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Flow distribution analysis as a probe of nuclear deformation
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We study the flow harmonic distribution in collisions of deformed nuclei. To do this, we use the standard Gram-
Charlier method to find the higher-order correction to the well-known Bessel-Gaussian distribution. We find that,
apart from the necessity of including a shift parameter v̄n, the modified flow distribution accurately describes the
distribution of flow harmonics in a system formed after collisions of deformed nuclei with quadrupole and
octupole deformity. Using the shifted radial distribution arising from this method, we scrutinize the effect of
deformation on flow distribution. We also propose a way to measure v̄2 in deformed-nucleus collisions.
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I. INTRODUCTION

Quantum chromodynamics (QCD), the theory of the strong
interaction, undergoes a certain phase transition at high
temperature to a plasma of quarks and gluons. Heavy-ion
collisions (HICs) at the BNL Relativistic Heavy Ion Col-
lider (RHIC) and Large Hadron Collider (LHC) provide this
opportunity to study the phase structure of QCD and the
properties of quark-gluon plasma (QGP) [1–8]. One feature
of this plasma is collective behavior which can be success-
fully described by the hydrodynamic models [9]. Among the
various probes to study the dynamics of relativistic HICs,
the most used one is the anisotropic flow that is quantified
with harmonics vn, measuring the azimuthal asymmetry of
the emitted hadrons on an event-by-event basis. The flow
distribution and the cumulants are used to gain more infor-
mation on the even-by-event fluctuations [10]. This insight
shed light on the collision geometry, quantum fluctuations at
initial state, as well as the effects of different evolution stages
in heavy-ion processes [11,12]. From an experimental point
of view, the distribution of v2 and v3 are accessible through
the unfolding method [13]. This leads to an observation of a
Bessel-Gaussian distribution for collision of spherical nuclei,
i.e., Pb-Pb, in the central collision [14]. On the other hand,
cumulants can be obtained as a measure of multiparticle cor-
relation functions [15]. Measuring the correlation of particles
gives this chance to map the shape of nuclei [16].

Conventionally, in low-energy nuclear physics, a Woods-
Saxon profile describes the density of nucleons inside a
nucleus,

ρ(r, θ, φ) ∝ 1

1 + e
r−R(θ,φ)

a0

, (1)

where a0 and R(θ, φ) are the surface diffuseness and the
nuclear surface parameter, respectively. In general, to take into
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account the deformation of the nucleus, R(θ, φ) is expanded
in terms of spherical harmonics Y m

� (θ, φ). In particular, the
quadrupole deformation in the so-called real spherical har-
monics is defined by R(θ, φ) = R0{1 + β2[cos γY 0

2 (θ, φ) +
sin γY 2

2 (θ, φ)]} [17]. Here, R0 is the half-density radius, γ

determines the relative length of the three axes of the ellipsoid,
and β2 is the magnitude of quadrupole deformation. From
an experimental point of view, there are some pieces of ev-
idence that support a considerable difference in observed v2

of final particles in a system formed after the collisions of
deformed and spherical nuclei [18], with the largest difference
being in the most central collisions. Besides the quadrupole
deformation, octupole deformation may also significantly af-
fect observables. This form of deformation arises due to the
breaking of parity symmetry in the intrinsic nuclear shape.
This kind of deformity is modeled by including β3Y 0

3 (θ, φ) in
the nuclear surface parameter.

The structure of this paper is as follows: In Sec. II, we
present a brief review of the standard Gram-Charlier series
method. Using this approach, we find the cumulants of flow
harmonics in Sec. III. We argue that, to include the effect
of deformation on the cumulants, we have to consider a shift
parameter in the definition. Then we obtain the flow distribu-
tion for the magnitude of flow harmonics, which is dubbed as
the radial flow distribution. We observe that the conventional
Bessel-Gaussian is not appropriate for the central collisions.
Once we consider higher-order corrections, i.e., fourth- and
sixth-order radial cumulants, the data are explained accu-
rately. We show that the first correction due to the fourth-order
term, which turns out to be kurtosis of the vn event-by-event
fluctuation [19], is sufficient. In Sec. IV, we present an ap-
proach to observe the shift parameter in experiments. We
summarize in Sec. V and present our concluding remarks.

II. METHOD OF ANALYSIS

In this section, we use the so-called standard Gram-
Charlier (sGC) series to find the distribution of any random
variable. In case where the related information of the desired
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variable, such as its moments, is incompatible with Gaus-
sian distributions, this series can be used to modify Gaussian
distributions. This method relates the probability distribution
P(Z) to the Gaussian distribution by applying an appropriate
differential operator [20–22]. It is worth mentioning that this
approach, at first, was used in Ref. [19] to study the flow
distribution.

Let us start with the characteristic function �Z(t) of a k-
dimensional random vector Z, which is defined as

�Z(t) =
∫

dZeitT ZP(Z). (2)

Here, t belongs to Ck (Rk) when Z is complex (real). As it
turns out, if the random vector Z has a moment-generating
function M, the domain of the characteristic function can
be extended to the complex plane, and we have �(−it) =
M(t). Moreover, an alternative definition of the second
characteristic function M(t) is given by K(t) = lnM(t).
Thus, this leads to the cumulants of the random vector as
K(n)(t)|t=0 = [lnM(t)](n)|t=0.1 Furthermore, the probability
function defined in Eq. (2) is determined by an inverse Fourier
transformation [21] as follows:

P(Z) = 1

2π

∫
dte−itT Z�Z(t). (3)

Expanding the characteristic function up to second order and
writing (iZ)n in terms of an appropriate differential operator,
we arrive at an expression for P(Z). Following the steps
described above to find the distribution function for a real
random variable x, we find the corrections to the conventional
Gaussian distribution. The corresponding terms are given in
terms of the probabilist Hermite polynomials Hen as

∞∑
n=3

κn

n!σ n
Hen

(
x − μ

σ

)
.

