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Dynamical critical fluctuations near the QCD critical point with hydrodynamic cooling rate
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Within the model A in the Hohenberg’s dynamical universality classification, we investigate the critical slow-
ing down effects on the critical fluctuations driven by the expanding quark-gluon plasma, using a trajectory and
cooling rate obtained from hydrodynamics. We numerically solved the Langevin dynamics of the nonconserved
order parameter field and find that, compared with commonly used Hubble-like expansion, the cooling rate of a
realistic hydrodynamic system is pretty large and the associated critical slowing down effects strongly suppress
the higher-order cumulants of the order parameter field (e.g., C4). Furthermore, for an evolving system that
approaches the critical point, such critical slowing down suppression overcomes the enhancement of the critical
fluctuations, which indicates that the largest fluctuations of the order parameter field (i.e., C2) do not necessarily
associate with the evolving trajectory closest to the critical point.
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I. INTRODUCTION

The quantum chromodynamics (QCD) phase diagram is
one of the most important topics in high-energy nuclear
physics. Lattice QCD calculations show that the phase tran-
sition between hadron gas and quark-gluon plasma is a
crossover at the vanishing baryon chemical potential [1–4]
and the QCD-based effective models predict a first-order
phase transition in the finite baryon chemical potential re-
gion [5–8], which suggests a critical endpoint on the phase
diagram [9–12]. However, the locations of the critical point
predicted by the effective models are parameter-dependent
and the lattice QCD simulations suffer from a sign problem in
the region of finite baryon chemical potential [13]. The beam
energy scan (BES) program at the BNL Relativistic Heavy Ion
Collider (RHIC) aims to search for the critical point by scan-
ning the QCD phase diagram [14–16]. Its first phase BES-I
has measured the cumulants of the net-proton, net-charge, and
net-kaon multiplicity distributions in Au + Au collisions with
the collision energies ranging from 7 to 200 GeV [17–24],
and the second phase BES-II in progress will provide mea-
surements with even higher statistics.

Theoretically, one of the most distinctive features of a
system at the critical point is the divergence of the correla-
tion length, which leads to several striking properties, such
as large fluctuations, singularity, universality, and the criti-
cal slowing down effect. In relativistic heavy-ion collisions,
several thermodynamic quantities are expected to fluctuate
strongly near the critical point [9,25], which could be im-
printed in the associated experimental measurements [26–33].
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For the net-proton multiplicity fluctuations, a nonmonotonic
behavior of the kurtosis as a function of the collision energy
was predicted [27,28,34–38]. The long-range correlation near
the critical point also leads to the acceptance dependence of
the cumulants [39–41]. In the experiment, the nonmonotonic
behavior of κσ 2 and the corresponding rapidity dependence
of the net-proton were observed in the Au + Au collisions
with the variation of the collision energy [19,20,22–24], in-
dicating the existence of the critical point. Recently, it has
been realized that the dynamical critical fluctuations play an
essential role in the evolving QGP near the critical point,
explaining the conflict sign of Sσ between the prediction
of the static critical fluctuations and the corresponding ex-
perimental measurements. It was also found that the critical
slowing down effect significantly influences the behavior of
cumulants, which even reverses their signs compared to the
equilibrium ones [42–45]. As the system is driven out of
equilibrium, the fluctuations do not have enough time to de-
velop and the characteristic scales are “frozen”, leading to the
Kibble-Zurek (KZ) scaling of the cumulants [46–49]. For a
quantitative comparison with the experimental measurements,
a more realistic description is required and intensive studies
on the dynamical models are under development [50–68],
please see Refs. [16,69,70] for the recent review.

