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To reconstruct the impact parameter distributions from the selected events sample or centrality, which is
defined by two observables, at intermediate energy heavy ion collisions, we extend the approach proposed by
Das et al. [Phys. Rev. C 97, 014905 (2018)], Rogly et al. [Phys. Rev. C 98, 024902 (2018)], and Frankland et al.
[Phys. Rev. C 104, 034609 (2021)]. Based on deep investigations of the fluctuation mechanism, we found that the
intrinsic fluctuations are mainly generated in the microscopic stochasticity of initialization and nucleon-nucleon
collisions in the nonequilibrium process of heavy ion collisions, and this leads the observables to fluctuate with
respect to impact parameter in a Gaussian form. In this work, the multiplicity of the charged particles and
the total transverse momentum of the light charged particles are used simultaneously to model-independently
reconstruct the impact parameter distributions for selected events or centrality based on the Bayesian method. For
sorting the centrality with two observables, we propose to use the K-means clustering method (an unsupervised
machine learning algorithm), which can automatically sort events when the class number is given. Furthermore,
the reconstructed impact parameter distributions from data of the two observables can be used to learn the
correlation between multiplicity and transverse momentum at different centralities, which may be useful for
understanding the fragmentation mechanism.
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I. INTRODUCTION

Intermediate energy heavy ion collisions (HICs) provide
a unique way to learn the equation of state (EoS) of bulk
nuclear matter in the laboratory. In more detail, the strategy
for learning EoS in the laboratory is to compare the data of
selected collisions with the predictions of transport models.
To get a reliable constraint on the EoS, two aspects should
be investigated or considered. One is to understand the uncer-
tainties from transport models, which stimulates the transport
model evaluation project (TMEP) [1–6], and some important
progresses have been made in the treatment of the nucleonic
mean field [4] and the collision [5,6]. The other is to sim-
ulate the HICs with the same conditions as in experiments,
for example, the same impact parameter distributions. This
also stimulates studies on how to sort or estimate the impact
parameter distributions for reducing the uncertainties due to
the mismatch of experimental centrality in transport model
simulations [7–12].

The impact parameter b is not directly measurable and is
usually estimated from a single observable or multiple ob-
servables with different methods. Generally, the methods for
estimating impact parameters or reconstructing impact param-
eter distributions can be divided into three types [13]. The first
one is the sharp cutoff approximation, which was proposed
by Cavata et al. [14] and has been widely used [15–19].
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The second one is the machine learning method, such as the
artificial neural network (ANN) [7–9], convolutional neural
network (CNN), light gradient boosting machine (LightGBM)
[10,11], and PointNet models [12]. The third one is a model-
independent method for reconstructing experimental impact
parameter distributions, which was proposed by Das et al. [20]
and further developed in Refs. [21–23]. In this paper, we refer
to it as the Bayesian method.

The first and second methods assume that the observables
have a one-to-one correspondence with b, and this idea has
inspired a series of efforts to search for a way to accurately
determine impact parameters. However, this assumption fails
for intermediate energy HICs, because the strong fluctuations
of observables with respect to b have been observed in ex-
periments and transport model simulations [16,24–28]. Con-
sequently, different values of the observables can coexist in
simulations even for the same impact parameter. Conversely,
the same value of the observable could correspond to the
different impact parameters. But, these situations also raise a
question of whether one can use as many observables as possi-
ble to determine b uniquely. Otherwise, one should reconstruct
impact parameter distributions from the HIC observables.

The third method considers the fluctuation mechanism of
the observables for b and reconstructs the impact parameter
distribution from a selected sample of events. This method is
based on Bayes’s theorem,

P(b|X ) = P(b)P(X |b)/P(X ). (1)

P(X ) is the probability density of the observable X which
can be measured in the experiment, P(X |b) is the probability

2469-9985/2023/108(3)/034613(11) 034613-1 ©2023 American Physical Society

https://orcid.org/0000-0002-6311-2777
https://orcid.org/0000-0003-1860-4745
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.108.034613&domain=pdf&date_stamp=2023-09-13
https://doi.org/10.1103/PhysRevC.97.014905
https://doi.org/10.1103/PhysRevC.98.024902
https://doi.org/10.1103/PhysRevC.104.034609
https://doi.org/10.1103/PhysRevC.108.034613


