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Deep learning for flow observables in ultrarelativistic heavy-ion collisions
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We train a deep convolutional neural network to predict hydrodynamic results for flow coefficients, average
transverse momenta, and charged particle multiplicities in ultrarelativistic heavy-ion collisions from the initial
energy density profiles. We show that the neural network can be trained accurately enough so that it can reliably
predict the hydrodynamic results for the flow coefficients and, remarkably, also their correlations like normalized
symmetric cumulants, mixed harmonic cumulants, and flow-transverse-momentum correlations. At the same
time the required computational time decreases by several orders of magnitude. To demonstrate the advantage of
the significantly reduced computation time, we generate 107 initial energy density profiles from which we predict
the flow observables using the neural network, which is trained using 5 × 103, and validated using 9 × 104 events
per collision energy. We then show that increasing the number of collision events from 9 × 104 to 107 can have
significant effects on certain statistics-expensive flow correlations, which should be taken into account when
using these correlators as constraints in the determination of the quantum chromodynamics matter properties.
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I. INTRODUCTION

Probing the properties of the strongly interacting matter
close to a zero net-baryon density is the primary goal of
the highest-energy ultrarelativistic heavy-ion collision exper-
iments. One of the most important tools in interpreting the
experimental data is relativistic hydrodynamics. In the hydro-
dynamic limit the matter behavior is controlled by the matter
properties like equation of state and transport coefficients,
such as shear and bulk viscosity. It has been well established
that in heavy-ion collisions flow-like signatures are seen in
azimuthal angle spectra of produced particles. This indicates
that a small droplet of deconfined phase of quantum chro-
modynamics (QCD) matter called quark-gluon plasma (QGP)
is created in these collisions, and that it exhibits a fluid-like
behavior [1–4].

Comparing the measurements with the predictions of
hydrodynamic computations gives then a possibility to de-
termine the QCD matter properties. A reliable estimate of
the QCD matter properties with well-defined error bars de-
mands a global analysis of as many experimental observables
and collision systems as possible. In the recent years, such
global analyses have given constraints on the QCD trans-
port properties [5–14]. In particular, the shear viscosity near
the QCD transition temperature T ≈ 155 MeV is rather well
constrained. For the full temperature dependence of shear
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viscosity, and especially bulk viscosity, the uncertainties are
significantly larger.

A way to improve the analysis is to consider more observ-
ables. One challenge here is that in practice it is necessary
to compute the hydrodynamic evolution event by event, i.e.,
for each collision event separately, so that the computed ob-
servables are obtained as averages over a large number of
collisions to closely match with the actual measurements. The
nontrivial dependence of the final observables on the equa-
tion of state, transport coefficients, initial conditions, and the
details of the conversion of the fluid to particles together with
numerically demanding hydrodynamic simulations makes the
global analysis a very CPU intensive task. In particular, this is
the case when the global analysis takes into account observ-
ables that require high statistics obtained by accumulating a
large number of computed collision events.

The most basic experimental observables quantifying the
magnitude and details of the flow-like behavior are the Fourier
coefficients of an azimuthal hadron spectrum, which are usu-
ally referred to as flow coefficients vn. They are measured
as multiparticle correlations. The increased luminosity in re-
cent measurements, especially at the CERN Large Hadron
Collider (LHC), has enabled precision measurements of mul-
tiparticle correlations between flow coefficients all the way
up to the eight-particle level. Obtaining reliable estimates of
these correlations from the fluid dynamical simulation can
require gathering statistics from about 106 collision events.
Obtaining such high statistics is computationally very expen-
sive and performing computations gets even more expensive
when sampling the O(15)-dimensional parameter space of a
global analysis, where statistics should be obtained for around
300 different parametrizations. Typically one event needs
about 30 min computing time from a CPU and thus the total
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time it would take to perform high statistic global analysis is
around 0.5 × 106 × 300 ≈ 108 CPU hours.