However, most of the dynamical model calculations within
model A and model B implement a trajectory with a fixed
chemical potential and assume a Hubble-like expansion to
study the critical fluctuations near the QCD critical point
[42–45,59–61]. In this work, we study the dynamics of
the order parameter field near the QCD critical point with
a realistic QGP trajectory and the cooling rate obtained
from hydrodynamic simulations. We find that the critical
slowing down effects associated with the cooling rate of
hydrodynamics are unexpectedly large, leading to a dramatic
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suppression of higher-order cumulants. Besides implement-
ing the realistic hydrodynamic trajectory, we also tune the
location of the critical point in the potential of the Langevin
equation of model A to study the interplay between two com-
peting factors: as the evolving system approaches the critical
point on the phase diagram, the increasing correlation length
leads to an enhancement of fluctuations, but also strengthens
the critical slowing down effect, which in turn suppresses
the critical fluctuations. As the system gets very close to
the critical point, the suppression from the critical slowing
down effects overcomes the increase of the critical fluctua-
tions. Therefore, the maximum of the fluctuations does not
necessarily correspond to the evolving trajectory closest to the
critical point.

II. MODEL AND SETUPS

For the dynamical models near the critical point, it is es-
sential to determine the dynamical universality class [71]. It
has been argued that the evolving hot QCD system belongs
to model H [72], which describes the dynamics of the system
with the conserved order parameter, the conserved momen-
tum density, and the Poisson bracket between them. For the
numerical simulations, model H is still too complicated to
be implemented. In this paper, we start with a simplified
model, model A in Hohenberg’s classification, which focuses
on the dynamics of the nonconserved order parameter field σ

[71], together with the implementation of hydrodynamics to
provide the heat bath for the order parameter field. As the first
step of study, model A presents a reasonable description of the
dynamics near the QCD critical point, including critical slow-
ing down effects [44], dynamical critical scaling [46,47,58].

Within model A, the evolution of the σ field is described
by the Langevin equation [47]

∂σ (x, τ )

∂τ
= − 1

m2
σ τeff

δU [σ (x)]

δσ (x)
+ ζ (x, τ ), (1)

where the noise term ζ (x, τ ) satisfies the fluctuation-
dissipation theorem

〈ζ (x, τ )〉 = 0,

〈ζ (x, τ )ζ (x′, τ ′)〉 = 2T

m2
σ τeff

δ3(x − x′)δ(τ − τ ′),
(2)

and σ (x) is the order parameter field, mσ is the mass of the
order parameter field, T is the temperature. τeff is the effective
relaxation time with the form of τeff = τrel(ξeq/ξmin)z with
τrel = 0.05 fm in this work. ξmin is the correlation length
at the edge of the critical region and ξeq is the equilibrium
correlation length of the system. According to [44,47,71], the
dynamical critical exponent is set to z = 3 as in model H in
this work.

Note that the noise term within the framework of model A
is typically adopted as the white noise, as shown in Eq. (2),
in the first step of study. We assume that all the correlation
effects have been encoded in the effective potential as the
first term in Eq. (1) and no additional correlation in the noise
term. For the realistic description of the dynamical critical
fluctuations with the spatially inhomogeneous QGP fireball,

the noise can be extended to the multiplicative noise, as in
Ref. [73].

U [σ (x)] is the effective potential that can be expanded into
the powers of the order parameter field σ (x) near the critical
point:

U [σ (x)] =
∫

d3x
1

2
[∇σ (x)]2 + 1

2
m2

σ [σ (x) − σ0]2

+ λ3

3
[σ (x) − σ0]3 + λ4

4
[σ (x) − σ0]4, (3)

where σ0 = ∫
d3xσ (x)/V is the equilibrium mean value of

σ (x), λ3 and λ4 are the coupling coefficients of the cu-
bic and quartic terms, respectively, mσ is the mass of the
order parameter field related to the correlation length ξeq

by mσ = 1/ξeq. The equilibrium mean value σ0, correlation
length ξeq, and coupling coefficients λ3, λ4 in the effec-
tive potential U [σ (x)] for the QCD system are obtained
through mapping from the three-dimensional Ising model
[44,74,75]. In more detail, the cumulants are calculated
both from the distribution function P[σ ] ∼ exp[−U (σ )/T ]
in the hot QCD system and from the parametric mag-
netization Meq in the three-dimension Ising model. By
comparing the cumulants from these two approaches, the co-
efficients of the hot QCD systems can be expressed in the
form of σ0 = M0R

