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Perturbative QCD concerning light and heavy flavor in the EPOS4 framework

K. Werner 1 and B. Guiot2
1SUBATECH, Nantes University, IN2P3/CNRS, IMT Atlantique, 44300 Nantes, France

2Universidad Tecnica Federico Santa Maria y Centro Cientifico-Tecnologico de Valparaiso, 2520686 Valparaiso, Chile

(Received 26 May 2023; accepted 31 July 2023; published 11 September 2023)

We recently introduced new concepts, implemented in EPOS4, which allows us to consistently accommodate
factorization and saturation in high-energy proton-proton and nucleus-nucleus collisions in a rigorous parallel
scattering framework. EPOS4 has a modular structure and in this paper, we present in detail how the “single
scattering module” (the main EPOS4 building block) is related to perturbative QCD and how these calculations
are performed, with particular care being devoted to heavy flavor contributions. We discuss similarities and
differences compared to the usual pQCD approach based on factorization.
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I. INTRODUCTION

Factorization [1,2] (in connection with asymptotic freedom
[3,4]) is a powerful concept to reliably compute inclusive
cross sections for high transverse momentum (pt ) particle
production in proton-proton (pp) scattering at very high ener-
gies. However, there are very interesting cases not falling into
this category, like high-multiplicity events in proton-proton
scattering in the TeV energy range, where a very large num-
ber of parton-parton scatterings contribute. Such events are
particularly interesting, since the CMS collaboration observed
long-range near-side angular correlations for the first time
in high-multiplicity proton-proton collisions [5], which was
before considered to be a strong signal for collectivity in
heavy-ion collisions. Studying such high-multiplicity events
(and multiplicity dependencies of observables) goes much
beyond the frame covered by factorization, and we need an
appropriate tool, able to deal with multiple scatterings, which
must happen in parallel at high energies.

Although everybody will agree that multiple scatterings
should conserve energy momentum, the way it is implemented
is fundamentally different in EPOS compared to other models.
Concerning momentum sharing, the EPOS4 method em-
ploys multiple scattering laws of the form f1(p1) × f2(p2).. ×
δ(p −∑

pi ). The delta function here is crucial, like the prob-
ability law in a microcanonical ensemble. We refer to this
method as “rigorous parallel scattering scenario” for unbi-
ased momentum sharing. This is very different compared to a
structure like f1(p1|p) × f2(p2|p− p1) × f3(p3|p− p1 − p2)
with conditional probabilities (as it is usually done), which
may perfectly conserve momentum but in a sequential
manner.

In Ref. [6], we show that such a “rigorous parallel scat-
tering scheme” can be constructed based on S-matrix theory
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(see also Refs. [7–11]), which we will briefly review in the
following. We show—and this is far from trivial—how to
accommodate factorization and saturation in an energy con-
serving parallel scattering scenario. The starting point is the
elastic scattering T matrix,

iT =
∞∑

n=0

∫
dX

1

n!
V × {iTPom × · · · × iTPom} × V × δ, (1)

expressed in terms of “elementary” T matrices1 TPom, the
latter ones representing parton-parton scattering, with the
“vertex” V representing the connection to the projectile and
target remnants. The elementary T matrices depend on the
light-cone. momentum fractions x±

i of the incoming partons,
in addition to the energy squared s, and the impact parameter
b. The vertices depend on the light-cone momentum fractions
of the remnants x+

remn (projectile side) or x−
remn (target side).

Most important is the δ, which stands for

δ

(
1 −

∑
x+

i − x+
remn

)
δ

(
1 −

∑
x−

i − x−
remn

)
, (2)

to assure energy-momentum conservation in an unbiased fash-
ion (this is what we mean by a rigorous parallel scattering
scenario). The symbol

∫
dX stands for integrating over all

these momentum fractions. The expression can be easily gen-
eralized for nucleus-nucleus scattering [6].

So far we discussed only elastic scattering, the connection
with inelastic scattering provides the optical theorem in im-
pact parameter representation,

σtot =
∫

d2b cut T, (3)

with cut T ≡ 1
i discT , where disc T is the s-channel disconti-

nuity T (s + iε) − T (s − iε) and with T being per definition

1To be more precise, what we call T is the Fourier transform of the
T matrix with respect to the transverse momentum exchange divided
by twice the invariant mass squared of the considered process.
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FIG. 1. Double scattering, each box representing a cut Pomeron
(single inelastic scattering).

the Fourier transformed T matrix divided by 2s. So we need
to compute the “cut” of the complete diagram, cut T , i.e., for
pp we need to evaluate

cut{V × iTPom × · · · × iTPom × V }, (4)

which corresponds to the sum of all possible cuts, considering,
in particular, all possibilities of cutting or not any of the
parallel Pomerons. We have finally a sum of products with
some fraction of the Pomerons being cut (cut Pomerons), and
the others not (uncut Pomerons), referred to as cutting rules.
We define G to be the cut of a single Pomeron,

G = cut TPom. (5)

Cut Pomerons represent inelastic scattering (a + b → many
partons) and uncut Pomerons elastic scatterings (a + b →
a + b).

The uncut Pomerons are finally summed over and the cor-
responding variables integrated out, so eventually the total
cross section is expressed as a sum over products of G, very
similar to Eq. (1) with the vertices V (x+

remn)V (x−
remn) replaced

by some effective vertex function W (x+
remn, x−

remn). A great
advantage of this T -matrix formalism is its modular struc-
ture. Multiple scattering is expressed in terms of modules (G)
representing a single scattering each, as shown in the case
of two inelastic scatterings in Fig. 1. The precise content of
these modules will be discussed later—this is where all the
perturbative QCD physics is hidden, and discussing that will
be the main purpose of this paper.

The important new issue in Ref. [6] is the understanding
of how energy conservation ruins factorization, and how to
solve this problem via an appropriate definition of G. The
cut Pomeron G = cut TPom is the fundamental quantity in the
EPOS formalism. For the moment, we consider the Pomeron
as a “box,” with two external legs representing two incoming
particles (nucleon constituents) carrying light-cone momen-
tum fractions x+ and x−, so G = G(x+, x−, s, b), with the
energy squared s, and the impact parameter b, see Fig. 2.
Let us define the “Pomeron energy fraction” xPE = x+x− =

FIG. 2. The cut Pomeron G.

M2
Pom/s, with MPom being the transverse mass of the Pomeron,

which is the crucial variable characterizing cut Pomerons: The
bigger xPE, the bigger the Pomeron’s invariant mass and the
number of produced particles. Large invariant masses also
favor high-pt jet production. We also define, for a given cut
Pomeron connected to projectile nucleon i and target nucleon
j, a “connection number” Nconn = (NP + NT )/2, with NP be-
ing the number of Pomerons connected to i, and with NT being
the number of Pomerons connected to j. The case Nconn = 1
corresponds to an isolated Pomeron, which may take all the
energy of the initial nucleons, whereas in the case of Nconn > 1
the energy for a given Pomeron will be shared with others. To
quantify the effect of energy sharing, we define f (Nconn )(xPE)
to be the inclusive xPE distribution, i.e., the probability that a
single Pomeron carries an energy fraction xPE for Pomerons
with given values of Nconn. The distribution for Nconn > 1
will be deformed with respect to the Nconn = 1 case, due to
energy sharing, and we define the corresponding “deformation
function” Rdeform(xPE) as a ratio of f (Nconn )(xPE) over f (1)(xPE).
As shown in Ref. [6], this function can be calculated and
tabulated. As discussed in detail later, we also calculate and
tabulate some function GQCD(Q2, x+, x−, s, b), which con-
tains as a basic element a cut parton ladder based on DGLAP
parton evolutions [9,12,13] from the projectile and target side,
with an elementary QCD cross section in the middle, Q2 being
the low virtuality cutoff in the DGLAP evolution. The latter
is usually taken to be constant and of the order of 1 GeV,
whereas we allow any value. With all this preparation, we are
now able to connect G (used in the multi-Pomeron diagrams)
and GQCD (making the link to QCD), as follows:

For each cut Pomeron, for given x±, s, b, and Nconn,

we postulate :

G( x+, x−, s, b)

= n

R(Nconn )
deform(xPE)

GQCD
(
Q2

sat, x+, x−, s, b
)
, (6)

with n being independent on x±. Most importantly, G does
not depend on Nconn, but Q2

sat does; it “compensates” the
Nconn dependence of R(Nconn )

deform. Considering even a large value
of Nconn, we can prove that the distribution f (Nconn )(xPE)
is proportional to a product of vertex functions times
GQCD(Q2

sat, x+, x−, s, b), and so the deformation cancels out.
So, for any number of Nconn, the inclusive particle production
is governed by a single Pomeron represented by GQCD, which
does not depend on Nconn, apart from the implicit Nconn depen-
dence of Q2

sat. Consequently, the pt dependence of outgoing
partons will be independent of Nconn in the hard domain (high
pt ); see Ref. [6] for more details. Computing a pt distribution
according to GQCD amounts precisely to factorization or bi-
nary scaling in AA scattering, but—again—only obtained for
hard processes. In other words, computing RAA in a full AA
simulation, we get unity at large pt .

Let us come back to our earlier statement saying that “en-
ergy conservation ruins factorization.” The statement actually
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depends on how one relates G and GQCD. In earlier versions,
we adopted what we thought at the time to be “the natural
Pomeron definition” but what we now call “the naive Pomeron
definition,” namely G = GQCD. As discussed in detail in
Ref. [6], this leads unavoidably to the following problem: An
inclusive pp pt distribution will be a superposition of con-
tributions for different connection numbers. With increasing
connection numbers, these contributions get more and more
deformed (suppressed at large xPE), which corresponds to a
suppession of the yields at high pt . Therefore the minimum
bias pt distribution will be suppressed at large pt compared
to the single Pomeron distribution. On the other hand, fac-
torization requires inclusive cross sections to be given by a
single cut Pomeron, since based on this diagram one obtains
formulas as fPDF ⊗ σ̂ ⊗ fPDF, corresponding to factorization.

The fact that multiple Pomeron interactions reduce for
inclusive cross sections to a single cut Pomeron (leading to
factorization if one assumes “the naive Pomeron definition”)
refers to “AGK cancellations” [10], shown to be valid in a
scenario without energy conservation. As discussed above,
including energy sharing (as it should be) ruins first “AGK
cancellations” and, as a consequence, factorization. With a
“proper Pomeron definition” as employed in EPOS4, we re-
cover “AGK cancellations” in the sense that inclusive cross
sections can be expressd in terms of a single Pomeron expres-
sion GQCD, although in reality multiple scatterings contribute.
But this statement is only true for pt values bigger than the
relevant saturation scales of the different multiple scattering
contributions, where “relevant” refers to the relative weight of
the contributions.

The new EPOS4 framework is able to recover factorization
at large pt (a difficult task in the parallel scattering formal-
ism). This allows us to compute, tabulate, and employ “EPOS
PDFs,” and based on these, we may compute inclusive cross
sections as a simple convolution of two PDFs and an elemem-
tary pQCD cross section, and the result will be identical—at
large pt —to the simulation results. But to make this work
in practice, we need high precision and appropriate methods
for both simulation and cross-section calculations. In older
versions, for example, we used in the simulations frequently a
“redo” whenever “kinematic problems” showed up, whereas
such situations should be avoided.

As a sideremark, the EPOS4 multiple scattering scheme is
quite different to what is usually called “multiple parton inter-
actions” (MPI): the former refers to multiple cut Pomerons
with external legs being soft partons, whereas the latter
treats the scattering of two hard partons, based on multiple
parton distribution functions, generalizing the factorization
approach. Reference [14] has actually two parts, namely “hard
MPI” and “soft MPI,” and the two have little in common.

The main purpose of this paper is to provide detailed infor-
mation about the calculation of GQCD, based on perturbative
QCD, with special care concerning heavy flavors. We discuss
the implementation (for the first time in the EPOS framework)
of the “backward parton evolution method,” which allows
much better control of the hard processes. We discuss im-
portant “kinematic” issues connected to processes involving
charm and bottom, taking into account 12 different “reaction
classes” for the cross-section calculations, since the kinemat-

TABLE I. The symbols G, T , T, and σ .

T Diagonal element of the elastic scattering T matrix as defined
in standard quantum mechanics textbooks, where the
asymptotic state is a system of two protons or two nuclei

T Fourier transform with respect to the transverse momentum
exchange of the elastic scattering T matrix T, divided by 2s
(formulas are simpler using this representation)

G Defined as G = cut T = 2ImT = 1
i discT (where “disc” refers

to the variable s), referring to the inelastic process associated
with the cut of the elastic diagram corresponding to T

σ Integrated inclusive parton-parton scattering cross section,
which is useful because T, T , and G may be expressed in
terms of σ

ics is quite different, e.g., for the Born processes gg → gg and
gg → bb̄. A useful side-effect concerning the new strategies,
in particular the “backward evolution,” is the fact that many
formulas are very similar to what is used in models based
on “factorization.” We may compare our EPOS PDFs with
“standard” PDFs, but there are also fundamental differences:
In EPOS, we have first to deal with evolutions for each parton
ladder, with an initial distribution of the corresponding parton
distribution of the type δ(1 − x), and these singularities need
to be taken care of. Related to this, dealing with singularities
is the major challenge for cross-section calculations as well as
for parton generation.

We mentioned already the modular structure of the ap-
proach, where the multiple scattering is expressed in terms
of the cut Pomerons G, and the latter one corresponds to
some function GQCD. This function GQCD itself has a modular
structure, the modules being vertex functions, a soft evolution
function, and most importantly the “cut parton ladder,” which
is (up to an impact parameter-dependent factor) equal to a
parton-parton cross section. In Sec. II, we will discuss how the
EPOS4 building block GQCD is related to parton-parton cross
sections, and in Sec. III, we will discuss how the integrated
and differential parton-parton cross sections can be computed.
The former are needed to compute GQCD, while the latter are
necessary for the parton generation.

II. RELATING THE EPOS4 BUILDING BLOCK GQCD TO
PARTON-PARTON CROSS SECTIONS

As discussed in the last section (see also Ref. [6]), the
multiple scattering contributions to the total cross section are
expressed in terms of (products of) cut Pomeron expressions
G, and the latter ones are related the “real QCD expressions”
GQCD via Eq. (6). In this sense, GQCD is the basis of every-
thing, the fundamental building block of EPOS4. This GQCD

depends on the saturation scale Q2
sat, which is of fundamental

importance in the EPOS4 framework [6], but here the focus is
on the details for the calculation of GQCD, where Q2

sat is “only”
a constant, representing the low virtuality cutoff (and we use
simply symbols like Q2

1 and Q2
2 as arguments).

We will use different symbols, like G, T , T, and σ , all be-
ing related to each other. For clarity, we recall the definitions
in Table I.

034904-3



K. WERNER AND B. GUIOT PHYSICAL REVIEW C 108, 034904 (2023)

Concerning the structure of GQCD, we expect on both
projectile and target side two possibilities, namely a valence
quark or a sea quark/gluon being the first perturbative parton,
and in addition soft contributions, correspondingly we have

GQCD = Gsea−sea
QCD + Gsea−val

QCD + Gval−sea
QCD

+ Gval−val
QCD + Gsoft + Gpsoft. (7)

In this section, we will discuss the different G’s one by one,
and in particular how the GK

QCD are related to parton-parton
cross sections σ , the latter one discussed in detail in Sec. III.

A. The usual factorization approach
for proton-proton scattering

Certain elements of the EPOS4 scheme are similar to the
usual factorization approach, which we will briefly review
in the following. Based on the factorization hypothesis, the
inclusive parton production cross section in proton-proton
scattering is given as [2]

E3E4
d6σincl

d3 p3d3 p4

=
∑
klmn

∫ ∫
dx1dx2 f k

PDF

(
x1, μ

2
F

)
f l
PDF

(
x2, μ

2
F

) 1

32sπ2

×
∑̄

|Mkl→mn|2δ4(p1 + p2 − p3 − p4)
1

1 + δmn
, (8)

where the parton distribution function (PDF) f a
PDF represents

the number of partons of species a entering the hard scattering
and where p1 and p2 (p3 and p4) are the momenta of the
incoming (outgoing) partons. The PDFs can be considered to
be known from deep inelastic electron-proton scattering, and
the amplitudes M can be computed, and thus one obtains the
inclusive cross section as a simple integral. The factorization
scale μ2

F represents the scale which allows us to separate

Q2
2

Q 2
1

Fµ
2

j

i

s

FIG. 3. The parton-parton cross section σ
i j
hard(Q2

1, Q2
2, s).

“long range (soft)” and “short range (hard)” parts of the in-
teraction, such that the former ones are part of the proton
structure, whereas the latter ones show up in the perturba-
tive matrix elements M. This procedure has been shown to
successfully describe experimental jet production data. In the
EPOS4 framework, a similar “factorization formula” will be
used but in a different context.

B. Cut parton ladder Ghard
QCD and the parton-parton

cross section σ
i j
hard

We first discuss a somewhat simplified situation, namely
a simple parton ladder. Let us consider the scattering of two
partons with flavors i and j carrying virtualities Q2

1 and Q2
2,

both first evolving via parton emissions with ordered virtu-
alities up to μ2

F before interacting as an elementary 2 → 2
pQCD (hard) scattering (see Fig. 3). The corresponding dijet
production cross section can be written as

σ
i j
hard

(
Q2

1, Q2
2, s
) =

∑
klmn

∫
dx1dx2

∫
d3 p3d3 p4

E3E4
Eik

QCD

(
x1, Q2

1, μ
2
F

)
E jl

QCD

(
x2, Q2

2, μ
2
F

)
× 1

2s

1

16π2

∑̄
|Mkl→mn|2δ4(p1 + p2 − p3 − p4)

1

1 + δmn
, (9)

where the momenta of the outgoing partons (jets) are in-
tegrated out. This expression is very similar to the usual
factorization formula Eq. (8) but with the parton distribu-
tion functions f k

PDF(xi, μ
2
F ) replaced by Eik

QCD(xK , Q2
K , μ2

F ),
representing parton evolution starting at virtuality Q2

K with a
distribution δ(x − 1)δki but using the same DGLAP evolution
[9,12,13]. The corresponding cut diagram, referred to as “cut
parton ladder,” is shown in Fig. 4. Concerning the correspond-
ing elastic scattering T matrix, we assume

Ti j
hard

(
Q2

1, Q2
2, s, t

) = i s σ
i j
hard

(
Q2

1, Q2
2, s
)× exp

(
R2

hardt
)
,

(10)

with R2
hard ≈ 0 [9], which is compatible with the usual rela-

tion σ
i j
hard = 2Im Ti j

hard(t = 0)/(2s). Furthermore assuming a
purely transverse momentum exchange t = −q2

⊥, the Fourier
transform and division by 2s gives

T i j
hard

(
Q2

1, Q2
2, s, b

)
= 1

8π2s

∫
d2q⊥e−iq⊥bTi j

hard(s, t ) (11)

= i

2
σ

i j
hard

(
Q2

1, Q2
2, s
) 1

4πR2
hard

exp

(
− b2

4R2
hard

)
. (12)
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FIG. 4. Cut parton ladder Ghard,ij
QCD .