One way to decrease the computation time would be to
convert the codes to GPU and use a modern GPU based
supercomputer to do the computing. Even though this would
significantly speed up the simulations, the task would still
require a significant amount of computing time. Another
possibility is to simplify the complicated fluid dynamical
computations and construct fast estimators that can give good
estimates of the final state observables from the initial state
alone. The simple version of such an estimator for flow coeffi-
cients could be constructed, for example, by assuming a linear
relation between initial state eccentricities and corresponding
flow coefficients. As shown in Refs. [6,15,16] this kind of lin-
ear relation works reasonably well for v2 in central collisions,
but nonlinear effects start to get noticeable in more peripheral
collisions and even more so in the case of higher-order flow
coefficients for which this kind of estimator would not work
well even to begin with.

In this article we present a way to estimate pT -integrated
flow observables and correlators directly from the initial
energy density profile based on deep convolutional neural
networks (CNN). The convolutional neural networks have
been proven to be very efficient and accurate tools when
it comes to image classification and computer vision tasks.
During the past decade, network architectures have evolved
towards deeper and deeper networks, i.e., a typical network
contains more layers than before. A modern CNN architecture
can contain hundreds of layers and tens of millions trainable
parameters. Neural networks and deep learning have been uti-
lized before in the context of heavy-ion collisions for various
different applications, such as impact parameter estimation,
identifying quenched jets, or determination of the QCD matter
phase transition [17–21]. In Ref. [22] it was shown that the
neural network can also model full hydrodynamic evolution
on short time periods, �τ ≈ 2 fm, but this kind of method has
not yet been applicable for modeling a complete space-time
evolution of QGP. The deep neural network was also applied
to estimating v2 from the kinematic information of particles
in the context of the AMPT model [23]. However, until the
current study, neural networks have not been successfully
trained to predict flow observables and correlators from the
initial state energy density.

The basic setup here is the perturbative QCD based
EKRT (Eskola-Kajantie-Ruuskanen-Tuominen) gluon satura-
tion model [24,25] for the computation of initial conditions
that, when supplemented by relativistic hydrodynamic evolu-
tion [6,26], gives a good overall description of the available
flow data from heavy-ion collisions at the BNL Relativistic
Heavy Ion Collider (RHIC) and LHC [27–29]. The neural
network constructed here is, however, not restricted to this
particular model, but can in principle be applied to any similar
framework.

This paper is organized in the following way. In Sec. II we
briefly go through the structure of the used neural network
and give details about how it is implemented in practice. In
Sec. III we validate the accuracy of the neural network by
showing that the results obtained by the network match well
with the hydrodynamic simulations. The main results are then

TABLE I. The structure of the used DenseNet network.

Block Output size Layers

Convolution 134 × 134 ×
64

7 × 7 conv, stride 2

Pooling 67 × 67 × 64 3 × 3 max pool, stride 2

Dense block 67 × 67 × 256

[
1 × 1 conv
3 × 3 conv

]
× 6

Transition layer 67 × 67 × 128 1 × 1 conv
33 × 33 × 128 2 × 2 average pooling,

stride 2

Dense block 33 × 33 × 512

[
1 × 1 conv
3 × 3 conv

]
× 12

Transition layer 33 × 33 × 256 1 × 1 conv
16 × 16 × 256 2 × 2 average pooling,

stride 2

Dense block 16 × 16 × 896

[
1 × 1 conv
3 × 3 conv

]
× 20

Transition layer 16 × 16 × 448 1 × 1 conv
8 × 8 × 448 2 × 2 average pooling,

stride 2

Dense block 8 × 8 × 1216

[
1 × 1 conv
3 × 3 conv

]
× 24

Output layer 1 × 1 × 1216 8 × 8 global average
pooling

Nout Fully connected layer
with ReLU activation

shown in Sec. IV, where we present the neural network pre-
dictions for various different correlators with 107 generated
collision events. The summary and conclusions are then given
in Sec. V.

