [8]),
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FIG. 2. Phase trajectories in a Au + Au collisions at Elab =
4 GeV/nucleon, obtained using the same simulation setup as in
Fig. 1, demonstrating that varying the EOS only in the density region
nB ∈ (2, 3)n0 leads to a higher (lower) reached values of the density
and energy per nucleon in the case of the softer (harder) EOS.
Here, in contrast to previous works where the stiffness of the EOS
is controlled solely by the value of nuclear matter incompressibil-
ity at saturation K0 (see, e.g., [6,7]), the stiffness of the EOS is
changed by varying the value of the speed of sound c2

s at T = 0
for nB ∈ (2, 3)n0, with small (large) values of c2

s corresponding to
a relatively soft (hard) EOS in that density range. The trajectories
are traversed in the clockwise direction with increasing time, and
the time difference between the shown data points is 1 fm/c. Be-
low nB = 2n0 the mean-field potential is parametrized to reproduce
the standard Skyrme EOS, while above nB = 2n0 the mean-field is
parametrized to reproduce values of c2

s from a representative set,
c2

s (nB > 2n0, T = 0) = {0.1, 0.5, 0.9} (see Sec. II for details of the
EOS construction).

while the increased heating in this case leads one to expect
a larger thermal dilepton and photon yield (see, e.g., [9–11]).
Moreover, as the fireball lifetime is longer for a softer EoS,
one would also expect that the combination of the femtoscopic
radii R2

out − R2
side, which can be shown to be proportional to the

duration of the emission of detected particles [12,13], will be
larger in this case.

Nevertheless, the most stringent currently available con-
straints on the symmetric nuclear matter EOS come from
angular distributions in the transverse plane dN/dφ, where
φ denotes the azimuthal angle, which are highly sensitive
to the EOS and, at the same time, measurable with high
precision [14]. Indeed, the sensitivity of the flow observables
has been demonstrated by multiple hydrodynamic [15–21]
and hadronic transport [6,22–27] models. We notice, how-
ever, that most of these works compare only several EOSs
(often just an EOS with a phase transition to a quark-gluon
plasma to an EOS without such transition), and do not at-
tempt to quantify the sensitivity by parametrizing the EOS
continuously and constraining the parameters. The works that
do explore a range of possible EOSs [6,24,25] parametrize
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the EOS with a single parameter: the incompressibility of
isospin-symmetric nuclear matter at nB = n0 and T = 0,
defined as K0 ≡ 9(∂P/∂nB)|nB=n0 or equivalently as K0 =
9n2

B(∂2(E/A)/∂n2
B)|nB=n0 , where E/A is energy per baryon.

In this work, we aim at exploring the sensitivity of the flow
observables to the EOS parametrized by varying both the
incompressibility K0 and values of the speed of sound at dif-
ferent ranges of baryon density: c2

[2,3]n0
≡ c2

s [nB ∈ (2, 3)n0],
c2

[3,4]n0
≡ c2

s [nB ∈ (3, 4)n0], and c2
[4,5]n0

≡ c2
s [nB ∈ (4, 5)n0].

We consider this work as the first step towards a full Bayesian
analysis of all available observables with a flexible and suit-
ably parametrized EOS. Here, however, we use only a limited
set of measurements, that is flow measurements as provided
by the E895 Collaboration [28–31] and by recent results from
the STAR Collaboration [32,33] based on Phase II of the
Beam Energy Scan (BES) program at the Relativistic Heavy
Ion Collider (RHIC).

The effects of the EOS on dN/dφ are known to be substan-
tial in noncentral collisions at energies for which the speed of
the spectators is comparable to that of the fireball expansion
[6,34]. The dN/dφ distribution of protons around midrapidity
y′ = 0 (where y′ = y/ybeam is the center-of-mass rapidity y
scaled by the beam rapidity in the center-of-mass frame2)
has maxima coincident with the reaction plane in the case
where the spectators move out of the way of the expanding
fireball fast enough. In the opposite case, where the spectators
block the in-plane fireball expansion, the preferential emission
occurs in the out-of-plane direction (due to the role of the
spectators, this phenomenon is often called a “squeeze-out”).
This behavior is captured by the second Fourier coefficient of
dN/dφ,

v2 = 〈cos 2φ〉 =
∫

dφ cos(2φ) dN
dφ∫

dφ dN
dφ

, (1)

known as the elliptic flow, which quantifies the difference
between the in-plane and out-of-plane emission. A posi-
tive v2 indicates a preferential emission toward angles φ ≈
0 and φ ≈ π , while a negative v2 indicates a preferential
emission toward φ ≈ π/2 and φ ≈ 3π/2. For collisions at
Elab ≈ 1–10 GeV/nucleon, for which the spectators still oc-
cupy the vicinity of the collision region during the expansion
phase, a faster fireball expansion due to a stiffer EOS will be
correspondingly more forcefully blocked by the spectators,

2Rapidity is defined as y(β ) = 1
2 ln [(1 + β )/(1 − β )], where β

is the velocity, and a Lorentz boost corresponding to the relative
velocity of two inertial frames β0 is equivalent to a shift of y by
y(β0). Therefore, the center-of-mass rapidity y for collisions in the
fixed-target mode can be obtained by taking y → y − ybeam. In the
center-of-mass frame, rapidity distributions of measured particles are
centered around y = 0, while the beam rapidities are at ±ybeam. To
make results at different collision energies, and therefore different
spreads in rapidity, easier to compare, one uses the scaled rapidity
y′ = y/ybeam, since for the colliding beams one then always has
y′

beam = ±1 in the center-of-mass frame. Notice that this property of
y′ is satisfied only in the center-of-mass frame.

resulting in a larger squeeze-out effect and a more negative
v2.

Another observable used to constrain the EOS is the slope
of the directed flow at midrapidity,

dv1

dy′

∣∣∣∣
y′=0

= d〈cos φ〉
dy′

∣∣∣∣
y′=0

, (2)

where the directed flow v1 is defined as the first Fourier
coefficient of dN/dφ, so that a positive v1 = 〈cos φ〉 char-
acterizes a preferential emission in the φ ∈ [−π/2, π/2]
direction compared to the φ ∈ [π/2, 3π/2] direction. Intu-
itively, dv1/dy′ quantifies the strength of spectator deflection
[35]. To visualize the physical meaning of dv1/dy′, one
can imagine that spectators are two masses pushed apart
by a spring oriented along the transverse plane, where the
spring represents the compressed fireball. In the center-of-
mass frame, the spectators moving in the positive y direction
will be deflected towards φ ∈ [−π/2, π/2], while the spec-
tators moving in the negative y direction will be deflected
towards φ ∈ [π/2, 3π/2], resulting in a positive v1 for y > 0
and a negative v1 for y < 0.3 As can be easily visualized using
the spring analogy, a softer EOS results in a weaker deflection
and a smaller dv1/dy′. Moreover, it has been shown, both
in hydrodynamic and transport simulations, that a sufficiently
soft EOS (including EOSs with phase transitions) can lead to
a negative dv1/dy′ [18,36], which within our analogy corre-
sponds to a situation in which the spring pulls the two masses
closer together.

One of the most prominent constraints on the EOS us-
ing the flow analysis of heavy-ion collisions [6] is based on
comparing a hadronic transport model [37,38] and flow data
measured in the E895 experiment [28,29]. The main result of
the work [6] is constraining the incompressibility K0 of sym-
metric nuclear matter, the only parameter of the EOS varied in
that study, to be between 210 and 380 MeV. (We note here that
in studies applying such simple parametrizations of the EOS
to heavy-ion collisions at relativistic energies, which primarily
probe large baryon densities, the incompressibility is treated
as a parameter which specifies the behavior of the EOS at
densities above the saturation density n0.) Such a spread in the
extracted values of K0 originates not from data uncertainties,
but from the fact that the used model was not able to describe
the v2 and dv1/dy′ data simultaneously. While reproducing

3Note that this picture has a certain dependence on how one defines
the coordinate axes in the problem. Here, we define the impact
parameter vector b (considered in the center-of-mass frame, at the
moment of the closest approach of the centers of the two nuclei)
as starting at the center of the heavy ion moving in the negative y
direction and ending at the center of the heavy-ion moving in the
positive y direction, and we define the x axis of the transverse plane
to be parallel to the so-defined b. The azimuthal angle φ is then
measured from the x axis. A realization of this system of coordinates,
in which the cross product of the basis vectors of the transverse
plane is parallel to the z axis, is depicted in Fig. 1 of [6]. In general,
by convention, one defines the coordinate axes such that dv1/dy is
positive for spectators deflected away from the collision zone.
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the v2 measurements required larger values of K0 (and there-
fore a harder EOS), the dv1/dy′ data required smaller values
of K0 (corresponding to a softer EOS). In this work, we test
whether a relaxation of the EOS model that allows one to
independently vary the stiffness of the EOS in different den-
sity regions can lead to a more consistent description of the
flow data and, consequently, to a more precise constraint on
the EOS. For example, if densities to which dv1/dy′ is most
sensitive are higher than the corresponding densities for v2,
then we may make the EOS soft at high densities to reproduce
the measured dv1/dy′, and stiff at lower densities to reproduce
the measured v2. Such idea was, in fact, suggested in [6],
but the chosen parametrization of the EOS did not allow to
implement it. In this work, we construct a more flexible EOS
parametrization and use it to fit the E895 data available at the
time of [6] as well as the newest STAR data for the same
energy range [32,33].

The structure of this work is as follows: Section II gives a
short overview of the dynamical evolution in hadronic trans-
port (Sec. II A), introduces a parametrization of the mean-field
potential reproducing a given behavior of the speed of sound
as a function of baryon density (Sec. II B), and provides a
summary of simulation and implementation choices relevant
to the study at hand (Sec. II C). Section III uses the developed
model to explore the sensitivity of the flow observables to the
stiffness of the EOS in separate density intervals. Section IV A
presents our exploration of describing the available flow data
from E895 and STAR experiments, where we conclude that
there is a significant discrepancy between the results from
the two data sets. Finally, Sec. IV B discusses the results
of our Bayesian analysis of the STAR flow data, including
a discussion of the slight tension with the EOS inferences
from neutron star observations. We summarize and provide
an outlook in Sec. V.

II. METHODOLOGY

In the following we use natural units in which h̄ = c =
kB = 1.

A. Simulation framework

As already discussed above, at projectile kinetic ener-
gies Elab below 20 GeV per nucleon in the fixed target
frame, corresponding to

√
sNN � 6.4 GeV, spectators play

a very important role both for dv1/dy′ and for v2(y′ = 0),
which was also explicitly demonstrated in hadronic transport
simulations [36]. This is in contrast to the highest RHIC
(
√

sNN = 200 GeV) and LHC (
√

sNN = 2.76 and 5.02 TeV)
energies, where midrapidity observables are unaffected by the
spectators. In consequence, most of the state-of-the-art hydro-
dynamic codes, intended for very high energies and neglecting
spectators, are not applicable at Elab = 2–20 GeV/nucleon
without modifications. Therefore, we choose to employ a
hadronic transport simulation in which spectators are natu-
rally included throughout the evolution. Our particular code
of choice is the transport code SMASH [4] (version 2.1 [5]),
modified according to the prescription given in the next sub-
section. SMASH is a relativistic Boltzmann-Ueling-Uhlenbeck

(BUU) type of hadronic transport with vector-density depen-
dent mean-field potentials, which means that it is a Monte
Carlo solver of the following kinetic equations:

�μ∂μ
x fi(x, p) + �ν

(
∂x
μAν

)
∂μ

p fi(x, p) = I (i)
coll. (3)

Here, xμ and pμ are position and momentum four-vectors
(with indices suppressed where it is beneficial for clarity),
�μ(x, p) ≡ pμ − Aμ(x) is the kinetic momentum, and Aν is
a vector field dependent on the baryon current as

Aμ = α(nB) jμB , (4)

where α(nB) is a chosen function of the rest frame density
nB ≡ √

( jB)μ( jB)μ, fi is the distribution function for the parti-
cle species i, and I (i)

coll is the collision integral for the ith particle
species. The distribution function fi depends on position as
well as energy and momentum, and can be written in a form
that accounts for the mass-shell condition explicitly:

fi(x
μ, pμ) = 2(2π )	(�0)δ

(
�μ�μ − m2

i

)
f̃i(x

μ, p). (5)

In the simulation, the continuous distribution function f̃i(x, p)
describing a system of Ni particles of species i is approximated
by using a standard test-particle ansatz, that is, by taking
f̃ (x, p) to be of the form

f̃i(x, p) = 1

NT

NT Ni∑
j=1

δ(3)(x − x j (t ))δ(3)(p − p j (t )). (6)

The above equation means that the continuous distribution
function f̃i(x, p), describing a physical system composed of
Ni particles, is sampled by N = NiNT discrete points, or test
particles, where the factor NT 
 1 is known as the number
of test particles per particle or the oversampling factor. In-
tuitively, the larger the number of samples (i.e., the larger
NT is used) is, the better is the description of f̃i(x, p). To
preserve the essential properties of a system of Ni particles in a
simulation involving NT Ni test particles (such as the collision
rate per test particle or the local density), all collision cross
sections are reduced by a factor of NT , and a single test particle
contributes to the energy density and charge densities with a
factor of 1/NT .