CHEN, LI, CUI, YANG, LI, AND ZHANG PHYSICAL REVIEW C 108, 034613 (2023)

density distribution of X at given impact parameter b. The
form of P(X |b), also named as the fluctuation kernel [22], is
assumed to be a Gaussian [20] or gamma distribution [21] for
taking into account the fluctuation. Usually, the observable X
was chosen as the multiplicity of charged particles [20–22].
The centroid and width of the Gaussian distribution, or the
shape and scale of the gamma distribution are assumed in
advance and they depend on b. The values of these param-
eters were determined by reproducing the experimental data
of P(X ) with the formula P(X ) = ∫

P(X |b)P(b)db. To avoid
the uncertainties in the overall impact parameter distribu-
tions of P(b), Das et al. introduced b centrality [20], i.e.,
cb = ∫ b

0 P(b′)db′, to replace the variable b. The replacement
leads to P(cb) = 1, and P(X ) = ∫

P(X |cb)dcb. By fitting the
data of P(X ), one can find the solution of P(X |cb) and then
P(cb|X ) can be obtained based on Bayes’s theorem. Then the
expected impact parameter distributions of selected events can
be retrieved from P(b|X ) = P(b)P(cb|X ) [22]. In those works,
they mainly focused on how to obtain the impact parame-
ter distribution model-independently with different forms of
fluctuation kernel, but discussed less the origin of the fluc-
tuation kernel in physics. Furthermore, one may expect to
use the Bayesian method to reconstruct the impact parameter
distribution from multiple observables, which may reveal the
correlation between different observables as a function of
centrality. A related issue has been discussed in Ref. [23] for
high energy HICs, but there is no work using this method in
low-intermediate energy HICs.

In this work, we investigate whether one can use as
many observables as possible to uniquely determine b by
exploring the fluctuation mechanism within the framework of
the improved quantum molecular dynamics (ImQMD) model
[29,30]. Then, we adopt the Bayesian method to reconstruct
the impact parameter distributions from two observables, i.e.,
the multiplicity of charged particles M and total transverse
momentum of light particles, ptot

t , for selected event samples
or centrality. In addition, the uncertainties and bias of the
reconstructed covariance matrix elements, which represent
the fluctuation of the multiplicity and total transverse mo-
mentum of light particles, are discussed. For the selection of
event samples in the multidimensional observables space, we
propose to use an unsupervised machine learning algorithm,
K-means, to automatically handle it.

II. FLUCTUATION MECHANISM IN THE IMQMD MODEL

Now, let us investigate the origins of the fluctuation in HICs
and why the impact parameter cannot be uniquely determined
with as many observables of the HICs as possible.

Theoretically, the fluctuation of final observables in HICs
arises from the many-body correlation term in the transport
equation. In the Boltzmann-Uehling-Uhlenbeck model, it can
be realized by involving the fluctuation term [24,31–36]. In
the quantum molecular dynamics model, it can be realized by
involving both the microscopic stochasticity of initialization
and nucleon-nucleon collisions with the fixed width of the
Gaussian wave packet.

To quantitatively illustrate them in the framework of quan-
tum molecular dynamics model, we perform the calculations

of 112Sn + 112Sn at b = 2 fm with the ImQMD model [29]
under different strengths of initial fluctuations and nucleon-
nucleon collisions. The different strengths of the initial
fluctuation are realized by using two kinds of initialization,
i.e., standard and perturbative initializations. The differ-
ent strengths of nucleon-nucleon collisions are realized by
choosing different bombarding energies, i.e., Ebeam = 50 and
120 MeV/u, and by switching on and off the nucleon-nucleon
collisions (named the full and Vlasov modes in this paper).