For the corresponding G = cut Thard = 2Im Thard, we get

Ghard,i j
QCD

(
Q2

1, Q2
2, s, b

)
= σ

i j
hard

(
Q2

1, Q2
2, s
) 1

4πR2
hard

exp

(
− b2

4R2
hard

)
. (13)

So the cut parton ladder expression G is simply the product
of the dijet production cross section σ

i j
hard times a Gaussian

impact parameter dependence.

C. Relating Gval−val
QCD to the parton-parton cross section σ

i j
hard

Here we consider the “val-val” contribution, where on both
sides a valence quark is the first perturbative parton. We might
imagine in the multiple Pomeron formula [as Eq. (1)] but
using T and not T ) for each “val-val” Pomeron an expression
like∑

i, j

∫
dz+dz−

z+z− Ti j
hard(. . . , z+z−s, . . . )F i(z+)F j (z−), (14)

where the indices i and j refer to the flavors of the valence
quarks, with some “vertex functions” F a and with s being the
proton-proton squared energy in the center-of-mass system
(CMS).

However, the external legs of our Pomerons should always
be colorless objects, carrying light-cone momentum fractions
x+ on the projectile and x− on the target side. So each valence
quark has a partner (antiquark or diquark), with the valence
quark carrying a light-cone momentum fraction z± and its
partner x± − z±, the sum of both being x±. The partner is
emitted (as a timelike parton) immediately, and the valence
quark starts the parton evolution. The corresponding cut dia-
gram is indicated in Fig. 5. We imagine vertex functions F i

val 1

and F j
val 2 with three arguments each: the light-cone momen-

tum fractions of the valence quark and of its partner and the
Mandelstam t . Let us first look at the T matrix. Instead of

FIG. 5. The contribution Gval−val
QCD .

Eq. (14), we use for each “val-val” Pomeron an expression
(including integration) like∑

i, j

∫
dz+dz−

z+z−

∫
dx+dx−Ti j

hard

(
Q2

0, Q2
0, z+z−s, t

)
× F i

val 1(z+, x+ − z+, t )F j
val 2(z−, x− − z−, t ), (15)

which can then be written as an integration
∫

dx+dx−/(x+x−)
referring to the “white” legs, with an integrant that can be
interpreted as the corresponding T matrix, i.e.,∫

dx+dx−

x+x− Tval−val(x
+, x−, s, t ), (16)

with the “val-val” T matrix

Tval−val(x
+, x−, s, t )

=
∑
i, j

∫
dz+dz− x+x−

z+z− Ti j
hard

(
Q2

0, Q2
0, z+z−s, t

)
×F i

val 1(z+, x+ − z+, t ) F j
val 2(z−, x− − z−, t ). (17)

For F i
val 1, F j

val 2, and Ti j
hard, the t dependence can be factored out

as eR2t , with parameters R2
val 1, R2

val 2, and R2
hard. We compute G

as usual as twice the imaginary part of the Fourier transform of
the T matrix divided by 2sx+x−, and we get [using Eqs. (11)
and (12) with z+z−s instead of s]

Gval−val
QCD (x+, x−, s, b)

=
∑
i, j

∫
dz+dz−F i

val 1(z+, x+ − z+, 0)

× F j
val 2(z−, x− − z−, 0)σ i j

hard

(
Q2

0, Q2
0, z+z−s

)
× 1

4πR2
exp

(
− b2

4R2

)
(18)

with

R2 = R2
hard + R2

val 1 + R2
val 2. (19)

D. Relating Gsea−sea
QCD to the parton-parton cross section σ

i j
hard

For the “sea-sea” contribution, we expect a “soft block”
preceding the first pertubative parton, as indicated in Fig. 6.
The vertices Fsea 1 and Fsea 2 couple the parton ladder to the
projectile and target nucleons. In addition, we have three
blocks, the two soft blocks and in between the parton lad-
der discussed earlier. The corresponding elastic scattering T
matrix for the latter is T jk

hard and those for the soft blocks
are per definition T j

soft and Tk
soft, with j and k being the

flavors of the two parton which connect the soft blocks to the
parton ladder. In principle we have for each of these partons
a four-dimensional loop integral, but based on the assump-
tion that transverse momenta and virtualities are negligible
compared to longitudinal momenta, they can be reduced to
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FIG. 6. The contribution Gsea−sea
QCD .

one-dimensional integrals [11],

iTsea−sea
(
Q2

1, Q2
2, x+, x−, s, t

)
=
∑

i j

∫
dz+

z+
dz−

z− Im Ti
soft

(
Q2

1,
s0

z+ , t

)
Im T j

soft

(
Q2

2,
s0

z− , t

)
× iTi j

hard

(
Q2

1, Q2
2, z+z−x+x−s, t

)
Fsea 1(x+, t ) Fsea 2(x−, t )

(20)

What is the reason for getting the imaginary part of the soft
T matrices? The loop integrals may be written as

∫
dk+dk−

d2kt . . . , and the k− variable can be related to the Mandelstam
variables s and u (for the soft block). Then the usual branch
cuts translate into cuts for k−, and a rotation of the integration
path, as shown in Fig. 7, transforms

∫∞
−∞ dk− into

∫∞
0 dk−

disc, which is equal to
∫∞

0 dk−Im. In order to compute

Gsea−sea
QCD

(
Q2

1, Q2
2, x+, x−, s, b

)
= 2Im Tsea−sea

(
Q2

1, Q2
2, x+, x−, s, b

)
, (21)

with as usual T being the Fourier transform divided by
2ŝ = 2x+x−s of the T matrix,

Tsea−sea
(
Q2

1, Q2
2, x+, x−, s, b

)
= 1

8π2x+x−s

∫
d2q⊥e−iq⊥bTsea−sea

(
Q2

1, Q2
2, x+, x−, s, t

)
,

(22)

we note that for all T matrices, the t dependence can be
factored out as

Ti
soft (. . . , t ) = Ti

soft (. . . , 0) × exp
{[

R2
soft + α′ ln(ŝ)

]
t
}
,

(23)

Ti j
hard(. . . , t ) = Ti j

hard(. . . , 0) × exp
(
R2

hard t
)
. (24)

FIG. 7. The integration path in the k− plane.

The t dependence of Fsea 1 and Fsea 2 can also be factored out
as eR2

sea Kt , with parameters R2
sea 1, R2

sea 2, which gives a simple
overall t dependence of the right-hand side of Eq. (20) as eR2t ,
so that we get easily

Gsea−sea
(
Q2

1, Q2
2, x+, x−, s, b

)
=
∑

i j

∫
dz+dz−Im Ti

soft

(
Q2

1,
s0

z+ , 0

)
Im T j

soft

(
Q2

2,
s0

z− , 0

)

× 1

z+z−x+x−s
ImTi j

hard

(
Q2

1, Q2
2, z+z−x+x−s, 0

)
× Fsea 1(x+, 0) Fsea 2(x−, 0)

1

4πR2
exp

(
− b2

4R2

)
. (25)

Using

1

ŝ
ImTi j

hard

(
Q2

1, Q2
2, ŝ, 0

) = σ
i j
hard

(
Q2

1, Q2
2, ŝ
)
, (26)

and defining “soft evolution functions”

Ei
soft (Q

2, z) = Im Ti
soft

(
Q2,

s0

z
, 0

)
, (27)

we get finally

Gsea−sea
QCD

(
Q2

1, Q2
2, x+, x−, s, b

)
=
∑

i j

∫
dz+dz−Fsea 1(x+, 0)

× Fsea 2(x−, 0)Ei
soft

(
Q2

1, z+)E j
soft

(
Q2

2, z−)
× σ

i j
hard

(
Q2

1, Q2
2, z+z−x+x−s

) 1

4πR2
exp

(
− b2

4R2

)
,

(28)

with R being given explicitly as

R2 = R 2
sea 1 + R 2

sea 2 + 2R2
soft + α′ ln

(
1

z+

)
+ α′ ln

(
1

z−

)
+ R2

hard. (29)

The precise form of Ei
soft and Fsea K will be discussed later;

the former is based on a parametrization (in Regge-pole form)
of the soft T matrix, and the latter has a simple power-law
form.

E. Relating Gval−sea
QCD and Gsea−val

QCD to the parton-parton
cross section σ

i j
hard

Having discussed the two contributions “val-val” and “sea-
sea,” referring to contributions with respectively two valence
quarks and two sea quarks as “first perturbative partons” en-
tering the parton ladder, we easily obtain the expressions for
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“val-sea,” namely

Gval−sea
QCD

(
Q2

2, x+, x−, s, b
)

=
∑
i, j

∫
dz+dz−F i

val 1(z+, x+ − z+, 0)

× Fsea 2(x−, 0) E j
soft

(
Q2

2, z−)
× σ

i j
hard

(
Q2

0, Q2
2, z+z−x−s

) 1

4πR2
exp

(
− b2

4R2

)
,

(30)

with R being given explicitly as

R2 = R2
val 1 + R 2

sea 2 + R2
soft + α′ ln

(
1

z−

)
+ R2

hard. (31)

The expression for “sea-val” is

Gsea−val
QCD

(
Q2

1, x+, x−, s, b
)

=
∑
i, j

∫
dz+dz−Fsea 1(x+, 0) Ei

soft

(
Q2

1, z+)
× F j

val 2(z−, x− − z−, 0)

× σ
i j
hard

(
Q2

1, Q2
0, z+z−x+s

) 1

4πR2
exp

(
− b2

4R2

)
,

(32)

with R being given explicitly as

R2 = R 2
sea 1 + R2

soft + α′ ln

(
1

z+

)
+ R2

val 2 + R2
hard. (33)

F. The vertices F

The main formulas of the preceding sections, Eqs. (18),
(28), (30), and (32), allows us to express the different GJ

QCD in
terms of “modules,” among them the vertices Fsea K and Fval K

with K ∈ {1, 2}, which are simple functions, to be discussed
in the following. In the case of pp scattering, the functions
for K = 1 and K = 2 are identical, whereas for πp or Kp
scattering they are in general different (more precisely, the
form is the same but not the parameters). The vertices Fsea K

and F i
val K are given as

Fsea K (x) = γsea K x−αsea K , (34)

F i
val K (z, z′) = N−1 qi

val(z)(1 − z)αR−1−αremn z′−αR , (35)

with N = �(1 + αremn) �(1 − αR)/�(2 + αremn − αR), with
qi

val being a standard valence quark distribution function for

a small value Q2
0 of the virtuality (see Appendix C.2 in

Ref. [11]). From Eq. (35), and using V (z) = zαremn as remnant
vertex, we obtain as parton distribution f i at Q2

0,

f i(z) =
∫ 1−z

0
dz′ F i

val(z, z′)V (1 − z − z′) = qi
val(z), (36)

having used
∫ 1

0 dy y−αR (1 − y)αremn = �(1−αR )�(1+αremn )
�(2−αR+αremn ) . So we

get f i(z) = qi
val(z), as it should be, which justifies our choice

of F i
val K .

G. The soft elements Esoft and Gsoft

Based on the asymptotic Regge-pole expression, the soft T
matrix Ti

soft (Q
2, s, t ) is (for the moment) assumed to not de-

pend on Q2 and to be proportional to to i s1+Bsoft exp[(2R2
soft +

α′ ln s
s0

)t], with a “Regge-pole intercept” 1 + Bsoft = αsoft (0),
where Bsoft is a parameter close to zero. The “soft evolution
functions” Ei

soft (Q
2, z) are defined in Eq. (27) as the imaginary

part of Ti
soft for t = 0 and s = s0/z, so they are up to constants

equal to (s0/z)1+Bsoft . We add a splitting into a quark, as well
as a soft-Pomeron-ladder coupling of the form (1 − z)Csoft , to
get (we drop the Q2 argument)

Eg
soft (z) = (1 − wsplit ) Esoft (z), (37)

Eq
soft (z) = wsplit

∫ 1

z
dξ fsplit (ξ ) Esoft

(
z

ξ

)
, (38)

with Esoft (z) = Asoft z−1−Bsoft (1 − z)Csoft , (39)

with a parameter wsplit ∈ [0, 1], and where we use fsplit (ξ ) =
Pq

g (ξ ), since we are “close to the perturbative domain.”
Still based on the soft T -matrix expression ∝

i s1+Bsoft exp[(2R2
soft + α′ ln s

s0
)t] and adding the same two

vertices as for the “sea-sea” contribution, we get the “soft” G
expressions as

Gsoft (x
+, x−, s, b)

= Fsea 1(x+, 0) Fsea 2(x−, 0)

× Dsoft × (x+x−s)Bsoft
1

4πR2
exp

(
− b2

4R2

)
, (40)

with parameters Dsoft and Bsoft, and with R being given explic-
itly as

R2 = R 2
sea 1 + R 2

sea 2 + 2R2
soft + α′ ln

(
s

s0

)
. (41)

H. The pseudosoft elements Epsoft and Gpsoft

The “soft evolution functions” Ei
soft are meant to take

care of the “non-perturbative part” before entering the per-
turbative regime represented by Eik

QCD(x, Q2, μ2
F ). Originally,
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we were using Q2 being equal to some soft scale Q2
0 (typ-

ically 1 − 2 GeV2). In that case, Ei
soft represents purely soft

physics, and we could actually drop Q2 as an argument,
Ei

soft = Ei
soft (z). However, now we introduce evolution func-

tions Eik
QCD(x, Q2

sat, μ
2
F ) where the virtuality cutoff is equal to

the saturation scale, which is in general bigger than Q2
0, which

means that the “part not taken care of” by the QCD evolution
is not purely soft anymore. This is the domain of gluon fu-
sions, but there should be emissions as well and a narrowing of
the momentum fraction distributions. To take this into account
we define “pseudosoft evolution functions” as

Ek
psoft

(
Q2

sat, ξ
)

=
∫

dz dy

{∑
i

E i
soft (z)Eik

QCD

(
y, Q2

0, Q2
sat

)
δ(ξ − zy)

}
,

(42)

which is meant to replace the soft evolution functions used so
far. This is actually needed to have the same pt distribution of
emitted partons at large pt for different values of Q2

sat.
Having replaced the soft evolution functions with the pseu-

dosoft ones, we need a modification of Gsoft as well. We have
little guidance from theory, so we use the same parametriza-
tion as for Gsoft

Gpsoft
(
Q2

sat, x+, x−, s, b
)

= Fsea 1(x+, 0) Fsea 2(x−, 0)

× Dpsoft × (x+x−s)Bpsoft
1

4πR2
exp

(
− b2

4R2

)
, (43)

just with different parameters Bpsoft and Dpsoft, which may
depend on Q2

sat. This is enough to compute GQCD. But because
of Q2

sat > Q2
0, we expect that hard pQCD processes should

occur, producing light and heavy flavor hadrons. This will be
discussed more in the next section.

III. PARTON-PARTON CROSS SECTIONS IN EPOS4
INVOLVING LIGHT AND HEAVY FLAVORS

As discussed in Sec. I (see also Ref. [6]), the multiple
scattering contributions to the total cross section are expressed
in terms of (products of) cut Pomeron expressions G, each one
representing a single scattering. They are related to the “real
QCD expressions” GQCD via Eq. (6), in other words, GQCD

is the fundamental building block of the multiple scattering
framework of EPOS4. We showed in Sec. II that GQCD has
several contributions, each one being composed of “modules,”
with the “key” module being the integrated inclusive parton-
parton scattering cross section σ

i j
hard, where i and j refer to the

flavors of the two partons. This “module” σ
i j
hard contains all the

pQCD calculations. We refer to Table I to recall the definitions

FIG. 8. The differential parton-parton cross sec-
tion E3E4d6σ

i j
hard/d3 p3d3 p4 considering the Born process

1 + 2 → 3 + 4. The solid lines represent partons (quarks,
antiquarks, or gluons).

of the symbols G and σ and their relation to the T matrix. In
this section, we discuss in detail how to compute σ

i j
hard.

Concerning notations, although in the previous section the
symbol s usually referred to the Mandestam s of nucleon-
nucleon scattering, we will use in this section s and t referring
to the Born process of the hard scattering, which here plays a
crucial role. Although it is not always explicitly written, the
pQCD matrix elements M are always considered to be given
in term of s and t (that is how the are tabulated).

A. Integrated and differential partonic cross sections

The main formula concerning the parton-parton scattering
cross section σ

i j
hard is Eq. (9). It is useful to split that formula,

by first considering “differential cross sections,”

E3E4
d6σ

i j
hard

d3 p3d3 p4

=
∑
klmn

∫ ∫
dx1dx2 Eik

QCD

(
x1, Q2

1, μ
2
F

)
E jl

QCD

(
x2, Q2

2, μ
2
F

)
× 1

32sπ2

∑̄
|Mkl→mn|2δ4(p1 + p2 − p3 − p4)

1

1+ δmn
,

(44)

representing the inelastic scattering of two partons with vir-
tualities Q2

1 and Q2
2 at a center-of-mass energy squared slad,

with x1/2 being the light-cone (LC) momentum fractions (with
respect to the LC momenta of the partons before the evolution)
of the partons entering the Born process of the elementary
parton-parton scattering 1 + 2 → 3 + 4, see Fig. 8, with the
corresponding flavors k, l , m, and n. The matrix elements M
is considered to be given in term of s and t , with s = x1x2slad.
Both partons first evolve via parton emissions with ordered
virtualities up to μ2

F before interacting as an elementary 2 →
2 pQCD scattering. The “integrated cross sections” σ

i j
hard may

then be written as

σ
i j
hard

(
slad, Q2

1, Q2
2

) =
∫

d3 p3d3 p4

E3E4

{
E3E4

d6σ
i j
hard

d3 p3d3 p4

}
, (45)

in terms of the “differential cross section.” Both differential
and integrated cross sections are important in the EPOS4

034904-8



PERTURBATIVE QCD CONCERNING LIGHT AND HEAVY … PHYSICAL REVIEW C 108, 034904 (2023)

FIG. 9. Multiple scattering configuration for three scatterings.

framework:

(i) the integrated ones are needed to compute the weights
for all possible parallel scattering configurations, and
to generate the corresponding configurations,

(ii) the differential cross sections are needed to compute
parton distributions, and generate partons in the Monte
Carlo mode, for given configurations (generated in the
first step).