1
3 θ, ξ 2 = (M0/H0)[R

4
3 (3 + 2θ2)]−1, λ3 =

(2H0/M2
0 )Rθ (9 + θ2)(3 − θ2)−1, λ4 = (2H0/M3

0 )R
2
3 (27 +

45θ2 − 31θ4 − θ6)(3 − θ2)−3.R and θ are two parameters as-
sociated with the Ising model variables (r, h):

r(R, θ ) = R(1 − θ2), h(R, θ ) = R
5
3 (3θ − 2θ3). (4)

Meanwhile, the variables (r, h) in the three-dimensional (3D)
Ising model system are associated with the variables (T, μ) in
the QCD system by such a mapping:

T − Tc

�T
= h

�h
,
μ − μBc

�μ
= − r

�r
, (5)

where Tc is the critical temperature and μBc is the critical
chemical potential, �T and �μ are the widths of the criti-
cal regime in the QCD phase diagram, �h and �r are the
corresponding widths in the Ising model. In this work, we
set �T = 20 MeV, �μ = 100 MeV, �h = 2, �r = (5/3)3/4.
Note that the mapping from Ising variables to the QCD ones
is nonuniversal, depending on the choice of the parameters,
such as H0, M0, etc. Since we have little knowledge of this
mapping, we treat them as free parameters and take their val-
ues following Ref. [47], i.e., M0 = 200 MeV and H0 = M0/5
within reasonable parameter values. The exploration of the
parameter space has been studied in Ref. [76], in which we
believe the values of these nonuniversal parameters do not
modify the qualitative behavior of critical fluctuations.

Thermodynamic properties of the heat bath, such as the
temperature T (x) and the baryon chemical potential μ(x),
are treated as inputs of Eq. (1), which are obtained from
hydrodynamic simulations with the assumption of local equi-
librium. To simplify the numerical simulations of Eq. (1), we
make an additional average for the temperature and baryon
chemical potential profiles over the whole QGP fireball with
the energy density as the weight: T = 〈T (x)〉, μ = 〈μ(x)〉.
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FIG. 1. The average QGP evolution trajectory on the T, μ plane,
obtained from MUSIC simulations for 19.6 GeV Au + Au collisions
at 0–5 % centrality. Points with different colors correspond to differ-
ent locations of the critical point.

As a result, the time evolution of the fireballs created in heavy
ion collisions at different collision energies and centralities is
simplified as evolving trajectories on the QCD phase diagram.

In this work, the evolution profiles for the QGP fireball
are generated from the 3 + 1 − d hydrodynamics MUSIC [77]
with the initial profiles constructed from the transport model
AMPT [78–80]. Here, we input an equation of state using
the lattice simulation results, together with incorporating a
critical point [76]. To roughly fit the multiplicity, spectra,
and flow in 19.6 GeV Au + Au collisions, we set the pa-
rameters in numerical simulations as follows: τ0I = 0.4 fm is
the starting proper time for the AMPT initial condition while
τ0h = 1.2 fm is the starting time for hydrodynamics evolution,
the specific shear and bulk viscosity are set as η/s = 0.08,
ζ/s = 0. We set the switching temperature as Tsw = 147 MeV
that transit hydrodynamic simulation to ultrarelativistic quan-
tum molecular dynamics (UrQMD), which is lower than the
critical temperature Tc = 165 MeV for the sake of studying
the critical slowing down effect. Figure 1 shows the average
QGP evolution trajectory on the T, μ plane, obtained from
MUSIC simulations for 19.6 GeV Au + Au collisions at 0–
5 % centrality. To study the critical slowing down effects
on the magnitude of the critical fluctuations, we change the
location of the critical point, but keep the trajectory of the
QGP fireball fixed as shown in Fig. 1. In this work, we choose
four locations of the critical point, which fix the critical tem-
perature at Tc = 165 MeV, but change the critical chemical
potential as μBc = 150, 160, 170, and 180 MeV.