II. MODEL SETUP

A. DenseNet

The evolution of CNN architectures towards deeper net-
works has caused challenges to their design [30]. Very deep
networks can easily lose some information about the input.
Additionally, when propagating the gradient information from
the output back to the input, the gradients can start to approach
zero. Therefore, the optimizer leaves the network weights
close to the input nearly unchanged so that the loss function
won’t converge to the global minima. This makes the training
of a model slow and inaccurate. To solve the vanishing gra-
dient and feature loss problem a dense convolutional network
or DenseNet was introduced [31]. The DenseNet consists of
two major building blocks: dense blocks and transition layers.
The dense block solves the vanishing gradient and feature
loss problems by reusing features from the previous layers via
concatenation, so that all the proceeding layers in the dense
block use feature maps from the previous layers as inputs.
This makes it possible to maintain low complexity features
while also taking advantage of the deep network’s ability
to probe very complex features of the training data. Such a
property makes the DenseNet a great choice when the data
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FIG. 1. The event-by-event neural network (NN) predictions versus the results from the hydrodynamic simulations for the validation events
in the 0–80% centrality range.

set is somewhat limited and overfitting becomes an issue. The
transition layers are then used to reduce the input size. It uses a
1 × 1 convolutional layer followed by a 2 × 2 average pooling
layer.

In this study we use the DenseNet-BC variant which ap-
plies a 1 × 1 convolutional bottleneck layer before each 3 × 3
convolution layer in the dense blocks and compression to the
transition layer with compression parameter θ = 0.5, which
reduces the number of feature-maps by a factor of 2. The
growth rate is set to k = 32. The DenseNet is originally de-
signed for computer vision tasks and to adapt it to a regression
task we change the softmax activation function of the output
layer to a linear activation function. The exact structure of the
model is shown in Table I, where each convolutional layer
contains convolutional layer + batch normalization + ReLU
activation. Compared to the original DenseNet model we have
changed 3 × 3 and 7 × 7 convolution layers with depthwise
separable convolution layers, which seems to improve the
stability and slightly decrease the validation loss of the model.

B. Implementation

The DenseNet model is trained using midrapidity ob-
servables obtained from the hydrodynamic simulations of
heavy-ion collisions computed in Ref. [29]. The initial energy
density profiles for the hydrodynamic evolution are calculated
from the EKRT model [6,26], where the event-by-event fluc-
tuations emerge from the random positions of nucleons inside

the colliding nuclei. The computation of the initial profiles is
very fast and takes a negligible amount of CPU time compared
to the computation of the hydrodynamic evolution and the
corresponding physical observables for each event. It is quite
easy to generate millions of initial conditions corresponding
to different collision events.

As an input, the DenseNet model uses discretized initial
energy density in the transverse-coordinate (x, y) plane cal-
culated from the EKRT-model with a grid size 269 × 269
and a resolution of 0.07 fm. The DenseNet model is trained
to reproduce a set of final state pT integrated observ-
ables vn, average transverse momentum [pT ], and charged
particle multiplicity dNch/dη for each event. The input en-
ergy density is normalized in such a way that the training
data set has a mean of zero and a standard deviation of
one.

The DenseNet model gives then a full event-by-event
distribution of these observables, and it allows us to build
a set of measurable quantities, such as event-averaged
N-particle flow coefficients vn{N}, normalized symmetric cu-
mulants NSC(m, n), normalized mixed harmonic cumulants
nMHC(n, m), and flow-transverse-momentum correlations
ρ(v2

n, [pT ]). Note that these observables are different mo-
ments of the full P (vn, [pT ], dNch/dη) distribution, e.g.,
two-particle flow coefficient vn{2} is a root-mean-square
event average of vn. It is nontrivial that the network can be
trained to a sufficient accuracy to reproduce these observ-
ables, the correlators in particular. The definitions of all these
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FIG. 2. The mean absolute and relative errors between the neural network predictions and the results from the hydrodynamic simulations
for the validation events in the 0–80% centrality range.

observables and the details of the EKRT-model and hydrody-
namic computations can be found from Refs. [6,29].