By substituting Eqs. (5) and (6) into the Vlasov equa-
tion [that is, the Boltzmann equation, Eq. (3), with the
collision term set to zero, I (i)

coll = 0], one obtains the following
equations of motion for a single test particle in a system
described by fi(x, p):

dxμ

dt
= �μ

�0
, (7)

d�μ

dt
= �ν

�0
Fμν, (8)

where Fμν = ∂μAν − ∂νAμ and each test particle satisfies the
mass-shell condition �μ�μ = m2

i ; details of this derivation
can be found in Appendix A. Propagating the test particles ac-
cording to equations of motion, Eqs. (7) and (8), together with
performing decays and particle-particle collisions effectively
solves Eq. (3), as at each time t the distribution function is
given by (6). Importantly, while Eqs. (7) and (8) have the same
form as standard relativistic equations of motion in an external
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vector field, in our case the vector field is directly dependent
on local baryon density, that is, the equations governing the
system are self-consistent.

An alternative derivation of Eqs. (7) and (8) within a
relativistic vector density functional (VDF) model of dense
nuclear matter is shown in [39], where the equilibrium ther-
modynamics and transport equations are derived within a
single approach. Here, in contrast to the approach taken in
[39] (where the contribution of the vector interactions to the
energy density is assumed to be a polynomial in baryon den-
sity), we derived Eqs. (7) and (8) using the method of test
particles (see Appendix A), which allows us to chose a com-
pletely arbitrary form of the vector single-particle potential
Aμ; this property will be utilized in Sec. II B.

By taking moments of the Boltzmann equation, Eq. (3),
one can derive the conservation laws in the standard way; de-
tails of this derivation are given in Appendix B. In particular,
the conserved current density of the ith species is given by

jμi = gi

∫
d3 p

(2π )3

�μ

�0
f̃i, (9)

where gi is the degeneracy, and the net baryon current is
defined as

jμB ≡
∑

i

Bi jμi , (10)

where Bi is the baryon number of the ith species. Meanwhile,
the energy-momentum tensor assumes the following form:

T μν =
∑

i

gi

∫
d3�

(2π )3

�μ�ν

�0
f̃i + Aμ jνB

− gμν

(
nBU (nB) −

∫ nB

0
dn′ U (n′)

)
, (11)

where we introduce the notation U (nB) to distinguish the
zeroth component vector potential Aμ calculated in the
rest frame of the baryon current, U (nB) ≡ A0(nB)| rest

frame
=

α(nB)nB. Note, in particular, that in equilibrium T μν =
diag(E, P, P, P), giving us access to the thermodynamic prop-
erties of the system.

The basis of our approach is the fact that by parametrizing
the function α(nB), introduced in Eq. (4), one can reproduce
given properties of nuclear matter in equilibrium and thus
control the EOS of baryons, while at the same time the mean-
field interactions which lead to a given EOS also enter the
equations of motion, Eqs. (7) and (8), which continue to be
well-defined for an out-of-equilibrium evolution and are used
in the simulations.

B. Parametrization of the mean-field potential
by the speed of sound

In this section, we will use the formalism described above
to introduce a parametrization of the mean-field potential Aμ

that reproduces a given behavior of the speed of sound squared
c2

s as a function of the baryon density nB.

In equilibrium, the baryon density of the ith baryonic
species is given by

nB,i = gi

∫
d3�

(2π )3

[
eβ(�0+α(nB )nB−μB ) + 1

]−1
, (12)

where β = 1/T and �0 =
√

�2 + m2
i . At zero temperature

and in the absence of scalar interactions (which would lead to
effective masses m∗

i < mi and, consequently, smaller energies
required to excite more massive species), the only baryon
species present in the range of baryon densities relevant to
heavy-ion collisions, nB ∈ [0, 5]n0, are protons and neutrons
(nucleons); therefore, to simplify the notation, in the fol-
lowing derivation we will drop the index i and take g = 4,
m = mN = 938 MeV. Note that assuming only nucleons to
be present at T = 0 does not preclude exciting other baryon
states at T > 0; moreover, while within our formalism the
EOS is essentially fixed for nucleons at T = 0, it still displays
nontrivial behavior as a function of T , and is applicable to
complex systems of many baryonic species that inevitably
arise in considerations at finite temperature as well as in
heavy-ion collisions.

Taking the T → 0 limit and integrating Eq. (12) over the
Fermi sphere leads to

μB(nB, T = 0) = α(nB)nB +
[

m2
N +

(
6π2nB

g

)2/3
]1/2

.

(13)

At the same time, at T = 0 the expression for the speed of
sound squared is

c2
s (nB, T = 0) = nB

μB
(

∂nB
∂μB

) . (14)

Solving the above differential equation for μB yields

μB(nB, T = 0) = μB
(
n(0)

B

)
exp

[ ∫ nB

n(0)
B

dn′ c2
s (n′)
n′

]
, (15)

where n(0)
B is some density at which we know the correspond-

ing value of the chemical potential μB(n(0)
B ). Equating the

left-hand sides of Eqs. (13) and (15), we obtain the single-
particle rest frame potential U (nB) ≡ A0(nB)| rest

frame
= α(nB)nB,

U (nB) = μB
(
n(0)

B

)
exp

[ ∫ nB

n(0)
B

dn′ c2
s (n′)
n′

]

−
[

m2
N +

(
6π2nB

g

)2/3
]1/2

. (16)

This form of U (nB) allows one to parametrize the vector po-
tential in an intuitive way, that is, via the density dependence
of the speed of sound at zero temperature.
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For simplicity, in our study we choose the following piece-
wise functional form of c2

s (nB):

c2
s (nB) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

c2
s (Skyrme), nB < n1 = 2n0,

c2
1, n1 < nB < n2,

c2
2, n2 < nB < n3,

...

c2
m, nm < nB.

(17)

Such parametrization can be considered as a zeroth order
interpolation of an arbitrary function c2

s (nB). In the above, we
take into account that, for nB < 2n0, an arbitrary parametriza-
tion would be inadequate as in this region of baryon density
the potential is already considerably well constrained. There-
fore, in the density range nB ∈ [0, 2]n0, we adopt a polynomial
parametrization of the potential often referred to as the

Skyrme potential,

USk(nB) = C1

(
nB

ñ

)b1−1

+ C2

(
nB

ñ

)b2−1

, (18)

where ñ = 0.168 fm−3, C1 = −209.2 MeV, C2 =
156.5 MeV, b1 = 2, and b2 = 2.35. The Skyrme potential
with these values of the parameters is the default mean
field in SMASH, producing a nuclear matter ground state
at n0 = 0.166 fm−3 with binding energy per nucleon
Ebin = −15.65 MeV and a moderate incompressibility of
K0 = 236.73 MeV (the small discrepancy between n0 and
ñ is an inaccuracy of the default SMASH parametrization,
which, however, does not affect any of our results). We note
here that given n0 and Ebin, which do not vary significantly
between different approaches, whether the Skyrme EOS is
soft or hard is entirely controlled by the value of K0, with
small values of K0 for soft EOSs and large values of K0 for
hard EOSs. Unless stated otherwise, we employ this default
parametrization of the potential at nB < 2n0. Above 2n0, the
potential is controlled by the speed of sound as can be seen in
Eq. (17), and by substituting this piecewise functional form
of c2

s into Eq. (16), we obtain

U (nB) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

USk(nB), nB < n1 = 2n0,

[USk(n1) + μ∗(ρ1)]
( nB

n1

)c2
1 − μ∗(nB), n1 < nB < n2,

[USk(n1) + μ∗(n1)]
( nB

nk

)c2
k
∏k

i=2

( ni
ni−1

)c2
i−1 − μ∗(nB), nk < nB < nk+1,

(19)

where we denote

μ∗(nB) ≡
[

m2
N +

(
6π2nB

g

)2/3
]1/2

. (20)

From Eq. (19), it is straightforward to obtain α(nB) which
enters the expression for the vector field, Eq. (4), with the
latter in turn entering the equations of motion, Eqs. (7) and
(8).

C. Details of the simulations

We implement the vector mean field Aμ, parametrized by
the speed of sound according to Eq. (19), by modifying the
existing SMASH implementation of the VDF model [39] which
our model generalizes. The VDF approach, where the EOS is
parametrized using a polynomial form of α(nB), is fully rela-
tivistically covariant and, in particular, leads to fully covariant
equations of motion, Eqs. (7) and (8).4 The generalization
of the VDF model presented in this paper is, likewise, fully

4We note that, while the mean-field equations are fully covariant,
the implementation of the Boltzmann equation with a finite num-
ber of test particles breaks the covariance (for example, collisions
between test particles occur at a finite distance, the mean field is
obtained on a grid with a finite spacing, etc.). However, in the the
limit of an infinite number of test particles these effects disappear,
and full covariance is restored.

relativistically covariant. In particular, the VDF vector mean-
field used to reproduce the Skyrme potential at nB < 2n0, as
described above, is fully relativistically covariant as well. We
stress this because usually Skyrme potentials used in hadronic
transport codes are, in contrast to our case, nonrelativistic.
One important advantage of using covariant mean fields is
that a Lorentz-contacted, boosted nucleus is still in the ground
state. In a nonrelativistic treatment, on the other hand, one has
to either not allow for Lorentz contraction of the incoming
nuclei, which results in overestimating the penetration time, or
the Lorentz-contracted colliding nuclei are not in the ground
state, thus possibly underestimating the repulsion needed to
describe, e.g., flow data.

The calculation of the baryon density, necessary for solving
the equations of motion, is performed on a Cartesian lattice
with lattice spacing 0.8 fm in x, y, and z directions. We have
tested two different methods of weighing (also called smear-
ing) a test particle’s contribution to density at each node of the
lattice: Gaussian smearing and triangular smearing, described
in Appendix D 1. In the case of Gaussian smearing, the weight
for a given test particle’s contribution to density on the lattice
is Lorentz contracted in the direction of that test particle’s
motion. In the case of triangular smearing, the lattice itself
is contracted in the z direction by a factor γ = √

sNN/2mN . In
Appendix D 2, we show that the flow observables are indepen-
dent of the type of smearing used for the density calculation
(provided that certain technical details of the density calcula-
tion are done correctly; see the Appendix for more details). To
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obtain the results presented in the following, we have used the
Gaussian smearing, which had a slightly lower computational
cost due to the smaller required number of lattice nodes.

Throughout the simulations we apply a mixed ensembles
method, within which we simultaneously simulate Nens events
(in this context also called ensembles), each with NT test parti-
cles per particle. The test particles can collide with each other
only within one ensemble, and their cross sections are reduced
by a factor of NT so that the scattering rate per test particle is
preserved. However, the baryon density, the vector mean field,
and the estimated distribution function for Pauli blocking are
computed based on test particles in all Nens ensembles. We
note that, for a reliable density calculation, the product NT Nens

should be sufficiently large; see Appendix D 2.
It is important to stress here that we simulate multiple

hadronic species and their reactions. In Eq. (3), the index
i goes over all particle species implemented in SMASH, that
is over around 120 hadronic species (this number does not
account for isospin states, i.e., π+, π−, and π0 are counted
as one species; antibaryons and baryons are also counted as
one species). Most of these species are short-lived hadronic
resonances. Masses, width, decay channels, and branching
ratios of the resonances are taken from the Particle Data Group
compendium [40] whenever available. Unknown or poorly
known properties were adjusted to better fit the known cross
sections [41]. The collision integral on the right-hand side of
Eq. (3) includes elastic and inelastic 2 ↔ 2 reactions, 1 ↔ 2
resonance formations and decays, as well as 2 → n reactions
realized as a string excitation and breakup [42]. Details about
resonance properties and reaction cross sections can be found
in [4,41].

We note that we do not utilize recently implemented
stochastic collision rates [43,44], resorting instead to a stan-
dard geometric collision criterion within which collisions are
performed if di j <

√
σi j/π , where di j is the transverse dis-

tance between two particles in their center-of-mass frame,
computed at the time of the closest approach of the two
particles, and σi j is the cross section. A consequence of this
choice is that collisions occur at a nonzero distance between
particles. This causes spurious effects described in detail in
[45]: there, it was shown that the finite interaction range ef-
fectively increases the viscosity and, moreover, that it makes
hadronic flow dependent on the technical details of the colli-
sion implementation, which differ between various hadronic
transport codes. This problem is remedied by using a large
number of test particles per particle, NT . As shown in [45], dif-
ferent transport codes can yield significantly different results
at NT = 1, but already at NT = 32 they were all in agreement
regardless of implementation details. We performed similar
tests in our simulations, focusing on the effect of different val-
ues of NT and Nens on flow observables; a detailed description
of our results can be found in Appendix D 2. Based on these
tests, we use NT = 20 and Nens = 50, which we find to be
large enough to yield simulation results that are independent
of both the specific density calculation scheme and specific
collision criterion used.