The sGC method aims to find the non-Gaussianity correction
to obtain a complete description of our variable. This leads us
to focus on the characteristic function instead. Since this quan-
tity gives us the desired information about the moments and
cumulants, it provides insight into the probability distribution.
It is known that both collision geometry and event-by-event
fluctuations are encoded in flow harmonic distributions P(vn)
as well as cumulants [23]. In the following sections, we study
the connection between them to gain a deeper insight into the

1Assuming a real random variable x the corresponding equa-
tion leads to:

1 +
∞∑

n=1

μnt n

n!
= exp

( ∞∑
n=1

κnt n

n!

)
,

where for a particular choice μ = 〈x〉, it implies

μ1 = μ = κ1,

μ2 = μ2 + σ 2 = κ1
2 + κ2,

μ3 = μ3 + 3μσ 2 + κ3 = k1
3 + 3κ1κ2 + κ3.

effects of nucleus deformation using sGC series in the two
cases of spherical- and deformed-ion collisions.

III. SPHERICAL- AND DEFORMED-NUCLEUS
COLLISIONS

In this section, we examine the effect of deformation on the
flow anisotropy. To start, we present the 2k-particle correla-
tion functions cn{2k} [15] as well as the shifted cumulants [24]
for the collision of spherical and deformed ions. The present
work aims to study the effects of deformation on cumulants,
resulting from the initial stage of collision of nuclei. To do
this, we use the approximate relation between vn and the ini-
tial anisotropy εn for second and third harmonics: vn = αnεn

[25,26]. Therefore, we do not need to compute v2 and v3

by means of full hydrodynamic simulations. αn is a response
coefficient that depends on the properties of the medium, such
as its viscosity. In this paper we assume that, at a given central-
ity, this coefficient is same for all events.2 Its value has been
determined at both RHIC and LHC energies (see Ref. [27]).
Thus, we have generated data for PbPb and UU as well as ZrZr
collisions at the center-of-mass energy

√
sNN = 5.02 TeV and

200 GeV, respectively, motivated by LHC [28] and RHIC [18]
experiments.3 To do this, we implement the TRENTo model
which is used to imitate the initial state of heavy-ion collisions
[29]. In this study, we choose the geometric thickness function
with p = 0. The nucleus thickness function is a superposition
of the nucleon thickness function whose Gaussian width is
chosen as w = 0.5 fm. In addition, the fluctuation of nucleon
thickness function is considered by a gamma distribution with
variance 1/k where we have chosen k = 1. Also, we use
the same TRENTO parametrization for these simulations at
different centrality classes to have the same situation for both
deformed and spherical nuclei. To shed light on the effect of
nuclear deformity on the properties of system formed after
their collision, we consider three sets of deformation parame-
ters for UU collisions as follows:

(1) β2 = 0 and β3 = 0: spherical U;

(2) β2 = 0.265 and β3 = 0: effect of β2;

(3) β2 = 0.265 and β3 = 0.1: effect of β2 and β3.

In the previous section, it was shown that one way to study
a random variable is to scrutinize its moments, cumulants,
and probability distribution. We propose that, in order to ob-
tain more insight into the impact of deformation, we need to
study flow harmonics. Thus, we will compare the observables
related to the collision of spherical and deformed nuclei. To
show how this method works in the flow studies, we plug t =
1
2 (tx − ity) and Z = vx,n + ivy,n into Eq. (2) for any harmonics

2Since this linear response works for n = 2, 3 and not higher har-
monics and gives us a simple picture of the relationship between
initial and final states, we do not discuss higher harmonics here.
The method employed here, however, works to study higher flow
harmonic as well while that would be complicated.

3We performed the same analysis for UU collisions at 5.02 TeV
center-of-mass energies and the results are exactly the same.
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FIG. 1. In the left panels, the centrality dependence of the ratios of 2k-particle correlation functions c2{2k} in the collision of deformed UU
(for vanishing and nonvanishing values of β3) to the c2{2k} in the collision of spherical nuclei, e.g., PbPb and UU (β2 = β3 = 0) demonstrated.
In the right panels, we compare the centrality dependence of the ratio of correlation functions in collisions of UU (β2 = 0.265, β3 = 0) to the
UU (β2 = 0.265, β3 = 0.1) and PbPb to the UU (β2 = β3 = 0). Data have been generated at the center-of-mass energy

√
sNN = 5.02 TeV.