The standard initialization means that the positions of
nucleons are sampled within the radius of nuclei, and the
momenta of nucleons are sampled within the Fermi momen-
tum which depends on the local density. The initial nuclei are
finally selected under the requirements of fitting the binding
energy (for more details see Ref. [30]). In the ImQMD simu-
lations, the HICs are simulated event by event and the initial
nuclei of different events are different in microscopic states or
in the 6-A dimensional phase space. Quantitatively, we define
a dimensionless distance between the first event and kth event
in phase space as

D1k =
√√√√ A∑

i=1

[
[x1(i) − xk (i)]2

R2
0

+ [p1(i) − pk (i)]2

P2
0

]
, (2)

to describe the strength of the initial fluctuation between first
and kth events. In Eq. (2), the radius of compound nuclei, i.e.,
R0 = 1.2(Ap + At )1/3 fm, and P0 = 0.263 GeV/c are used to
normalize the coordinate and momentum to dimensionless
variables. Ap and At are the numbers of nucleons of the pro-
jectile and the target nuclei, respectively. The summation in
Eq. (2) runs over all nucleons in the system. For the standard
initialization, the distribution of D1k has a Gaussian shape, and
its averaged value 〈D1k〉 and standard deviation (or the width
of distribution) σD1k are about 18.0 and 2.0 with the normal-
ization factors R0 and P0. The perturbative initialization means
that the initialization between any two events has a very tiny
difference in phase space. In this work, we set D1k < 10−7 at
the initial stage between the first and kth events which is far
less than the distance for standard initialization. By comparing
the results obtained with two kinds of initialization, one can
understand the fluctuation originated from initializations.

We then perform the calculations by using two different
initializations within the full and Vlasov modes, respectively.
Figures 1(a) and 1(c) show the height normalized distribution
of the multiplicity of charged particles, i.e., P(M )/Pmax(M ),
in the full and Vlasov modes with two kinds of initializa-
tion. Two beam energies are simulated: one is 50 MeV/u
(red lines) and the other is 120 MeV/u (blue lines). In the
full mode, results obtained with both the standard initializa-
tion (solid lines) and perturbative initialization (dashed lines)
show a Gaussian shape, but the widths of the distributions
are different. As listed in Table I, the widths of the distribu-
tions obtained with the standard initialization are larger than
those with the perturbative initialization. In the case of the
Vlasov mode, the multiplicity distributions for two kinds of
initialization become completely different. As shown in panel
(c), the multiplicity distributions in the case of the standard
initialization still keep a Gaussian shape and have widths
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FIG. 1. Height normalized distributions of M and ptot
t obtained

with the full mode [panels (a) and (b)] and Vlasov mode [panels
(c) and (d)] under the conditions of standard initialization and pertur-
bative initialization. The calculations are performed for 112Sn + 112Sn
at b = 2 fm.

of about ≈20, but the multiplicity distributions in the case
of the perturbative initialization become δ distributions due
to the absence of the large fluctuation caused by stochastic
nucleon-nucleon collisions.

The behaviors mentioned above can be understood from
the philosophies of the QMD appoach, which are presented
as a sketch in Fig. 2. For convenience, let us start from the
Vlasov mode. The lines in Figs. 2(a) and 2(b) represent Vlasov
trajectories of events for perturbative and standard initializa-
tions in phase space, respectively. In the Vlasov mode, the
particles experience only the self-consistent effective mean
field, so that the final observables are strongly correlated to the
strength of the initial fluctuation. Consequently, the perturba-
tive initialization leads to a δ distribution of final observables,
as shown in Fig. 1(c). However, a wide distribution of final
observables from different events appears with the standard
initialization, as shown in Fig. 1(c), which is attributed to the
large strength of fluctuation of the initialization.

For the full mode, there is a wide distribution of final
observables from different events even for the perturbative
initialization. It comes from the various stochastic nucleon-
nucleon collisions, and we depicted it as the dashed lines in
Fig. 2(c). In the standard initialization, both the initialization
and stochastic nucleon-nucleon collision influence the distri-
bution of final observables, which is illustrated in Fig. 2(d).
The widths of distributions of observables increase a little bit

TABLE I. The widths of multiplicity distributions from standard
and perturbative initializations in the cases of full and Vlasov modes.
The numbers in brackets are the widths of distribution of total trans-
verse momentum of light particles.

Mode Ebeam (MeV/u) Stand. init. Pert. init.