At collision energies in the range Elab ∈
[1, 10] GeV/nucleon, proton production can be substantially
influenced by the light nuclei production mechanism

employed in the simulation. One can estimate the relative
importance of the light nuclei by comparing their yields at
midrapidity to proton yields. While the role of the light nuclei
diminishes as one goes from Elab = 2 to 8 GeV/nucleon
(for example, at Elab = 2 GeV/nucleon the proton yield at
midrapidity is around 52 and the deuteron yield is around
22, while at Elab = 8 GeV/nucleon the proton yield remains
approximately the same and the deuteron yield reduces to
around around 14 [46]), it is nevertheless a very substantial
effect in the whole energy range explored in our study.

The situation is different for the flow observables, for
which the effects of the light nuclei on the proton flow are
smaller. However, they are still non-negligible; see [47] for
a dedicated study. In this work, to account for these ef-
fects, we employ a deuteron production model introduced in
[48], where deuterons are produced dynamically in a chain
of reactions NN ↔ d ′, Nd ′ ↔ Nd , effectively reducing to
nucleon catalysis NNN ↔ Nd; or in NN ↔ d ′, πd ′ ↔ πd ,
effectively reducing to pion catalysis πNN ↔ πd; or in the
reaction NN ↔ πd . The implementation and the cross sec-
tions are a part of the publicly available SMASH 2.1 [5], and
are described in detail in [48]. The most important deuteron
production reaction at the considered collision energies, due
to the high relative abundance of nucleons compared to pions,
is nucleon catalysis. While in our approach deuterons are
dynamically produced and influence the entire duration of the
collisions, no light nuclei other than deuterons are produced
in our simulations. Both this fact and the uncertainty of the
deuteron production model contribute to the total systematic
uncertainties in our results due to light nuclei production (for
other approaches to simulating light nuclei, see, e.g., [49,50]).

Above, we have highlighted some of the known unknowns,
i.e., features of the simulation that contribute to its system-
atic uncertainty: the implementation of the density calculation
(smearing), the collision scheme, and the light nuclei produc-
tion model. In addition, in Appendix D we further discuss
possible effects on the simulation results due to the nucleus
initialization model (Appendix D 3), Pauli blocking (Ap-
pendix D 4), the absence of isospin-dependent, Coulomb, and
momentum-dependent interactions (Appendix D 5), and the
absence of in-medium cross sections (Appendix D 6). Over-
all, some of these effects are substantial and require further
systematic study. A comparative analysis taking into account
all these possible effects is beyond the scope of the current
study. Within the effects explored in the present work, we find
the effects due to the EOS to be of the leading order.

III. SENSITIVITY OF THE FLOW
MEASUREMENTS TO THE EOS

Our ultimate goal is to constrain the high-density EOS of
symmetric nuclear matter using flow measurements in heavy-
ion collision.5 In order to do this, in this work we parametrize

5We note that while Au nuclei have a finite isospin asymmetry,
δ ≡ (Nn − Np)/(Nn + Np) ≈ 0.198, the asymmetric contribution to
the EOS is proportional to δ2 ≈ 0.04 and therefore substantially sup-
pressed. Moreover, while the leading contribution to the symmetry

034908-7



DMYTRO OLIINYCHENKO et al. PHYSICAL REVIEW C 108, 034908 (2023)

the EOS using the behavior of c2
s (T = 0, nB) as a function

of the baryon density (as described in Sec. II B), implement
it into the SMASH hadronic transport approach with a vector
mean field Aμ = α(nB) jμ (with details of the implementation
discussed in Sec. II C), simulate heavy-ion collisions, and
analyze particle flow from the obtained simulation data. In
this section, we set out to investigate two properties of flow
observables as used for the extraction of the nuclear matter
EOS:

(i) Sensitivity: How much is flow in heavy-ion collisions
sensitive to changes of the EOS in a specific density
range?

(ii) Specificity: How much is flow in heavy-ion collisions
sensitive to other parameters of our simulations (be-
yond the EOS)?

An ideal observable would be sensitive to the EOS at a
given density range and insensitive to any other parameters.
Additionally, a necessary condition to extract the EOS from
experimental data is that variations in simulation results due
to the EOS are larger than the experimental errors on the
measurements. Our results show (see, e.g., Fig. 3) that the
latter condition is easily satisfied for flow observables, as the
change of the flow due to varying the EOS is much larger
than the experimental precision. For example, recent STAR
measurements of the proton flow at

√
sNN = 3.0 and 4.5 GeV

[32,33] provide dv1/dy′ with an absolute error around 0.01
and v2(y′ = 0) with an absolute error around 0.003.

To qualitatively test the sensitivity of flow observables to
the EOS in specific density ranges, we perform simulations
using a parametrization of the EOS with varying values of
c2

s (nB, T = 0) only in the density range of interest, keeping a
fixed dependence on nB everywhere else, and study how much
the flow results depend on the used EOS. In Fig. 3, we show
proton, deuteron, and pion dv1/dy′ and v2(y′ = 0) obtained
in simulations where c2

s (nB, T = 0) was varied only in the
density range nB ∈ (2, 3)n0 (first column), only in the density
range nB ∈ (3, 4)n0 (second column), and only in the density
range nB ∈ (4, 5)n0 (third column); for nB < 2n0, c2

s (nB, T =
0) took on the density-dependence coming from the underly-
ing default Skyrme EOS (see Sec. II B for more details), while
in the remaining, nonvaried regions c2

s (nB, T = 0) took on an
arbitrary constant value (see top panels in Fig. 3).

Figure 3 clearly shows that in Au + Au mid-central col-
lisions the proton, deuteron, and pion dv1/dy′ and v2(y′ =
0) are very sensitive to the EOS at nB ∈ (2, 3)n0, with the
maximal sensitivity to this density region at the kinetic beam
energy around Elab = 4 GeV/nucleon. It is evident that a

energy is linear in density, the leading contribution to the symmetric
EOS is quadratic in density, which makes the symmetry energy con-
tribution less and less important as density increases. Consequently,
not only is extracting the EOS of asymmetric nuclear matter con-
siderably challenging at beam energies above 1 GeV/nucleon, but
also, to a good approximation, at these energies one can neglect the
symmetry energy contribution and assume that the extracted EOS is
that of symmetric nuclear matter. We make such an assumption in
this work.

stiffer EOS produces a larger dv1/dy′ and a smaller v2(y′ = 0)
for protons, deuterons, and pions. One can see that the pro-
ton and deuteron flow is also sensitive to the density region
nB ∈ (3, 4)n0, where the maximum sensitivity is reached at
the collision energy around Elab = 8 GeV/nucleon. This sensi-
tivity, however, is smaller than sensitivity to the nB ∈ (2, 3)n0

region. The flow of all particles at any collision energy be-
comes rather insensitive to the EOS for nB ∈ (4, 5)n0, which
limits the experimental opportunities to constrain the EOS
at nB > 4n0 from heavy-ion collisions (we note, however,
that there is a possibility to use the deuteron flow at Elab =
16 GeV/nucleon, where some sensitivity is still present; see
Fig. 3). While one could argue that if the EOS is very soft
at lower densities, then the fireball may spend more time at
higher densities and, consequently, flow observables might be
sensitive to those higher densities, in Fig. 3 we already take
a soft EOS at low values of nB when varying the EOS at
nB ∈ (4, 5)n0, and the sensitivity at the nB ∈ (4, 5)n0 region
is still rather small.

Notice that the deuteron flow (for our deuteron production
model see Sec. II C), which in Fig. 3 is divided by 2, can
be measured with the same experimental precision as the
proton flow. Therefore, effectively, deuteron flow is twice
more sensitive to the EOS. Pion flow exhibits a moderate
dependence on the EOS in the nB ∈ (2, 3)n0 region, but at
higher densities it becomes rather insensitive to the EOS at
any collision energy. Naturally, the most precise constraints
can potentially be achieved if one combines experimental data
about proton, deuteron, and pion flow.

Let us now assess these sensitivities quantitatively. For this
purpose, we simulated mid-central (with impact parameter
b = 6 fm) Au + Au collisions at collision energies Elab =
{2, 4, 6, 8} GeV/nucleon. The simulations were run for 50
sets of values of c2

[2,3]n0
and c2

[3,4]n0
(design points), sampled

randomly in the (c2
[2,3]n0

, c2
[3,4]n0

) plane; c2
[4,5]n0

was not varied
and instead was set to equal 0.3, based on our observation
(see Fig. 3) that it does not appreciably influence the flow
at the considered energies. Next, a Gaussian emulator was
used to interpolate between the design points and obtain the
flow dependence on the values of c2

[2,3]n0
and c2

[3,4]n0
, shown

in Fig. 4. In this figure, we observe that at the consid-
ered energies the dependence of v2(y′ = 0) and especially of
dv1/dy′ on c2

s is very well described by a linear approxima-
tion a1 + a2c2

[2,3]n0
+ a3c2

[3,4]n0
, where a1, a2, a3 are regression

coefficients specific to each energy, as long as c2
s is positive.

Based on this, we can summarize the regression coefficients
for protons in Au + Au collisions at b = 6 fm as follows:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

dv1
dy′

∣∣
2 GeV

dv1
dy′

∣∣
4 GeV

dv1
dy′

∣∣
8 GeV

v2|2 GeV

v2|4 GeV

v2|8 GeV

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

≈

⎛
⎜⎜⎜⎜⎜⎜⎝

0.40
0.04

−0.04
0.00
0.04
0.04

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0.35 0.00
0.50 0.14
0.36 0.24

−0.06 0.00
−0.06 −0.03
−0.03 −0.02

⎞
⎟⎟⎟⎟⎟⎟⎠

(
c2

[2,3]n0

c2
[3,4]n0

)
.

(21)

We reiterate that the above relations are rather accurate (with
the coefficient of determination R2 > 0.95) for positive values
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FIG. 3. Sensitivity of flow observables to the EOS in SMASH simulations of Au + Au collisions at impact parameter b = 6 fm. The top
panels (a1)–(c1) show the independent parametrizations of the EOS in three separate density regions; panels (a2)–(c2) show dv1/dy′ for protons
(full circles), deuterons (open circles), π+ (full squares), and π− (open squares); panels (a3)–(c3) show v2(y′ = 0) for protons and deuterons;
panels (a4)–(c4) show v2(y′ = 0) for pions. Note that the deuteron flow is divided by 2 for both dv1/dy′ and v2(y′ = 0), and the points for
deuterons and pions are slightly shifted to the right along the Elab axis for clarity. Results shown within the columns (a)–(c) correspond to
different regions in which c2

s is varied, as can be seen in the top panels; within each column, each EOS (top panels) and the corresponding
simulation results (lower panels) are shown using a separate color (purple, blue, green, orange, and red for c2

s = 0.1, 0.3, 0.5, 0.7, and 0.9,
respectively). Note that we show dv1/dy′ instead of dv1/dy, where y′ is defined in the center-of-mass frame as y′ = y/ybeam, so that y′

beam = ±1
in the center-of-mass frame. No pT cut is imposed.

of c2
s . Note that the numbers in the second matrix on the

right-hand side are effective measures of the sensitivities, i.e.,
they indicate how well a measurement at a given collision
energy constrains the EOS, assuming that there are no other
parameters influencing the flow except the EOS. For example,
measuring proton dv1/dy′ at Elab = 4 GeV/nucleon with an
error bar of 0.01, one obtains c2

[2,3]n0
with the lowest possi-

ble error of around 0.01/0.50 = 0.02, and c2
[3,4n0] with the

lowest possible error of around 0.01/0.14 ≈ 0.07. From the

same matrix one can also see that dv1/dy′ measurements are
more constraining for the EOS, even though v2(y′ = 0) is
measured with a better precision, because the sensitivity of
v2(y′ = 0) is lower. Based on both Figs. 3 and 4 as well as
the sensitivity matrix in Eq. (21), one can see that the EOS
for nB ∈ (2, 3)n0 is mainly constrained by measurements at
lower energies, around Elab = 4 GeV/nucleon, while the EOS
for nB ∈ (3, 4)n0 is mainly constrained by measurements at
higher energies, around Elab = 8 GeV/nucleon.
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FIG. 4. Interpolated dependence of the proton flow in mid-central (with impact parameter b = 6 fm) Au + Au collisions on the speed of
sound at different densities for a series of collision energies Elab = {2, 4, 6, 8} GeV/nucleon; see text for more details.

However, the flow is influenced by parameters other than
the EOS parameters. We can evaluate the importance of vary-
ing these other parameters (often called nuisance parameters)
by finding an equivalent change in the EOS parameters, by
which we mean finding how big of an adjustment in, e.g.,
c2

[2,3]n0
is needed to compensate for the change in flow due

to the variation of nuisance parameters. For example, from
Fig. 18 one can compute that, at Elab = 4 GeV/nucleon, scal-
ing all cross sections down by a factor of 0.6 has an effect
on dv1/dy′ that can be entirely compensated by increasing
c2

[2,3]n0
by around 0.2, as can be seen from Eq. (21). Such

considerations pave the way to a full Bayesian analysis, where
both the EOS parameters and the nuisance parameters are
varied. However, here we do not perform such an elaborate
analysis, given that a computational effort of such a scale
should be motivated by a preliminary exploratory study which
we provide in this work. Thus we restrict ourselves to varying
the EOS parameters and only roughly estimate systematic
errors due to the nuisance parameters.