(see more details in Ref. [24]). Following these considera-
tions, we arrive at the 2k-particle correlation functions [15]:

cn{2} = 〈
v2

n

〉
, cn{4} = 〈

v4
n

〉 − 2
〈
v2

n

〉2
, . . . . (4)

To examine the effect of nuclear deformity on the observ-
ables we compare the centrality dependence of the ratio of

2k-particle correlation function c2{2k} (with k = 1, 2, 3) of
the system after collision of deformed nuclei to those obtained
after the collision of spherical nuclei in the left panel of Fig. 1.
The maximum variation from 1 is observed at 0%–5% cen-
trality. Furthermore, the corresponding ratios decrease with
increasing impact parameter. In the right panel of this figure,
we present the ratios of c2{2k} for UU collisions with an
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FIG. 2. The two-dimensional distribution P(v2,x, v2,y ) with v2,x = α2ε2,x and v2,y = α2ε2,y with α2 = 0.339, obtained from TRENTO using
the same parametrization for PbPb (top-left panel), UU(β2 = 0.265, β3 = 0) (top-right panel), UU(β2 = 0.265, β3 = 0) (bottom-left panel),
and UU(β2 = β3 = 0) (bottom-right panel). Also, the central mean values (the values of average ellipticity) v̄2 given for each plot. We observe
that v̄2 is the same for all systems.

octupole and quadrupole deformation to the corresponding
quantity for collision of uranium with only quadrupole defor-
mation. We observe a deviation from 1 in the most central
collisions for this ratio. This is related to the nonvanishing β3.
The maximum deviation is observed in the plot of c2{6} at
0%–5% centrality. Moreover, in this panel, we compare the
c2{2k} ratios of PbPb to spherical UU collisions. There is a
8.5% deviation in the ratio c2{2}. Note that correlation func-
tion c2{2} serves as the variance of elliptic flow distribution. In
addition, we have approximately 18.5% and 25% deviations in
the ratios of c2{4} and c2{6}, respectively. Generally, although
we observe the same mean value, v̄ ≡ 〈vx〉 (〈vy〉 = 0), the
different structure leads to a change in the variances, and
the deformation enhances this change, as can be deduced from
the top panels of Fig. 1.

In Fig. 2 the two-dimensional distributions of elliptic flow
P(v2,x, v2,y) for different spherical- and deformed-nucleus
collisions at 0%–5% centrality is demonstrated. The values of
average ellipticity v̄2, which measures the average value of the
x component of elliptic flow, e.g., v̄2 ≡ v̄ = 〈vx〉, are shown
in each panel as well. As it turns out the flow distributions of

flow harmonic obtained from the collision of deformed and
the spherical nuclei have a different behavior due to deviation
of correlation c2{2} ratios from 1 (see Fig. 1), while they have
the same mean value.

It is known that the experimental data [30] favor the Bessel-
Gaussian (BG) distribution to explain elliptic flow distribution
in spherical nuclei,

P(vn) = 2vn

cn{2}e− v2
n+v̄2

n
cn{2} I0

(
2vnv̄n

cn{2}
)

.

At this stage let us note that the shift parameter v̄ for n = 2 is
generated by the reaction flow. The reaction flow happens at
collisions with nonzero impact parameter. One may wonder if
the BG can be a suitable choice for flow distribution in the
collision of deformed ion at small centralities. The data of
STAR [18] show there is a noticeable difference between the
measured v2 of deformed- and spherical-nucleus collisions.
This compels us to challenge our assumptions. As mentioned
in Refs. [24,31], we have to consider a shift in the x direc-
tion, Z = (vn,x − v̄n) + ivn,y, where v̄n = 〈vn,x〉 �= 0 for even
harmonics as depicted in Fig. 2. However, this is not the case
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for odd harmonics where we have v̄2n+1 = 0. Imposing this
change and following the previous steps, the relation between
the generating functions of moments and cumulants of a com-
plex variable is given by

ln〈et∗Z〉 =
∑

k

(tt∗)k

(k!)
Kn{2k}. (5)

Therefore, one finds the desired order of the real cumulants
Kn{2k} [24] as follows:4

Kn{2} = 〈ZZ∗〉,
Kn{4} = 〈(ZZ∗)2〉 − 2〈ZZ∗〉2,

Kn{6} = 〈(ZZ∗)3〉 + 12〈ZZ∗〉3 − 9〈ZZ∗〉〈(ZZ∗)2〉. (6)

Note that cumulants Kn{2k} contain cn{2k} as well as mo-
ments such as v̄i

n〈v j
n,xv

l
n,y〉, where i + j + l = 2k. We call

the above correlation functions the shifted cumulants due to
nonvanishing v̄n. At this stage it is worth noting that, under a
shift of the random variable, the cumulants remain invariant.
For instance, the two-particle azimuthal correlation is given
by 〈ein(φ1−φ2 )〉 − 〈einφ1〉〈e−inφ2〉 for the case of nonperfect de-
tector [15]. It is straightforward to verify the invariance of this
correlation function under the transformation of form φi →
φi − θ with i = 1, 2. As it turns out, the cumulants K2{2k}
in Eq. (6) consist of moments 〈v j

n,xv
l
n,y〉 which are not invari-

ant under the shift transformation. Of course, one can find
the cumulants Kn{2k} are shift invariant by removing such
moments. However, they are novel theoretical tools to study
the structure of nuclei. In Fig. 3, we plot Eq. (6) for n = 2
and for both spherical and deformed collisions. As depicted
in the top plot (K2{2}) of this figure, we observe a difference
between spherical- and deformed-ion collisions. In addition,
the effect of octupole deformation with nonzero β3 in UU can
be seen in this plot as well. The analysis of the eccentricity
as well as cumulants in the collision of isobars of Zr and Ru
indicates significant modification arising from the octupole
deformation [32].