Full 50 4.13 (1.25) 3.74 (1.17)
Full 120 4.13 (1.39) 3.97 (1.35)
Vlasov 50 3.87 (1.17) 0 (0)
Vlasov 120 3.99 (1.37) 0 (0)

FIG. 2. Sketch of trajectories for different events in the cases of
perturbative and standard initialization with Vlasov mode and full
mode.

compared to the results of the perturbative initialization as
shown in Table I because the trajectories of different events
are independent in the QMD approach.

The total transverse momentum distribution of light
charged particles, i.e., ptot

t = ∑
i pt (i), obtained by the sum-

mation of transverse momentum for light particles with
Z � 2, also shows a Gaussian-type distribution, as shown
in Figs. 1(b) and 1(d). The results from the full mode and
Vlasov mode confirmed again the roles of the initialization
and collisions in fluctuation.

Based on the above discussions, one can definitely draw
a conclusion that accurate determination of the impact pa-
rameter is impossible even with as many HIC observations
as possible. The reason is that the one-to-one correspondence
between the final observables and the initial states is de-
stroyed by the initial fluctuation and random nucleon-nucleon
scattering.

III. PROBABILITY DENSITY FUNCTION
P(X = {M0, ptot

t0 }|b) FROM PSEUDOEVENT DATA

To get the impact parameter distributions with the Bayesian
method from two observables, M and ptot

t , one has to first
determine the probability density function (PDF) of the ob-
servable vector X = {M, ptot

t } at given impact parameter b,
i.e., f (X, b) = P(X|b), named the fluctuation kernel as in
Ref. [22]. In this work, two methods are used to extract the
PDF from the pseudodata which is generated by the ImQMD
model [29]. One is named direct calculation, which means
calculating the distributions of the observables at given b, i.e.,
P(X|b), and thus is model dependent. Another is named the
reconstructing method, which means fitting the “measured”
data of P(X) to reconstruct P(X|b). The second method only
needs the “measured” data of P(X) without knowing the b in
advance, and thus is model independent.
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FIG. 3. Contour plots of probability density distribution M0 vs
ptot

t0 . Panel (a) is for 1 fm, (b) is for 5 fm, (c) is for 7 fm, (d) is for 10
fm. The black dashed lines are the results obtained with the assumed
PDF formula.

The calculations with the ImQMD model are performed for
112Sn + 112Sn at Ebeam = 120 and 50 MeV/u for generating
the pseudodata. The pseudodata contain the information of the
real impact parameter and can be used to check the validity of
the second method. The number of events is 1 000 000, and the
impact parameter b is randomly distributed in the range from
0 to bmax = 1.2(A1/3

p + A1/3
t ) fm according to the probability

density 2b/b2
max.

A. Direct calculation of P(X|b)

As an example, Fig. 3 shows the contour plots of two
observables distribution, i.e., P(M0, ptot

t0 ) with M0 = M/Mmax

and ptot
t0 = ptot

t /ptot
t,max, which is obtained with the ImQMD

model for 112Sn + 112Sn at 120 MeV/u. The number of events
at each b is 60 000. Mmax and ptot

t,max are the maximum multi-
plicity of charged particles and the maximum total transverse
momentum of light charged particles in the calculations, re-
spectively. The values of them in our calculations can be found
in Table II. The panels (a), (b), (c), and (d) are the results
obtained at b = 1, 5, 7, and 10 fm, respectively. The two-
dimensional PDFs of X = {M0, ptot

t0 } distribute as a Gaussian
shape.

TABLE II. Maximum multiplicity of charged particles and to-
tal transverse momentum of light charged particles used in system
112Sn + 112Sn for different beam energies.

System Ebeam (MeV/u) Mmax ptot
t,max (GeV/c)

112Sn + 112Sn 50 61 16
120 86 30

TABLE III. The χ 2
r of each fitting at different impact parameters

for 112Sn + 112Sn and Ebeam = 120 and 50 MeV/u.

b (fm) 0.0 1.0 2.0 3.0 4.0 5.0

120 MeV/u χ 2
r 0.96 0.90 1.01 1.01 1.07 1.05

50 MeV/u χ 2
r 0.96 1.06 1.01 1.12 1.13 1.04

b (fm) 6.0 7.0 8.0 9.0 10.0 11.0
120 MeV/u χ 2

r 1.27 1.35 1.50 1.85 2.52 2.89
50 MeV/u χ 2

r 1.07 1.07 1.16 1.20 1.34 1.34

Except for the ImQMD simulations, the selection of Gaus-
sian form of the PDFs is also a result of probability theory. As
we know, the particles are detected with probability p or not
with probability 1 − p for one event in experiments. It leads to
a binomial distribution of observables. If the number of events
is large enough, the binomial distribution tends to a Gaussian
distribution according to the central limit theorem.