IV. RESULTS

A. Using both E895 and STAR data

Let us start the discussion of our results by reviewing
the experimental data that we want to fit to constrain the
EOS. We use the flow data from the E895 Collaboration,

measured at Elab = {2, 4, 6, 8} GeV/nucleon (
√

sNN =
{2.7, 3.3, 3.8, 4.3} GeV) [28,29], as well as the recent data
from the STAR Collaboration at

√
sNN = {3, 4.5} GeV, span-

ning the collision energy region where the flow is most
sensitive to the variation of the EOS above nB = 2n0 (as
already shown in Fig. 3). Let us briefly summarize possi-
ble systematic differences between measurements from these
two experiments. The centrality selection in the E895 exper-
iment was done by considering events with charged particle
multiplicities M belonging to a given range of fractions of
Mmax, where Mmax is the value near the upper limit of the
M spectrum at which the height of the distribution has fallen
to half of its plateau value. The data presented by the E895
Collaboration are for events with charged particle multiplic-
ity between 0.5Mmax and 0.75Mmax, which by comparisons
to models was found to correspond to an impact parameter
b = 5–7 fm [28,29]. This impact parameter estimation may
be imprecise, but we can estimate the error due to a shift in b
of ±1 fm by using simulation results presented in Fig. 5: for
example, at Elab = 4 GeV/nucleon, varying b from 5 to 7 fm
is equivalent to a decrease in the proton dv1/dy′ of around
0.05, which can be compensated by increasing c2

[2,3]n0
by

around 0.1, as can be seen from Eq. (21). The STAR centrality
selection at

√
sNN = 3 GeV is 10–40%, which is found [51] to

correspond to b = 4.7–9.3 fm. At
√

sNN = 4.5 GeV, the cen-
trality selection for calculating v1 is 10–25%, corresponding
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FIG. 5. Impact parameter dependence of the proton flow in Au +
Au collisions as simulated in SMASH. At nB ∈ (0, 2)n0, the mean-
field is parametrized to reproduce the default Skyrme EOS, while
at higher densities the mean-field is parametrized to yield c2

s [nB ∈
(2, 3)n0] = 0.1 and c2

s [nB > 3n0] = 0.3. Notice that the decrease of
|v2|(y′ = 0) in peripheral collisions is typical for potentials without
explicit momentum-dependent terms, such as the one we employ in
this work. With momentum-dependent terms, |v2|(y′ = 0) exhibits
a monotonic growth against b and attains large values in peripheral
collisions; see Fig. 4 of [38]. Which of these scenarios is realized in
nature remains to be tested, which will provide strong constraints for
the momentum-dependent potential terms.

to b = 4.7–7.4 fm, while for v2 it is 0–30%, corresponding
to b = 0.0–8.1 fm. These differences in centrality selection,
along with differences in cuts on the transverse momentum
pT , are summarized in Table I.

TABLE I. Comparison of different experimental conditions for
flow measurements [28,29,32,33].

Data Elab (GeV)
√

sNN (GeV) b (fm) pT cut (GeV)

E895 2 2.7 5–7 [0.1, 2.0]
E895 4 3.4 5–7 [0.1, 2.0]
E895 6 3.8 5–7 [0.2, 2.0]
E895 8 4.3 5–7 [0.4, 2.0]
STAR 2.9 3.0 4.7–9.3 [0.4, 2.0]
STAR 8.9 4.5 v1: 4.7–7.4 [0.4, 2.0]

v2: 0.0–8.10

(a)

sNN
1/2  [GeV] 3 3.5 4 4.5

dv
1/d

y'

0
0.1

0.2

0.3

0.4

0.5

(b)

E895
STARv 2

(y
' =

 0
)

−0.06
−0.04
−0.02

0
0.02
0.04

Elab [GeV/nucleon]
102 5

FIG. 6. Comparison of E895 [28,29] and STAR measurements
[32,33] for dv1/dy′ (a) and v2(y′ = 0) (b) of protons. While the cen-
trality selection and the used pT cuts are not identical (see Table I),
we find that correcting for these factors cannot explain the apparent
discrepancy in the dv1/dy′ measurements.

Looking at the flow measurements shown in Fig. 6, one
can see an apparent disagreement between the experiments.
It is valid to ask whether they can be explained by a dif-
ference in the centrality or pT selections. We find that they
cannot, although to make this conclusion we have to rely on
simulations. Our analysis shows that changing the lower pT

bound from 0.4 to 0.1 GeV (as used in the E895 experiment)
would lower the STAR dv1/dy′ at

√
sNN = 3 GeV, making

it closer to the E895 data. However, the magnitude of this
change does not exceed 0.05 (see Fig. 7), which is insuffi-
cient to explain the discrepancy. Decreasing the upper bound
on the centrality selection for STAR at

√
sNN = 3 GeV can

only increase dv1/dy′ (see Fig. 5), and therefore increase the
discrepancy. This makes us conclude that there is a substantial
disagreement between the E895 and the STAR flow data,
even after taking into the account that they are measured at
somewhat different centrality and pT cuts.

Given this disagreement in the experimental data, we de-
cide to perform two analyses. First, we try to find a range
of the EOS parameters that allows one to roughly encompass
both the E895 and the STAR proton flow data. For this pur-
pose we simulate Au + Au collisions at b = 6 fm and vary
only c2

[2,3]n0
and c2

[3,4]n0
, keeping fixed the default Skyrme

parametrization at lower densities (see Sec. II B for more
details). Both varied parameters are allowed to take any values
in the range c2

s ∈ [−1, 1].
We note here that because a negative speed of sound

squared cannot occur in equilibrated matter, regions of the
phase diagram where it appears in calculations are often “cor-
rected” by performing the Maxwell construction. At the same
time, c2

s (nB, T = 0) < 0 simply corresponds to a negative
slope of the pressure as a function of density, which occurs
when the potential U (nB) becomes attractive within a certain
density range. This in turn indicates that the system is unsta-
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(a)

√s = 3 GeV, b = [4.7, 9.3] fm, protons
pT = [pT

low, 2.0] GeV
dv

1/d
y'

0.35

0.4

0.45

0.5

(b)

v 2
(y

'=
0)

−0.02

−0.01

pT
low [GeV]

0 0.2 0.4 0.6 0.8 1

K0 = 300 MeV
c[2,3]

2  = 0.47, c2
[3,4] = -0.08

FIG. 7. Influence of the lower pT cut on proton dv1/dy′ (a) and
v2(y′ = 0) (b) at collision energy

√
sNN = 3 GeV; we note that in

the simulations, we used an EOS parametrized with the maximum
a posteriori probability parameters K0, c2

[2,3]n0
, c2

[3,4]n0
, which we

will discuss in the following. The shown dependency suggests that
the difference between E895 and STAR measurements at

√
sNN ≈

3 GeV cannot be ascribed to different pT cuts applied by the experi-
ments; see Table I.

ble and that, given sufficient time, a phase separation would
eventually take place; in fact, it has been shown that such a
phase separation indeed occurs in hadronic transport models
employing the corresponding mean-field interactions (for a re-
cent study, see [39] or [52]). Therefore let us stress, especially
in the context of hadronic transport simulations which are well
suited for evolving systems out of equilibrium, that there is
nothing inherently wrong in an EOS leading to a negative
c2

s (nB, T = 0), as it simply indicates that the particle-particle
interactions are on average attractive. Whether a phase sep-
aration indeed occurs in that case within heavy-ion collision
simulations depends on multiple factors, including the average
duration of the collision, the characteristic time for spinodal
decomposition, and the average temperature reached in the
collision region; nevertheless, regardless of a phase transition
occurring or not, the interactions affect the evolution of the
system and, consequently, the obtained values of dv1/dy′ and
v2(y′ = 0).

We start our analysis by assuming prior distributions of the
EOS parameters c2

[2,3]n0
and c2

[3,4]n0
to be uniform, and use the

degree of agreement between the experimental data and sim-
ulations utilizing sampled sets of parameters to infer posterior
distributions, that is, conditional distributions of parameters
given the measurements. In Fig. 8, we show priors (top) and
posteriors (bottom) from analysis employing both E895 and
STAR data, where the posteriors were selected by restricting
the spread in simulation results for dv1/dy′(Elab) and v2(Elab)
to encompass most of available data. The plot of c2

s against
density, showing all EOSs used in the current analysis (top
left panel), has three characteristic regions: (i) for nB < 2n0,
the speed of sound squared follows the behavior given by
the default Skyrme EOS for all used EOSs; (ii) for nB >

4n0, c2
s assumes a constant value of 0.3 for all used EOSs;

(iii) for nB ∈ (2, 3)n0 and nB ∈ (3, 4)n0, thin horizontal grey
lines indicate values of c2

s in the corresponding regions that
were used in the current analysis, having been sampled uni-
formly in the respective regions. The colorful straight lines
joining the horizontal lines for nB ∈ (2, 3)n0 and nB ∈ (3, 4)n0

indicate particular combinations of the values of c2
[2,3]n0

and
c2

[3,4]n0
used in a given EOS, with the colors continually chang-

ing depending on the values connected; for example, blue
lines represent EOSs with considerably negative values of
c2

[2,3]n0
and large positive values of c2

[3,4]n0
. The same color

coding is used in the plots showing flow results for all con-
sidered EOSs (top middle and right panels). In the posterior
plot for c2

s (bottom left panel) we emphasize two of the shown
EOSs: An orange thick line represents an EOS that is very
stiff at nB ∈ (2, 3)n0 and very soft at nB ∈ (3, 4)n0, and that
can describe v2 from both experiments as well as dv1/dy′
from STAR, but not dv1/dy′ from E895 (see bottom middle
and right panels). In contrast, a thick grey line represents
an EOS that is moderately soft both at nB ∈ (2, 3)n0 and at
nB ∈ (3, 4)n0, and that can describe the dv1/dy′ from E895.
(We also note here that, based on Fig. 8, one can see that a
negative c2

[2,3]n0
tends to generate dv1/dy′ < 0, which is in

agreement with a known result from hydrodynamics that a
phase transition in the EOS can lead to a negative dv1/dy′
[18]. As we mentioned in the Introduction, one can intuitively
interpret this as the fireball acting like an attractive spring on
the spectators, causing them to be “deflected inwards.”)

Our broad prior, shown in the upper left panel of Fig. 8,
covers a large range of proton dv1/dy′ and v2(y′ = 0). Even
though the substantial disagreement between the E895 and
the STAR data makes a precise fit difficult, our posterior
distribution restricts possible EOSs to ones with c2

[2,3]n0
> 0.1.

Nevertheless, the most important conclusion from this anal-
ysis is that we cannot simultaneously describe the dv1/dy′
and v2(y′ = 0) measurements obtained by the E895 ex-
periment. The E895 dv1/dy′ data prefer softer potentials,
while the E895 v2 data prefer harder ones. This result is
in agreement with the conclusion from the seminal work
[6], where an attempt was made to describe the same data
using a different hadronic transport code (known as PBUU

[37,38]) and varying the stiffness of the EOS by changing the
incompressibility K0.

B. Using only STAR data

Given the difficulty to simultaneously describe the E895
dv1/dy′ and v2(y′ = 0) results, as well as the discrepancy be-
tween the E895 and the STAR data, a more rigorous Bayesian
analysis with more parameters is unlikely to be helpful if
one analyzes both the E895 and the STAR data together. In
that case, the final constraint will depend strongly on the sys-
tematic errors of the E895 experiment, which are not shown
in [28,29]. Therefore we decided to try discarding the older
E895 data from our fit and focus only on the recent STAR
proton flow data. The centrality selection and the pT cut in our
simulations are the same as those for the STAR experiment,
listed in Table I. This time, we vary three parameters: the
incompressibility K0, which controls the curvature of E/nB
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FIG. 8. Priors (top) and posteriors (bottom) from analysis employing both E895 and STAR data, where the posteriors were selected by
restricting the spread in simulation results for dv1/dy′(Elab ) and v2(Elab ) to encompass most of the available data. The plot of c2

s against
density in the (a1) panel, showing all EOSs used in the current analysis, has three characteristic regions: for nB < 2n0, the speed of sound
squared follows the behavior given by the default Skyrme EOS; for nB > 4n0, c2

s assumes a constant value of 0.3; for 2n0 < nB < 3n0 and
3n0 < nB < 4n0, thin horizontal grey lines indicate values of c2

s in the corresponding region used in the current analysis. The colorful lines
joining the horizontal lines for 2n0 < nB < 3n0 and 3n0 < nB < 4n0 indicate particular combinations of the values of c2

[2,3]n0
and c2

[3,4]n0
used,

with the colors continually changing depending on the values connected. Lines of the same color on all panels correspond to the same
combination of c2

[2,3]n0
and c2

[3,4]n0
; panels (a1) and (a2) serve as a color legend. By looking at the thick posterior lines, panels (b2) and (c2),

one can see that it is not possible, within our model, to fit all experimental data with a single EOS: v2 needs a harder EOS and dv1/dy′ from
E895 needs a softer one.