We note that here all the events in a training data set use the
same parameters for hydrodynamic evolution, meaning that,
currently, the trained neural network cannot predict results
from hydrodynamic simulations that use for example different
viscosity parametrizations.

We train a separate neural network for each of the flow
coefficient v2, v3, v4, v5, v6, for the average transverse mo-
mentum [pT ], and multiplicity dNch/dη outputs using in total
of 2 × 104 hydrodynamic events in the training. However, one
network can give multiple outputs (Nout in Table I) of the
same observable with different pT integration ranges. This
is necessary since different measurements use different pT

ranges when measuring the observables.
The training events are distributed evenly (5000 events

each) between 200 GeV Au + Au, 2.76 TeV Pb + Pb, 5.023
TeV Pb + Pb, and 5.44 TeV Xe + Xe collision systems. The
outputs of different neural networks are normalized with a
constant such that the typical value of a given output observ-
able is O(1). This makes possible to set the same learning rate
for different observables without affecting the quality of the
training too much. The exception to this is the charged particle
multiplicity network for which the output is not normalized
because it uses a different loss function than the other net-
works. The training data are heavily augmented by applying
random rotations (rotation angle from 0 to 2π ), flips and
translations (shifts from −0.92 fm to 0.92 fm in both x and
y directions) to the input during the training.

All the network models above are trained using the Adam
optimizer [32] for 120 epochs with a batch size of 64. Using
larger batch sizes made the training phase faster, but at the

same time significantly decreased the accuracy of the net-
works. The learning rate is initially set to 0.001, except in
the case of the charged particle multiplicity where the initial
learning rate is 0.01, and it is divided by a factor of 10 at
epochs 75 and 110. Even though the use of a decaying learning
rate is not completely necessary because of the adaptive nature
of the Adam optimizer, we noticed that adding a learning rate
decay made the training faster without sacrificing accuracy.
Additionally, the batch normalization momentum is set to 0.1.
As a regularization method we tried both the dropout and L2
regularization, but they did not give any improvements for the
validation accuracy or made it worse. This is most likely due
to a heavy data augmentation which in itself acts as an efficient
regularization method.

For all observables except charged particle multiplicity, we
use a mean squared error (MSE) loss function which is defined
as

Loss(MSE) = 1

N

∑
i

(yi,true − yi,pred )2, (1)

where the sum is over all events in the training batch, N is the
number of events in a training batch, and yi,true and yi,pred are
the true and predicted values of an observable, respectively.
For the charged particle multiplicity we use a mean squared
logarithmic error (MSLE) loss function,

Loss(MSLE) = 1

N

∑
i

( ln(yi,true + 1) − ln(yi,pred + 1))2. (2)

The training is done using the Nvidia Tesla V100 GPU,
which has 32 GB of VRAM and 640 tensor cores. The training
time for one network is ca. 80 min. The neural network code
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FIG. 3. The distributions of flow observables from the neural network predictions and hydrodynamic simulations for the validation events
in the 0–5% centrality range.

is written in PYTHON and it is implemented using the Keras
Deep Learning API v2.10.0 [33] together with the Tensor-
flow v2.10.0 library [34]. The pretrained networks and the
code that can be used to generate EbyE flow observables
from EKRT-model initial energy density are available as the
Supplemental Material [35].

III. VALIDATION

After the training, the accuracy of the neural network needs
to be tested with an independent validation data set. Here,
we only focus on results for a 5.023 TeV Pb + Pb collision
system, but the performance of the neural network is similar
for other systems as well. The testing is done by generating
9 × 107 initial energy density profiles and comparing neural
network predictions for different observables against those
obtained from hydrodynamic simulations. We remind that
only 5000 5.023 TeV events were used in the training of the
network.