Based on previous discussions, one can assume a two-
dimensional Gaussian form of the PDF of M0 and ptot

t0 as

P(X|b) = exp
{ − 1

2 [X − X(b)]T �−1(b)[X − X(b)]
}

2π
√|�(b)| . (3)

X = {M0, ptot
t0 } is the mean value of X, and � is the symmetric

covariance matrix. �−1 denotes the inverse matrix and |�| is
the determinant. By fitting the ImQMD results at different b
with Eq. (3), one can get the form of the PDF (dashed lines in
Fig. 3) and the b dependence of X, �. This is named the direct
fitting calculation. The reduced chi-square χ2

r values of the
fitting at different impact parameters for Ebeam = 120 and 50
MeV/u are listed in Table III, and the values of χ2

r � 3 over
the whole range of impact parameters. The form of Gaussisan
shape becomes relatively worse at very peripheral collisions
due to the limitation of the range of impact parameter.

In Figs. 4(a)–4(f) we present A [= 1/(2π
√|�|)], M0, ptot

t0 ,
�11, �12(�21), and �22 as functions of b for 112Sn + 112Sn
at Ebeam = 120 MeV/u. Figure 5 shows similar results at inci-
dent energy Ebeam = 50 MeV/u. The open circles are obtained
from the direct fitting calculations. M0 and ptot

t0 decrease with
increasing impact parameter due to the decrease of the size of
overlap region and the nucleon-nucleon collision frequency
with increasing impact parameter. In addition, �11, �12(�21),
and �22 decrease with increasing impact parameter, which
reflects the decrease in the strength of the fluctuation due to
the decrease in the nucleon-nucleon collision rate.

The solid circles in panels (a)–(f) are obtained from the
mean values, variance, and covariance of observables from
their distributions at different b, i.e., by using the following
equations:

M0(b) = 〈M0(b)〉, (4)

ptot
t0 (b) = 〈

ptot
t0 (b)

〉
, (5)

�11(b) = 〈(M0 − M0)2〉, (6)

�22(b) = 〈(
ptot

t0 − ptot
t0

)2〉
, (7)

�12(b) = �21(b) = 〈
(M0 − M0)

(
ptot

t0 − ptot
t0

)〉
. (8)
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FIG. 4. The parameters A, M0, ptot
t0 , �11, �12(�21), and �22 as functions of b for 112Sn + 112Sn at 120 MeV/u. Solid circles are for the

direct statistical calculation, the open circles are for the direct fitting calculation, and the cyan shaded regions and the blue and red lines are for
the reconstructing method.

〈·〉 means an average over the events with the same impact
parameter b. We named this method direct statistical calcula-
tions. The values obtained from Eqs. (4)–(8) can validate the
applicability of the Gaussian PDF and direct fitting method. It
is shown in Figs. 4 and 5 that the open circles are very close to
the solid circles. The cyan shaded regions are obtained from
the reconstructing method by directly fitting the data of P(X),
and we will discuss it in Sec. III B.

B. Reconstructing P(X|b)

To reconstruct the impact parameter distribution model-
independently, we adopt the formula

P(X) =
∫ 1

0
P(X|cb)P(cb)dcb =

∫ 1

0
P(X|cb)dcb (9)

to fit the data of P(X). In our calculations, the form of P(X|cb)
is assumed to be

P(X|cb) = exp
{ − 1

2 [X − X(cb)]T �−1(cb)[X − X(cb)]
}

2π
√|�(cb)| .