Comparing Eqs. (8) and (44), we see that our differential
cross section has the same structure as the inclusive cross
section based on factorization, but in our case, we use evo-
lution functions EQCD rather than the usual parton distribution
functions fPDF, where EQCD represents an evolution also ac-
cording to DGLAP [9,12,13], but starting from a parton and
not from a proton, with an initial condition Eik

QCD(z, Q2
1, Q2

1) =
δik δ(1 − z). Special care is needed to treat this “singularity.”

We will eventually use dynamical saturation scales Q2
sat 1

and Q2
sat 2 as endpoint virtualities, so we compute (via nu-

merical integration) and then tabulate σ
i j
hard(slad, Q2

1, Q2
2) for

a large range of possible values slad, Q2
1, and Q2

2 for all pos-
sible combinations of i and j. During the simulations, we
use the predefined tables to compute σ

i j
hard via polynomial

interpolation.
As discussed in detail later, all the kinematic variables

shown in Fig. 8 are related to each other: The scale μ2
F and

the Mandelstam variable t are related to p2
t (the transverse

momentum of one of the outgoing partons, say, parton 3), the
end virtualities Q2

1 and Q2
2 represent lower limits to p2

t , but
the precise relations depend on the particular Born process.
We deal with this problem by introducing classes of cross
sections, with the same Born kinematics per class. The main
reason that we need to be very careful concerning parton
kinematics is the fact that in our case, the differential cross
section formula Eq. (44) concerns one single scattering in a
multiple scattering configuration as shown in Fig. 9. Here we
show an example with three scatterings, but in AA collisions,
we have configurations with 1000 scatterings. So it is out of
question to use the standard method of Monte Carlo program-
ming, namely rejection in the case of forbidden kinematics;
we simply have to avoid such cases.

B. Parton evolution functions EQCD

Our parton evolution functions Eik
QCD are similar to the

“usual” ones, obeying the same evolution equations, but the

initial conditions are different, and this requires different treat-
ments. We present here a new procedure to compute and
tabulate these functions, much faster than the techniques we
used in EPOS3. The indices i and k refer to parton flavors in
the form of integers with 0 for a gluon, 1–6 for quark flavors
from u to t , and the corresponding negative numbers for the
antiquarks.

For a given end parton i, using t = Q2, the evolution equa-
tion for an evolution from ta to tb may be written as [2]

Eik
QCD(x, ta, tb) =
i(ta, tb)δ(1 − x)δik +

∑
j

∫
dt

t

×
∫

dz

z
Ei j

QCD

(
x

z
, ta, t

)
P̄k

j (t, z) 
k (t, tb)

(46)

with

ta � t � tb, x � z � 1 − ε. (47)

We use P̄ = αs
2π

P, with P being the splitting functions without
( )+ prescription [2], i.e.,

Pq
q (t, z) = CF (1 + z2)/(1 − z), (48)

Pq
g (t, z) = θ [|q| − Nf (t )] 1

2 [z2 + (1 − z)2], (49)

Pg
q (t, z) = CF [1 + (1 − z)2]/z, (50)

Pg
g (t, z) = 2CA [z/(1 − z) + (1 − z)/z + z(1 − z)], (51)

with quark indices q ∈ {−6, . . . ,−1, 1, . . . , 6} and g = 0,
with CF = 4/3, TR = 1/2, CA = 3, and where

θ (Nf − |q|) =
{

1 for Nf (t ) � |q|
0 otherwise

assures a possible emission of a quark of flavor q if the number
of flavors Nf (t ) is at least as big as |q|. So for large values of
t , with Nf (t ) = 5, the weight for emitting a bottom quark is
identical to the one of a u or d quark. The symbols 
i refer to
the so-called Sudakov form factors, defined as


q(t1, t2) = exp

[
−
∫ t2

t1 2

dt

t

αs

2π

∫ 1−ε

ε

dz Pq
q (z)

]
, (52)

and


g(t1, t2) = exp

{
−
∫ t2

t1 2

dt

t

αs

2π

×
∫ 1−ε

ε

dz

[
1

2
Pg

g (z) + Nf Pq
g (z)

]}
, (53)

see Appendix A 3.
The fundamental difference with respect to the “usual”

PDFs is the fact that we have a singular initial condition,
namely

Eab
QCD(x, ta, ta) = δ(1 − x)δab, (54)

so we have to define the evolution function Ẽ ab
QCD(x, ta, tb) for

at least one emission, such that the evolution function can be
written as

Eab
QCD(x, ta, tb) = Ẽ ab

QCD(x, ta, tb) + 
a(ta, tb)δ(1 − x)δab,

(55)
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FIG. 10. Tabulating the evolution function.

with Ẽ ab
QCD(x, ta, ta) = 0. As proven in Appendix A 2, we have

for an arbitrary tc between ta and tb the relation

Eab
QCD(x, ta, tb) =

∑
c

∫
dz

z
Eac

QCD

(
x

z
, ta, tc

)
Ecb

QCD(z, tc, tb),

(56)

and using Eq. (55), we get

Ẽ ab
QCD(x, ta, tb)

= Ẽ ab
QCD(x, ta, tc)
b(tc, tb) + 
a(ta, tc)Ẽ ab

QCD(x, tc, tb)

+
∑

c

∫
dz

z
Ẽac

QCD

(
x

z
, ta, tc

)
Ẽ cb

QCD(z, tc, tb). (57)

We tabulate Ẽ , which means we compute Ẽ ab
QCD(x, ti, t j ) with

tmin � ti � t j � tmax (blue area in the ti − t j plane, in Fig. 10),
more precisely for the following values:

ti = tmin

(
tmax

tmin

)(i−1)/(M−1)

, (58)

and

t j = ti

(
tmax

ti

)( j−1)/(M−1)

, (59)

for i, j from 1 to M. We first compute Ẽ ab
QCD(x, ti, t j ) for all

i and j = 1 and j = 2 in an iterative fashion. These are the
red points in Fig. 10. We then compute the Ẽ values for j =
3, 4, 5 . . . , always for i = 1 to i = M, We use Eq. (57) as

Ẽ ab
QCD(x, ti, t j ) = Ẽ ab

QCD(x, ti, t j−1)
b(t j−1, t j )

+ 
a(ti, t j−1)Ẽ ab
QCD(x, t j−1, t j )

+
∑
j−1

∫
dz

z
Ẽac

QCD

(
x

z
, ti, t j−1

)
× Ẽ cb

QCD(z, t j−1, t j ). (60)

This works, since Ẽ ab
QCD(x, ti, t j−1) and Ẽ cb

QCD(x, t j−1, t j ) are al-
ready known via interpolation from already-tabulated values.
In this way, we are able to compute and tabulate the evolution
functions Ẽ ab

QCD and use them via polynomial interpolation,
and thus we know Eab

QCD via Eq. (55).

C. Computing integrated parton-parton cross sections
with quark mass-dependent kinematics

As discussed in the last section, the integrated parton-
parton cross section σ

i j
hard is a crucial element of the EPOS4

framework. It may be written as [see Eq. (B26)]

σ
i j
hard =

∑
klmn

∫
dx1 dx2 dt Eik

QCD

(
x1, Q2

1, μ
2
F

)
E jl

QCD

(
x2, Q2

2, μ
2
F

)
× πα2

s

s2

{
1

g4

∑̄
|Mkl→mn|2

}
1

1 + δmn
, (61)

where the indices i, j, k, l , m, and n refer to all kinds of flavors
[gluons and (anti)quarks up to bottom]. The matrix elements
M is considered to be given in terms of s and t , with s =
x1x2slad, with slad referring to the parton-parton scattering, see
Fig. 8. EPOS was originally constructed only for light flavors,
simply considering two types of partons, massless quarks and
gluons. Very often, in the program, the two cases were simply
treated explicitly, which required major changes in the code
structure. For instance, the number of active flavors (which
appears in αs and the splitting function), which was a constant
so far, now depends on Q2.

And there is a second challenge: In the “massless case”
of earlier versions, we could first do the sum over all Born
processes and compute “the” Born cross section for a given
pair of partons k and l ,∑

mn

{
1

g4

∑̄
|Mkl→mn|2

}
, (62)

before doing the integrals, which considerably simplifies the
calculations. Now we need explicitly the information about
the process kl → mn, since the masses involved in the process
affect the kinematics (like the relation between Mandelstam
t and pt and integration limits). So the operations

∑
mn and∫

dx1dx2dt can no longer be exchanged in general, but it
can be within classes: We introduce classes K of elementary
reactions kl → mn obeying to the same kinematics and then
compute all relevant quantities (to be discussed in detail in
the next section) depending on of K . In this way we do the
kinematics properly and still keep efficient (fast) procedures,
which is crucial in the EPOS4 framework.

1. Born kinematics

In the last section, we were considering processes involv-
ing initial partons i and j and two partons k and j entering the
Born process (let us note them 1 and 2), producing partons
m and n (let us note them 3 and 4), so altogether we have the
Born process 1 + 2 → 3 + 4. In the CMS, we write the parton
momentum four-vectors as

p = (
√

E2 + M2, �pt , pz ), with M2 = p2, (63)

with �pt = 0 for the incoming ones. So per definition, E is the
modulus of the momentum, E = | �p|, in the CMS, and so we
have obviously for all four particles

p2
z = E2 − p2

t , (64)
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and

E1 = E2, E3 = E4 (65)

In the following, E (without index) refers to E1 (= E2) and E ′
to E3 (= E4). We will use the following definitions:

W = 4E2, W ′ = 4E ′2. (66)

From energy conservation, we find

s = (√
E2 + m2

1 +
√

E2 + m2
2

)2
, (67)

= (√
E ′2 + m2

3 +
√

E ′2 + m2
4

)2
(68)

which gives

W = s − 2
(
m2

1 + m2
2

)+ 1

s

(
m2

1 − m2
2

)2
, (69)

W ′ = s − 2
(
m2

3 + m2
4

)+ 1

s

(
m2

3 − m2
4

)2
. (70)

In case of m1 = m2 = m, we have

W = s − 4m2. (71)

In case of m1 = 0, m2 = m or m1 = m, m2 = 0, we have

W = (s − m2)2

s
, (72)

and in case of m1 = m2 = 0, we get

W = s. (73)

Corresponding formulas apply for W ′. Essentially all kine-
matic relations will be expressed in terms of W and W ′.

2. Constraints for pt

Crucial for the following discussions is the relation be-
tween the factorization scale and the transverse momentum
of the outgoing parton,

μ2
F = p2

t + λM2

κ
, (74)

or its inverse

p2
t = κμ2

F − λM2 ≡ �F
(
μ2

F

)
, (75)

with M being the (maximum) mass of the partons involved
in the Born process, and where the two coefficients κ and λ

represent the freedom in defining μ2
F (p2

t ). In EPOS4.0.0, we
use κ = 1 and λ = 0. A choice κ = 1 and λ = 1 makes little
difference (and only at very small pt ) for charm production,
but for bottom one should better use this choice, as we will do
in future releases.

The p2
t values in the integration in the cross-section formu-

las of the last section are restricted, since we have

μ2
F � max

[
Q2

1, Q2
2

]
, (76)

which amounts to

p2
t � p2

t min = �F
(

max
[
Q2

1, Q2
2

])
. (77)

In reality, we have to use the Mandelstam t rather than p2
⊥ in

the integration, so we need to find the limits for this variable.

3. Constraints for s

The quantity E ′ is precisely the upper limit for the trans-
verse momentum of particle 3, i.e.,

p2
t � p2

t max = E ′2 = W ′

4
. (78)

To get nonzero results, we need

p2
t min < p2

t max = E ′2 = W ′

4
, (79)

which gives

W ′ = s − 2
(
m2

3 + m2
4

)+ 1

s

(
m2

3 − m2
4

)2
> 4p2

t min, (80)

and solving the quadratic inequality equation, we get

smin = d
{
1 +

√
1 − [(

m2
3 − m2

4

)/
d
]2}

with d = m2
3 + m2

4 + 2 p2
t min. (81)

This is first a limit for the energy squared of the Born process
but of course as well a limit for the ladder.

4. Constraints for t

Concerning t , we have

t = (√
E ′2 + m2

3 −
√

E2 + m2
1

)2

− ( �pt − �0)2 − (pz − E )2, (82)

which leads to

|t | = 1

2

[√
W + 4m2

1

√
W ′ + 4m2

3 − 2
(
m2

1 + m2
3

)
∓

√
W
√

W ′ − 4p2
t

]
, (83)

the “∓” referring to respectively pz � 0 and pz � 0. We may
invert Eq. (83) to obtain

p2
t = W ′

4
− 1

W

(
|t |−1

2

√
W +4m2

1

√
W ′+4m2

3 + m2
1 + m2

3

)2

,

(84)

which allows us to compute p2
t for a given t .

From Eq. (83), we get

|t |min/max = 1

2

[√
W + 4m2

1

√
W ′ + 4m2

3 − 2
(
m2

1 + m2
3

)
∓

√
W
√

W ′ − 4p2
t min

]
. (85)

Instead of integrating from |t |min to |t |max, one may define the
maximum value |t |max+ of |t | with pz � 0, i.e.,

|t |max+ = 1

2

[√
W + 4m2

1

√
W ′ + 4m2

3 − 2
(
m2

1 + m2
3

)]
. (86)

This quantity |t |max+ is the upper limit of |t | actually used,
since we may write

I =
∫ |t |max

|t |min

f (t )dt =
∫ |t |max +

|t |min

f (t )dt +
∫ |t |max

|t |max +
f (t )dt, (87)
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and a variable transformation t = 2|t |max + − t ′ for the second
integral (and then replacing t ′ by t) leads to

I =
∫ |t |max +

|t |min

{ f (t ) + f (2|t |max + − t }dt, (88)

since the upper limit of the transformed variable in the second
integral is 2|t |max + − |t |max + = |t |max + and the lower limit is
(using |t |min + |t |max = 2|t |max +) given as 2|t |max + − |t |max =
|t |min.

5. Cross-section classes

From the discussion in the last sections, it is clear that
when computing cross sections, we need to identify explicitly
contributions from particular classes of elementary scatter-
ings, obeying different kinematics, due to the different masses
being involved. We will use the notation

case m1m2m3m4, (89)

representing the reaction 1 + 2 → 3 + 4 with the four masses
being m1, m2, m3, and m4. The masses for charm and bottom
quarks used in EPOS4.0.0 are mc = 1.27 GeV/c2 and mb =
4.18 GeV/c2. We will distinguish 12 different classes (“light”
refers to massless partons) as follows:

(1) ll → ll : scattering of light partons (case 0000)
(2) cl → cl : scattering of charmed quarks or antiquarks

with light partons (case m0m0 with m = mc)
(3) bl → bl : scattering of bottom quarks or antiquarks

with light partons (case m0m0 with m = mb)
(4) l l̄ → cc̄ : annihilation of light pairs into charmed

pairs (case 00mm with m = mc)
(5) l l̄ → bb̄ : annihilation of light pairs into bottom pairs

(case 00mm with m = mc)
(6) cc̄ → l l̄ : annihilation of charmed pairs into light

pairs (case mm00 with m = mc)
(7) bb̄ → l l̄ : annihilation of bottom pairs into light pairs

(case mm00 with m = mb)
(8) cc̄ → cc̄ : scattering of charmed pairs into charmed

pairs (case mmm̃m̃ with m = m̃ = mc)

(9) cc̄ → bb̄ : scattering of charmed pairs into bottom
pairs (case mmm̃m̃ with m = mc, m̃ = mb)

(10) bb̄ → cc̄ : annihilation of bottom pairs into charm
pairs (case mmm̃m̃ with m = mb, m̃ = mc)

(11) bb̄ → bb̄ : annihilation of bottom pairs into bottom
pairs (case mmm̃m̃ with m = m̃ = mb)

(12) cb → cb : scattering of charm and bottom partons
(case mm̃mm̃ with m = mc, m̃ = mb).

The cross-section calculation [see Eq. (61)] is then given
as

σ
i j
hard =

12∑
K=1

∑
klmn∼K

∫
dx1 dx2 dt

× Eik
QCD

(
x1, Q2

1, μ
2
F

)
E jl

QCD

(
x2, Q2

2, μ
2
F

)
× πα2

s

s2

{
1

g4

∑̄
|Mkl→mn|2

}
1

1 + δmn
, (90)

where “klmn ∼ K” refers to indices corresponding to the class
K , where one then uses the intregration limits and kinematic
relation according to K . For numerical efficiency, we use the
explicit formulas from Appendix C. This is still not yet the
final formula, as discussed in the next section.

6. Cross sections for both-sided, single-sided, and no emissions

Our evolution functions are based on the same equation as
the usual PDFs, but we have a singular initial condition,
i.e., Eik

QCD(x, ta, ta) = δ(1 − x)δik . Therefore, as discussed in
Sec. III B, we compute and tabulate ẼQCD, where ẼQCD refers
to the case of at least one emission, such that

Eab
QCD

(
x, Q2

a, Q2
b

)
= Ẽ ab

QCD

(
x, Q2

a, Q2
b

)+ 
a
(
Q2

a, Q2
b

)
δ(1 − x)δab. (91)

This takes explicitly care of the singular initial condition. Cor-
respondingly, we have to deal with four different integrated
parton parton cross sections. First, we have

σ
both i j
hard =

12∑
K=1

∑
klmn∼K

∫
dx1 dx2 dt Ẽ ik

QCD

(
x1, Q2

1, μ
2
F

)
Ẽ jl

QCD

(
x2, Q2

2, μ
2
F

)πα2
s

s2

{
1

g4

∑̄
|Mkl→mn|2

}
1

1 + δmn
, (92)

which represents the integrated parton-parton cross section with at least one emission on each side, referred to as both-sided
emissions. Then we have single-sided emissions, i.e.,

σ
upper i j
hard =

12∑
K=1

∑
kmn

k jmn∼K

∫
dx1 dt Ẽ ik

QCD

(
x1, Q2

1, μ
2
F

)

 j
(
Q2

2, μ
2
F

)πα2
s

s2

{
1

g4

∑̄
|Mk j→mn|2

}
1

1 + δmn
, (93)

representing the integrated parton-parton cross section with at least one emission on the upper side and no emission on the
opposite side, and

σ
lower i j
hard =

12∑
K=1

∑
lmn

ilmn∼K

∫
dx2 dt 
i

(
Q2

1, μ
2
F

)
Ẽ jl

QCD

(
x2, Q2

2, μ
2
F

)πα2
s

s2

{
1

g4

∑̄
|Mil→mn|2

}
1

1 + δmn
. (94)
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representing the integrated parton-parton cross section with at least one emission on the lower side and no emission on the
opposite side. Finally, we have

σ
none i j
hard =

12∑
K=1

∑
mn

i jmn∼K

∫
dt 
i

(
Q2

1, μ
2
F

)

 j
(
Q2

2, μ
2
F

)πα2
s

s2

{
1

g4

∑̄
|Mi j→mn|2

}
1

1 + δmn
, (95)

representing the integrated parton-parton cross section with
no emission on either side. The four formulas are very similar,
just in case of no emission; one replaces Ẽ jl

QCD by δ jl

j and

one has therefore one summation less.
In principle there is the possibility, for all these cross sec-

tions, to add a so-called K-factor to compensate higher order
effects, but presently we use K-factor = 1 (in EPOS4.0.0),
since we use already a “variable flavor-number scheme,” i.e.,
the number of active flavors (in αs, in Ẽ , etc.) depends on the
virtuality: Nf = Nf (Q2). In that case, LO calculations with a
K-factor being unity already give a fair description of the data,
as has been demonstrated independently in Ref. [15] (Fig. 4)
and Ref. [16].