For the particular cumulant K2{2}, the of β3 manifests
itself in mid-central collisions more noticeably. It turns out
the centrality dependence of cumulants for PbPb and spher-
ical UU collisions are very similar. Concerning the next
order cumulants, i.e., K2{4}, there is a considerable difference
between the magnitude of the aforementioned quantity for
deformed and spherical ion collisions. We have K2{4} ≈ 0
for spherical-nucleus collisions as expected. The difference
between deformed uranium collisions with and without β3

manifests itself in K2{4} and K2{6}. It can be seen the ef-
fect of β3 is decreasing in K2{6}, whereas increasing in
K2{4} and K2{2}. This difference appears more clearly in
K2{6} compared with the K2{4}. As demonstrated in Figs. 1
and 3, the splitting between different values of quadrupole β2

and octupole β3 can be obtained from the shifted cumulants
Kn{2k} in contrast with 2k-particle correlations cn{2k}. This

4Let us note that they are derived by differentiating both sides of
Eq. (5) at tx = 0 and ty = 0. Moreover, the quantity Kn{2k} are the
two-dimensional cumulants.

FIG. 3. The centrality dependence of the shifted cumulants
Kn{2k} with k = 1, 2, 3. The results show the relationship between
different orders of shifted cumulants is K2{2} > K2{4} > K2{6},
which is the same as 2k-particle correlation functions.

splitting appears stronger in the higher order of Kn{2k}. In
other words, the results show that if we want to study the effect
of deformation on flow anisotropies, it would be helpful to
investigate the shifted cumulants Kn{2k}. Also, the difference
between different spherical nuclei at mid-central collisions
can be extracted from K2{6}. To see this difference, one needs
to include higher-order terms of cumulants in probability
distributions, which we leave to future work. Moreover, as
it is shown in this plot, the cumulant K2{6} at mid-central
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collisions demonstrates different behavior for the systems
formed from different spherical-nucleus collisions.

As we observed the correction v̄n in our assumptions led
us to extract some fascinating properties. Now we study the
effect of this modification on flow distributions. As discussed
in Sec. II, one can study a stochastic variable using the sGC
method and its characteristic function, which gives the mod-
ification to the Gaussian distribution. Thus, using Eq. (5),
we investigate the shifted flow harmonics with Z = vn,x −
v̄n + ivn,y. To have an approach accessible in experiments,
we should obtain a distribution for the magnitudes of flow
harmonics. To do this, we find the radial distribution Pr (vn)
by writing the distribution given in Cartesian coordinate in the
polar coordinate and then integrating the two-dimensional dis-
tribution P(vn,x, vn,y) over the �n (see Ref. [24]) as follows:

Pr (vn) = d

dvn

∫
P(vx, vy)dvxdvy

= d

dvn

∫
vnP(vn, �n)dvnd�n, (7)

where

P(vn, �n) ≈
[

1 +
∑
k=2

Rn{2k}Dk
vn,�n

4k (k!)2

]
G(vn, �n). (8)

Here,
√

2πσG(z, φ) is a two-dimensional (2D) Gaussian dis-
tribution with mean v̄n and standard deviation

√
Rn{2}/2.

Moreover, D = ∂2
vn

+ (1/vn)∂vn + (1/v2
n )∂2

�n
.

Bearing in mind the importance of the shift parameter
introduced in Eq. (6), we have to use the radial shifted cumu-
lants Rn{2k}. This means that the cumulants in Eq. (5) are not
applicable anymore. Therefore, we employ the main definition
of moments, 〈

v2k
n

〉 =
∫ ∞

0
v2k

n Pr (vn)dvn, (9)

to obtain Rn{2k} (see Ref. [31]). To obtain an expression for
Rn{2k}, we truncate Eq. (8) at desired order of k. For example,
if we keep only the first term in Eq. (8), Pr (vn) would be a BG
distribution:

Pr (vn) ≡ BG(vn) = G(vn; v̄n)I0

(
2vnv̄n

Rn{2}
)

, (10)

where

G(vn; v̄n) = (2vn/Rn{2}) exp

[
−v2

n + v̄2
n

Rn{2}
]

is one-dimensional (1D) Gaussian distribution with nonzero
central moment, and I j (z) is the modified Bessel function of
the first kind. In this case, we just have Rn{2}:〈

v2
n

〉 =
∫

v2
nPr (vn)dvn =

∫
v2

nBG(vn)dz = Rn{2} + v̄2
n .

At this stage, we obtain the form of the first shifted cumulants
using the equality above as Rn{2} = 〈v2

n〉 − v̄2
n = cn{2} − v̄2

n .
However, we can keep higher-order terms in this expansion as
well to arrive at a distribution which includes corrections to
Bessel-Gaussianity in Eq. (10) as Pr (vn) = BG(vn) + Pk (vn).
Here, Pk (vn) includes corrections from higher cumulants. It is

known from experiments [8] that the BG distribution presents
a suitable description for the distribution of flow harmonics
in collisions of spherical nuclei from most- to mid-central
collisions. Now, one may wonder if we can use this expression
for deformed nuclei in the same centrality classes. To answer
this, we consider the correction to BG distribution which just
includes the second and third radial shifted cumulants, Rn{4}
and Rn{6}, as follows:

Pr (vn) = BG(vn) + P2(vn) + P3(vn)

= G(vn; v̄n)I0

(
2vnv̄n

Rn{2}
)

+ 1

2
γ4G(vn; v̄n)