(10)
The mean values X and the elements of the covariance matrix
�i j are smooth positive functions of cb, and are expressed as
the exponential of a polynomial as in Ref. [23],

X i(cb) = X i(0) exp

(
−

nmax∑
n=1

ai,ncn
b

)
, (11)

�i j (cb) = �i j (0) exp

(
−

mmax∑
m=1

Ai j,mcm
b

)
. (12)
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FIG. 5. Same as Fig. 4, but for Ebeam = 50 MeV/u.

where X i(0), ai,n, �i j (0), Ai j,m are free parameters, and
nmax and mmax are the degrees of the polynomials used to
parametrize the mean and the covariance. These parameters
are adjusted to obtain the best fit of P(X) by using the code
MINUIT.

To directly view the validity of the reconstructing method,
we first present the contour plot of P(X) obtained with the
ImQMD model (color map) and reconstructing method (red
solid lines), which corresponds to the minimum fitting pa-
rameters when χ2

r < 2 in Figs. 6(a) and 7(a). The panels (b)
and (c) in Figs. 6 and 7 are contour plots of P(X|b), obtained
by direct fitting calculations (black dashed lines), and by the
reconstructing method at b = 1 fm and b = 7 fm, respectively.
The reconstructing method can well reproduce both the data
and the results from the direct fitting calculation when b � 7
fm at 120 MeV/u. For central collisions, the reconstructed
P(X|b) slightly deviates from the data along the ptot

t0 direc-
tion. At incident energy of Ebeam = 50 MeV/u, as shown in
Figs. 7(b) and 7(c), the reconstructing method can reproduce
the shape of P(X|b) but the mean M0 value of the Gaussian
form deviates from the real value less than 5%.

The key point in the reconstruction is to find a reasonable
number of the degrees of the polynomials, i.e., nmax and mmax.
When nmax and mmax are too small, the Bayesian method may
not reproduce P(X). Conversely, when the nmax and mmax are
too large, one may confront an overfitting issue. In experi-
ments, it is hard to justify how many fitting parameters are
good enough by only seeking the minimum of χ2

r among the
different parameter sets, since the real b dependence of X i and
�i j or the real b distribution are not known in advance. Conse-
quently, we need to learn the uncertainties of the reconstructed
results by using different combinations of nmax and mmax, and
the deviation (or bias) relative to the true values.

For 112Sn + 112Sn at Ebeam = 120 MeV/u, nmax = mmax =
1 cannot reproduce P(X) and the corresponding χ2

r is about
23. When 2 � nmax � 5 and 2 � mmax � 5, the obtained χ2

r
values are in the range 1.26–1.64. nmax > 5 and mmax > 5
were not used due to the number of fitting parameters
exceeding the limit of the MINUIT. In Fig. 4, X i(b) and �i j (b)
obtained with 2 � nmax � 5 and 2 � mmax � 5 are presented
as cyan-shaded regions, which reflect the uncertainties caused
by different choices of nmax and mmax. The uncertainties of
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FIG. 6. Contour plots of probability density distribution M0 vs
ptot

t0 for 112Sn + 112Sn at Ebeam = 120 MeV/u. The red solid lines are
the results obtained from the reconstructing method; the black dashed
lines are from the direct fitting calculation.

X i are less than 1.4%, and the uncertainties of �i j are less
than 14%.

In Figs. 8(a)–8(c), the deviations of �i j at 120 MeV/u are
presented by using the ratios between the reconstructed fitting
parameters and direct fitting parameters. The blue lines are
the results obtained with nmax = mmax = 2, which is selected
based on the maxim that fewer parameters are preferred than
more if all of them can fit the data. In this case, the deviations
of �11 is less than 10%, and the large deviations appear at
b < 5 fm for �12 and �22 and its values reach 33%. The red
lines are the results obtained with nmax = mmax = 5, and the
reconstructing method (nmax = mmax = 5) can reproduce the
results of direct calculation. The slight deviations appears at
very peripheral collisions.

For 112Sn + 112Sn at Ebeam = 50 MeV/u, the reconstructed
�i j are presented in Fig. 5. The cyan-shaded region cor-
responds to the uncertainties obtained with 1 � nmax � 5
and 1 � mmax � 5, where the values of χ2

r are in the range
1.03–1.42. The uncertainties of X i are less than 1%, and the
uncertainties of �i j are less than 31%. In Fig. 8(d)–8(f) the de-
viations of �i j are presented. When nmax � 2 and mmax � 2,
the reconstructed �i j are lower than that from those of the di-
rect calculations. The reconstructed �i j with nmax = mmax = 1

FIG. 7. Same as Fig. 6, but for Ebeam = 50 MeV/u.