We calculate and tabulate σ
both i j
hard , σ

upper i j
hard , and σ

none i j
hard ,

keeping in mind that σ
lower i j
hard can be obtained from σ

upper i j
hard by

exchanging arguments. In the simulations, we use polynomial
interpolation based on these tables to get the cross sections
σ

... i j
hard . The complete cross section is then the sum

σ
i j

hard = σ
both i j
hard + σ

upper i j
hard + σ

lower i j
hard + σ

none i j
hard . (96)

As discussed in Sec. II, the cross section σ
i j

hard may then be
used to compute “the EPOS4 building block” GQCD, the basic
quantity in our parallel scattering scheme.

7. Taming singularities in the cross-section integrals

For all integrations in the last section, we need to be
aware of the fact that the integrands contain “singularities”
like 1/(x − a)λ. Even when the integration domains avoid
such singularities, as

∫ b
a+ε

f (x)dx with ε � 1, the numerical
integration (Gaussian integration in our case) may give wrong
results if it is employed in a naive fashion. One actually needs
to properly transform the integration variables to have smooth
integrands. Let us consider an integral

∫ b
a g(x)dx, which may

be transformed to
∫ u(b)

u(a) g(x(u)) dx
du du, where u is defined in

[−1, 1]. Let us define the coordinate transformation u ↔ x via∫ x
a g(x′)dx′∫ b
a g(x′)dx′

= u + 1

2
, (97)

which may be written as

G(x) − G(a)

G(b) − G(a)
= u + 1

2
, (98)

if the primitive G of g is known. Then we get∫ u
u(a) g[x(u′)] dx

du du′ ∝ (u + 1)/2, which means the integrand

is constant. If we have to compute
∫ b

a f (x)dx, then we are
looking for some “simple function” g(x), being close to f (x),
in order to use Eq. (98) to define the coordinate transformation

u ↔ x. We then compute∫ b

a
f (x)dx =

∫ u(b)

u(a)
f [x(u)]

dx

du
du, (99)

where we expect the integrand f [x(u)] dx
du to vary slowly with

u (since for f = g it would be constant). Then based on the
u-integration variable, we use 14-point Gaussian integration.
It is not necessary to find a g very close to f ; it should be “suf-
ficiently close” to give a well-behaved transformed function,
in particular taking care of singularities. In the case of several
singularities, one needs to split the integration domain and use
an appropriate coordinate transformation for each piece. In the
case of singularities, there are always cutoffs which make the
integrals mathematical well defined. It is a purely numerical
issue, without transformations, the integration results could be
completely wrong.

To compute σ
both i j
hard according to Eq. (92), we first note

dx1dx2dt = dz dtdx1/x1 with z = x1x2. Concerning the z
integration, we make a coordinate transformation Eq. (98)
with

G(z) = −z−δhard , (100)

because this gives (for f ≈ g)

σ
both i j
hard =

∫ 1

a/s
f (z)dz

≈
∫ 1

a/s
g(z)dz = −G

(
a

s

)
+ G(1) ∝ sδhard , (101)

which is what we expect. Actually σ
both i j
hard ∝ sδhard defines

the empirical technical parameter δhard (the numerical
value is 0.25). This case shows the importance of the
transformation to take care of a singular integrand, here of
the form δhard z−δhard−1, which allows nevertheless numerical
integration with great precision. As mentioned before, it is
not important to have an “approximation” g(z) everywhere
close to f (z), but it must take care of the singularity. Next,
we consider (inside the z integral) the t integration. Here we
make a coordinate transformation Eq. (98) with

G(t ) = −1/t, (102)

which corresponds to g(t ) = 1/t2, the expected t singularity
from the Born process. Finally (inside the z and the t integral),
we consider the x1 integration. Here we split the integration
domain, say, a → b, into a → c and c → b, since we expect
singularities 1/(1 − x1) and 1/x1 from Ẽ i j

QCD(x1) ∼ P j
i (x1)

close to x1 = 1 and x1 = 0. Concerning the integration c → b,
we make a coordinate transformation Eq. (98) with

G(x1) = − ln(1 − x1), (103)
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FIG. 11. Parton-parton scattering, considering the Born process
1 + 2 → 3 + 4. The solid lines represent partons (quarks, anti-
quarks, or gluons).

which corresponds to g(x1) = 1/(1 − x1), corresponding to
the expected x1 singularity for x1 close to unity. For the
integration a → c, we make a coordinate transformation
Eq. (98) with

G(x1) = ln(x1), (104)

which corresponds to g(x1) = 1/x1, being the expected x1

singularity for x1 close to zero.
To compute σ

upper i j
hard according to Eq. (93), we have only a

x1 and a t integration, which are treated as the corresponding
integration for σ

both i j
hard . The cross section σ

lower i j
hard is not com-

puted but derived from σ
upper i j
hard as

σ
lower i j
hard

(
slad, Q2

1, Q2
2

) = σ
upper ji
hard

(
slad, Q2

2, Q2
1

)
, (105)

i.e., by exchanging i and j as well as Q2
1 and Q2

2. Finally, for
σ

none i j
hard according to (95), one needs only a t integration, also

done in the same way as in the other cases.

D. Differential parton-parton cross sections
and backward evolution

One of the (new) key elements in EPOS4 is the fact that
even though we have in general to deal with multiple parallel
ladders (see Fig. 9), which energy-momentum shared between
them, it is possible—for each ladder—to first generate the
Born process (magenta dot in the Fig. 9) and determine the
corresponding outging partons and then via backward evolu-
tion generate the parton emissions. This has many advantages
(compared to the forward evolution technique in EPOS3): Not
only does it correspond to the “usual” method employed by
factorization models, it also allows much better control of the
hard processes.

We consider parton-parton scattering as shown in Fig. 11.
Starting from the differential parton-parton cross section

Eq. (44), as shown in Eq. (B27), we may write

d3σ
i j
hard

dx1 dx2 dt

=
12∑

K=1

∑
klmn∼K

Eik
QCD

(
x1, Q2

1, μ
2
F

)
E jl

QCD

(
x2, Q2

2, μ
2
F

)
× πα2

s

s2

{
1

g4

∑̄
|Mkl→mn|2

}
1

1 + δmn
. (106)

Compared to Eq. (B27), we added a “
∑12

K=1” term and the
“klmn ∼ K” condition to account for 12 different cross-
section classes, as discussed in Sec. III C 5. The variables x1

and x2 are the momentum fractions of partons 1 and 2. This
formula is very useful as a basis to generate the hard process
in the parton ladder, in the Monte Carlo procedure, when
employing the backward evolution.

However, we should not forget that we always need to
distinguish four cases, namely both-sided, one-sided (lower),
one-sided (upper), or no emissions. Correspondingly, we have
four equations. For both-sided emissions, we use Eq. (106),
with Ẽ instead of E . In case of one-sided emission, we replace
one of the Ẽ jl

QCD by δ jl

j , and in case of no emissions, we

replace both Ẽ jl
QCD by δ jl


j .

1. Generating the hard process 1 + 2 → 3 + 4

We first have to know if we have both-sided, one-sided,
or no emissions. So we first use the integrated cross sections
σ

both i j
hard , σ

upper i j
hard , σ

lower i j
hard , and σ

none i j
hard as weights to determine

randomly what kind of emission we have.
In the case of both-sided emissions, we define, based on

Eq. (106) with Ẽ instead of E , the function X i j
klmn as

X i j
klmn(z, t, x1)

= {
σ

both i j
hard

}−1
Ẽ ik

QCD

(
x1, Q2

1, μ
2
F

)
Ẽ jl

QCD

(
x2, Q2

2, μ
2
F

)
× πα2

s

s2

{
1

g4

∑̄
|Mkl→mn|2

}
1

1 + δmn
, (107)

with z = x1x2. We want to generate for given i and j the
variables z, t and x1, according to the probability distribution

prob(z, t, x1) =
12∑

K=1

∑
klmn∼K

X i j
klmn(z, t, x1), (108)

which is not trivial due to the fact that the expressions X i j
klmn

contain singularities, as discussed in Sec. III C 7, where we
discussed the calculation of σ

both i j
hard as a sum of integrals over

X i j
klmn. We also showed how to solve this problem. We had

integrals of the form
∫

X i j
klmndz dt dx1, which could be done

after three coordinate transformations. Let us name the three
integration variables z1, z2, and z3, i.e.,

z1 = z = x1x2, (109)

z2 = t, (110)

z3 = x1. (111)
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The three coordinate transformations zi → ui were defined as∫ zi

ai
gi(x′)dx′∫ bi

ai
gi(x′)dx′

= ui + 1

2
, (112)

for i ∈ {1, 2, 3}, with

g1(z1) ∝ z−δhard−1
1 , (113)

g2(z2) ∝ z−2
2 , (114)

g3(z3) ∝
{

(1 − z3)−1 for z3 > 0.8

z−1
3 for z3 < 0.8

. (115)

There are two transformations for z3, due to two singulari-
ties (at 0 and 1), which required a splitting of the integral.
The three functions gi are useful also for the Monte Carlo
generation of the variables zi: One may first generate the zi

according to gi by first generating uniform random numbers ui

between −1 and 1 and then computing zi = zi(ui ) by inverting
Eq. (112) (which is easy). Then one accepts these proposals
with the probability

paccept = prob(z1, z2, z3)

M g1(z1)g2(z2)g3(z3)
, (116)

where M has to be chosen such that paccept � 1. In this ratio,
the singular parts of prob(z1, z2, z3) are canceled out by the
gi, and paccept is therefore a smooth function of the variables,
with an acceptable rate of rejections.

Then, for given i, j, z1, z2, and z3, we generate K and the
flavors k and l according to

prob(K, k, l ) =
∑

mn
klmn∼K

X i j
klmn(z1, z2, z3)∑

K,k,l

∑
mn

klmn∼K
X i j

klmn(z1, z2, z3)
, (117)

and for given i, j, z1, z2, z3, K , k, and l , we generate m and n
according to

prob(m, n) = X i j
klmn(z1, z2, z3)|klmn∼K∑

mn X i j
klmn(z1, z2, z3)|klmn∼K

. (118)

The two factors Ẽ ik
QCD(· · · ) et Ẽ jl

QCD(· · · ) do not depend on m
or n and could be dropped, but for the numerical procedures it
is easier to keep them, since we may call the same functions
as in the steps before.

In the case of one-sided emissions (on the upper side), we
define

X i j
kmn(x1, t ) = {

σ
upper i j
hard

}−1
Ẽ ik

QCD

(
x1, Q2

1, μ
2
F

)

 j
(
Q2

2, μ
2
F

)
× πα2

s

s2

{
1

g4

∑̄
|Mk j→mn|2

}
1

1 + δmn
. (119)

We want to generate for given i and j the variables x1 and t ,
according to the probability distribution

prob(x1, t ) =
12∑

K=1

∑
kmn

k jmn∼K

X i j
kmn(x1, t ). (120)

Again, we use the same coordinate transformations as al-
ready used for the integrations to compute σ

upper i j
hard . Here,

with

z1 = x1, (121)

z2 = t, (122)

the transformations zi → ui were defined via Eq. (112) for i ∈
{1, 2}, with

g1(z1) ∝
{

(1 − z1)−1 for z1 > 0.8

z1
−1 for z1 < 0.8

. (123)

g2(z2) ∝ z−2
2 . (124)

We first generate the zi according to gi [first generating ui, then
inverting Eq. (112)] and then accept these proposals with the
probability

paccept = prob(z1, z2)

M g1(z1)g2(z2)
. (125)

Then for given i, j, z1, and z2, we generate K and the flavor k
according to

prob(K, k) =
∑

mn
k jmn∼K

X i j
kmn(z1, z2)∑

K,k

∑
mn
k jmn∼K

X i j
kmn(z1, z2)

, (126)

and, finally, for given i, j, z1, z2, K , and k, we generate m and
n according to

prob(m, n) = X i j
kmn(z1, z2)|k jmn∼K∑

mn X i j
kmn(z1, z2)|k jmn∼K

. (127)

In case of one-sided emissions on the lower side, we use the
same algorithm as for the upper side, just exchanging the
upper side and lower side variables and indices.

In case of no emissions, we define

X i j
mn(t ) = {

σ
none i j
hard

}−1

i
(
Q2

1, μ
2
F

)

 j
(
Q2

2, μ
2
F

)
× πα2

s

s2

{
1

g4

∑̄
|Mi j→mn|2

}
1

1 + δmn
. (128)

We want to generate for given i and j the variable t , according
to the probability distribution

prob(t ) =
12∑

K=1

∑
mn

i jmn∼K

X i j
mn(t ), (129)

which can be done by defining z1 = t and then defining the
transformation z1 → u1 via Eq. (112) for i = 1, with g1(z1) =
z−2

1 . We first generate z1 according to g1 [first generating u1,
then inverting Eq. (112)] and then accept these proposals with
the probability

paccept = prob(z1)

M g1(z1)
. (130)

Then for given i, j, and z1, we generate K according to

prob(K ) =
∑

mn
i jmn∼K

X i j
mn(z1)∑

K

∑
mn
i jmn∼K

X i j
mn(z1)

, (131)
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and, finally, for given i, j, z1, and K , we generate m and n
according to

prob(m, n) = X i j
mn(z1, z2)|i jmn∼K∑

mn X i j
mn(z1, z2)|i jmn∼K

. (132)

2. Backward evolution

Knowing for given end flavors i and j, the Born process
variables x1, x2, and t , and the flavors k, l (ingoing) and
m, n (outgoing), we generate the parton emission via back-
ward evolution. The variable t (Mandelstam variable) allows
us to compute p2

t [see Eq. (84)], which corresponds in a
unique fashion to some factorization scale μ2

F , which is the
starting value of the virtuality for the backward evolution.
We therefore define Q2

0 = μ2
F . We let k be the flavor of the

corresponding parton.
In the following, we will use the symbol “t” as virtuality to

treat the parton evolution—it does not refer to the Mandelstam
variable. We define t0 = Q2

0.
We will in the following consider the evolution from t1 to

t0 with t1 < t0. We write the evolution equation [see Eq. (46)],
using 
k (t1, t0) = 
k (t0)/
k (t1), as

Eik
QCD(x, t1, t0) = 
k (t0)


k (t1)
δik δ(1 − x) +

∫ t0

t1

dt

t


k (t0)


k (t )

×
∫

dz

z

∑
a

P̄k
a (t, z) Eia

QCD

(
x

z
, t1, t

)
.

(133)

The integrand of the second term corresponds to a last branch-
ing in [t, t + dt], so the corresponding probability is

g(t ) = 1

t


k (t0)


k (t )

∫
dz

z

∑
a

P̄k
a (t, z)

Eia
QCD( x

z , t1, t )

Eik
QCD(x, t1, t0)

. (134)

Using Eq. (A5), we get

g(t ) = ∂

∂t

{

k (t0)

Eik
QCD(x, t1, t0)

Eik
QCD(x, t1, t )


k (t )

}
. (135)

The probability of a last branching after some t < t0 is∫ t0
t g(t ′)dt ′, which means that t is generated via∫ t0

t
g(t ′)dt ′ = r, (136)

with r being a uniform random number. The integral can be
easily done, and we get∫ t0

t
g(t ′)dt ′ =

[

k (t0) Eik

QCD(x, t1, t ′)


k (t ′) Eik
QCD(x, t1, t0)

]t0

t

= r, (137)

which leads to

1 − 
k (t0) Eik
QCD(x, t1, t )


k (t ) Eik
QCD(x, t1, t0)

= r, (138)

Using 1 − r instead of r, we obtain, finally,

R ≡ 
k (t0) Eik
QCD(x, t1, t )


k (t ) Eik
QCD(x, t1, t0)

= r, (139)

for the generation of t in the interval [t1,t0].

So far we essentially followed the standard procedures, as
explained in Ref. [2]. What makes things more difficult in the
EPOS4 framework is the fact that we do evolutions for each of
the parallel parton ladders, see Fig. 9, and there we consider
the evolution starting from a parton, not from a proton. The
initial condition for the evolution is

Eik
QCD(x, tini, tini ) = δ(1 − x)δik, (140)

and this singularity δ(1 − x) needs some special attention. In
Eq. (139), we need the full evolution function, which may be
written as

Eik
QCD(x, t1, t ) = Ẽ ik

QCD(x, t1, t ) + 
k (t )


k (t1)
δikδ(1 − x), (141)

which separates the “smooth” and the “singular” part. For the
generation of t based on R = r, we consider the two cases
x = 1 and x �= 1 separately.

For the case x = 1, we have R = 1, which simply reflects
the fact that there is no emission between t1 and t0, so we
recover the inial condition x = 1, and we are done for this
case; the emission process is finished.