[and, therefore, U (nB)] at nB = n0 (for the other two con-
straints of the Skyrme EOS we take n0 = 0.166 fm−3 and
Ebin = −15.65 MeV), c2

[2,3]n0
, and c2

[3,4]n0
. For nB > 4n0, c2

s
is fixed at 0.3. To infer the probability distributions of the
parameter values, we use the JETSCAPE statistical framework
for Bayesian analysis introduced and applied in [53].

In Fig. 9 one can see that, in contrast to the case includ-
ing the E895 experiment data, our model can fit both the
dv1/dy′ and the v2(y′ = 0) measurements from the STAR
experiment. The posterior distribution of the parameters is
shown in Fig. 10. The incompressibility K0 is not very well
constrained by the data, which was expected as the STAR
collision energies (and similarly the E895 collision energies)
mainly probe densities nB > 2n0, while a much stronger con-
straint on K0 can be obtained from lower energy experiments
[24] (an extensive discussion of current constraints on K0 can
be found in [54]; however, see also [55]). Nevertheless, we
can see in Fig. 10 that there is a clear anticorrelation between
K0 and c2

[2,3]n0
, i.e., that a stiffer EOS at lower densities may

be compensated by a somewhat softer EOS at higher densi-
ties. Moreover, c2

[2,3]n0
is rather strongly constrained, mainly

by the STAR
√

sNN = 3 GeV data, while c2
[3,4]n0

is mainly

constrained by the STAR
√

sNN = 4.5 GeV data (see Fig. 3
and the accompanying description in the text).

FIG. 9. Priors (red dashed lines) and posteriors (blue solid lines)
obtained using the STAR proton flow measurements.
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FIG. 10. Posterior parameter distribution obtained using the
STAR proton flow measurements. The maximum a posteriori proba-
bility (MAP) parameters are K0 = 285 ± 67 MeV, c2

[2,3]n0
= 0.49 ±

0.13, c2
[3,4]n0

= −0.03 ± 0.15.

The maximum a posteriori probability (MAP) parame-
ters are K0 = 285 ± 67 MeV, c2

[2,3]n0
= 0.49 ± 0.13, c2

[3,4]n0
=

−0.03 ± 0.15. Given this result, we conclude that the recent
STAR proton flow measurements indicate a very hard po-
tential at nB ∈ (2, 3)n0, followed by a substantial softening
at nB ∈ (3, 4)n0. Indeed, in Fig. 11, showing a scatter plot
of the pressure as a function of baryon density for 50 000
EOSs obtained by sampling K0, c2

[2,3]n0
, and c2

[3,4]n0
from the

FIG. 11. Scatter plot of the pressure as a function of baryon
density, obtained with 50 000 EOSs with K0, c2

[2,3]n0
, and c2

[3,4]n0

sampled from the posterior distribution. The solid line corresponds to
the mean of the pressures, while the thick and thin dashed line corre-
sponds to the ±1σ and ±3σ contours around the mean, respectively.

posterior distribution and putting c2
[4,+∞]n0

= 0.3 (we stress
here that it was not possible to constrain the values of c2

s for
nB > 4n0 within our study, see Sec. III for more details), one
can see that the pressure prefers a substantial softening for
nB ∈ (3, 4)n0.

A negative c2
[3,4]n0

[or, equivalently, a negative slope of
pressure for nB ∈ (3, 4)n0] is a sign that the EOS exhibits a
first-order phase transition in that region. Using the thermo-
dynamics of the model (see Appendix C), one can identify
the critical temperature for the EOS with the MAP parameters
at Tc ≈ 70 MeV. At the same time, an EOS with c2

[3,4]n0
=

−0.18, which is a value smaller by 1σ than the central value,
corresponds to a critical temperature of Tc ≈ 260 MeV, while
an EOS with the value of c2

[3,4]n0
larger by 1σ than the central

value, c2
[3,4]n0

= 0.12, does not lead to a first-order phase tran-
sition at all, although it still displays a significant softening.
This is, of course, a very large spread of possible thermo-
dynamic properties of dense nuclear matter in this region.
Drawing firm conclusions on the EOS using our study is
further complicated by the lack of momentum-dependent in-
teractions in our model. In particular, since at higher energies
momentum-dependent interactions are repulsive, describing
the experimental results using a model without momentum-
dependence leads to a spuriously stiff EOS. If this effect is
substantial for nB ∈ (2, 3)n0, then we can see from Fig. 10
that a very stiff EOS at nB ∈ (2, 3)n0 can induce a very soft
EOS at nB ∈ (3, 4)n0. Since it is unclear to what extent the
stiffness of the EOS for densities nB ∈ (2, 3)n0 is caused by
the the lack of momentum-dependent interactions, we remain
cautious about making strong conclusions on the EOS.

Nevertheless, taking our results at their face value, we
see that they imply a substantial softening of the EOS at
large baryon densities. One may ask whether this result is
consistent with the current knowledge of the EOS based on
neutron star data [56–59], which indicates a very stiff EOS at
moderate densities, including a local maximum in the speed
of sound at which c2

s > 1/3, and significantly disfavors large
softening of the EOS that inevitably arises when a first-
order phase transition is present. Importantly, the differences
between symmetric (heavy-ion collisions) and asymmetric
nuclear matter (neutron stars) should not be overlooked. To
test the influence of the symmetry energy on the behavior of
c2

s as a function of density, we take a simple expansion of the
symmetry energy around n = n0 (see Appendix E for more
details) and use it to transform the speed of sound squared
extracted from our analysis, calculated for exactly symmetric
nuclear matter, to the speed of sound squared in pure neutron
matter. Given the uncertainty in estimates for the value of
the symmetry energy slope parameter, we test three values
of L corresponding to the central and central ±1σ values,
which, taking L = 58.7 ± 28.1 MeV [60] (see also [61]),
means that we use L = {30.6, 58.7, 86.6} MeV. In the top
panel of Fig. 12, the c2

s in symmetric nuclear matter, calculated
using the central values of the MAP parameters (that is for
K0 = 285 MeV, c2

[2,3]n0
= 0.49, c2

[3,4]n0
= −0.03, and setting

c2
[4,∞]n0

= 0.3), is shown with the black solid line. With yellow
long-dashed, green dash-dotted, and short-dashed blue lines
we show the corresponding results for pure neutron matter,
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FIG. 12. Top panel: The speed of sound c2
s calculated for the

central values of the MAP parameters for both exactly symmet-
ric nuclear matter (solid black line) and pure neutron matter, the
latter obtained using three values of the slope parameter of the
symmetry energy L (yellow long-dashed, green dash-dotted, and
blue short-dashed lines); a smaller (bigger) L results in a smaller
(bigger) c2

s in pure neutron matter. Note that, for all values of L
used, the transformation to pure neutron matter results in a disap-
pearance of the first-order phase transition. Bottom panel: The speed
of sound c2

s for exactly symmetric nuclear matter at three values
of c2

[3,4]n0
= {0.12, −0.03, −0.18} (thick black long-dashed, medium

solid, and thin short-dashed line, respectively), corresponding to
the central MAP value and values at ±1σ , and c2

s in pure neutron
matter obtained using a high value of L for SYM1 (ASYM1, thick
yellow long-dashed line) and a low value of L for SYM3 (ASYM3,
thin short-dashed blue line). The spread between the ASYM1 and
ASYM3 curves illustrates the uncertainty in c2

s in pure neutron matter
at nB ∈ [3, 4]n0 given both the uncertainty in our results and the
uncertainty in the value of L.

using the three values of the slope parameter of the symmetry
energy L. It is evident that a smaller (bigger) L results in a
smaller (bigger) c2

s in pure neutron matter. Note that for all
values of L used, the transformation to pure neutron matter
results in a disappearance of the first-order phase transition.
In the bottom panel, we show c2

s for exactly symmetric nu-
clear matter at three values of c2

[3,4]n0
= {0.12,−0.03,−0.18}

(thick black long-dashed, medium solid, and thin short-dashed
line, respectively), corresponding to the central MAP value
and boundary values within 1σ . For the pure neutron matter,
we show two curves of c2

s , obtained using a high value of

L for SYM1 (ASYM1, thick long-dashed yellow line) and a
low value of L for SYM3 (ASYM3, thin short-dashed blue
line). The spread between the ASYM1 and ASYM3 curves
illustrates the uncertainty in the speed of sound in pure neu-
tron matter at nB ∈ [3, 4]n0 given both the uncertainty in our
results and the uncertainty in the value of the slope parameter
L. We note here that this spread might be even larger given the
large values of the symmetry energy slope parameter reported
by the PREXII experiment, L = 106 ± 37 MeV [62]. We also
point out that recently, an extensive study was performed in
which the influence of the symmetry energy expansion pa-
rameters on the conversion between neutron matter EOS and
symmetric matter EOS was studied in detail [63].

Based on the above discussion, we see that in general a lack
of a first-order phase transition in pure neutron matter does
not exclude a first-order phase transition in exactly symmetric
nuclear matter, and in particular we conclude that while there
is some tension between our results and the neutron star data,
the discrepancy is not significant. Given both the obtained
statistical uncertainty of our results and the fact that the study
we present is minimal, at this point we do not claim that there
indeed is a first-order phase transition in exactly symmetric
nuclear matter around nB ∈ [3, 4]n0, but rather we point out
that such a possibility is consistent with the range if possible
EOSs indicated by our study.

With the symmetry energy expansion, we can explore not
only the behavior of the speed of sound, but also of the
pressure in pure neutron matter. In Fig. 13, we show pressure
in pure neutron matter as a function of baryon density for 50
EOSs sampled from the posterior distribution, calculated us-
ing two limiting values of the slope parameter, L = 30.6 MeV
(blue solid lines) and L = 86.8 MeV (orange solid lines). Also
shown are some of the constraints on the pressure from other
works: the seminal constraint from [6] for soft (grey shaded
area) and stiff (yellow shaded area) asymmetry energy, a con-
straint based on an analysis of the NICER measurements of
the J0740 pulsar [64] (area with grey backward stripes), and a
constraint from a theoretical analysis utilizing chiral effective
field theory coupled with quantum Monte Carlo methods and
constrained by observational data on massive pulsars, gravita-
tional waves, and the recent NICER measurement [65] (area
with green forward stripes). It is evident that, compared to [6],
our results favor a much stiffer EOS at lower densities and a
somewhat softer EOS at higher densities. The idea that such
an EOS would be successful in describing the data was already
suggested, although not explored, in [6]. In particular, we see
that the posterior EOSs obtained using a stiff slope parameter
are largely consistent with the EOS as inferred by [65].

In Fig. 14, we show pressure in pure neutron matter as
a function of energy density, where the curves showing the
constraint obtained in this work have been obtained in the
same fashion as for Fig. 13. Additionally, we show limits
obtained from two analyses using an interpolation of the
EOS at intermediate densities together with perturbative QCD
constraints, [66] (area with green forward stripes) and the
more recent [67] (maroon shaded area). Interestingly, here the
EOSs from our softer set are more consistent with the tighter
constraint of [67] for energy densities E � 300 MeV fm−3, or
equivalently for densities nB � 2n0, but conversely, the EOSs
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FIG. 13. Pressure in pure neutron matter as a function of baryon
density for 50 EOSs sampled from the posterior distribution, cal-
culated using two limiting values of L: L = 30.6 MeV (blue solid
lines) and L = 86.8 MeV (orange solid lines). Also shown are the
previous constraints based on heavy-ion data from [6], likewise cal-
culated for a soft (grey shaded region) and a stiff (yellow shaded
region) symmetry energy, as well as a constraint based on the recent
NICER analysis of the J0740 pulsar measurement [64] (area with
grey backward stripes) and a constraint based on a global analysis of
available neutron star data [65] (area with green forward stripes).

from the tighter set are more consistent with that constraint at
E � 500 MeV fm−3, or equivalently for nB � 3n0. This sug-
gests an interesting possibility that the symmetry energy could
be softer at moderate densities and harder at large densities.

Finally, let us stress that our results for nB � 4n0 in
Figs. 11–14 originate from using c2

[4,∞]n0
= 0.3, a value that

we set ad hoc due to the lack of a constraint from heavy-ion
collisions.