2∑
j=0

α2, j I j (2vnv̄n/Rn{2})

+ 1

6
γ6G(vn; v̄n)

3∑
j=0

α3, j I j (2vnv̄n/Rn{2}). (11)

The coefficients γ2k and α j in the correction terms of Eq. (11)
are

γ4 = Rn{4}/Rn{2}2, γ6 = Rn{6}/Rn{2}3,

α2,0 = L2

(
v2

n + v̄2
n

Rn{2}
)

+ v2
n v̄

2
n

Rn{2}2 ,

α3,0 = L3

(
v2

n + v̄2
n

Rn{2}
)

+ 3v2
n v̄

2
n

Rn{2}2 L1

(
v2

n + v̄2
n

3Rn{2}
)

,

α2,1 = 4vnv̄n

Rn{2}L1

(
v2

n + v̄2
n

2Rn{2}
)

,

α3,1 = 6vnv̄n

Rn{2}L2

(
v2

n + v̄2
n

2Rn{2}
)

+ v4
n + 6v2

n v̄
2
n + v̄4

n

8Rn{2}2 ,

α2,2 = v2
n v̄

2
n

Rn{2}2 , α3,2 = 3v2
n v̄

2
n

Rn{2}2 L1

(
v2

n + v̄2
n

3Rn{2}
)

,

α3,3 = v3
n v̄

3
n

3Rn{2}3 ,

where Li(z) are the Laguerre polynomials. Let us emphasize
that we kept up to the third orders k = 3 since higher-order
cumulants are small.5 Moreover, as it turns out, γ4 is the
standardized kurtosis for the radial flow distribution. Note
that since v̄2n+1 = 0 we find odd flow kurtosis introduced in
Ref. [19]. Note that, if we set γ4 = γ6 = 0, we arrive to the
Bessel-Gaussian distribution. Plugging Eq. (11) into Eq. (9),
the cumulants Rn{2k} with k = 1, 2, 3 are given by

Rn{2} = 〈
v2

n

〉 − v̄2
n = cn{2} − v̄2

n,

Rn{4} = 〈
v4

n

〉 − 2
〈
v2

n

〉2 + v̄4
n = cn{4} + v̄4

n .

Rn{6} = 〈
v6

n

〉 − 9
〈
v4

n

〉〈
v2

n

〉 + 12
〈
v2

n

〉3 − 4v̄6
n = cn{6} − 4v̄6

n .

(12)

5To examine this claim, we included them and confirmed they are
small and negligible.
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FIG. 4. A comparison of the obtained elliptic distribution with
BG(v2) and different corrections P2 and P3 is presented by dashed
black, red, and blue lines, respectively. The top panel displays the
data of PbPb at 0%–5%, while the bottom panel shows the results of
UU collisions in the same centrality class.

We see that Rn{2} = Kn{2} as expected. So, if one obtains
Rn{2} for different collisions, the results in the top panel of
Fig. 3 are reproduced. To investigate Pr (vn) for both spherical-
and deformed-nucleus collisions, we focus on 0%–5% cen-
trality where the initial geometry of produced system after
the collision is inherited solely from nucleus deformity [18].
Figure 4 shows a comparison of the distribution of obtained
elliptic flow from PbPb with UU collisions. As depicted in this
figure, the leading-order truncation of Eq. (10) is a reliable es-
timation for PbPb data in most central collisions. In contrast to
PbPb, the distribution of UU indicates a trace of non-Bessel-
Gaussianity. This comes from the term involving R2{4}, which
is the kurtosis correction, and are comparable to the leading
term in deformed UU collisions. In this context, Fig. 5 shows
a noticeable difference between the values of R2{4} and sub-
sequently the values of standardized kurtosis for the collisions
of spherical and deformed nuclei. Furthermore, once β3 is
turned on, we observe an enhancement in the magnitude of
R2{4} opposite to c2{4} and K2{4}. If we want to investigate
the deformation effect, in particular the octupole structure of
nuclei, on v3, it seems that increasing β3 would lead to a cor-
rection to Bessel-Gaussianity as well. In Fig. 6, we show the
distribution of v3 both for PbPb and ZrZr collisions in 0%–5%
centrality. The results imply that large values of β3 play a

FIG. 5. Comparing the cumulants R2{4} as a function of cen-
trality for different spherical- and deformed-nucleus collisions. The
mini panel presents the values R2{4} where we expect maximum
deformity.

significant role in v3 distribution. This effect appears as a
non-Bessel-Gaussian distribution, while the Bessel-Gaussian
approximation works well for spherical nuclei. To study the
correction part of v3 distribution, we should investigate the
coefficient γ4 = R3{4}/R3{2}2. Figure 7 shows a comparison

FIG. 6. Similar to Fig. 4 but for the third harmonic v3 distribution
of PbPb (top) and ZrZr (bottom) collisions.
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FIG. 7. The results show the values of R3{2} and R3{4}, which
are obtained from PbPb data and ZrZr data.

of R3{2} and R3{4} for PbPb and ZrZr collisions. Note that
due to v̄3 = 0, one can find R3{2k} = c3{2k}, and then we
reproduced kurtosis introduced in Ref. [19]. As illustrated
in Fig. 7, we find that the cumulants in collisions of ZrZr
have a larger magnitude than spherical ones. This leads to a
non-negligible difference in the coefficient γ4, and thus, the
correction terms are crucial in ZrZr as shown in Fig. 6.