In Fig. 1, we show a two-dimensional (2D) histogram
comparing the neural network predictions against hydrody-
namic computations event by event for the flow coefficients
vn (n = 2, 3, 4, 5, 6) and average transverse momenta [pT ].
The color bar indicates the number of events in each histogram
bin and the dashed black line indicates where hydrodynamic
computations and neural network predictions match exactly.
Because the observables we are interested in are inside the

0–80% centrality range, we only show events from this
centrality range in the histogram.

For v2 we see an excellent agreement between the neu-
ral network and hydrodynamic results. The accuracy of the
network starts to slowly decrease when moving towards
higher-order flow coefficients and in the cases of v5 and v6 we
already start to see clear deviations from the hydrodynamic
results. This behavior is expected since the lower-order flow
coefficients and initial-state eccentricities have quite linear
dependence and they are not as sensitive to nonlinear effects
arising from hydrodynamic evolution as higher-order flow
coefficients. For the average transverse momentum the neu-
ral network seems to predict the hydrodynamic results very
accurately. However, one needs to note that event-by-event
fluctuations of [pT ] are very small compared to the absolute
value of [pT ]. This means that relatively small errors are
not necessarily a guarantee of that the network can correctly
predict correlations involving [pT ].

To complement the information in Fig. 1 and to give more
quantitative estimates of errors, we show the mean absolute
and the relative errors for different observables in Fig. 2.
Here, we can confirm that the relative error is indeed in-
creasing when increasing the order of the flow coefficients.
The errors are not very sensitive to the value of an ob-
servable but typically the absolute errors are smallest close
to the average value of the observable. We can also notice
that the relative error is the largest when the value of an
observable is small. The small values of flow coefficients

034905-5



H. HIRVONEN, K. J. ESKOLA, AND H. NIEMI PHYSICAL REVIEW C 108, 034905 (2023)

FIG. 4. The comparison of the flow coefficients vn{2} between the neural network predictions and hydrodynamic computations. The
experimental data are from the ALICE Collaboration [36,37].

usually correspond to the most central or the most peripheral
collisions.

To see where the growing relative errors at the smallest
values of vn start to play a role, we compare distributions
of flow observables between the neural network predic-
tions and hydrodynamic computations in the most central
collisions. The results are shown in Fig. 3, where we

can see that the distributions are nearly identical except
for the flow coefficient v6. In this case the distribution
given by the neural network prediction is narrower than
the one obtained from the hydrodynamic computation while
the location of the peak value is very similar in both
cases. This indicates that the neural network might be able
to reproduce the average values of v6 quite well but it

FIG. 5. The comparison of normalized symmetric cumulants between the neural network predictions and hydrodynamic computations.
The experimental data are from the ALICE Collaboration [38].
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FIG. 6. The comparison of normalized mixed harmonic cumulants between the neural network predictions and hydrodynamic computa-
tions. The experimental data are from the ALICE Collaboration [38].

cannot be guaranteed to reliably predict the correlations
involving v6.

Comparing the neural network and hydrodynamic re-
sults event by event gives information about the accuracy
of the network, but the measurements average over a large
number of events in centrality bins. Consequently, it is cru-
cial to test the performance of the network in these cases
as well. To get a comprehensive view of the network’s
ability we check its performance for two-particle flow coef-
ficients vn{2}, normalized symmetric cumulants NSC(m, n),
normalized mixed harmonic cumulants nMHC(n, m), and
flow-transverse-momentum correlations ρ(v2

n, [pT ]).
The flow coefficients vn{2} are shown in Fig. 4 as a function

of centrality. We can see that the neural network results seem
to match the hydrodynamic results nearly exactly. This is
true even in the cases of v5 and v6 where the event-by-event
accuracy of networks was not as good.

Much more challenging quantities to predict are the dif-
ferent correlations between the flow coefficients. In Fig. 5 we
show the centrality dependence of the normalized symmetric
cumulants NSC(m, n). The statistical errors are estimated via
jackknife resampling as in Ref. [29]. The normalized sym-
metric cumulants are four-particle correlations between two
flow harmonics and thus are more sensitive to event-by-event
fluctuations than the flow coefficients vn{2}. This makes it
more challenging to predict them using the neural network.
Nevertheless, in the case of NSC(4, 2) we get an almost exact
agreement between the neural network and the hydrodynamic
results. For NSC(3, 2) and NSC(4, 3) there are some visible
differences between the two, but deviations are still quite
small compared to the statistical errors.