V. SUMMARY AND DISCUSSION

In this work, we performed a Bayesian analysis of the flow
data from heavy-ion collision experiments using hadronic
transport simulations. Within our framework, the mean-field
potentials can be freely parametrized by the density de-
pendence of the speed of sound squared at T = 0 and the
incompressibility of nuclear matter, K0. To constrain the
EOS, we choose a piecewise parametrization of the speed of
sound squared c2

s in which c2
s [nB < 2n0] is that of a Skyrme

model (with stiffness controlled by varied values of K0),
while c2

s [nB ∈ (2, 3)n0] and c2
s [nB ∈ (3, 4)n0] assume constant

values sampled from the interval [−1, 1]; for nB > 4n0, we
assume c2

s [nB > 4n0] = 0.3 (see Sec. II B for details). After
assessing the sensitivity of the flow measurements to the EOS
(Sec. III), we put a constraint on the dense nuclear matter EOS

FIG. 14. Pressure in pure neutron matter as a function of energy
density for 50 EOSs sampled from the posterior distribution, calcu-
lated using two limiting values of L: L = 30.6 MeV (blue solid lines)
and L = 86.8 MeV (orange solid lines). Also shown are constraints
obtained in two analyses using an interpolation of the EOS at inter-
mediate densities together with perturbative QCD constraints: [66]
(area with green forward stripes) and the more recent [67] (maroon
shaded area).

by performing a Bayesian analysis of simulation results and
experimental data (Sec. IV). Our study leads us to make the
following conclusions:

(i) Flow observables at
√

sNN = 2.5–5 GeV are very
sensitive to the dense nuclear matter EOS at nB ∈
(2, 4)n0. While lower densities can be studied by
means of collisions at lower energies, there is almost
no possibility to constrain the EOS at baryon densities
nB > 4n0 from AA collisions, at least based on the
analysis of flow observables. A similar conclusion
was obtained in a concurrent URQMD study [8].

(ii) In particular, we find that the proton flow can yield a
very tight constraint on the EOS, and an even better
constraint can be obtained from the deuteron flow for
which the sensitivity to the EOS is twice as large as
that for protons. To a lesser extent, pion flow can also
be used to help constrain the EOS.

(iii) Even given a large freedom to vary the EOS dif-
ferentially in different density regions, we cannot
describe the E895 proton flow data: dv1/dy′ prefers
a relatively soft EOS while v2(y′ = 0) prefers a
harder one. However, the more recent STAR data,
which additionally seems to be in disagreement with
the E895 data, can be described within our model,
yielding K0 = 285 ± 67 MeV, c2

[2,3]n0
= 0.49 ± 0.13,

c2
[3,4]n0

= −0.03 ± 0.15 and thus indicating a very
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hard EOS at nB ∈ (2, 3)n0 and a possible phase tran-
sition at nB ∈ (3, 4)n0.

(iv) While the obtained set of EOS parameters results
in simulations that reproduce experimental measure-
ments, the extraction of the EOS performed in this
work is not definitive given the substantial systematic
uncertainties of the model originating from the ab-
sence of momentum-dependent potentials. Additional
contributions to the uncertainty may come from the
choice of the deuteron production model, absence
of light nuclei other than deuterons in the model,
absence of isospin-dependent and Coulomb interac-
tions, and other sources, including technical details of
the simulation.

The possibility of a very stiff EOS at relatively low den-
sities above the nuclear saturation density, which our study
suggests, is supported by analyses of neutron star EOSs
[56–59], where the strongest experimental astrophysical con-
straint comes from the existence of neutron stars with masses
above two solar masses [68–71]. On the other hand, our
finding of a relatively soft EOS at moderate densities, nB ∈
(3, 4)n0, seems to create some tension with neutron star stud-
ies. However, we stress that we only constrain a symmetric
nuclear matter EOS. To obtain the neutron star EOS, knowl-
edge of the isospin dependence of the EOS is necessary; while
to some extent one can use the symmetry energy expansion to
perform this transformation, at this time the coefficients of the
expansion still carry significant uncertainties, and addition-
ally the expansion might only be valid at moderate densities,
leaving the behavior of the symmetry energy at high baryon
densities largely unknown. Given this uncertainty and the
statistical uncertainty from our Bayesian analysis (see Fig. 12)
as well as the systematic uncertainty of our model, we see
the tension between our results and the neutron star data as
not significant. However, it may become meaningful if the
mentioned uncertainties decrease.

Our statistical uncertainties can be improved by certain
future measurements, assuming that the model will be able to
describe them simultaneously. In particular, flow systematics
measured at several energies within

√
sNN = 2.5–5 GeV, that

is, the centrality, y, and pT dependences of flow measured for
different hadron species (proton, lambda, deuteron, pion, etc.),
will decrease statistical errors of the fit, and also allow one
to make the EOS parametrization more differential. We also
expect that there is a potential for constraining the EOS using
measurements of Hanbury-Brown–Twiss (HBT) correlations
and dilepton spectra. Describing these measurements will also
require improvements of the model, leading to reduced sys-
tematic errors.

The systematic errors of our simulations can only be al-
leviated by improvements of the approach itself. In Sec. II C
and Appendix D, we discuss in detail the known weak points
of our model and the possible influence of its technical and
theoretical features on the results. In particular, while we
found that varying the EOS has a large effect on the sim-
ulation results in the studied energy region, other details of
the simulation, not constrained within this study, also lead
to non-negligible effects, implying substantial systematic er-

rors. Most importantly, momentum-dependent potentials are
missing from our approach. While their inclusion is crucial
for a differential analysis of flow measurements (e.g., the pT

dependence of v2), their absence in our model introduces
a substantial systematic error for integrated flow as well.
The next important sources of the systematic error are the
deuteron production model as well as not including light
nuclei other than deuterons. Furthermore, Coulomb interac-
tions and isospin-dependent potentials were not present in the
used model. While their effects seem to be rather small at
the studied energies, inclusion of these potentials is required
for an accurate assessment of the magnitude of the effect.
They would also be required for simulations at lower ener-
gies constraining the EOS at densities nB < 2n0, including
meaningfully constraining K0. Further, some of the incurred
systematic errors could be estimated by performing compar-
isons between different transport simulations, where we note
that for the error estimate to be meaningful it would be im-
portant to establish a set of minimum requirements that each
such simulation should satisfy, such as sufficiently accurate
energy and momentum conservation, reasonable relativistic
properties, and reproducing measured particle yields or spec-
tra. Many such comparisons are done within the Transport
Model Evaluation Project; see [72] for a review and further
references. An overview of multiple potential improvements
and research directions in transport modeling was recently
provided in [73].

In summary, while future improvements on this work are
possible both from the theoretical and the experimental side,
our current results prove that flow measurements are very
sensitive to the underlying EOS at densities nB ∈ (2, 4)n0

and that, with a better control of the simulations and of the
EOS as well as a more expansive Bayesian analysis, they can
potentially put a very tight constraint on the EOS of nearly
symmetric nuclear matter. Supported by model developments
and together with studies of the EOS in neutron stars as well as
future tighter constraints on the symmetry energy, heavy-ion
data have the power to constrain the EOS of nuclear matter
within a sizable region of the QCD phase diagram.
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APPENDIX A: THE TEST-PARTICLE ANSATZ

In this Appendix we obtain the test-particle equations of
motion, Eqs. (7) and (8), by employing the standard test parti-
cle ansatz. We base this derivation on a more general case for
off-shell particles which can be found in [74].

As already seen in Eq. (5), the eight-dimensional distribu-
tion function f (x, p) can be written as

f (xμ, pμ) = κ (�μ) f̃ (xμ, p), (A1)

where κ (�μ) is a factor ensuring that the momenta in the
system are on shell,

κ (�μ) = 2(2π )	(�0)δ(�μ�μ − m2), (A2)

and the continuous distribution f̃ is approximated by the test-
particle ansatz, Eq. (6), repeated here for convenience with the
suppressed index i,

f̃ (x, p) = 1

NT

NT N∑
j=1

δ(3)(x − x j (t ))δ(3)(p − p j (t )). (A3)

Substituting Eq. (A1) into the Vlasov equation [that is,
the Boltzmann equation, Eq. (3), with the vanishing collision
term, Icoll = 0], results in

κ
[
�μ∂μ

x f̃ + �ν

(
∂x
μAν

)
∂μ

p f̃
]

+ f̃
[
�μ∂μ

x κ + �ν

(
∂x
μAν

)
∂μ

p κ
] = 0. (A4)

We rewrite the expression in the first square bracket by explic-
itly separating the zeroth components of the four-vectors,

�0∂
0
x f̃ + �ν

(
∂x

0 Aν
)
∂0

p f̃

+ �i∂
i
x f̃ + �ν

(
∂x

i Aν
)
∂ i

p f̃ . (A5)

From Eq. (A3) it is clear that ∂ f̃ /∂ p0 = 0 and d f̃ /dt = 0,
with the latter allowing one to write ∂ f̃ /∂t as

∂ f̃

∂t
= −

(
dxk

dt

∂

∂xk
+ d pk

dt

∂

∂ pk

)
f̃

= 1

NT

NT N∑
j=1

(
−dxk

dt
∂x

k − d pk

dt
∂

p
k

)

× δ(3)(x − x j )δ
(3)(p − p j ). (A6)

Altogether, the Vlasov equation becomes

κ
1

NT

NT N∑
j=1

[(
�i − �0

dxi

dt

)
∂x

i

+
(

− �0
d pi

dt
+ �ν

(
∂ i

xAν
))

∂
p
i

]

× δ(3)(x − x j )δ
(3)(p − p j )

+ f̃
[
�μ∂μ

x κ + �ν

(
∂x
μAν

)
∂μ

p κ
] = 0. (A7)

The above equation will be always satisfied if, for ev-
ery test particle j, the following sufficient conditions

are met:

d (x j )i

dt
= (� j )i

(� j )0
, (A8)

d (p j )i

dt
= (� j )ν

(� j )0

(
∂ i

xAν

)
, (A9)

(� j )
μ(� j )μ = m2, (A10)

where the last condition ensures that κ = const and, therefore,
f̃ [�μ∂μ

x κ + �ν (∂x
μAν )∂μ

p κ] = 0.
To bring Eqs. (A8) and (A9) into a fully relativistic form,

we first note that we can always write (here and in the follow-
ing we have dropped the index j for clarity)

dx0

dt
= 1 = �0

�0
, (A11)

so that we can immediately write

dxμ

dt
= �μ

�0
, (A12)

obtaining the same form as given in Eq. (7). Similarly, using

p0 = �0 + A0 =
√

(p − A)
2 + m2 + A0, we can write

d p0

dx0
= �i

�0

∂Ai

∂x0
+ ∂A0

∂x0
= �ν

�0

∂Aν

∂x0
, (A13)

which can be combined with Eq. (A9) to yield

d pμ

dt
= �ν

�0

(
∂μ

x Aν
)
. (A14)

By substituting pμ = �μ + Aμ and using

dAμ

dt
= dxν

dt

∂Aμ

∂xν

= �ν

�0

(
∂ν

x Aμ
)
, (A15)

we obtain

d�μ

dt
= �ν

�0

(
∂μ

x Aν − ∂ν
x Aμ

)
. (A16)

Finally, defining

Fμν ≡ ∂μ
x Aν − ∂ν

x Aμ, (A17)

we obtain

d�μ

dt
= �ν

�0
Fμν, (A18)

which agrees with Eq. (8).
It is worth noting that Eqs. (7) and (8) are analogous to the

relativistic equations of motion of a charge in an electromag-
netic field, where the crucial difference in our case is that the
role of the field is played by the self-consistently calculated
baryon four-current instead of an external field. Indeed, it is
possible to rewrite Eq. (8) in the form

d�

dt
= [−∇A0 − ∂0A] + �

�0
× (∇ × A), (A19)

further underscoring the analogy (a detailed derivation of
the above standard result can be found in Appendix I.4 of
[52]).
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APPENDIX B: DERIVATION OF THE FOUR-CURRENT
AND THE ENERGY-MOMENTUM TENSOR

This derivation largely follows [75], with two modifi-
cations: in our case the vector field Aμ has no explicit
momentum dependence, and instead we are dealing with an
arbitrary dependence of Aμ on density.