In addition to the time evolution of the temperature and
chemical potential obtained from hydrodynamic simulations,
we also compare with another expansion case, the Hubble-like
expansion, which is described as [44]

T

TI
=

(
τ

τI

)−nV c2
s

, (6)

FIG. 2. A comparison of the cooling rates between hydrody-
namic system and Hubble-like expansion systems.

where the initial temperature is set to be TI = 196 MeV, and
the speed of sound is set to be c2

s = 0.15. nV denotes the
dimension of the expansion system, and we choose nV = 3
for the three-dimensional Hubble-like expansion. The initial
times are set as τI = 10, 40 fm for two different cooling rates
of Hubble-like expansion. To obtain the Hubble-like expan-
sion Eq. (6), the volume is assumed as V/VI = (τ/τI )nV and
the total entropy is approximately conserved during the evo-
lution. Hence the entropy density evolves as s/sI = (τ/τI )−nV ,
together with the thermodynamic relationship s ∝ T 1/c2

s , then
Eq. (6) is obtained. Here, we also set the system to evolve
along the trajectory obtained from hydrodynamic as shown
in Fig. 1. As the temperature decreases as in Eq. (6), the
associated chemical potential is set to the corresponding value
obtained from the trajectory. Figure 2 compares the cooling
rates of these three systems: [T (τ ), μ(τ )] from hydrody-
namics, Hubble-like expansion with τI = 10 and 40 fm. The
cooling rate of the hydrodynamic system is faster than that
of the two Hubble-like expansion systems, and we tune τI =
10 fm for the similar expanding system near the QCD critical
point and τI = 40 fm for a slower one.

With the above settings, the Langevin equation (1) is
solved numerically with the discretization in a cubic box
with lattice spacing �x = 1 fm and volume V = 103 fm3.
For the increment in each temporal step, we choose �t =
0.01 fm. The initial profile of the σ field is constructed
from the distribution function: P[σ ] ∼ exp[−U (σ )/T ]. The
discretization of the noise term induces the lattice-spacing
dependence with a cutoff. In principle, the cutoff can be
absorbed into the redefined transport coefficient and effective
potential by the renormalization scheme [81]. However, it is
hard to implement in the expanding system, which has not
been achieved in numerical simulations. For simplicity, we
treat the noise in Eq. (2) as uniform in spatial dimension but
random in temporal dimension to avoid the lattice-spacing
dependence, following Refs. [47,51,82,83]. Eventually, we
evolve the Langevin equation independently for each event
with the event number up to 4.5 × 106.
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FIG. 3. The evolution of cumulants of order parameter as functions of temperature. Curves with different colors correspond to different
cooling rates. Critical point is placed with (Tc, μBc = 165 MeV, 160 MeV) and (Tc, μBc = 165 MeV, 170 MeV) for left and right columns,
respectively.

The cumulants of the σ field can be calculated as

C1 = 〈σ 〉,
C2 = 〈σ 2〉 − 〈σ 〉2,

C3 = 〈σ 3〉 − 3〈σ 2〉〈σ 〉 + 2〈σ 〉3,

C4 = 〈σ 4〉 − 4〈σ 3〉〈σ 〉 − 3〈σ 2〉2 + 12〈σ 2〉〈σ 〉2 − 6〈σ 〉4,

(7)

where σ denotes the spatial average of the order parameter
field and 〈· · · 〉 represents the event average. In Sec. III, we
also need to calculate the equilibrium cumulants of the σ

filed for comparison, which are also obtained from Eq. (7),
but with 〈· · · 〉 denoting the average with the distribution
function P[σ ] ∼ exp[−U (σ )/T ]. The corresponding effec-
tive potential U [σ ] is calculated with the equilibrium values
of σ0, mσ , λ3, and λ4 at each point of the trajectory.