The normalized mixed harmonic cumulants nMHC(n, m),
which are six- or eight-particle correlations, are shown in

Fig. 6. The agreement between the neural network predictions
and the hydrodynamic computation is again good, even in the
cases where the correlation is very weak. Finally, in Fig. 7, we
show the flow-transverse-momentum correlations ρ(v2

n, [pT ])
as a function of the number of participant nucleons. In this
observable the biggest challenge for the neural network is not
the accuracy of the flow coefficients as one might naively
expect, but instead the accuracy of the mean transverse mo-
mentum. This is due to the fact that the correlation is very
sensitive to the mean transverse momentum fluctuations and,
as discussed earlier, catching these fluctuations requires a very
good precision from the neural network. Nevertheless, as can
be seen from Fig. 7, the neural network predictions agree well
with the hydrodynamic results.

IV. HIGH-STATISTICS PREDICTIONS

Now that the accuracy of the neural network has been es-
tablished, we can use it to estimate what happens to the above
correlations at a high-statistics limit. To do so we generate
107 events using the neural network, which takes around 20 h
with the GPU. This is a very substantial difference compared
to doing full hydrodynamic simulations using CPU, which
would take about 5 × 106 CPU hours.

The effect of increased statistics for the normalized sym-
metric cumulants can be seen in Fig. 8. In the case of
NSC(4, 2) we see slight deviations in the most central and
peripheral collisions, but the centrality dependence is very
similar to the lower statistics hydrodynamic results. This
is not surprising since the statistical errors are already rel-
atively small with 9 × 104 events. The situation is quite
different for NSC(3, 2) where the statistical errors are of
considerable size with 9 × 104 events. Here, we see that

034905-7



H. HIRVONEN, K. J. ESKOLA, AND H. NIEMI PHYSICAL REVIEW C 108, 034905 (2023)

FIG. 7. The comparison of flow-transverse-momentum correlations between the neural network predictions and hydrodynamic computa-
tions. The experimental data are from the ATLAS Collaboration [39].

with 107 events the statistical fluctuations are negligible,
revealing the true centrality dependence from the model,
and it now gives a very similar shape as the ALICE mea-
surements, even though the neural network prediction (i.e.,
the underlying hydrodynamic simulation with which the
network was trained) underestimates the amount of anticor-
relation. For NSC(4, 3) we also see some deviations from
the lower-statistics hydrodynamic result in the most central
and peripheral collisions. We note that in the most central
collisions we see a somewhat similar difference between the
neural network and the hydrodynamic result also in the vali-
dation data set, which might indicate that this difference can
be a systematic error caused by the inaccuracy of the neural
network.

In principle, the normalized mixed harmonic cumu-
lants in Fig. 9 should be even more sensitive to
the increased event number, since correlations are usu-
ally weaker than in the case of the normalized sym-
metric cumulants. For nMHC(v2

2, v
4
3 ) the neural net-

work prediction with 107 events is inside the statistical
errors of the hydrodynamic results, but in the central collisions
the increased number of events reveals a very different kind
of centrality dependence which seems to agree well with the
ALICE measurements. In the cases of nMHC(v4

2, v
2
3 ) and

nMHC(v6
2, v

2
3 ) we see statistically significant differences be-

tween the hydrodynamic results and 107 event predictions,
which signals that the jackknife resampling can some-
times significantly underestimate the statistical errors. For
nMHC(v2

2, v
6
3 ) we see that increasing the number of events

from 9 × 104 to 107 removes the sharp changes between the
correlation and anticorrelation and the high statistic result is
nearly zero except in the most peripheral collisions. This is
again in line with the ALICE measurements.