To conclude this section, let us note that, as two deformed
nuclei approach and collide, the initial geometry of plasma
produced after collision affected by two factor of impact pa-
rameter and the shape of nuclei. Hence, the interaction zone
which forms after the collision of deformed nuclei is sensitive
to nucleus shape. On the other hand, the change in the overlap-
ping area, due to the deformation of nuclei and finite impact
parameter, can have effects on the cumulants (subsequently on
the kurtosis) and distributions of flow harmonics. In this re-
gard, we believe that the standard Gram-Charlier series would
be ideal tool as a probe of nuclear structure in distribution
analysis.

IV. ELLIPTICITY

One of the main results from studying flow harmonics is
that the averaged ellipticity v̄2n is nonzero. This leads us to
look for an accessible estimation of v̄2n experimentally. Since
we are interested in v2 for SS and DD collisions, we present a

possible approach to observe this quantity. Let us start with a
2D distribution of (v2,x, v2,y ) in Fig. 2. As it turns out, there is
a nonvanishing v̄2 for collisions of deformed as well as spheri-
cal nuclei. Despite the large size of (v2,x, v2,y ) distributions for
DD collisions, the values of averaged ellipticity are the same.
However, the path to find the estimations of v̄2 for spherical-
and deformed-ion collisions is different. At first, we prefer to
present this estimation for deformed-nucleus collisions. To do
this, we start with the closest estimate of distribution Pr (v2)
for the data of deformed-deformed collisions which is given
by BG + P2(v2). This means that the higher-order correction
terms, i.e., R2{6}, are very small such that R2{6} ≈ 0. To verify
this, we plotted this cumulant in Fig. 8. As demonstrated,
the magnitude of R2{4} for various centralities is larger than
R2{6}. Moreover, at 0%–5% and 5%–10% centralities R2{6}
is closer to zero. Therefore, we estimate the value of R2{2k}
for k = 1, 2, 3 by considering

R2{2} = c2{2} − v̄2
2 ≈ 0 ⇒ v̄2{2} ≈ (c2{2})1/2,

or

R2{4} = c2{4} + v̄4
2 ≈ 0 ⇒ v̄2{4} ≈ (−c2{4})1/4,

or

R2{6} = c2{6} − 4v̄6
2 ≈ 0 ⇒ v̄2{6} ≈ (c2{6}/4)1/6. (13)

Note that c2{2k} in the right-hand side of Eq. (13) are
the 2k-particle correlation functions which can be measured
experimentally. This means that the ellipticity v̄2 could be ob-
tained experimentally as well. Focusing on the first condition,
we find that in this case all the γ2k in Eq. (11) diverge unless
R2{2k} = 0. This leads to finding a δ function for P(v2,x, v2,y ),
thus it is not compatible with the experimental observation.
As the middle panel in Fig. 8 depicts, v̄2{2} is not a suit-
able candidate of v̄2. Having a Bessel-Gaussian distribution
is the result of choosing the second line [33]. This implies a
zero kurtosis, γ4 = 0, and then the behavior of distributions
obtained from spherical- and deformed-nucleus collisions is
similar and we see no effect of nucleus deformity using dis-
tribution analysis. This is in contrast with our conclusion so
far. The mini panel in the middle plot of Fig. 8 indicates this
estimation is not accurate at most central collisions. Of course,
v̄2{4} is a suitable choice to estimate averaged ellipticity at
large centralities. Finally, we arrive at the last line of Eq. (13).
This implies a truncation at k = 2. This is in agreement with
our results in Sec. III. Moreover, we find γ6 ≈ 0. As it turns
out, after some straightforward manipulation in the last line of
Eq. (13), the standardized kurtosis γ4 is given by

γ4 ≈ −(v2{4}4 − v2{6}4)/(v2{2}2 − v2{6}2)2. (14)

This implies a fine splitting between v2{4} and v2{6} due to
nonzero value of γ4 in deformed-nucleus collisions [26]. The
bottom panel in Fig. 8 implies a difference on the γ4 for
systems with and without nonzero triangular deformation β3.

To conclude this section, the closest estimate of v̄2 is given
by v̄2{6}. In contrast with v̄2{4}, only v̄2{6} explains v̄2 at
most central collisions where the maximum deformity is ex-
pected to be observed. Since PbPb data can be explained by
the BG distribution, we find that v̄2,S = v̄2,S{4}. Concerning
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FIG. 8. Here we show a comparison of R2{4} with R2{6} (in the
top panel), the estimated values of v̄2 for different collisions (in the
middle panel), and the standardized kurtosis γ4 obtained in Eq. (14)
(in the bottom panel) as a function of centrality.

this argument and derived relation v̄D ≈ v̄S in the Appendix,
one arrives at v̄2,D = v̄2,D{6} = v̄2,S{4} as well. This enables
us to determine the averaged ellipticity of deformed-nucleus
collisions with the observables of spherical-ion collisions.

V. CONCLUSIONS

Motivated by the collisions of deformed nuclei, in this
paper, we studied the flow distribution in the collisions of

the spherical and deformed nuclei. In the first part of this
paper, we presented a systematic approach to calculate the
corresponding cumulants for spherical- and deformed-ion col-
lisions. It was shown that, in the most central collisions, the
ratios of the 2k-particle correlation function c2{2k} in the
collision of deformed nuclei to the corresponding quantity in
the collision of spherical nuclei manifest the effect of nuclear
deformity more clearly. To be able to distinguish between the
cumulants of different collisional systems, we considered the
effect of the shift parameter v̄n. Then, we scrutinized the effect
of different forms of deformation, including quadrupole β2

as well as octupole β3, through the shifted cumulants. We
observed that the shift parameter manifests clearly the differ-
ences between the cumulants in the collisions of deformed and
spherical nuclei.