For the case x �= 1, we have

R ≡ 
k (t0) Ẽ ik
QCD(x, t1, t )


k (t ) Ẽ ik
QCD(x, t1, t0)

= r, (142)

which needs to be solved to get t . Some elementary root
finder (like the bisection method) will do the job. Once this
is done, for this value of t , the probability distribution for the
momentum fraction z of the last branching is obtained from
Eq. (134) as

h(z) ∝ 1

z

∑
a

P̄k
a (t, z)Eia

QCD

(
x

z
, t1, t

)
, (143)

which gives

h(z) ∝ 1

z

∑
a

P̄k
a (t, z)

{
Ẽ ia

QCD

(
x

z
, t1, t

)

+ 
a(t )


a(t1)
δiaδ

(
1 − x

z

)}
, (144)

or

h(z) ∝ 1

z

∑
a

P̄k
a (t, z)Ẽ ia

QCD

(
x

z
, t1, t

)

+ P̄k
i (t, z)


i(t )


i(t1)
δ(x − z), (145)

for z � x. We need to distinguish again two cases, z > x and
z = x. The latter corresponds to a parton with a momentum
fraction unity before the splitting (which is the initial value),
so the emission process will be finished at the next iteration
step. The probability for the z = x case is

W1 =
P̄k

i (t, x) 
i (t )

i (t1 ){ ∫ 1

x
dz
z

∑
a P̄k

a (t, z)Ẽ ia
QCD

(
x
z , t1, t

)}+ P̄k
i (t, x) 
i (t )


i (t1 )

,

(146)
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where the integral can be done using the Gauss-Legendre
method after an appropriate coordinate transform, splitting the
integration domain into two parts, to treat separately the z →
0 (for small x) and z → 1 regions. This probability increases
when (during the iteration) the virtuality approaches t1 and
the momentum fraction approaches unity. With the probability
W2 = 1 − W1, we have the case z > x, and here the probability
distribution to generate z is

h2(z) ∝ 1

z

∑
a

P̄k
a (t, z)Ẽ ia

QCD

(
x

z
, t1, t

)
. (147)

Finally, we generate the flavor a according to

P̄k
a (t, z)Ẽ ia

QCD

(
x

z
, t1, t

)
, (148)

for the given values of t and z found earlier.
At each iteration step, we have these two cases, z = x and

z > x, where in one case the iteration is finished in the next
step, with the initial value x = 1, whereas in the other case,
the iteration continues. So in any case, we eventually end up
with the initial values.

3. Monte Carlo results versus cross-section formulas
for a single Pomeron

An elementary distribution (for tests) is the transverse mo-
mentum distribution dn/dy d pt for a given rapidity of primary
partons, directly emitted in the Born process. Let us consider
a single Pomeron, carrying the full energy, i.e., x+ = x− = 1,
for an energy E = √

s = 1 TeV, and let us consider Q2
1 =

Q2
2 = Q2

0 = O(1). We first investigate the “sea-sea” contri-
bution. Combining Eq. (28) and Eq. (B39), after integrating
out the impact parameter b, we get (with a normalization
constant N)

d2nsea−sea

dyd p2
t

= N
∑

i j

∫
dz+dz−Ei

soft

(
Q2

0, z+)E j
soft

(
Q2

0, z−)
× d2σ

i j
hard

dyd p2
t

(
Q2

0, Q2
0, z+z−s

)
, (149)

with

d2σ
i j
hard

dyd p2
t

(
Q2

0, Q2
0, slad

)
=
∑
klmn

∫
dx Eik

QCD

(
x1, Q2

0, μ
2
F

)
E jl

QCD

(
x2, Q2

0, μ
2
F

)
× πα2

s

s2

{
1

g4

∑̄
|Mkl→mn|2

}
1

1 + δmn
x1x2

1

x
(150)

with x1 = x + pt√
slad

ey and x2 = x1
x

pt√
slad

e−y. To compute M,
we need s = x1x2slad and t = −pt x1

√
slade−y. In a similar

way we get explicit formulas to compute the “val-val,” the
“val-sea,” and the “sea-val” contribution. In Fig. 12, we show
transverse momentum distributions (for y = 0) of primary

FIG. 12. Transverse momentum distributions of primary partons
for Pomerons of type “val-val,” “val-sea,” “sea-val,” and “sea-sea.”
We compare the Monte Carlo results (points) to the corresponding
curves obtained with the help of explicit cross-section formulas (see
text).

partons for Pomerons of type “val-val,” “val-sea,” “sea-val,”
and “sea-sea,” based on these explicit formulas (lines), com-
pared to the Monte Carlo results (points), using for the latter
the methods explained in Sec. III D 1. The Monte Carlo results
agree with those based on cross-section formulas. This may
sound trivial, but in older EPOS versions with forward parton
evolution, this was not the case. A great advantage of the
new method is simply the fact that one can make rigorous
tests, since the Monte Carlo uses the same “modules” as the
cross-section formulas (Esoft, EQCD, and M, all of them tabu-
lated and available via interpolation). In both cases one uses
evolution functions EQCD representing all parton emissions,
whereas in the old method the emissions in the Monte Carlo
have been done one by one, and one needs to worry about
additional elements like the reconstruction of the momentum
four-vectors of the emitted partons.

4. EPOS PDFs

We may go one step further and provide formulas for
inclusive momentum distributions for pp scattering with one
single Pomeron (identical to the full multiple scattering results
at high pt , where factorization applies), again first consider-
ing “sea-sea.” Combining Eqs. (4), (5), (28), and (44), after
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integrating out the impact parameter b, we get

E3E4
d6σ sea−sea

d3 p3d3 p4
=
∫

dx+dx−V (1 − x+)V (1 − x−)
∑

i j

∫
dz+dz−Fsea 1(x+, 0) Fsea 2(x−, 0) Ei

soft

(
Q2

0, z+)E j
soft

(
Q2

0, z−)
×
∑
klmn

∫ ∫
dx1dx2Eik

QCD

(
x1, Q2

0, μ
2
F

)
E jl

QCD

(
x2, Q2

0, μ
2
F

) 1

32sπ2

∑̄
|Mkl→mn|2δ4(p1 + p2 − p3 − p4)

1

1 + δmn
,

(151)
with s = ξ+ξ−spp being the squared energy of the Born process, with ξ1 = x+z+x1 and ξ2 = x−z−x2. For “val-val,” combining
Eqs. (4), (5), (18), and (44), we get

E3E4
d6σ val−val

d3 p3d3 p4
=
∫

dx+dx−V (1 − x+)V (1 − x−)
∑

i j

∫
dz+dz−F i

val 1(z+, x+ − z+, 0) F j
val 2(z−, x− − z−, 0)

×
∑
klmn

∫ ∫
dx1dx2Eik

QCD

(
x1, Q2

0, μ
2
F

)
E jl

QCD

(
x2, Q2

0, μ
2
F

) 1

32sπ2

∑̄
|Mkl→mn|2δ4(p1 + p2 − p3 − p4)

1

1 + δmn
,

(152)

with s = ξ+ξ−spp being the squared energy of the Born process, with ξ1 = z+x1 and ξ2 = z−x2. Corresponding formulas can be
found for the “val-sea” and the “sea-val” contribution (we do not consider “psoft” here, since it only contribute at low pt ). As a
consequence, the complete momentum distribution (the sum of the four contributions) may be written as

E3E4
d6σ

d3 p3d3 p4
=
∑
klmn

∫ ∫
dξ1dξ2 f k

PDF

(
ξ1, μ

2
F

)
f l
PDF

(
ξ2, μ

2
F

) 1

32sπ2

∑̄
|Mkl→mn|2δ4(p1 + p2 − p3 − p4)

1

1 + δmn
, (153)

with

f k
PDF

(
ξ, μ2

F

) =
∫

dx dz dy

{∑
i

V (1 − x) Fsea (x, 0) Ei
soft

(
Q2

0, z
)
Eik

QCD

(
y, Q2

0, μ
2
F

)
δ(ξ − xzy)

}

+
∫

dx dz dy

{∑
i

V (1 − x)F i
val(z, x − z, 0)Eik

QCD

(
y, Q2

0, μ
2
F

)
δ(ξ − zy)

}
. (154)

These are the “EPOS4 PDFs” (parton distribution functions),
composed of a “sea” contribution (the first integral) and a
“valence” contribution (the second integral).

Equation (153) is identical to the “usual” factorization
formula, which everybody uses. However, in our case, it rep-
resents the single Pomeron case. The full simulation, i.e., the
full multiple scattering case, provides the same result but only
at large transverse momenta, as we will show later.

To make it very clear: In the EPOS4 formalism, we cannot
use PDFs as an input; we need several “modules” such as
vertex functions (V , Fsea, F i

val) and evolution functions (Ei
soft,

Eik
QCD) to construct the “building blocks” GQCD, and then G

(cut single Pomeron), being the basis of our multiple scat-
tering scheme. But we can use these “modules” to construct
EPOS4 PDFs.

Let us first compare the EPOS4 PDFs with other choices
and with data. At least the quark parton distribution functions
can be tested and compared with experimental data from deep
inelastic electron-proton scattering. The leading order struc-
ture function F2 is given as

F2 =
∑

k

e2
k x f k

PDF(x, Q2), (155)

with x = xB = Q2/(2p · q), (156)

Q2 = −q2, (157)

where p is the momentum of the proton and q the momentum
of the exchanged photon. In Fig. 13, we plot F2 as a function
of x for different values of Q2, the latter one indicated (in units
of GeV2) in the upper right corners of each subplot. The red
curve refers to EPOS PDFs, the green one to CTEQ PDFs
[17], and the black points are data from ZEUS [18] and H1
[19–21]. The two PDFs give very similar results, and both are
close to the experimental data.

Having checked the EPOS PDFs, we will use these func-
tions to compute the jet (parton) cross section for pp at 13
TeV, using Eq. (153), integrating out the momentum of the
second parton and the azimuthal angle of the first parton,
which finally gives [see Eq. (B39), with Eik

QCD replaced by
f k
PDF, and slad by spp]

d2σ

dy d p2
t

=
∑
klmn

∫
dx f k

PDF

(
x1, μ

2
F

)
f l
PDF

(
x2, μ

2
F

)
× πα2

s

s2

{
1

g4

∑̄
|Mkl→mn(s, t )|2

}
1

1 + δmn
x1x2

1

x
,

(158)

with x1 = x + pt√
spp

ey, x2 = x1

x

pt√
spp

e−y,

s = x1x2
√

spp, t = −pt x1
√

sppe−y, (159)
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FIG. 13. F2 as a function of x for different values of Q2, the latter
one indicated (in units of GeV2) in the upper right corners of each
subplot. The red curves refer to EPOS PDFs, the green ones to CTEQ
PDFs, and the black points are data from ZEUS and H1.

with {· · · } being the form the squared matrix elements are
usually tabulated, with αs = g2/4π . We define the parton
yield dn/d pt dy as the cross section dσ/dy d p2

t , divided by
the inelastic pp cross section, times 2 pt , showing the result
in Fig. 14. We show results based on EPOS PDFs (red full
line), CTEQ PDFs [17] (green dashed line), the full EPOS
simulation (blue circles), and experimental data from ATLAS
[22] (black triangles). At large values of pt , all the different
distribution agree, whereas at low pt the EPOS Monte Carlo
simulation results (using the full multiple scattering scenario)
are significantly below the PDF results, as expected due to
screening effects.

Let us consider the production of charmed primary partons
(c and c̄) for pp at 13 TeV, still based on EPOS4 PDFs,
according to Eq. (158). The term “primary” means that here
we do not consider charm created in the timelike cascade (in
the full simulation we do, of course). We have the elemen-
tary Born scattering kl → mn, where k, l are the incoming
and m, n the outgoing parton flavors. Let us note light flavor
partons as “L” and heavy flavor ones (here charm) as “H .”
We may produce charm via HL → HL (“flavor excitation”) or
via LL → HH̄ . We will in the following consider two cases:
including flavor excitation (incl FlavEx) or not (w/o FlavEx),
for two calculations: based on EPOS4 PDFs and based on

FIG. 14. Parton yield dn/d pt dy for pp at 13 TeV. We show re-
sults based on EPOS PDFs (red full line), CTEQ PDFs (green dashed
line), the full EPOS simulation (blue circles), and experimental data
from ATLAS (black triangles).

CTEQ PDFs [17], see Fig. 15. The EPOS4 results are shown
as green (incl FlavEx) and red lines (w/o FlavEx), and the
CTEQ based results are shown as yellow (incl FlavEx) and
blue lines (w/o FlavEx). The EPOS4 and the CTEQ results
are similar, at large pt they are even identical. In both cases,
the flavor excitation contribution is largely dominant, over the

FIG. 15. Transverse momentum distribution of charm quarks (c
and c̄), based on EPOS PDFs and CTEQ PDFs. In both cases, we
show results including flavor excitation (incl FlavEx) or not (w/o
FlavEx). The “jumps” marks the activation of charm flavor excitation
for μF > 2 mc.
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FIG. 16. Transverse momentum distribution of charm quarks (c
and c̄), based on EPOS PDFs and CTEQ PDFs. In both cases, we
show results including flavor excitation (incl FlavEx) or not (w/o
FlavEx). The black circles represent FONLL results and the gray
squares NLO calculations.

whole pt range, above some threshold. In Fig. 16, we plot
the same four curves (EPOS4 and the CTEQ based, with and
without flavor excitations), in a reduced pt range, together
with FONLL and NLO calculations [23], the latter represented
by black circles (FONLL) and gray squares (NLO). The NLO
results (at least at large pt ) are quite close to the ones based
on EPOS4 and CTEQ PDFs. In the EPOS4 framework, we
use a k-factor equal unity; however, we use a “variable flavor
number scheme,” i.e., the number of allowed flavors depends
on the virtuality, which means at large pt , which is corre-
lated with large virtualities, we easily produce heavy flavor.
Concerning the FONLL results, they drop with increasing pt

considerably below the EPOS4 and the CTEQ based results.
In order to be close to FONLL, we multiply the flavor exci-
tation contribution by a factor kFE < 1, and the result for a
numerical value of 0.4 is shown in Fig. 17.

5. The pseudosoft contribution

In the previous examples, only the contributions “sea-sea,”
“val-val,” “sea-val,” and “val-sea” were considered. The PDFs
are actually a sum of “sea” and “val.” There is, however,
also a “pseudosoft” contribution, see Eq. (43). We expect the
“pseudosoft” Pomeron to have an internal structure, allow-
ing hard processes. We assume some probability distribution
P(X ) with 〈X 〉 = O(1) of X = Q2/Q2

sat, with Q2 being the
scale associated with the hard process, and then for given Q2,
a probability distribution of the form

Ei
psoft (Q

2, z+)E j
psoft (Q

2, z−)
1

16πs2

∑̄
|Mi j→mn|2 1

1+δmn

(160)
to generate a particular hard process. We expect the produc-
tion of partons with transverse momenta of the order of Q2

sat,
in the range 1−10 GeV/c.

FIG. 17. Transverse momentum distribution of charm quarks (c
and c̄), based on EPOS PDFs including flavor excitation fully (incl
FlavEx) or with a reduction factor kFE (FlavEx*kFE). The black
circles represent FONLL results.

6. A result for full EPOS

In the examples discussed in Sec. III D 4, based on EPOS
PDFs, only primary partons were considered (directly pro-
duced in the Born process). To get the complete picture (but
without considering secondary interactions as hydro evolution
and hadronic rescattering), we employ the full EPOS4 ap-
proach for primary scatterings, including multiple scattering,
and also including the timelike cascade, which includes Born
processes like g + g → g + g, where each of the outgoing
gluons may split into a cc̄ pair. In Fig. 18 (upper left panel),
we show the corresponding transverse momentum distribution
of charmed quarks (including antiquarks) in pp scattering at
7 TeV, compared to FONLL results [23]. The yellow dashed
line represents the “pseudosoft” contribution, which visibly
contributes at low transverse momentum, as expected.

In the full (primary scattering) approach, we consider not
only the full partonic evolution (initial-state and final-state
cascade) but also hadronization. This will be discussed in
detail in Sec. IV, but let us anticipate here some basic features:
cut parton ladders correspond in general to two chains of
partons q − g − · · · − g − q̄ identified as kinky strings, with
q referring to light flavor partons and g to gluons. The Born
process or branchings in the spacelike or the timelike cas-
cade may lead to QQ̄ production, where Q refers to “heavy
flavor” (HF) quarks, i.e., charm or bottom. In this case, we
end up with parton chains of the type q − g − · · · − g − Q̄
and Q − g − · · · − g − q, which will decay (among others)
into HF hadrons. In Fig. 18, we show transverse momentum
spectra of D+, D− mesons (upper right), D0 mesons (lower
left), and D+∗, D−∗ mesons (lower right) in pp collisions at
7 TeV. The red lines refer to EPOS4 simulations, the green
points to FONLL calculations [23], and the black points to
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FIG. 18. Charmed partons and hadrons in pp collisions at 7
TeV. We show EPOS4 simulations, compared to FONLL results and
ALICE data.

ALICE data [24]. We also show as blue lines the EPOS4
results without flavor excitation. Many more results can be
found in Ref. [6].

IV. FROM PARTONS TO STRINGS: COLOR FLOW

In the previous section, we were discussing in detail
the partonic structure of the EPOS4 building blocks, the
Pomerons. This allows us to compute the weights of multiple
Pomeron configurations and generate these. In the present
section, we will discuss how to transform these partonic struc-
tures into strings. The strings are then the basis of hadron
production via string decay or of the formation of a “core”
(in case of high densities), serving as an initial condition of
a hydrodynamical evolution. The formation of strings for a
particular partonic configuration is based on the associated
color flow.

A. An example

In order to be as general as possible, let us consider a
collision of two nuclei, as shown in Fig. 19, where we consider
the partonic configuration of two colliding nuclei A and B,
each one composed of two nucleons. Dark blue lines mark ac-

FIG. 19. Partonic configuration of two colliding nuclei A and B,
each one composed of two nucleons, with three scatterings (from
three cut Pomerons). Dark blue lines mark active quarks, red dashed
lines active antiquarks, and light blue thick lines projectile and target
remnants. One of the target nucleons is just a spectator.

tive quarks, red dashed lines active antiquarks, and light blue
thick lines projectile and target remnants (nucleons minus the
active (anti)quarks). We have two scatterings of “sea-sea” type
and one of “val-sea” type. We consider each incident nucleon
as a reservoir of three valence quarks plus quark-antiquark
pairs. The “objects” which represent the “external legs” of the
individual scatterings are colorwise “white”: quark-antiquark
pairs in most cases as shown in the figure, but one may as
well have quark-diquark pairs or even antiquark-antidiquark
pairs—in any case, a 3 and a 3̄ color representation. Let us for
simplicity consider the quark-antiquark option and first look
at the “sea” cases (on the projectile or the target side). In each
case, a quark-antiquark pair is emitted as final-state timelike
(TL) parton pair (marked 1, 2, 3, 4, and 5) and a spacelike
(SL) “soft Pomeron” (indicated by a thick cyan line), which is
meant to be similar to the QCD evolution, but emitting only
soft gluons, which we do not treat explicitly. Then emerging
from this soft Pomeron, we see a first perturbative SL gluon
(another possibility is the emission of a quark, to be discussed
later), which initiates the partonic cascade. In the case of
“val,” we also have a quark-antiquark pair as external leg, but
here first an antiquark is emitted as TL final particle (marked
6), plus an SL quark starting the partonic cascade.