We start with the BUU equation, Eq. (3), repeated here
in a simplified notation without the index i enumerating the
particle species,

�μ∂μ
x f + �ν

(
∂x
μAν

)
∂μ

p f = Icoll, (B1)

where f = f (x, p). We define V = 1
2 (�μ�μ); using �μ =

pμ − Aμ(x), we notice that

∂ p
μV = �μ and ∂x

μV = −�ν

(
∂x
μAν

)
, (B2)

by means of which we rewrite the BUU equation as(
∂ p
μV

)
∂μ

x f − (
∂x
μV

)
∂μ

p f = Icoll. (B3)

To obtain the four-current, we integrate Eq. (B3) over all
possible four-momenta, g

∫
d4 p/(2π )4, where g is the degen-

eracy factor. The collision integral on the right-hand side of
Eq. (B3) vanishes due to particle number conservation (an
easy demonstration of this fact is shown in Appendix H of
[52]), and we are left with

0 = g
∫

d4 p

(2π )4

((
∂ p
μV

)
∂μ

x f − (
∂x
μV

)
∂μ

p f
)

= g
∫

d4 p

(2π )4

((
∂ p
μV

)
∂μ

x f + [
∂μ

p

(
∂x
μV

)]
f
)

= g
∫

d4 p

(2π )4
∂μ

x

[(
∂ p
μV

)
f
]

= ∂μ
x

[
g
∫

d4 p

(2π )4

(
∂ p
μV

)
f

]
, (B4)

where in the second and third equalities we used integration
by parts and ab′ = (ab)′ − a′b, respectively. Recognizing the
above equality as the charge conservation equation ∂μ jμ = 0,
we can identify the four-current as

jμ = g
∫

d4 p

(2π )4

(
∂ p
μV

)
f . (B5)

At this point we turn our attention to the fact that the distri-
bution function f is a function of eight independent variables
f = f (xμ, pμ). One integrates over the energy p0 by explicitly
including the mass-shell condition, Eq. (5), in the expression
for f (x, p):

f (xμ, pμ) = 2(2π )	(�0)δ(�μ�μ − m2) f̃ (xμ, p). (B6)

With the identity δ[g(x)] = ∑
j

δ(x−x j )
|g′(x j )| , where x j are roots of

g(x), the mass-shell condition allows one to write

g
∫

d4�

(2π )4
f (xμ, pμ) = g

∫
d3 p

(2π )3

1

�0
f̃ (xμ, p), (B7)

where �0 =
√

�2 + m2. Consequently, additionally using
Eq. (B2), we can also write the conserved current in the more

well-known form

jμ = g
∫

d3 p

(2π )3

�μ

�0
f̃ . (B8)

The energy-momentum tensor is obtained in a similarly
standard way, that is via multiplying Eq. (B3) by pμ and
integrating over g

∫
d4 p/(2π )4. The integral over Icoll again

vanishes, this time due to the conservation of four-momentum
in collisions (see Appendix H of [52] for a simple demonstra-
tion), and one obtains

0 = g
∫

d4 p

(2π )4

(
pν

(
∂ p
μV

)
∂μ

x f − pν
(
∂x
μV

)
∂μ

p f
)

= g
∫

d4 p

(2π )4

(
∂μ

x

[
pν

(
∂ p
μV

)
f
] − [

∂μ
x pν

(
∂ p
μV

)]
f

+ gμν
(
∂x
μV

)
f + pν

[
∂μ

p

(
∂x
μV

)]
f
)

= ∂μ
x g

∫
d4 p

(2π )4
(�ν + Aν )

(
∂ p
μV

)
f

+ gνμ g
∫

d4 p

(2π )4

(
∂x
μV

)
f , (B9)

where in the first equality we again used ab′ = (ab)′ − a′b and
integration by parts, and in the second equality we substituted
pν = �ν + Aν . Because Aν does not depend on momentum,
we can pull it out of the integrals, which together with
Eq. (B2) and the expression for the conserved four-current,
Eqs. (B5) and (B8), yield

∂μ
x

[
g
∫

d4 p

(2π )4
�ν�μ f + Aν jμ

]
− gνμ jλ

(
∂x
μAλ

) = 0.

(B10)

To extract the energy-momentum tensor from the above ex-
pression, one needs to write the last term as a total derivative.
Recalling that Aλ = α(n) jλ (where we suppress the baryon
charge index B) and jμ jμ = n2, we can write

jλ
(
∂x
μAλ

) = jλ
[
∂x
μα(n)

]
jλ + jλα(n)

[
∂x
μ jλ

]
= n2

[
∂x
μα(n)

] + α(n)

(
1

2
∂x
μ[n2]

)

= ∂x
μ[α(n)n2] − 1

2
α(n)

(
∂x
μ[n2]

)
. (B11)

The second term can be further rewritten as

α(n)n
[
∂x
μn

] =
[

∂

∂n

∫ n

0
dn′ α(n′)n′

][
∂n

∂xμ

]

= ∂

∂xμ

∫ n

0
dn′ n′α(n′). (B12)

Together with Eq. (B11), the above allows one to write
Eq. (B10) as

∂x
μ

[
g
∫

d4 p

(2π )4
�ν�μ f + Aν jμ

− gνμ

(
α(n)n2 −

∫ n

0
dn′ n′α(n′)

)]
= 0. (B13)
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Because the energy-momentum tensor T μν satisfies ∂x
ν T μν =

0, we can immediately identify

T μν = g
∫

d4 p

(2π )4
�μ�ν f + Aμ jν

− gμν

(
nU (n) −

∫ n

0
dn′ U (n′)

)
, (B14)

where we substituted the expression for the single-particle
rest-frame potential as defined in Eq. (19). By using the mass-
shell relation, Eq. (B7), substituting d3 p → d3� (which is
allowed because Aμ does not depend on momentum), and
further using the fact that �μ = pμ − Aμ and the conserved
current jμ is given by Eq. (B8), one finally arrives at

T μν = g
∫

d3�

(2π )3

�μ�ν

�0
f̃ + Aμ jν

− gμν

(
nU (n) −

∫ n

0
dn′ U (n′)

)
. (B15)

The derived T μν agrees term by term with expressions in [39],
where they were derived in the special case of a polynomial
form of α(n).

APPENDIX C: THERMODYNAMICS AND
THERMODYNAMIC CONSISTENCY

One can observe that the energy-stress tensor T μν , de-
rived in Eq. (B15), is symmetric in any frame, and in the
Eckart frame, defined as the frame in which jμ = (n, 0, 0, 0),
it becomes diagonal, T μν = diag(E, P, P, P). In that frame,
Eq. (B8) becomes the well-known expression for the rest
frame density,

n = g
∫

d3 p

(2π )3
f̃ . (C1)

Up to this point, the form of the distribution function f̃ was
not in any way constrained [and, in particular, it could have
been assumed to be given by the test-particle ansatz, Eq. (6),
making our formalism perfect for use in hadronic transport].
However, because now we are describing a system of fermions
in equilibrium, the distribution function f̃ can be assumed
to take the well-known form of the Fermi-Dirac distribution,
where the single particle energy includes the contribution
from the mean-field potential U (n) (see Appendix 1.C in
[39] for a quick derivation, and [76] for a more complete
discussion):

f̃ = (
eβ(�0+U (n)−μ) + 1

)−1
. (C2)

Furthermore, in the Eckart frame the field assumes the
simple form Aμ = δ

μ
0 α(n)n = δ

μ
0 U (n), and the energy density

E and pressure P are given by

E = g
∫

d3�

(2π )3
�0 f̃ +

∫ n

0
dn′ U (n′), (C3)

P = g
∫

d3�

(2π )3

�2

3�0
f̃ + nU (n) −

∫ n

0
dn′ U (n′). (C4)

Equations (C1)–(C4) fully describe the thermodynamics of
our model, where the parametrization of U (n) can be chosen

arbitrarily. The model is thermodynamically consistent, and
the system will evolve corresponding to the test particle equa-
tions of motion, Eqs. (7) and (8).

We note that one can introduce a “shifted” chemical poten-
tial,

μ∗ ≡ μ − U (n), (C5)

known as the effective chemical potential. With μ∗ at hand, it
is straightforward to see that the density, energy density, and
the pressure can be rewritten in the following way:

n = nid(T, μ∗), (C6)

E = Eid(T, μ∗) +
∫ n

0
dn′ U (n′), (C7)

P = Pid(T, μ∗) + nU (n) −
∫ n

0
dn′ U (n′), (C8)

where nid, Eid, and Pid are the density, energy density, and
pressure of an ideal Fermi gas with chemical potential μ∗, and
the total energy density and pressure are obtained by adding
the field contributions. In particular, we can also see that the
entropy density is given by

s(T, μ) ≡ 1

T
(E + P − μn)

= 1

T
(Eid(T, μ∗) + Pid(T, μ∗) − μ∗n), (C9)

which is the entropy density of an ideal Fermi gas at the
effective chemical potential μ∗.

As a first test of the thermodynamic consistency of
Eqs. (C6)–(C8), we check whether the thermodynamic rela-
tion (∂P/∂μ)T = n is fulfilled. Integration by parts allows one
to rewrite the ideal-Fermi-gas–like contribution to the total
pressure,

Pid = g
∫

d3�

(2π )3
T ln[1 + e−β(�0+U (n)−μ)]. (C10)

Using this form of P, it is straightforward to see that

(
∂Pid

∂μ

)
T

= g
∫

d3�

(2π )3
T (−β )

[(
∂U (n)

∂μ

)
T

− 1

]
f̃

= −n

(
∂U (n)

∂μ

)
T

+ n. (C11)

Differentiation of the remaining term in Eq. (C4) yields

∂

∂μ

∣∣∣∣
T

(
nU (n) −

∫ n

0
dn′ U (n′)

)
= n

(
∂U (n)

∂μ

)
T

, (C12)

and, putting Eqs. (C11) and (C12) together, we confirm that
( ∂P
∂μ

)T = n is satisfied.
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For a second test, we similarly check that (∂P/∂T )μ = s.
First, we calculate(

∂Pid

∂T

)
μ

= Pid

T
+ g

∫
d3�

(2π )3

�0 + U (n) − μ

T
f̃

− g
∫

d3�

(2π )3

(
∂U (n)

∂T

)
μ

f̃

= Pid

T
+ Eid + nU (n) − μn

T
− n

(
∂U (n)

∂T

)
μ

.

(C13)

A differentiation of the second term in the expression for the
total pressure yields

∂

∂T

∣∣∣∣
μ

(
nU (n) −

∫ n

0
dn′ U (n′)

)
= n

(
∂U (n)

∂T

)
μ

. (C14)

By putting the two above equations together and using
Eq. (C5) we immediately obtain Eq. (C9) and complete the
proof of the thermodynamic consistency of the model.

APPENDIX D: TECHNICAL DETAILS OF THE
SIMULATIONS AND TESTS OF THEIR INFLUENCE

ON FLOW OBSERVABLES

1. Density calculation

The rest frame baryon density is obtained from n2
B =

( jB)μ( jB)μ, with the baryon current jμB computed according
to

jμB (r) = 1

Nens

1

NT

∑
ensembles

NT∑
i=1

Bi
pμ

i

p0
i

KG(r − ri, ui ), (D1)

where Bi is the baryon number of the ith species,

KG(r − ri, u, σ ) = u0

(2πσ 2)3/2
exp− (r−ri )2+[u·(r−ri )]2

2σ2 , (D2)

is a Lorentz-contracted Gaussian smearing kernel as described
in [77], with the width of the distribution set as σ = 1 fm, and

uμ
i = (

u0
i , ui

) = pμ
i

mi
(D3)

is a test-particle’s four-velocity in the computational frame.
The Gaussian smearing kernel is cut off at 2σ and renormal-
ized to give

∫
d3r KG(r) = 1. Notice, however, that this does

not guarantee that the sum over lattice nodes,
∑

r∈lattice KG(r),
is equal to unity [this is because a sum over a finite number of
values of KG(r) is in practice a numerical integration of KG(r)
using a rectangle rule, which in the case of a Gaussian func-
tion introduces a numerical error]; in consequence, baryon
number is not conserved on the lattice exactly. We have also
tested an alternative method of density calculation in which
the smearing kernel in each Cartesian direction is a triangular
function with the base proportional to the lattice spacing in
that direction, often called “triangular smearing”:

Kt (r − ri ) = 1

(n3lxlylz )2
g(�x)g(�y)g(�z), (D4)

with

g(�q) ≡ (nlq − |�q|)θ (nlq − |�q|), (D5)

where lx, ly, and lz are lattice spacings, and n determines
the range of smearing in units of lattice spacings; we used
n = 2. The advantage of the triangular smearing is that∑

r∈lattice Kt (r) is equal to unity by construction (as integra-
tion by the rectangle rule is exact for a linear function),
while the disadvantage is that it is not Lorentz covariant.
Therefore, when triangular smearing is used, one needs to
Lorentz-contract the lattice itself in the beam direction with
the γ factor corresponding to the beam energy (for simula-
tions performed in the center-of-mass frame of the colliding
nuclei). In the following, we will show that both types of
smearing lead to comparable results provided that Nens and
NT are large enough to ensure a reliable density calculation;
in this way, we show that our results do not depend on the
technical implementation of the density calculation.

We note here that both of our smearing paradigms (and, in
fact, any smearing paradigm that we know of) lead to formal
violations of causality. This is because the smearing kernels
for calculating the density at a space-time point (t, r) depend
on the positions of the test particles in the vicinity of the point
r at the same time t , implying instantaneous propagation of
information about density changes within the smearing range.

For both types of smearing, the field derivatives ∂μAν

are computed numerically on the lattice, including the time
derivative terms. The smearing kernels, mixed ensembles
mode, and the equations of motion with the relativistic vector
mean field Aμ(nB) based on a polynomial form of α(nB) (the
VDF model) are included in the publicly available SMASH 2.1
software [5]; however, the parametrization of the vector mean
field Aμ(nB) with an arbitrary c2

s (nB, T = 0) is not.