Concerning the effect of nuclear deformity on the distri-
bution of flow harmonics in the HIC, we then calculated the
desired quantity. It was shown, after keeping an appropriate
number of terms, that the resulting distribution described the
data very well. Comparing the flow distribution in the col-
lision of deformed and spherical nuclei reveals the effect of
various kinds of deformation on flow harmonics.

Finally, we discussed a possible way to measure the shift
parameter through the analysis of different radial cumulants
for deformed nuclei in central collisions. We observed for de-
formed nuclei the most appropriate choice is the measurement
of v̄2{6} whereas for the collisions of spherical nuclei v̄2{4} is
an appropriate choice. It would be interesting to extend this
work to the collision of Ru-Ru and Zr-Zr using full hydro-
dynamic simulations which are more relevant for the isobar
program. The aim of such studies is to extract the effect related
to CME from the background. We postpone these subjects to
future studies.
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APPENDIX: RELATION BETWEEN OBSERVABLES

In Sec. III, we presented the comparison in the flow dis-
tribution of spherical- and deformed-nucleus collisions as a
probe of nuclear structure. We showed that the effect of de-
formation appears for the second and third harmonics. It is
useful to have an estimate of the observables in the collision
of deformed nuclei. Thus, we want to estimate the observables
by fitting a known spherical-spherical distribution, e.g., PbPb,
to the deformed-nucleus data like UU. To do that, we need
to modify the flow distribution obtained in the collision of
spherical nuclei. Since the correction included at k = 3 is
negligible, we keep the modification of Pr (vn) in Eq. (11) at
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k = 2:

PM
r (vn) =G(v′

n; v̄est )I0(2v′
nv̄est/Rn{2}est )

+ 1

2
γ est

4 G(v′
n; v̄est )

2∑
j=0

αest
2, j (v

′
n)I j (2v′

nv̄est/Rn{2}est ).

(A1)

Inspired by Refs. [34,35], the estimated parameters in the
above are defined by

v′
n = vn,0 +

∑
m=2

pmβm, v̄est = v̄0 +
∑
m=2

δ1,mβm,

Rn{2}est = Rn{2}0 +
(∑

m=2

δ2,mβm

)2

,

Rn{4}est = Rn{4}0 +
(∑

m=2

δ3,mβm

)4

, (A2)

where the index 0 in the above indicates spherical observables.
In fact, Eq. (A2) is the simplest case to study the impact
of deformation directly in terms of observables. However,
this modification allows us to study the effect of deformation
directly, in analogy to Ref. [34]. Here, we show that having the
cumulants obtained from PbPb data, one arrives at the UU ob-
servables using Eqs. (A1) and (A2). To do this, we show that
the flow distribution obtained in the collision of PbPb nuclei is
same as the one seen in the spherical UU collision. In the top
panel of Fig. 9, we plot the flow distribution in the collision of
spherical uranium with the vanishing deformation parameter
β2 = β3 = 0. It is obvious that the BG distribution can explain
the data for the spherical uranium accurately. In the middle
panel of this plot, the comparison in the flow distribution of
PbPb and spherical uranium shows good agreement between
them. This allows us to estimate the observables in collisions
of deformed UU using PbPb data. Since we want to study
quadrupole deformation of nuclei, as a simple case study,
we generate UU collisions by setting β2 = 0.265 and β3 = 0.
This is because of removing the β3 effect on the cumulants
R2{2k}. As illustrated in the middle plot of Fig. 9, there is a
noticeable difference between the distributions of the obtained
elliptic flow form the data of spherical- and deformed-ion
collisions. It should be mentioned that truncation at k = 2
was considered for both spherical- and deformed-ion colli-
sions. Finding the coefficients p and δi leads us to the flow
distribution in the collisions of deformed nuclei. Since we
just considered nonzero β2, we rename the coefficients in
Eq. (A2) as p = p2, δ1,est = δ1,2, δ2,est = δ2

2,2, and δ3,est = δ4
3,2.

As demonstrated in the bottom panel of Fig. 9, we found
different estimations of UU distribution as follows:

PDD
est = PM (p, δ1,est, δ2,est, δ3,est ),

PDD
est = PM (0, δ1,est, δ2,est, δ3,est ). (A3)

Results show that the estimated distributions are compatible
with the v2 distribution obtained from UU data qualitatively.
In other words, the definitions in Eq. (A2) worked. To find
their consistency, one can investigate them in other centrali-
ties. The values of coefficients δi,est are presented in Table I at

FIG. 9. In the top panel, the different corrections of spherical
uranium in most-central collisions are compared. In the middle panel,
the flow distribution in the collision of spherical nuclei are compared
with the flow distribution in the collision of deformed uranium.
The bottom panel shows different estimations of DD using the SS
distribution.

TABLE I. The estimated coefficients in Eq. (A2) are shown at
different centralities.