In the case of multiple scattering as in Fig. 19, the projectile
and target remnants remain colorwise white, but they may
change their flavor content during the multiple collision pro-
cess. The quark-antiquark pair “taken out” for a collision (the
“external legs” for the individual collisions), may be u − s̄,
then the remnant for an incident proton has flavor uds. In
addition, the remnants get massive, much more than simply
resonance excitation. We may have remnants with masses of
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FIG. 20. Configuration colorwise equivalent to the one of
Fig. 19. The outgoing antiquarks are drawn as incoming quarks
(arrows towards vertices).

10 GeV/c2 or more, which contribute significantly to particle
production (at large rapidities).

In the following, we discuss the color flow for a given
configuration, as for example the one in Fig. 19. Since the
remnants are by construction white, we do not need to worry
about them, we just consider the rest of the diagram. In addi-
tion, colorwise, the “soft Pomeron” part behaves as a gluon.
Finally, we use the following convention for the SL partons
which are immediately emitted: We use for the quarks an
array away from the vertex and for the antiquarks an array
towards the vertex. The diagram equivalent to Fig. 19 is then
the one shown in Fig. 20. Based on Fig. 20, considering the
fact that in the parton evolution and the Born process, the
gluons are emitted randomly to the right or to the left, and
we show in Fig. 21 a possible color flow diagram for the three
scatterings. Horizontal lines refer to TL partons, which later
undergo a timelike cascade, while the vertical lines refer to
spacelike intermediate partons. We added integers just to mark
the different TL partons. For the leftmost scattering, starting
from one “end,” say, “1,” we follow the color flow to “5” and
then starting from “6” to “10,” so we get two chains: 1-2-3-4-5
and 6-7-8-9-10. The end partons of each chain are always
quarks or antiquarks, and the inner partons are gluons. Similar
chains are obtained for the second scattering, 11-12-13-14-15
and 16-17-18-19-20, and for the third scattering, 21-22-23-24
and 25-26-27-28-29. These chains of partons will be mapped
(in a unique fashion) to kinky strings, where each parton cor-
responds to a kink, and the parton four-momentum defines the

FIG. 21. A possible color flow diagram for the three scatterings
of Fig. 20.

FIG. 22. Simplified color flow diagram for the three scatterings
of Fig. 21. The dot indicates the Born process.

kink properties, as already done in earlier EPOS versions [11].
In the following, we simplify our graphs; instead of Fig. 21 we
use a diagram as shown in Fig. 22, where we do not plot the
gluon lines explicitly, since the double lines with arrows in
opposite direction allow us perfectly to identify the gluons.

Considering these examples, it is useful to define “initial
partons” as being those which are immediately emitted as TL
partons before the parton evolution starts. In the case of the
type “sea,” a quark and an antiquark (or diquark) are emitted,
in Fig. 21 the partons 1,10 and 5,6 and 11,20 and 15,16 and
24,25. The partons like 2,3,4 or 7,8,9 are emitted either in the
spacelike partonic cascade (like 2,4,7,9) or in the Born process
(3,8). In case of “val,” a TL antiquark is emitted, namely the
antiquark 21. Here, an SL quark enters the partonic cascade
(vertical line). Parton 29 is not an initial parton, it is the first
parton emitted in the SL cascade.

The above discussion demonstrates for an example, how
to obtain “chains of partons” (and then kinky strings), based
on an analysis of the color flow. But the picture is not yet
complete. In general, each emitted parton initiates a timelike
cascade, as shown in Fig. 23, and this has to be taken into
account when constructing the “chains of partons” based on
color flow. In the following, we discuss the general rules,
applicable for any multiple scattering configuration, in pp or
AA, including timelike cascades.

B. The initial TL partons and the initial SL partons

Even in the case of multiple scatterings, the projectile and
target remnants remain white and fragment independently,
and correspondingly the external legs of the individual scatter-
ings are white. They are quark-antiquark pairs (or less likely
quark-diquark pairs). These external legs emit immediately
TL partons, referred to as “initial partons,” as compared to the
partons emitted later during the parton evolution. The number

(a) (b)

FIG. 23. Timelike cascade, with Feynman diagram (a) and the
corresponding color flow diagram (b).
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FIG. 24. Initial TL partons 1, 2, 3, for the cases “sea(g)” and
“sea(q),” “sea(q̄),” and “val” on the projectile side. The “initial SL
partons” which initiate the SL cascade are marked A, B, C, and D.

and the properties of the initial partons for each individual
scattering depend on the Pomeron type.

We have four scattering (or Pomeron) types: “sea-sea,”
“val-sea,” “sea-val,” and “val-val,” where the first concerns the
projectile and the second the target. In the case of “sea” (on
the projectile or the target side), we have three cases: “sea(g),”
“sea(q),” and “sea(q̄).” The notion of “sea” always means that
there is first a “soft pre-evolution.” In case of “sea(g)” the
first parton entering the spacelike (SL) cascade, is a gluon, in
case of “sea(q)” a quark, and in case of “sea(q̄)” an antiquark.
These partons are referred to as “initial SL partons.” In Fig. 24,
we show the four possibilities, for the projectile side. In case
of “sea(g),” the “external leg” is a quark-antiquark pair, which
emits a TL quark and a TL antiquark (2 and 1 in Fig. 24)
and an SL gluon, which starts the SL cascade and is color
connected to 1 and 2. In the case of sea(q), in addition to 1 and
2, the TL antiquark 3 is emitted, and an SL quark is initiating
the cascade, color connected to 1. The TL antiquark 3 is color
connected to the TL quark 2 (so 2 and 3 constitute a “little”
string, which will be given a small amount of energy). In case
of sea(q̄), in addition to 1 and 2, a TL quark is emitted (3),
color connected to the TL antiquark 1. Here an SL antiquark
is initiating the SL cascade, color connected to 2. Finally, in
the case of val, a TL antiquark is emitted (1), and we have
an SL quark initiating the SL cascade, color connected to
antiquark 1. The discussion for the target side is identical,
we just use a somewhat different graphical representation, as
shown in Fig. 25. Here the arrows from 1 (emitted antiquark)
to 2 (emitted quark) go from right to left.

Knowing the color connections of the initial partons among
each other and with respect to the SL partons initiating the SL
cascade, we need as a next step to extend the construction of
the color connections to the SL cascade.

C. The spacelike (SL) parton evolution

Whereas for technical reasons, we employ (for each indi-
vidual scattering) a backward evolution method to generate
the kinematical variables of the partons, we will here consider

FIG. 25. Initial TL partons 1,2,3, for the cases “sea(g)” and
“sea(q),” “sea(q̄),” and “val,” on the target side. The “initial SL
partons” which initiate the SL cascade are marked A, B, C, and D.

FIG. 26. Defining color and anticolor side for the SL evolution.
The red arrows represent the directions of the evolutions, starting
from the projectile or the target side.

the SL parton evolution starting from the “initial SL partons”
towards the Born process. To have a unique definition of the
color flow in the direction of the evolution, we define (instead
of “right” and “left”) the terms “color side” and “anticolor
side,” as shown in Fig. 26. In this way, in the direction of the
evolution, “color side” corresponds to “right” and “anticolor
side” to “left.” For the evolution of an SL gluon, the two
arrows representing the color flow are always such that the
“forward arrow” (in the direction of the evolution) is on the
“color side” and the “backward arrow” on the “anticolor side,”
as shown in Fig. 27.

The aim is to construct the color flow, i.e., sequences of TL
partons j1 − j2 − · · · − jn (like the sequence 1-2-3-4-5 shown
in in Fig. 22). To do so we number all the timelike partons
j = 1, 2, 3 . . . (starting with the initial ones). Referring to this
parton numbering j, we define an integer array, the connection
array nη

CJ(i, j) for TL partons j, defined such that

jbefore = nη

CJ(1, j) (161)

defines the TL parton in the chain just before, and

jafter = nη

CJ(2, j) (162)

the TL parton just after the parton j. So for the example
of the chain 1-2-3-4-5 shown in in Fig. 22, considering the
subsequence 2-3-4, for j = 3, we have jbefore = nη

CJ(1, j) =
2 and jafter = nη

CJ(2, j) = 4. When we talk about sequences
j1 − j2 − · · · − jn, we have two options (which we use both):
following the color flow (→) or the anticolor flow (←). In the
first case, we use η = 1, in the second one η = 2. The index η

is referred to as “color orientation.” At the end of the emission
procedures, this array will contain the complete information
about which partons are color connected.

For the evolution process, it is useful to define the “cur-
rent SL parton” (say, parton a), based on which the emission

FIG. 27. The color arrows for a gluon evolution, from the projec-
tile or the target side towards the Born process.
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FIG. 28. gluon as first SL parton, connected to 1 (color side) and
2 (anticolor side).

process is considered (a → b + c), with an SL parton b and a
TL c. In the next step, parton b is considered to be the current
SL parton, and so on. During the evolution procedure, we use
for the current SL parton some integer array, the connection
array nCC(i, k) for the current SL parton, providing informa-
tion to which TL partons the current SL parton is connected
to. Here

jproj = nCC(i, 1) (163)

refers to the connection on the projectile side and

jtarg = nCC(i, 2) (164)

to the connection on the target side. For gluons, the index i =
1 refers to the color side and i = 2 to the anticolor side. In the
case of quarks and antiquarks, only i = 1 will be used, and the
value for i = 2 is zero.

Consider for example the first SL parton on the projectile
side, as shown in Fig. 28. The first “current parton” is a gluon.
It is color connected to 1 (color side) and 2 (anticolor side),
so we have nCC(1, k) = 1 and nCC(2, k) = 2, here for k = 1,
since we consider the projectile side.

In the next step, let us assume we have a gluon emission
(parton 3). Concerning color flow, we have two possibilities,
an emission on the color side or the anticolor side, as shown
in Fig. 29. In the first case, we have a “subchain” 1 → 3,
i.e., for the new TL parton j = 3, we have nη

CJ(1, j) = 1, and
since we follow the color flow (→), we use η = 1. In the
second case, we have a “subchain” 2 → 3, i.e., for the new
TL parton j = 3, we have nη

CJ(1, j) = 2, and since we follow
the anticolor flow (→), we use η = 2. In other words, the two
choices correspond to the two choices η = 1 and η = 2, and
they are chosen randomly.

Having discussed the case of a gluon being the first emitted
TL parton (marked 3), let us discuss the case of the first
emitted TL parton being a quark (also marked 3). Here we

(a) (b)

FIG. 29. The two possibilities of color flow for a gluon emission:
(a) emission on the color side, corresponding to η = 1 or (b) the
anticolor side, corresponding to η = 2.

FIG. 30. The two possibilities of color flow for the first emission.
The left-hand side of the figure corresponds to the color orientation
η = 1 and the right-hand side to η = 2.

have no choice, as can be seen in Fig. 30. Here we have
mandatory color orientation η = 1, the quark is emitted on the
“color side.” And in the case of antiquark emission, we have
η = 2. The color orientation determines which of the partons,
nCC (1, k) or nCC (2, k), is the one the new emitted TL parton
is connected to. In the first case (quark emission), we have for
the new parton j = 3 the connection nη

CJ(1, j) = nCC(η, k) =
1 (using η = 1). In the second case (antiquark emission), we
have for the new parton j = 3 the connection nη

CJ(1, j) =
nCC(η, k) = 2 (using η = 2) always for k = 1 (projectile).

So far we treated the first TL emission of the SL parton
cascade, and we explained how to use the two arrays nCJ and
nCC. In a similar way we can treat all subsequent emissions.
However, an emitted TL parton will, in general, develop a TL
parton cascade, and we first need to deal with that. We will
discuss this in the next section.

D. The timelike cascade

Here we consider the situation, at some stage of the SL
cascade, where starting from some “current SL parton” we
have an emitted TL parton with (some unique) number j, and
suppose we know the color orientation η of this TL emission
and the color connection array nη

CJ(1, j). To simplify the nota-
tion (reduce the indices), we define for given η and given j the
integer nCR(1) = nη

CJ(1, j). There is also the variable nCR(2),
referring to the connected parton on the other side, not yet
known here, but important in case of TL emissions in the Born
process, to be discussed later.

We need to reconstruct the color flow of the TL cascade and
connect it to the rest of the diagram, knowing the connected
parton nCR(1), which points to the previous TL parton in the
color flow chain, and the color orientation η. We assume that
we know at this stage the complete TL cascade, with the
flavors and four-momenta of all the partons. Let us consider
a concrete case as shown in Fig. 31, with η = 1 (emission of
a gluon on the “color side”), and with the previous TL parton
in the color flow chain being nCR(1) = 4 (assuming that the
indices 1, 2, and 3 have been used already before). We also
assume here that parton 4 is a final particle. We actually use
a rigorous unique numbering (1, 2, 3,. . . ) only for the final
partons for the intermediate partons in the plot we use symbols
a, b, c . . .. The first emitted TL parton a splits into b and c,
and these daughter partons split again in partons, and at the
end, we have final partons 5, 6, 7, 8, and 9. At this stage (after
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FIG. 31. Color flow in TL cascade.

realizing the TL cascade, as discussed earlier), the planar
structure is already fixed, and each vertex like a → b + c has
a clearly defined “first daughter” D1 (upper) and a “second
daughter“ D2 (lower), when considering the evolution from
right to left. The fact that there is some freedom concern-
ing the exchange of D1 and D2 is taken care of during the
evolution. Here, we simply need to identify the final partons,
associate a number (the next free integer), and reconstruct the
color connections. This may be done as follows:

(1) Define the initial parton to be the current parton.
(2) Starting from the current parton, loop over all the first

daughters until a final parton is reached, now being the
new current parton.

(3) Update connection information for the current parton
itself, its parent, and the second daughter.

(4) If the second daughter is not final, consider it to be the
current parton, go back to 2,

(5) If the second daughter is final, define the parent to be
the current parton, go back to 3.

In this way, we move through the whole diagram, from top
to bottom in the graph of Fig. 31. For our concrete example,
we identify in this way the final partons 5, 6, 7, 8, and 9
and the color connections 4-5-6, 7-8, 9-X, where “X” in the
last expression means that the corresponding parton is not yet
known.

E. A complete example including quarks

The above procedures concern one step in the SL cascade,
so we need to iterate all steps of the SL cascade on the projec-
tile side and, of course, do the same on the target side. Finally,
we need to treat the Born process, where we have two TL
cascades, and for each one we employ the above procedures.

Let us consider an example of a single scattering, with a
diagram with SL and TL cascades, including quarks, as shown
in Fig. 32. In order to construct the color flow diagram, we
remember that in case of a g → g + g splitting, the emitted
gluon may be emitted (with equal probability) on the “color
side” or the “anticolor side” (see discussion in Sec. IV C). A
possible choice is shown in Fig. 33. Following the color flow,
always starting and ending with a single arrow, we identify the
following chains: 1-2-3-4, then 5-6-7, then 8-9-10-11-12, and,
finally, 13-14.

One should note, as already mentioned several times, that
even in the case of multiple scatterings, the remnants are
color-white, as are the individual scatterings. In the multiple
scattering procedure, where we determine the momenta of all

SLC

SLC

TLC

TLC

TLC

FIG. 32. A single parton-parton scattering diagram, with SL and
TL cascades, including quarks.

the Pomerons, we also fix the flavors of the “Pomeron ends.”
Once these are known, the individual scattering can be treated
independently of each other. This is why we discuss here
individual scatterings.

F. Strings

In the previous sections, we discussed how to construct
chains of partons, j1 − j2 − · · · − jn, where the inner partons
are gluons, and the two outer partons, in general, a quark and
an antiquark (in any case a 3 and 3̄ color representation).
These chains of partons are mapped (in a unique fashion)
to kinky strings, where each parton corresponds to a kink,
and the parton four-momentum defines the kink properties, as
already done in earlier EPOS versions, for a detailed discus-
sion see Ref. [11]. Let us consider the example of Figs. 32
and 34. Following the color flow, we have identified four
chains, namely 1-2-3-4, 5-6-7, 8-9-10-11-12, and 13-14. Each
of these chains is mapped to a kinky string, as indicated in
Fig. 34. Each parton corresponds to a kink. The inner kinks
correspond to the inner gluons in the chains. The kinks carry
the momenta of the corresponding partons. The chain 13-14
corresponds to a string with no inner kinks, so it is a flat
(yo-yo) string.

G. Heavy quark issues

At each step in the SL cascade, there is the possibility of
quark-antiquark production, and in the Born process as well.
In the following, we discuss in particular the case of heavy
flavor quarks, with the general notation Q for quarks and Q̄ for
antiquarks. Heavy flavor may be produced in different ways,
as shown in Fig. 35. Starting from a gluon, a Q-Q̄ pair may be
produced in the SL cascade, as shown in Fig. 35(a), provided

4

5 6

3

1

10

11

12

13

14

9

2

FIG. 33. A possible color flow diagram corresponding to Fig. 32.
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FIG. 34. The four color flow chains 1-2-3-4, 5-6-7, 8-9-10-11-
12, and 13-14 are mapped to kinky strings (red lines). The black
points indicate the kinks.

the virtuality is large enough. The number of allowed flavors
is considered to be depending on the virtuality (variable flavor
number scheme). It is also possible to create a Q-Q̄ in the Born
process, via g + g → Q + Q̄ or q + q̄ → Q + Q̄ (for light
flavor quarks q), as shown in Fig. 35(b), and finally Q − Q̄
may be produced in the TL cascade, via g → Q + Q̄, as shown
in Fig. 35(c). Let us first consider the Q-Q̄ production in
the SLC. We may have the situation as shown in Fig. 36(a),
where a heavy flavor parton (here a Q̄) is emitted, and the
corresponding antiparticle (here a Q) continues the SLC. But
before reaching the Born process, it is emitted, and a gluon
continues the SLC. The two heavy flavor partons have in
general low transverse momenta. Another possibility is shown
in Fig. 36(b), where a heavy flavor parton produced in the
SLC “survives” until the Born process, and the latter has most
likely the form Q + l → Q + l , with l being a light flavor par-
ton. Other than the production during the SLC, heavy flavor
may be produced in the Born process, via g + g → Q + Q̄
or q + q̄ → Q + Q̄ (for light flavor quarks q), as shown in
Fig. 36(c). Finally, heavy flavor may be produced during the
timelike cascade, as shown in Fig. 37, initiated either from a
TL parton in the SL cascade [Fig. 37(a)] or from an outgoing
parton of the Born process [Fig. 37(b)]. In the first case, the
transverse momenta are in general small.