2. Effects related to NT and Nens

We performed a comparison of results from simulations
utilizing different numbers of test particles per particle NT .
To single out the effect of NT on collisions only and not on
the accuracy of the density calculation (which we computed
using the Gaussian smearing kernel), we kept the product
NT Nens constant. Because the density and potentials are com-
puted based on all test particles in all ensembles, by keeping
NT Nens = const we do not change the magnitude of the nu-
merical spatial fluctuations in density, and thus we obtain the
same accuracy of potential gradient calculations. In Fig. 15,
one can see that the effect of NT on proton flow observables
is very substantial: as we show in the main text, the change
of v2(y′ = 0) from −0.07 to −0.05 at Elab = 1 GeV/nucleon
due to varying NT from 1 to 10 is comparable to a difference
in v2(y′ = 0) obtained due to using a soft and a very stiff
EOS. As the product NT Nens is kept constant in Fig. 15, the
observed effect of NT is entirely due to the dependence of
collisions on NT . The dependence of flow on NT is attributed
to spurious effects of collisions at nonzero range [45], which
become smaller at larger NT because cross sections scale with
NT according to σ → σ/NT and, therefore, the geometrical
distance at which collisions occur decreases for larger NT . In
agreement with this interpretation, we observe a saturation of
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FIG. 15. Effect of the number of test particles per particle NT

on the proton elliptic flow (a) and the slope of the proton directed
flow (b) in Au + Au collisions at Elab = 1 GeV/nucleon. The prod-
uct NT Nens = 1000 is kept constant, therefore the observed effect is
primarily due to the dependence of collisions on NT . Based on this
result, for further simulations we choose NT = 20.

v2(y′ = 0) as a function of NT which occurs at NT ≈ 15 (while
keeping NT Nens = 1000). Our results show that any NT > 15
is a reasonable choice, and we take NT = 20 for our further
simulations.

When NT is fixed, increasing the number of ensembles Nens

changes our results to a lesser extent, especially in the case of
the elliptic flow, as shown in Fig. 16. This is likely because
the Gaussian smearing together with the oversampling factor
NT = 20 provide an acceptably smooth spatial density profile
even for Nens = 1, and the results saturate already at Nens = 5.
We found that the computational cost increases almost propor-
tionally to Nens (specifically, it is slightly supralinear), while
the simulation statistics increases exactly proportionally to

(a)

AuAu,  Elab = 1 GeV/nucleon
b = 6 fm, protons, Ntest = 20

v 2
(y

'=
0)

−0.06

−0.05

−0.04
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(b)dv
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0.5
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1 100

FIG. 16. Effect of the number of ensembles Nens on the proton
elliptic flow (a) and the slope of the proton directed flow (b) in
Au + Au collisions at Elab = 1 GeV/nucleon. The number of test
particles per particle is set to NT = 20, which, together with the
Gaussian smearing, seems to provide a rather accurate result even
at Nens = 1 (see text for more details on the dependence of this result
on the smearing paradigm). However, for better accuracy, we choose
Nens = 50 for further simulations.
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FIG. 17. Comparison of the proton elliptic flow (a) and the slope
of the proton directed flow (b) in Au + Au collisions as a function of
the collision energy, obtained with simulations using different types
of smearing kernels for computing baryon density on the Cartesian
lattice.

Nens. Given the minimal additional computing cost, we chose
to be on the safe side and we took Nens = 50.

We note here that while similar tests of the influence of
NT on flow observables have been performed within SMASH

in the past (see, e.g., [47]), the analysis presented here is qual-
itatively different as it separates the influence of scaled-down
collision cross sections from the influence of the statistics used
for calculating the mean field. In particular, as can be seen in
Figs. 15 and 16, the two effects have an opposite influence
on the magnitude of the elliptic flow in the explored collision
energy region. In contrast, [47] shows the effect of varying
both the collision cross sections and the mean-field calcula-
tion statistics at the same time. Previous works exploring the
influence of spurious fluctuations in the density calculation on
the collision integral and the mean-field calculation include
[78,79]; however, they do not address the effects on flow
observables explicitly.

We performed a similar test for simulations using the trian-
gular smearing for the density calculation, and in this case the
results suggested that this type of smearing demands a larger
value of Nens; this is because the triangular smearing kernel
is, by construction, less “smooth” than the Gaussian smearing
kernel, and so it requires more statistics to yield a smooth
density calculation. Nevertheless, in Fig. 17 we show that
we obtain similar results for the proton flow using triangular
and Gaussian smearing at NT = 20 and Nens = 50. This is a
nontrivial observation, because technically the two smearing
paradigms are very different: in the Gaussian smearing the
kernel is contracted along the direction of motion of a test
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particle, while in the triangular smearing the lattice is con-
tracted along the beam direction. Naturally, since physical
results should not be sensitive to the particular implementa-
tion of the density calculation, comparing the results obtained
using two different smearing kernels is a quality test of our
simulations. Finally, we note that the computing time is almost
the same for simulations using the two smearing kernels, with
a 4% increase in the case of the triangular smearing; although
the triangular smearing uses a kernel that is less computation-
ally costly, in that case the lattice, which is more dense in the
z direction due to being contracted, needs a larger number of
nodes in order to cover the same volume.

3. Nucleus initialization

Another important factor influencing the proton flow as
obtained from the hadronic transport simulations is the initial-
ization of the nuclei. We employ a default SMASH initialization
as described in [4]: in the coordinate space each nucleon
is sampled independently from the Woods-Saxon distribu-
tion, while in the momentum space the nucleon momentum
is sampled from a uniform distribution in the Fermi-sphere,
where the radius of the Fermi sphere is computed from the
local coordinate space density obtained analytically from the
Woods-Saxon distribution. This simple model of nucleus ini-
tialization does not account for two physical phenomena:
First, by construction, the mean field does not influence the
initialization of a nucleus, and therefore the nucleus is not
initialized exactly in a ground state. In freely moving nu-
clei, this results in “breathing mode” oscillations with the
oscillation period on the order of 70–80 fm/c, as shown
in Fig. 7 of [4]. In simulations of heavy-ion collisions, the
maximum compression is reached at the latest at 13 fm/c
(for Elab = 1 GeV/nucleon), as one can see in Fig. 1, which
is too short for the spurious oscillations to fully develop and
thus does not lead to sizable contributions (especially given
the fact that the differences in density due to the spurious
oscillations are dwarfed by the changes in density due to the
compression of the nuclei). Second, correlated nucleon pairs
(as well as any other correlations) are not accounted for in
the nucleus initialization, causing the high-momentum tail of
the momentum distribution to be absent in our model, where
the maximal momentum is limited by the Fermi momentum
at the center of the nucleus. While we do not expect these
phenomena to be important for the proton flow, we note that
they may contribute to the overall systematic uncertainty of
our simulations.

4. Pauli blocking

In simulations of a dense baryonic medium one might
expect Pauli blocking to influence the observables. However,
even at Elab = 1 GeV/nucleon the related effects turn out to
be virtually absent. We find no significant difference in proton
spectra or flow in simulations with and without Pauli blocking,
which is in agreement with [4]. The implementation of Pauli
blocking in SMASH (described in [4]) is based on estimating
of the phase space density at the point of an action (where an
action means a collision or a decay) and rejecting the action

with probability
∏

j (1 − f j ), where f j is the phase space
density of particles j exiting the action (a collision or a decay).
We find that, in Au + Au collisions at Elab = 1 GeV/nucleon
with the impact parameter b = 6 fm, around 8% of collisions
and decays are blocked; at Elab = 8 GeV/nucleon this number
is reduced to around 3%.

5. Absence of isospin, Coulomb, and
momentum-dependent interactions

It is important to mention that the vector mean field Aμ

is the only field implemented in our simulations. Coulomb
interactions are not included, which may potentially influ-
ence our pion flow results [80]. Isospin-dependent potentials
likewise are not included, i.e., protons and neutrons feel
the same mean field. At lower energies, in particular below
Elab = 0.5 GeV/nucleon, this cannot be justified, but at Elab =
1 GeV/nucleon and above it is a reasonable approximation
due to the fact that matter at midrapidity is more isospin
symmetric in that case and also because at high baryon den-
sity, the isospin-symmetric potential is much larger than the
isospin-dependent one. A similar justification is valid for the
absence of Coulomb potentials in our simulations.

It should also be mentioned that our vector mean field
Aμ is a density-dependent field, but it includes no explicit
dependence on the momentum of the particle that experi-
ences it. This momentum dependence is necessary for the
Schrödinger-equivalent potential [81], obtained from a given
model, to reproduce the optical potential measured in elastic
p + A collisions [82]; also see [38,75,83–85] for discussion.
While the measured optical potential exhibits growth with
the energy of the particle, our equivalent optical potential, in
fact, decreases. From a theoretical standpoint, the unphysical
behavior of the equivalent optical potential is a substantial dis-
advantage of our model, especially in view of the effect of the
momentum-dependent potentials on the pT dependence of v2

shown in [38] and the more recent analysis of the influence of
various momentum-dependent potentials on flow observables
[86]. However, in this work we do not explore the momentum
dependence of flow. Moreover, the integrated v2(y′ = 0) is not
very sensitive to the momentum dependence of potentials in
central and mid-central collisions, and only demonstrates a
large sensitivity in peripheral collisions (see Fig. 4 of [38]).
Both the theory and the numerical implementation of a rela-
tivistic, explicitly momentum-dependent mean field are rather
challenging, and while an example of such implementation is
available in literature [75], the adaptation of this approach to
our case of flexible density-dependent potentials would still
require a considerable theoretical effort.

6. In-medium cross sections

Some transport models [87,88] include density-dependent
“in-medium” cross sections, that is, an ad hoc modification
of the vacuum cross sections reflecting an idea that some
part of the interactions between particles is accounted for
by the potentials and therefore the collision integral should
be adjusted to reflect that fact. Here, we employ vacuum
cross sections and do not make any in-medium modifications.
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FIG. 18. Sensitivity of the proton flow to scaling of all cross sec-
tions in Au + Au collisions at b = 6 fm, simulated using SMASH. At
nB ∈ (0, 2)n0, the mean field is parametrized to reproduce the default
Skyrme EOS, while at higher densities the mean field is parametrized
to yield c2

s [nB ∈ (2, 3)n0] = 0.1 and c2
s [nB > 3n0] = 0.3.

However, we tested the effect of scaling of the cross sec-
tions on the flow observables; see Fig. 18. One can see that
the difference in flow observables obtained by changing the
scaling factor for all cross sections from 0.6 to 1.4 leads to
rather moderate changes in both dv1/dy′(y′ = 0) and v2(y′ =
0). As one can see in Fig. 3, these changes are comparable to
changing the speed of sound squared by 0.2, which one could
take as the maximum systematic error in our estimate of the
speed of sound squared due to variation of the cross sections.

APPENDIX E: SYMMETRY ENERGY EXPANSION

In this Appendix, we present a brief introduction to the role
of the symmetry energy in the EOS of nuclear matter. For a
review, see [89].

The energy per particle in uniform nuclear matter can be
decomposed into the following sum:

E

NB
(nN , nP ) = E0

NB
(nB) + S(nB)

(
nN − nP

nB

)2

+ · · · , (E1)

where nN and nP are the neutron and the proton density,
respectively, such that nN + nP = nB, E0(nB) is the energy of
symmetric nuclear matter at nB, and S(nB) is the (a)symmetry
energy. Note that here, the energy is calculated with respect to
the rest mass, such that E/N = E/n − mN , where E is energy
density that does include the contribution from the rest mass.
The symmetric part of the energy can be expanded around
nB = n0 in the usual fashion,

E0

NB
(nB) ≈ Ebin + K0

18

(
nB − n0

n0

)2

+ · · · , (E2)

where Ebin ≈ −16 MeV is the binding energy and K0 ≡
9n2

B[d2(E/NB)/dn2
B]|nB=n0

is the incompressibility (note that
the linear term in the expansion disappears because n0 is the
equilibrium point). Similarly, one can expand S(nB) as

S(nB) ≈ S0 + L

3

(
nB − n0

n0

)
+ · · · , (E3)

where S0 is the symmetry energy at nB = n0 and L ≡
3nB[dS/dnB]|nB=n0

is known as the slope of the symmetry
energy at nB = n0.

By adding mN on both sides of Eq. (E1), multiplying by
nB, and inserting the symmetry energy expansion, Eq. (E3),
one arrives at

E = E0 + Esym, (E4)

where E0 is the energy density of symmetric nuclear matter
(including the kinetic energy of the system) and

Esym = nB

[
S0 + L

3

(
nB − n0

n0

)](
nN − nP

nB

)2

+ · · · . (E5)

Note that we can write

nN − nP

nB
= 1 − 2YQ, (E6)

where YQ = nP/nB, so that

Esym = nB

[
S0 + L

3

(
nB − n0

n0

)]
(1 − 2YQ)2 + · · · . (E7)

The pressure at T = 0 is given by

P = n2
B

d

dnB

( E
nB

)
= nB

dE
dnB

− E . (E8)

From the above equation it is evident that the pressure, like
the energy density, can be written as a sum,

P = P0 + Psym, (E9)

where P0 is the part of the pressure coming from the sym-
metric part of the energy density (again, including the kinetic
contribution) and Psym is the asymmetric part, given by

Psym = nB
dEsym

dnB
− Esym. (E10)

Assuming that YQ = const, one can immediately calculate

Psym = L

3

n2
B

n0
(1 − 2YQ)2. (E11)

Overall, within the symmetry energy expansion, the
(a)symmetry energy contributions can be added on top of the
symmetric E0 and P0. All other thermodynamic quantities can
be then obtained in the standard way, including the speed of
sound squared, c2

s |T =0 = (dP/dnB)/(dE/dnB). The situation
becomes especially simple in the case of pure neutron matter,
for which YQ = 0.
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