The flow-transverse-momentum correlations for the 107

neural network prediction are shown in Fig. 10. The increased
statistics makes it now possible to use exactly the same cen-
trality bins as the ATLAS measurements without completely
ruining the accuracy. For ρ(v2

2, [pT ]) the 107 event result dif-
fers substantially from the 9 × 104 event hydrodynamic result
only in the most central collisions. This effect is mostly a
combination of different centrality binning and the fact that
correlation decreases very quickly when moving from 375 to
400 participants. The effect of statistics can be better seen in
the case of ρ(v2

3, [pT ]), where in the central collisions the 107

event result has different dependence on participant number
than the 9 × 104 event hydrodynamic result. In this region
the 107 event neural network result also agrees better with the
ALICE measurements.

FIG. 8. The neural network prediction of normalized symmetric cumulants with 107 collision events compared with the hydrodynamic
results from 9 × 104 collision events. The experimental data are from the ALICE Collaboration [38].
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FIG. 9. The neural network prediction of normalized mixed harmonic cumulants with 107 collision events compared with the hydrody-
namic results from 9 × 104 collision events. The experimental data are from the ALICE Collaboration [38].

V. CONCLUSIONS AND SUMMARY

We have trained a deep convolutional neural network to
predict a variety of flow observables from the initial state
energy density profiles. The training was done using 2 × 104

training events from 200 GeV Au + Au, 2.76 TeV Pb + Pb,
5.023 TeV Pb + Pb, and 5.44 TeV Xe + Xe collision systems,
with 5000 events for each collision system. The training data
were computed using viscous relativistic hydrodynamics with
initial conditions from the EKRT model, and using the model
and viscosity parameters from Ref. [29].

The accuracy of the network was tested against the
results from hydrodynamic simulations for two-particle
flow coefficients vn{2}, normalized symmetric cumulants
NSC(m, n), normalized mixed harmonic cumulants nMHC,
and flow-transverse-momentum correlations ρ(v2

n, [pT ]). We

emphasize that this is a nontrivial test for the accuracy of
the network, especially with the correlators. The validation
tests used in total of 9 × 104 events for each collision system,
independent of the training data, and in all of the cases the
neural network was able to predict hydrodynamic results quite
reliably. This is already a significant improvement in terms
of computational time, as only 5000 events were used per
collision system to train the network.

The neural network was then used to predict the same
flow observables but this time with 107 generated events. This
took around 20 GPU hours of computing time which is many
orders of magnitude faster than doing the same number of
hydrodynamic simulations using CPU. The increased number
of events made statistical errors negligibly small and allowed
us to estimate the observables with a higher precision. In many

FIG. 10. The neural network prediction of flow-transverse-momentum correlations with 107 collision events compared with the hydrody-
namic results from 9 × 104 collision events. The experimental data are from the ATLAS Collaboration [39].
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cases the 107 event neural network prediction differed from
the 9 × 104 event hydrodynamic computations by a quite large
margin emphasizing the importance of a large event statistics
when comparing simulations with the measurements.

As there are still considerable uncertainties in determining
QCD matter properties from the experimental data, it is im-
portant to be able to use as many measurements as possible
to constrain the properties. In particular, the current measure-
ments at the LHC give a wealth of different flow correlations
with tight error bars that provide independent information
about the matter properties. Many of the measured correlators
are rather weak, and can require millions of computed hydro-
dynamic events in order to get similar statistical errors as in
the experiments. To use these quantities as a constraint to the
QCD properties, it is then necessary to have a computationally
efficient way to generate such a large set of events, and this is
exactly what the neural network presented here can do.

Currently the neural network can predict flow observables
for different initial energy density profiles, but the predictions

always describe a hydrodynamic evolution that is identical to
the one used in the training data set, i.e., it is not possible
to change the viscosity parametrization after the network has
been trained. The network should next be constructed to be
more versatile and take viscosity parameters as additional
inputs, making the neural network an even more efficient tool
in global analysis. This is left as future work.
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