The next step will be, for a given Feynman diagram, to
construct the color flow diagram, as discussed in the previous
sections. Let us take the graph of Fig. 37(b), i.e., heavy flavor
production during the TLC of an outgoing Born parton. As
usual, the gluons are emitted to either side with equal prob-
ability, so a possible color flow diagram is the one shown in
Fig. 38. We identify three chains of partons: 1-2-3-4-5, 6-7-8,
and 9-10-11. The initial TL partons (the horizontal blue lines
with arrows) or most likely quarks and antiquarks (in any case

(a) (b) (c)

SLC

Q

Q

Q

Q
Born

Q

TLC

Q

FIG. 35. Different possibilities to create heavy flavor, (a) in the
spacelike cascade (SLC), (b) in the Born process, and (c) in the
timelike cascade (TLC).

SLC

SLC

(a) (b)

(c)

Q

Q

SLC

SLC Q

Q

SLC

SLC Q

Q

FIG. 36. Heavy flavor production [(a) and (b)] in the SL cascade
and (c) in the Born process. The magenta point indicated the Born
process.

3 and 3̄ color representations). Let us assume that 3 is a quark,
and 6 an antiquark (light flavor, both), then the two chains
containing heavy flavor are of the form Q̄-g-q and q̄-g-Q, in
both cases, the heavy flavor partons are “end partons” in the
chains.

These chains of partons are finally mapped (in a unique
fashion) to kinky strings, where each parton corresponds to a
kink, as shown in Fig. 39.

The general mapping procedure (chains of partons to kinky
strings) as well as the string decay procedures are described in
detail in Ref. [11].

V. SUMMARY

We recently introduced new concepts [6], implemented in
EPOS4, which allows us to consistently accommodate fac-
torization and saturation in high-energy proton-proton and
nucleus-nucleus collisions in a rigorous parallel scattering
framework. EPOS4 has a modular structure: The multiple
scattering contributions to the total cross section in pp or
AA scattering are expressed in terms of (products of) cut
Pomeron expressions G (each one representing a single scat-

SLC

SLC Q

Q

TLC
(a) (b)

SLC

SLC
Q

Q

TLC

FIG. 37. Heavy flavor production in the TL cascade.
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FIG. 38. A possible color flow diagram corresponding to the
graph of Fig. 37(b).

tering), and the latter ones are related to the “real QCD
expressions” GQCD via some fundamental (new) equation. In
other words, GQCD is the fundamental building block of the
multiple scattering framework of EPOS4. In this paper, we
provided detailed information about the precise structure of
GQCD and its calculation, based on perturbative QCD, with
special care concerning heavy flavor. We discussed the im-
plementation (for the first time in the EPOS framework) of
the “backward parton evolution method,” which allows much
better control of the hard processes and comparisons with
the “standard” pQCD calculations based on factorization. But
compared to those, there are many technical subtleties in our
approach, due to the fact that we do the parton evolutions
individually for each of the scatterings in a multiple scattering
configuration, and this has been discussed in great detail. It is
actually the occurrence of singularities for cross-section cal-
culations as well as for parton generation which needed to
be taken care of. We also discussed the way to transform the
partonic multiple scattering structure into strings.
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FIG. 39. The chains 1-2-3-4-5, 6-7-8, and 9-10-11 are mapped to
kinky strings (red lines). The black points indicate the kinks, which
carry the parton momenta.

APPENDIX A: EVOLUTION FUNCTION

1. Differential equation for evolution function

It will be useful to have a the differential equation, corre-
sponding to Eq. (46). We may write

Eik
QCD(x, ta, t ) = 
k (t )


k (ta)
Eik

QCD(x, ta, ta) (A1)

+
∑

j

∫ t

ta

dt ′

t ′

∫
dz

z
Ei j

QCD

(
x

z
, ta, t ′

)
P̄k

j (t ′, z)

k (t )


k (t ′)
,

(A2)

with 
k (t ) = 
k (tref , t ), with some arbitrary reference value
tref . We divide by 
k (t ), to get

Eik
QCD(x, ta, t )


k (t )
= Eik

QCD(x, ta, ta)


k (ta)
(A3)

+
∑

j

∫ t

ta

dt ′

t ′

∫
dz

z

Ei j
QCD

(
x
z , ta, t ′)


k (t ′)
P̄k

j (t ′, z),

(A4)

then we compute the derivative ∂
∂t and multiply by t , which

gives

t
∂

∂t

{
Eik

QCD(x, ta, t )


k (t )

}
=
∑

j

∫
dz

z

Ei j
QCD

(
x
z , ta, t

)

k (t )

P̄k
j (t, z).

(A5)

2. Evolution function theorem

For the proof of Eq. (56) we start from Eq. (A5). We first
define a matrix EN

QCD(ta, t ) with the components

EN,ki
QCD(ta, t ) =

∫ 1

0
dx xN Eik

QCD(x, ta, t ), (A6)

and we define a vector gi
N (ta, t ) to be the ith column of the

matrix EN
QCD(ta, t ), divided by 
k (t ). We further define a

matrix γN (t ) with elements

γ
k j
N (t ) =

∫ 1

0
dx xN P̄k

j (t, z). (A7)

The Mellin transform of Eq. (A5) is then

t
∂

∂t
gi

N (ta, t ) = γN (t ) gi
N (ta, t ), (A8)

which has the solution

gi
N (ta, t ) = exp

[∫ t

ta

dt ′

t ′ γN (t )

]
gi

N (ta, ta) (A9)

(the exponential of a matrix M is defined by its power se-
ries

∑∞
i=0

1
i! M

i). Using Eik
QCD(x, ta, ta) = δ(1 − x)δik, we have

gi
N (ta, ta) = ei/


k (t ) (with ei being a vector with the ith com-
ponent unity and all others zero), and so we get for the matrix
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EN
QCD:

EN
QCD(ta, t ) = {

g1
N (ta, t ), g2

N (ta, t ) . . .
}

k (t ) (A10)

= exp

[∫ t

ta

dt ′

t ′ γN (t )

]
. (A11)

Considering t = tb, and splitting the integration interval, we
get

EN
QCD(ta, tb) = exp

[∫ tc

ta

dt ′

t ′ γN (t ) +
∫ tb

tc

dt ′

t ′ γN (t )

]
, (A12)

which has the structure eA+B with two matrices A and B. The
Baker-Campbell-Hausdorff formula states

eAeB = eA+B+X , (A13)

with X = 1
2 [A, B] + · · · , with “· · · ” representing higher com-

mutators of X and Y . In leading log accuracy, we can neglect
X , since it amounts to higher orders in αs, and so we get

EN
QCD(ta, tb) = EN

QCD(tc, tb) EN
QCD(ta, tc), (A14)

or, with the corresponding matrix elements,

EN, ji
QCD(ta, tb) =

∑
k

EN, jk
QCD(tc, tb) EN,ki

QCD(ta, tc). (A15)

The inverse Mellin transformation gives

Ei j
QCD(x, ta, tb) =

∑
k

∫
dz

z
Eik

QCD

(
x

z
, ta, tc

)
Ek j

QCD(z, tc, tb).

(A16)

QED.

3. Sudakov factor

In this section, we want to prove Eqs. (52) and (53). The
usual form of the DGLAP equations is

μ2 ∂q(x, μ2)

∂μ2
= αs(μ2)

2π

∫ 1

x

dξ

ξ

[
Pqq(ξ )q(x/ξ, μ2)

+ Pqg(ξ )g(x/ξ, μ2)

]
, (A17)

μ2 ∂g(x, μ2)

∂μ2
= αs(μ2)

2π

∫ 1

x

dξ

ξ

[∑
q,q̄

Pgq(ξ )q(x/ξ, μ2)

+ Pgg(ξ )g(x/ξ, μ2)

]
, (A18)

with LO splitting functions

Pqq(z) = CF

[
1 + z2

(1 − z)+
+ 3

2
δ(1 − z)

]
, (A19)

Pqg(z) = 1

2
[z2 + (1 − z)2], (A20)

Pgq(z) = CF
1 + (1 − z)2

z
, (A21)

Pgg(z) = 2CA

[
z

(1 − z)+
+ 1 − z

z
+ z(1 − z)

]
+ 11CA − 2Nf

6
δ(1 − z), (A22)

with the usual “+” prescription

f (x)+ = f (x), 0 � x < 1, (A23)∫ 1

0
dxg(x) f (x)+ =

∫ 1

0
dx f (x)[g(x) − g(1)]. (A24)

The “+” and the δ functions comes from gluon emissions.
Without these terms, we obtain the real, or unregularized
splitting functions

P̃qq(z) = CF
1 + z2

1 − z
, (A25)

P̃gg(z) = 2CA

[
z

1 − z
+ 1 − z

z
+ z(1 − z)

]
, (A26)

P̃qg(z) = Pqg(z); P̃gq(z) = Pgq(z). (A27)

We may use an alternative form of the diagonal splitting
functions, namely

Pqq(z) = CF

[
1 + z2

(1 − z)+
+ 3

2
δ(1 − z)

]
= CF

(
1 + z2

1 − z

)
+
, (A28)

Pgg(z) = 2CA

[
z

(1 − z)+
+ 1 − z

z
+ z(1 − z)

]
+ 11CA − 2Nf

6
δ(1 − z), (A29)

=
{

2CA
z

1 − z
+ CAz(1 − z) + NF

2
[z2 + (1 − z)2]

}
+

+ 2CA
1 − z

z
+ CAz(1 − z) − NF

2
[z2 + (1 − z)2]. (A30)

Then we write∫ 1

x

dξ

ξ
Pqq

(
x

ξ

)
q(ξ, μ2) =

∫ 1

x

dξ

ξ
Pqq(ξ )q(x/ξ, μ2)

=
∫ 1

0

dξ

ξ
Pqq(ξ )q(x/ξ, μ2) −

∫ x

0

dξ

ξ
P̃qq(ξ )q(x/ξ, μ2) (A31)

034904-28



PERTURBATIVE QCD CONCERNING LIGHT AND HEAVY … PHYSICAL REVIEW C 108, 034904 (2023)

=
∫ 1

0
dξ P̃qq(ξ )

[
1

ξ
q(x/ξ, μ2) − q(x, μ2)

]
−
∫ x

0

dξ

ξ
P̃qq(ξ )q(x/ξ, μ2) (A32)

=
∫ 1

1−ε

dξ P̃qq(ξ )

[
1

ξ
q(x/ξ, μ2) − q(x, μ2)

]
+
∫ 1−ε

x

dξ

ξ
P̃qq(ξ )q(x/ξ, μ2) − q(x, μ2)

∫ 1−ε

0
dξ P̃qq(ξ ),

(A33)

using that fact that in the interval [0, x], we have f (x)+ = f (x), and the relation (A24). Finally, remarking that for 1 − ε < ξ < 1
and ε → 0, we get

1

ξ
q(x/ξ, μ2) − q(x, μ2) → 0, (A34)

we obtain ∫ 1

x

dξ

ξ
Pqq

(
x

ξ

)
q(ξ, μ2) (A35)

=
∫ 1−ε

x

dξ

ξ
P̃qq(ξ )q(x/ξ, μ2) − q(x, μ2)

∫ 1−ε

0
dξ P̃qq(ξ ). (A36)

The corresponding calculation for the gluon case is∫ 1

x

dξ

ξ
Pgg

(
x

ξ

)
g(ξ, μ2) =

∫ 1

0

dξ

ξ

{
2CAξ

1 − ξ
+ CAξ (1 − ξ ) + NF

2
[ξ 2 + (1 − ξ )2]

}
+

g(x/ξ, μ2)

−
∫ x

0

dξ

ξ

{
2CAξ

1 − ξ
+ CAξ (1 − ξ ) + NF

2
[ξ 2 + (1 − ξ )2]

}
g(x/ξ, μ2)

+
∫ 1

x

dξ

ξ

{
2CA

1 − ξ

ξ
+ CAξ (1 − ξ ) − NF

2
[ξ 2 + (1 − ξ )2]

}
g(x/ξ, μ2) (A37)

�
∫ 1−ε

x

dξ

ξ
2CA

[
ξ

1 − ξ
+ 1 − ξ

ξ
+ ξ (1 − ξ )

]
g(x/ξ, μ2) (A38)

−g(x, μ2)
∫ 1−ε

ε

dξ

{
2CAξ

1 − ξ
+ CAξ (1 − ξ ) + NF

2
[ξ 2 + (1 − ξ )2]

}

=
∫ 1−ε

x

dξ

ξ
P̃gg(ξ )g(x/ξ, μ2) − g(x, μ2)

∫ 1−ε

ε

dξ

[
1

2
P̃gg(ξ ) + NF P̃qg(ξ )

]
. (A39)

Going from Eq. (A37) to (A38), the integrals

g(x, μ2)
∫ ε

0
dξ

{
2CAξ

1 − ξ
+ CAξ (1 − ξ ) + NF

2
[ξ 2 + (1 − ξ )2]

}
(A40)

and ∫ 1

1−ε

dξ

ξ

{
2CA

1 − ξ

ξ
+ CAξ (1 − ξ ) − NF

2
[ξ 2 + (1 − ξ )2]

}
g(x/ξ, μ2) (A41)

have been neglected. Then we can write the DGLAP equation as

μ2 ∂q(x, μ2)

∂μ2
= αs(μ2)

2π

∫ 1−ε

x

dξ

ξ

[
P̃qq(ξ )q(x/ξ, μ2) + P̃qg(ξ )g(x/ξ, μ2)

]
− q(x, μ2)

{
αs(μ2)

2π

∫ 1−ε

0
dξ P̃qq(ξ )

}
, (A42)

μ2 ∂g(x, μ2)

∂μ2
= αs(μ2)

2π

∫ 1−ε

x

dξ

ξ

[∑
q,q̄

P̃gq(ξ )q(x/ξ, μ2) + P̃gg(ξ )g(x/ξ, μ2)

]

− g(x, μ2)

{
αs(μ2)

2π

∫ 1−ε

ε

dξ

[
1

2
P̃gg(ξ ) + NF P̃qg(ξ )

]}
. (A43)
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Defining

Aq = αs(μ2)

2π

∫ 1−ε

0
dξ P̃qq(ξ ), (A44)

Ag = αs(μ2)

2π

∫ 1−ε

ε

dξ

[
1

2
P̃gg(ξ ) + NF P̃qg(ξ )

]
, (A45)

(representing the expressions in curly brackets in Eqs. (A42)
and (A43), we get from Eqs. (A42) and (A43)

μ2 ∂q(x, μ2)

∂μ2
+ q(x, μ2)Aq

= αs(μ2)

2π

∫ 1−ε

x

dξ

ξ

[
P̃qq(ξ )q(x/ξ, μ2)

+ P̃qg(ξ )g(x/ξ, μ2)

]
, (A46)

μ2 ∂g(x, μ2)

∂μ2
+ g(x, μ2)Ag

= αs(μ2)

2π

∫ 1−ε

x

dξ

ξ

[∑
q,q̄

P̃gq(ξ )q(x/ξ, μ2)

+ P̃gg(ξ )g(x/ξ, μ2)

]
. (A47)

Defining Sudakov factors 
g and 
q as


a = exp

(
−
∫ μ2

μ2
0

dq2

q2
Aa

)
, (A48)

we find for fq = q and fg = g:

μ2 ∂

∂μ2
fa(x, μ2) + faAa = 
a μ2 ∂

∂μ2

[
fa(x, μ2)


a(μ2)

]
. (A49)

Reporting this into Eqs. (A46) and (A47), we get


q(μ2)μ2 ∂

∂μ2

{
q(x, μ2)


q(μ2)

}
= αs(μ2)

2π

∫ 1−ε

x

dξ

ξ

[
P̃qq(ξ )q(x/ξ, μ2) + P̃qg(ξ )g(x/ξ, μ2)

]
(A50)


g(μ2)μ2 ∂

∂μ2

{
g(x, μ2)


g(μ2)

}
= αs(μ2)

2π

∫ 1−ε

x

dξ

ξ

[∑
q,q̄

P̃gq(ξ )q(x/ξ, μ2) + P̃gg(ξ )g(x/ξ, μ2)

]
, (A51)

which is the DGLAP equation based on unregularized split-
ting functions, as we use for our E functions, see Eq. (A5).
We use the convention P j

i = P̃ji. Equations (A48), (A44), and
(A45) agree with Eqs. (52) and (53).

APPENDIX B: PARTON-PARTON CROSS-SECTION
FORMULAS

Here we will show how to explicitly do some of the in-
tegrations in order to compute cross sections, starting from
Eqs. (45) and (44).

1. Rapidity integral

Here we simplify the expression to get integrated cross
sections as rapidity integral. From Eqs. (45) and (44), we get

σ
i j
hard =

∑
klmn

∫
dy3dy4d p2

3t d
2 p4t

∫
dx1dx2

× Eik
QCD

(
x1, Q2

1, μ
2
F

)
E jl

QCD

(
x2, Q2

2, μ
2
F

) 1

32sπ2

×
∑̄

|Mkl→mn|2δ4(p1 + p2 − p3 − p4)
1

1 + δmn
.

(B1)

Integrating explicitly over �p4t , which removes

δ2( �p1t + �p2t − �p3t − �p4t ), (B2)

and using d2 p3t = d2 pt = πd p2
t , we get

σ
i j
hard =

∑
klmn

∫
dy3dy4d p2

t dx1dx2

× Eik
QCD

(
x1, Q2

1, μ
2
F

)
E jl

QCD

(
x2, Q2

2, μ
2
F

) 1

32sπ
(B3)

×
∑̄

|Mkl→mn|2 1

J
δ(P+

in − P+
out )

× δ(P−
in − P−

out )
1

1 + δmn
, (B4)

with J = 1/2. Here we used the identity

δ2(�x − �x0) = 1

J
δ2(�y − �y0), J =

∣∣∣∣∂ (x1, x2)

∂ (y1, y2)

∣∣∣∣, (B5)

valid for any �x(�y), and in this case used for x1 = E , x2 = P‖,
y1 = P+, y2 = P−, which gives J = 1/2. The LC momenta
are given as p+

1 = x1
√

slad, p−
1 = 0, p+

2 = 0, p−
2 = x2

√
slad,

and for the out-going partons as p+
3 = pt ey3 , p−

3 = pt e−y3 , and
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p+
4 = pt ey4 , p−

4 = pt e−y4 , so we have

δ(P+
in − P+

out ) = δ(x1
√

slad − pt e
y3 − pt e

y4 ), (B6)

δ(P−
in − P−

out ) = δ(x2
√

slad − pt e
−y3 − pt e

−y4 ), (B7)

which gives

δ(P+
in − P+

out ) = 1√
slad

δ

[
x1 − 1

2
xt (e

y3 + ey4 )

]
, (B8)

δ(P−
in − P−

out ) = 1√
slad

δ

[
x2 − 1

2
xt (e

−y3 + e−y4 )

]
, (B9)

with xt = 2pt/
√

slad, and so we get

σ
i j
hard =

∑
klmn

∫
dy3dy4d p2

t

× Eik
QCD

(
x1, Q2

1, μ
2
F

)
E jl

QCD

(
x2, Q2

2, μ
2
F

)
× 1

16πs slad

∑̄
|Mkl→mn|2 1

1 + δmn
, (B10)

with (from integrating over the delta functions)

x1 = pt√
slad

(ey3 + ey4 ), x2 = pt√
slad

(e−y3 + e−y4 ) (B11)

and δmn accounting for properly counting identical partons.