III. RESULT AND DISCUSSION

Critical slowing down effects have been found near the
QCD critical point within models A [42–44] and B [59–61],
where the evolution of temperature is parametrized with the
cooling rate of Hubble-like expansion. In this work, we fo-
cus on analyzing the critical slowing down effects with the
hydrodynamic expansion, using the temperature and chem-
ical potential profiles along the hydrodynamic trajectories

as shown in Fig. 1. To obtain qualitative picture, Fig. 3
also compares the time evolution of the cumulants, using
the hydrodynamic cooling rate and the Hubble-like cooling
rates with different τI . Since we have no knowledge of the
location of the critical point, we treat it as a free parame-
ter in the evolving Eq. (1). Here, we choose two locations
of the critical point (Tc = 165 MeV, μBc = 160 MeV) and
(Tc = 165 MeV, μBc = 170 MeV). As shown in Fig. 3, the
nonequilibrium cumulants (color curves) show memory ef-
fects, which have a similar trend as the equilibrium ones
(black curves), but reach the maximum (or minimum) at a
later time.1 Due to the critical slowing down effects, the mag-
nitudes of various nonequilibrium cumulants are suppressed
compared with the equilibrium ones, and the suppression
increases with a larger cooling rate. For the nonequilibrium
cumulants with the cooling rate obtained from the realistic hy-
drodynamic simulation, dramatic suppressions are observed,
and the fourth-order cumulant C4 even becomes flat as a
function of T compared to the equilibrium one. Compared to
the right column, the left column with the critical point set

1One can also see the dip structure in C2 in the left panel of Fig. 3,
which is caused by the non-Gaussian term in Eq. (3). Such a non-
Gaussian effect is mainly determined by ξ 3/V , which leads to a more
obvious dip structure of C2 for a system closer to the critical point.
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FIG. 4. The evolution of cumulants of order parameter as functions of temperature. Curves with different colors correspond to different
locations of the critical point. Cooling rates originate from τI = 40 fm Hubble expansion, τI = 10 fm Hubble expansion, and hydrodynamics
from left to right columns, respectively.

to (Tc, μBc) = (165 MeV, 160 MeV) shows an enhancement
of the equilibrium cumulants as the system get closer to the
critical point with an increasing correlation length of the σ

field. However, the corresponding nonequilibrium cumulants
are also largely suppressed due to the larger critical slowing
down effects.

To further study the critical slowing down effects, we
change the location of the critical point in the potential of the
Langevin equation [Eq. (1)], but keep the hydrodynamic evo-
lution trajectory fixed, as shown in Fig. 1. Figure 4 plots the
cumulants of the σ field, simulated by the Langevin equation,
using the four different locations of the critical point. From
left to right columns, we use the same evolution trajectory
for the temperature and chemical potential profiles but with
different cooling rates described by the Hubble-like expansion
Eq. (6) and obtained from the realistic hydrodynamic simu-
lation. Even for a slow Hubble expansion system with τI =
40 fm (left column), the magnitudes of the different orders
of the cumulants do not monotonically increase as the system
approaches the critical point (μBc = 180 MeV to 150 MeV).
For the faster expanding systems (middle and right columns
in Fig. 4), this nonmonotonicity in terms of the distance to the
critical point becomes more obvious because of larger critical
slowing down effects.