% δ1,est δ2,est δ3,est

0–5 0.014 ± 0.008 0.020 ± 0.001 −0.00019 ± 0.00002
5–10 0.0010 ± 0.0001 0.0224 ± 0.0004 −0.00044 ± 0.00003
10–20 0.0088 ± 0.0006 0.0167 ± 0.0003 −0.00043 ± 0.00003
20–30 0.0197 ± 0.0006 0.0039 ± 0.0002 0.00145 ± 0.00003
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FIG. 10. χ 2/NDF values of fitting the distribution PM
r (v2) to

simulation data as function of centrality.

different centrality classes. We see the effect of deformation
would be different in each centrality due to various estimated
values. Also, χ2/NDF of fitting in each centrality are illus-
trated in Fig. 10. Since these values are closer to 1, one can
interpret that Eqs. (A1) and (A2) present a good estimation
of observables in collisions of deformed uranium. Of course,
the value of χ2/NDF in mid-central collisions is increasing.
This means that, if we go to higher centralities we need to
make other truncations in Eq. (8), e.g., keep the terms included
Rn{6}, Rn{8} and so on to explain the data without any fitting.
Moreover, in order to study the 2k-particle correlation func-
tions cn{2k} in the collision of deformed nuclei, we have to
consider an expansion of the form

cn{2k}est = cn{2k}0 +
(∑

m=2

ξ2k,mβm

)2k

. (A4)

As mentioned in Eq. (12), Rn{2k}est is a function of cn{2k}est

and v̄n,est. Plugging Eq. (A4) in Eq. (12) and separating the
terms with βn from spherical terms, one can find the following
relations:

Rn{2}est = Rn{2}0 −
(∑

m=2

δ1,mβm

)2

− 2

(∑
m=2

δ2,mβm

)
v̄0 +

(∑
m=2

ξ2,mβm

)2

,

Rn{4}est = Rn{4}0 +
(∑

m=2

δ1,mβm

)4

+ 4

(∑
m=2

δ1,mβm

)3

v̄0 + 6

(∑
m=2

δ1,mβm

)2

v̄2
0

+ 4

(∑
m=2

δ1,mβm

)
v̄3

0 +
(∑

m=2

ξ4,mβm

)4

, (A5)

keeping in mind that Rn{2}0 = cn{2}0 − v̄2
n,0 and Rn{4}0 =

cn{4}0 + v̄4
n,0. Now, we obtain ξ2k,m by equating Eqs. (A2)

FIG. 11. Comparison of c2{2} and c2{4} obtained from DD data
with their estimates using SS. The value of c2{4} was multiplied
by 100.

and (A5). Since we are interested in β2 terms, we seek an
expression for ξ2k,2 as a function of δ and β2. This is given
by

ξ2 ≡ ξ 2
2,2 = δ2

1,2 + δ2
2,2 + 2

δ1,2v̄2,0

β2
,

ξ4 ≡ ξ 4
4,2 = −δ4

1,2 + δ4
3,2 − 4

δ3
1,2v̄2,0

β2

− 6
δ2

1,2v̄
2
2,0

β2
2

− 4
δ1,2v̄

3
2,0

β3
2

. (A6)

Plugging δ1,est = δ1,2, δ2,est = δ2
2,2, and δ3,est = δ4

3,2 in
Eq. (A6) we arrive at

ξ2 ≡ ξ 2
2,2 = δ2

1,est + δ2,est + 2
δ1,est v̄2,0

β2
,

ξ4 ≡ ξ 4
4,2 = −δ4

1,est + δ3,est − 4
δ3

1,estv̄2,0

β2

− 6
δ2

1,estv̄
2
2,0

β2
2

− 4
δ1,2v̄

3
2,0

β3
2

. (A7)

For the particular values listed in Table I, the coefficients ξ2

and ξ4 are found.
We plot the c2{2} and c2{4} in Fig. 11. In this plot, the solid

black and brown represent the true centrality dependence of
the aforementioned quantities. Moreover, the dashed red and
pink lines are derived from our estimation. There is a good
agreement between the true and estimated values. Moreover,
this figure shows that if we consider ξ2 ≈ δ2,est (blue dashed
line) and ξ4 ≈ δ3,est (green dashed line), we can find a rea-
sonable approximation for them from 0% to 20% centralities.
Plugging Eq. (A4) into (A2) and using the approximation
described, we obtain

R2{2k}D − R2{2k}0 = c2{2k}D − c2{2k}0. (A8)

This leads to the same value of averaged ellipticity for both
spherical- and deformed-ion collisions, i.e., v̄D ≈ v̄S (see
Sec. IV). Let us note that the nuclei considered here have
a close mass number. thus, we could perform this analysis.
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To compare the observables obtained from deformed-nucleus
collisions with those of spherical-spherical collisions, we
study the ratio of 2k-particle correlation functions:

c2{2}D

c2{2}0
= 1 + ξ2β

2
2

c2{2}0
,

c2{4}D

c2{4}0
= 1 + ξ4β

4
2

c2{4}0
. (A9)

Keep in mind that we have only considered the quadrupole
deformation in Eq. (A4). Using the generated data for both
spherical (i.e., PbPb) and deformed-nucleus (i.e., UU) colli-
sions, we obtain c2{2}D/c2{2}0 ≈ 2 and c2{4}D/c2{4}0 ≈ −5
at 0%–5% centrality. The values imply that we have c2{2}0 ≈
ξ2β

2
2 and c2{4}0 ≈ (−1/6)ξ4β

4
2 . The effect of deformation on

two- and four-particle correlation functions is significant and
cannot be ignored.
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