2. LC momentum fraction integral

Here we want to show that σ
i j
hard in Eq. (B10) can be written

as an integral over light-cone momentum fractions.
It will be useful to consider quantities in the CMS of the

two partons entering the Born process (BornCMS). We may
write (with E = √

s/2)

p1 = (E , E , 0, 0), p2 = (E , −E , 0, 0), (B12)

p3 = (E , E cos θ, E sin θ, 0),

p4 = (E ,−E cos θ,−E sin θ, 0), (B13)

which allows computing

t = − s

2
(1 − cos θ ), u = − s

2
(1 + cos θ ), (B14)

Using

cos θ = (p3)z

(p3)0
= tanh (y3 BornCMS) = tanh

(
y3 − y4

2

)
,

(B15)

and Eq. (B11) with a = 1/
√

slad,

x1 = apt (e
y3 + ey4 ), x2 = apt (e

−y3 + e−y4 ), (B16)

we get the Jacobian matrix

∂ (x1, x2, cos θ )

∂
(
y3, y4, p2

t

)

=

⎡⎢⎢⎢⎣
apt ey3 apt ey4 a

2pt
(ey3 + ey4 )

−apt e−y3 −apt e−y4 a
2pt

(e−y3 + e−y4 )

1/2

cosh2
(

y3−y4
2

) −1/2

cosh2
(

y3−y4
2

) 0

⎤⎥⎥⎥⎦,

(B17)

and the Jacobian determinant

J = a2/4

cosh2
( y3−y4

2

)[∣∣∣∣ ey4 (ey3 + ey4 )
−e−y4 (e−y3 + e−y4 )

∣∣∣∣
+
∣∣∣∣ ey3 (ey3 + ey4 )
−e−y3 (e−y3 + e−y4 )

∣∣∣∣
]
, (B18)

= a2/4

cosh2
( y3−y4

2

) [ey4 (e−y3 + e−y4 ) + e−y4 (ey3 + ey4 )

+ ey3 (e−y3 + e−y4 ) + e−y3 (ey3 + ey4 )], (B19)

= a2/2

cosh2
( y3−y4

2

) (ey3−y4 + e−y3+y4 + 1 + 1), (B20)

= a2/2

cosh2
( y3−y4

2

)(e y3−y4
2 + e− y3−y4

2
)2

, (B21)

= 2a2 = 2/slad. (B22)

So we get

dy3dy4d p2
t = 1

2 slad dx1dx2d cos θ, (B23)

and with [from Eq. (B14)]

dt = 1
2 s d cos θ,

we find

dy3dy4d p2
t = 1

x1x2
dx1dx2dt, (B24)

and so, from Eq. (B10)

σ
i j
hard =

∑
klmn

∫
dx1dx2dt Eik

QCD

(
x1, Q2

1, μ
2
F

)
E jl

QCD

(
x2, Q2

2, μ
2
F

)
× 1

16πs2

∑̄
|Mkl→mn|2 1

1 + δmn
, (B25)

which we may write as

σ
i j
hard =

∑
klmn

∫
dx1 dx2 dt Eik

QCD

(
x1, Q2

1, μ
2
F

)
× E jl

QCD

(
x2, Q2

2, μ
2
F

)
× πα2

s

s2

{
1

g4

∑̄
|Mkl→mn|2

}
1

1 + δmn
, (B26)
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with {· · · } being of the form in which the squared matrix
elements are usually tabulated, with αs = g2/4π . The corre-
sponding differential cross section is

dσ
i j
hard

dx1 dx2 dt
=
∑
klmn

E ik
QCD

(
x1, Q2

1, μ
2
F

)
E jl

QCD

(
x2, Q2

2, μ
2
F

)
× πα2

s

s2

{
1

g4

∑̄
|Mkl→mn|2

}
1

1 + δmn
. (B27)

3. Single jet parton-parton cross section

Here we show that d3σ
i j
hard/dy d2 pt can be written as a

single integral
∫

dx . . . , where y and pt refer to one outgoing
parton (jet).

Again starting from Eq. (44), one may integrate over �p4, to
get

d3σ
i j
hard

dyd2 pt
=
∑
klmn

∫ ∫
dx1dx2 Eik

QCD

(
x1, Q2

1, μ
2
F

)
× E jl

QCD

(
x2, Q2

2, μ
2
F

) 1

32sπ2

∑̄
|Mkl→mn|2

× 1

1 + δmn

1

E4
δ(E1 + E2 − E3 − E4), (B28)

where y and pt refer to particle 3. In the BornCMS, we have
(with E3 = E4 = E and E1 = E2 = √

s/2, not yet imposing
energy conservation)

t = −E
√

s(1 − cos θ ), u = −E
√

s(1 + cos θ ), (B29)

and so

1

E4
δ(E1 + E2 − E3 − E4)

= δ[E (
√

s − 2E )] = δ

[√
s

2
(
√

s − 2E )

]
= 2δ[s − 2

√
sE )] = 2δ(s + t + u), (B30)

which leads to

d2σ
i j
hard

dyd p2
t

=
∑
klmn

∫
dx1dx2 Eik

QCD

(
x1, Q2

1, μ
2
F

)
E jl

QCD

(
x2, Q2

2, μ
2
F

)
× 1

16πs2

∑̄
|Mkl→mn|2 1

1 + δmn
s δ(s + t + u).

(B31)

Using p+
1 = x1

√
slad, p−

1 = 0, p+
3 = pt ey, p−

3 = pt e−y, we get

t = (p1 − p3)+(p1 − p3)− − p2
t = −pt x1

√
slade−y (B32)

and with p−
2 = x2

√
slad, p+

2 = 0, we find

u = (p2 − p3)+(p2 − p3)− − p2
t = −pt x2

√
slade+y (B33)

and therefore (using xt = 2pt/
√

slad)

s δ(s + t + u), (B34)

= x1x2δ

(
x1x2 − x1

xt

2
e−y − x2

xt

2
ey

)
, (B35)

= x1x2δ

[
x

(
x2 − x1

x

xt

2
e−y

)]
, (B36)

= x1x2
1

x
δ

(
x2 − x1

x

xt

2
e−y

)
, (B37)

with x = x1 − xt
2 ey. So we have finally

d2σ
i j
hard

dyd p2
t

=
∑
klmn

∫
dx Eik

QCD

(
x1, Q2

1, μ
2
F

)
E jl

QCD

(
x2, Q2

2, μ
2
F

)
× 1

16πs2

∑̄
|Mkl→mn|2 1

1 + δmn
x1x2

1

x
(B38)

with x1 = x + xt

2
ey, x2 = x1

x

xt

2
e−y.

or

d2σ
i j
hard

dyd p2
t

=
∑
klmn

∫ a

b
dx Eik

QCD

(
x1, Q2

1, μ
2
F

)
E jl

QCD

(
x2, Q2

2, μ
2
F

)
× πα2

s

s2

{
1

g4

∑̄
|Mkl→mn(s, t )|2

}
1

1+δmn
x1x2

1

x
,

(B39)

with

x1 = x + pt√
slad

ey, x2 = x1

x

pt√
slad

e−y, (B40)

s = x1x2
√

slad, t = −pt x1
√

slade−y, (B41)

a = 2p2
t

slad

/(
2 − 2pt√

slad
e−y

)
, b = 1 − pt√

slad
ey,(B42)

with {· · · } being the form the squared matrix elements are
usually tabulated, with αs = g2/4π , and where the integration
limits a and b are obtained from x2 � 1 and x1 � 1. This
formula is useful to compute (without Monte Carlo) trans-
verse momentum spectra of produced partons for tests and
comparisons.

In the EPOS framework, we have evolution functions
with an initial condition δ(1 − x), which forces us to dis-
tinguish four cases, namely both-sided, one-sided (lower),
one-sided (upper), or no emissions. In the case of both-
sided emissions, we use Eq. (B39), with Ẽ ab

QCD instead
of Eab

QCD. In case of no emissions on either side, we
have Eab

QCD(xi, Q2
i , μ

2
F ) = 
a

QCD(Q2
i , μ

2
F )δ(1 − xi )δab on both

sides, so
∫

dx1dx2 . . . is trivial, and using δ(s + t + u) =
δ[ f (y)] = δ((y − y0) f ′(y0)) + δ((y + y0) f ′(−y0)), with

f (y) = s + t + u, (B43)

= s − x1 pt
√

slade−y − x2 pt
√

sladey, (B44)

= slad − pt
√

slade−y − pt
√

sladey, (B45)

= slad[1 − xt cosh(y)], (B46)
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and f ′(y) = −t + u, and with y0 being the (unique) positive
root of f (y), we get (after integrating over y)

d2σ
i j
hard

d p2
t

=
∑
mn


i
QCD

(
Q2

1, μ
2
F

)



j
QCD

(
Q2

2, μ
2
F

)
× πα2

s

s2

{
1

g4

∑̄
|Mi j→mn|2

}
2

1 + δmn
slad /| f ′(y0)|.

(B47)

with | f ′(y0)| = |t − u| = s − 2|t | ≈ slad. In case of no emis-
sions on the upper side (x1 = 1), we have t + s + t

d2σ
i j
hard

dyd p2
t

=
∑
lmn


i
QCD

(
Q2

1, μ
2
F

)
E jl

QCD

(
x2, Q2

2, μ
2
F

)
× πα2

s

s2

{
1

g4

∑̄
|Mil→mn|2

}
1

1 + δmn
x2

1

x

with x = 1 − aey, x2 = 1

x
ae−y. (B48)

In case of no emissions on the lower side (x2 = 1), we have

d2σ
i j
hard

dyd p2
t

=
∑
kmn

∫
dx Eik

QCD

(
x1, Q2

1, μ
2
F

)



j
QCD

(
Q2

2, μ
2
F

)
× πα2

s

s2

{
1

g4

∑̄
|Mk j→mn|2

}
1

1 + δmn
x1

1

x

with x = 1 − ae−y, x1 = 1

x
aey. (B49)

We finally mention that the relation

x1x2 − x1ae−y − x2aey = 0 (B50)

(from s + t + u = 0) not only allows us to express x2 in terms
of x1 and y or x1 in terms of x2 and y (for given a =

√
p2

t /slad),
as

x2 = x1ae−y

x1 − aey
, x1 = x2ae−y

x2 − aey
, (B51)

but also the other way round y in terms of x1 and x2, as

e−y = 2a/x1

1 ±
√

1 − 4a2

x1x2

, (B52)

or

ey = 2a/x2

1 ±
√

1 − 4a2

x1x2

, (B53)

useful formulas for later applications.

APPENDIX C: BORN SCATTERING KINEMATICS:
EXPLICIT FORMULAS

Here we will provide explicit formulas for different kine-
matic quantities and relations related to the Born process, as
being used in the numerical procedures.

We consider two partons entering the Born process (let us
note them 1 and 2), producing two partons (let us note them 3
and 4), so altogether we have the elementary process 1 + 2 →

3 + 4. All kinematic formulas depend on the four masses, m1,
m2, m3, and m4. In order to present explicit formulas for the
different cases, we will use the notation

case m1m2m3m4, (C1)

so for example “case 0000” represents the case of massless in-
coming and outgoing partons, like g + g → g + g or u + ū →
g + g.

1. The W variable

Be E and E ′ the modules of the momenta of particles 1 and
3, respectively. We then define W = 4E2 and W ′ = 4E ′2. We
have shown [see Eqs. (69) and (70)]

W = s − 2
(
m2

1 + m2
2

)+ 1

s

(
m2

1 − m2
2

)2
, (C2)

W ′ = s − 2
(
m2

3 + m2
4

)+ 1

s

(
m2

3 − m2
4

)2
. (C3)

We get for the “interesting cases” explicitly

case 0000 : W = W ′ = s,

case m0m0 : W = W ′ = (s − m2)2/s,

case 00mm : W = s, W ′ = s − 4m2,

case mm00 : W = s − 4m2, W ′ = s, (C4)

case mmm̃m̃ : W = s − 4m2, W ′ = s − 4m̃2

case mm̃mm̃ : W = W ′ = s − 2(m2 + m̃2)

+(m2 − m̃2)2/s.

Here m refers to the charm and m̃ to the bottom quark mass
and u, d , and s are considered to be massless. These are the
formulas used in the code. Essentially all important kinematic
relations are expressed in terms of W and W ′.

2. Energy limits

The minimum value of the Mandelstam s of the Borm
process is [see Eq. (81)]

smin = d
{
1 +

√
1 − [(

m2
3 − m2

4

)
/d
]2}

with d = m2
3 + m2

4 + 2 p2
t min. (C5)

For the “interesting cases,” we get for smin:

0000 : 4 p2
t min, (C6)

m0m0 : d (1 +
√

1 − m4/d2), (C7)

with d = m2 + 2 p2
t min,

00mm : 4
(
m2 + p2

t min

)
, (C8)

mm00 : 4 p2
t min, (C9)

mmm̃m̃ : 4
(
m̃2 + p2

t min

)
, (C10)

mm̃mm̃ : d{1 +
√

1 − [(m2 − m̃2)/d]2},
with d = m2 + m̃2 + 2 p2

t min. (C11)
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3. The variable t

The module of the Mandelstam variable t is given as [see
Eq. (83)]

|t | = 1

2

[√
W + 4m2

1

√
W ′ + 4m2

3 − 2
(
m2

1 + m2
3

)
∓

√
W
√

W ′ − 4p2
t

]
, (C12)

the “∓” referring to respectively pz � 0 and pz � 0. For the
different cases, we have

m0m0 : |t | = W

2

(
1 ∓

√
1 − 4p2

t

W

)
, (C13)

00mm : |t | = W

2

(
1 ∓

√
1 − 4

p2
t + m2

W

)
− m2, (C14)

mm00 : |t | = W

2

(
1 ∓

√
1 − 4

p2
t − m2

W

)
+ m2, (C15)

mmm̃m̃ : |t | = W

2

(
1 ∓

√
1 − 4

p2
t − m2 + m̃2

W

)
+ m2− m̃2,

(C16)

mm̃mm̃ : |t | = W

2

(
1 ∓

√
1 − 4p2

t

W

)
. (C17)

From Eq. (C12), we get

|t |min/max = 1

2

[√
W + 4m2

1

√
W ′ + 4m2

3 − 2
(
m2

1 + m2
3

)
∓

√
W
√

W ′ − 4p2
t min

]
. (C18)

Considering the different cases, we get for the quantities
|t |min/max :

m0m0 :
W

2

(
1 ∓

√
1 − 4p2

t min/W
)
, (C19)

00mm :
W

2

[
1 ∓

√
1 − 4

(
p2

t min + m2
)
/W
]− m2, (C20)

mm00 :
W

2

[
1 ∓

√
1 − 4

(
p2

t min − m2
)
/W
]+ m2, (C21)

mmm̃m̃ :
W

2

(
1 ∓

√
1 − 4

p2
t min − m2 + m̃2

W

)
+ m2 − m̃2,

(C22)

mm̃mm̃ :
W

2

(
1 ∓

√
1 − 4p2

t min/W
)
. (C23)

Using the identity

(1 − √
1 − C), (C24)

= C(1 − √
1 − C)

(1 + √
1 − C)(1 − √

1 − C)
, (C25)

= C

(1 + √
1 − C)

, (C26)

the latter expression being better for numerical purposes when
C � 1, we get for |t |min :

m0m0 :
2p2

t min

1 +
√

1 − 4p2
t min/W

, (C27)

00mm :
2
(
p2

t min + m2
)

1 +
√

1 − 4
(
p2

t min + m2
)
/W

− m2, (C28)

mm00 :
2
(
p2

t min − m2
)

1 +
√

1 − 4
(
p2

t min − m2
)
/W

+ m2, (C29)

mmm̃m̃ :
2
(
p2

t min − m2 + m̃2
)

1 +
√

1 − 4
(
p2

t min − m2 + m̃2
)
/W

+ m2 − m̃2,

(C30)

mm̃mm̃ :
2p2

t min

1 +
√

1 − 4p2
t min/W

. (C31)

4. The limit tmax+

We define the maximum value |t |max+ of |t | with pz � 0
[see Eq. (86)], i.e.,

|t |max+ = 1

2

[√
W + 4m2

1

√
W ′ + 4m2

3 − 2
(
m2

1 + m2
3

)]
.

(C32)

For the different cases, we get

m0m0 : |t |max+ = W

2
= (s − m2)2

2 s
, (C33)

00mm : |t |max+ = s

2
− m2, (C34)

mm00 : |t |max+ = s

2
− m2, (C35)

mmm̃m̃ : |t |max+ = s

2
− m2 − m̃2, (C36)

mm̃mm̃ : |t |max+ = W

2
. (C37)

5. Transverse momentum for given t

The general formula is [see Eq. (84)]

p2
t = W ′

4
− 1

W

(
|t | − 1

2

√
W + 4m2

1

√
W ′ + 4m2

3

+ m2
1 + m2

3

)2

. (C38)
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For the different cases, we get

m0m0 : p2
t = |t |

(
1 − |t |

W

)
, (C39)

00mm : p2
t = (|t | + m2)

(
1 − |t | + m2

W

)
− m2, (C40)

mm00 : p2
t = (|t | − m2)

(
1 − |t | − m2

W

)
+ m2, (C41)

mmm̃m̃ : p2
t = (|t | − m2 + m̃2)

(
1 − |t | − m2 + m̃2

W

)
+ m2 − m̃2, (C42)

mm̃mm̃ : p2
t = |t |

(
1 − |t |

W

)
. (C43)
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