To understand the essential mechanism of this nonmono-
tonicity in terms of the distance to critical point, we check the

evolution equation of the second-order cumulants:

∂C2

∂τ
= − 2

τeff

[
C2 − Ceq

2

]
. (8)

It is a simplified equation of Eq. (1) that neglects the third- and
fourth-order terms [47] with τeff = τrel(ξeq/ξmin)z, τrel =
0.05 fm. The top panel of Fig. 5 plots the evolution of the
second-order cumulant C2, calculated from the simplified
Eq. (8) with a realistic trajectory and cooling rate obtained
from hydrodynamics simulation. Just like the case from the
full Langevin equation simulation shown in the upper panels
of Fig. 4, the peak value of C2 here first increases and then de-
creases as the system approaches the critical point from μBc =
180 MeV to 150 MeV. To illustrate how the critical slowing
down effects play a role in the evolution of C2, we also plot
the evolution of 2/τeff and Ceq

2 − C2 in the middle and bottom
panels. Here, Ceq

2 − C2 represents the difference between the
nonequilibrium cumulant C2 and the equilibrium one Ceq

2 . As
expected, Ceq

2 − C2 increases as the system approaches the
critical point from μBc = 180 MeV to 150 MeV. However,
the critical slowing down effects also increase dramatically.
As 2/τeff approaches zero value, it takes an infinitely long
time for C2 to catch up with the values of Ceq

2 . As a result,
the enhanced critical slowing down effects strongly suppress
the critical fluctuations, even when the system is very close

034901-5



SHIAN TANG, SHANJIN WU, AND HUICHAO SONG PHYSICAL REVIEW C 108, 034901 (2023)

FIG. 5. The evolution of the second order cumulants (top), the
inverse of the effective relaxation time 2/τeff (middle), and the
difference between the equilibrium and nonequilibrium cumulants
Ceq

2 − C2 (bottom), calculated from a simplified equation Eq. (8) with
different locations of the critical point. Curves with different colors
correspond to different locations of the critical point.

to the critical point with a dramatically increased correlation
length. This also leads to the nonmonotonic behavior of C2 as
the system approaches the critical point. Note that we analyze
the critical slowing down effects of second-order cumulant in
Eq. (8) with the case of the fastest cooling rate in this work,
the one with the hydrodynamic system. The case with Hubble-
like expansion is much slower but the argument is applicable
as well.

IV. CONCLUSION AND OUTLOOK

Within the framework of model A that evolves the noncon-
served order parameter field σ , we study the interplay between
the critical fluctuations and the critical slowing down effects,
using the QGP evolution trajectory and cooling rate obtained
from hydrodynamics. To study the critical slowing down ef-
fects, we also change the location of the critical point in the
potential of the Langevin equation and compare the simula-
tions with different cooling rates from hydrodynamics and the
Hubble-like expansion. As discovered by earlier studies, we
also found that the critical slowing downing effects suppress
the critical fluctuations, which even reverse the sign of higher
order cumulants for the Hubble-like expansion system with
a small cooling rate. However, our comparison simulations
show that the cooling rate from a realistic hydrodynamic
system is pretty large which leads to a huge suppression of
the higher-order cumulants of the order parameter field (e.g.,
C4). Furthermore, as the system gets very close to the critical
point with largely enhanced correlation length, the dramati-
cally increased critical slowing down effects lead to a large
suppression of the critical fluctuations (i.e., C2), even for the
system that is very close to the critical point.

Finally, we would like to point out that this study of critical
fluctuation implements a simplified model A that evolves only
the nonconserved order parameter field. Here, the evolution
of the hydrodynamics is decoupled from the evolution of the
order parameter field. Its temperature and chemical potential
profiles along the averaged evolution trajectory are treated
only as the inputs to model A. To get a more insightful
interpretation of the RHIC-BES observables, more realistic
models are required for future studies. For example, for the
inhomogeneous fireball created in relativistic heavy-ion col-
lisions, the dynamics of order parameter that couples with
hydrodynamics in a nontrivial way requires more theoretical
study. Although the simulation of the dynamics for the con-
served baryon density near the QCD critical point (i.e., model
B) has been carried out in Refs. [59–61], it should be extended
with the inhomogeneous fireball background. In addition, for
the comparison with experimental data, it is also necessary to
study the coupling between the order parameter field and final
protons in the freeze-out process within model A [40,67].
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