(blue lines) are close to that obtained with the direct calcula-
tions within 14%, and the deviations appear at both central
and peripheral collisions. The red lines are the results ob-
tained with nmax = mmax = 5. At b < 3 fm, the deviations
are less than 12%. With the impact parameter increasing, the
deviations increase and the largest deviation occur around
b = 9.5 fm.

One should note that the multiplicities and total transverse
momenta obtained in the ImQMD model are overestimated
compared with the experimental data, which are related to the
stability of initial nuclei [2,37,38] and cluster formation mech-
anism [39–43] in the QMD type models. It may influence the
absolute values of reconstructed X i and �i j , but it will not
obviously influence the shape of P(X) and the reconstruction.

IV. BAYESIAN METHOD FOR RECONSTRUCTING
IMPACT PARAMETER DISTRIBUTION

FROM TWO OBSERVABLES

A. Sorting centrality with K-means

Before reconstructing the impact parameter distribution
from two observables for selected events or the centrality
with Bayes’s theorem, we need to find a way to sort the
events with X = {M0, ptot

t0 } and define the centrality of HICs.
Differently from using a single observable, the simultaneous
use of M0 and ptot

t0 will make difficulties in the determination
of the upper and lower boundaries of X. One may artificially
define the region in the space of X, for example, a rectangle
shape, an elliptic shape, or other shapes, to select the events.
This ambiguous criterion requires us to find a rule to sort
the centrality of HICs in two-observable space, i.e., M0 and
ptot

t0 space. Compared to the traditional method, the unsuper-
vised machine learning clustering algorithms [44,45], i.e., the
K-means clustering method, can automatically classify the
events into different classes once the number of classes is
given.

The K-means clustering method is one of the simplest and
commonly used unsupervised machine learning algorithms.
It tries to find cluster centers that are representative of cer-
tain regions of the data without knowing the label of data
points. In this work, the dataset D = {Xi = (M0, ptot

t0 )i} with
i = 1, . . . , Nevent and Nevent = 1 000 000 is generated from the
ImQMD model. We classify the dataset into K clusters, i.e.,
C = {C1,C2, . . . ,CK}. Ci represents the subdataset of the ith
classification, which is realized by the alternation between two
steps: assigning each data point to the closest cluster center
where the distance is defined by di j = √

(Xi − Xj )2, and then
setting each cluster center as the mean of the data points
that are assigned to it. When the assignment of instances to
clusters, i.e.,

E =
K∑

k=1

∑
Xi∈Ck

|Xi − μk|2, (13)

where μk is the center of cluster k, no longer changes, the
algorithm will be finished.

There is a question raised for us: why we can use the
unsupervised K-means clustering method to sort the centrality
of HICs? It can be answered from Eq. (13). Suppose the total
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FIG. 8. The ratio of the reconstructing method and direct fitting calculation about �11, �12, and �22 as functions of b for 112Sn + 112Sn at
120 (upper panels) and 50 (lower panels) MeV/u.

number of event points in the dataset is N0 and the number of
event points in Ck is Nk . Based on the previous notification and
properties of clusters, the centroid of each cluster is written as

μk = 1

Nk

∑
i∈Ck

Xi. (14)

As we prove in the Appendix, the centroid of cluster is related
to the centrality of selected events as follows:

μk ≈ N0X∗

Nk

∑
X∈�(Ck )

P(X) · �s

= N0X∗

Nk
c(Ck ). (15)

Here, �s = dM0d ptot
t0 and c(Ck ) is the centrality defined from

the event points of cluster Ck , i.e.,

c(Ck ) =
∑

X∈�(Ck )

P(X) · �s, (16)

which is similar to the idea of experimental centrality by
Abelev et al. [20,22,23,46]. X∗ is a certain value that satisfies
the equality of∑

X∈�(Ck )

P∈Ck (X) · X · �s = X∗ ∑
X∈�(Ck )

P(X) · �s. (17)

Thus, the K-means clustering algorithm can be used to sort
the centrality.

B. Reconstruction of impact parameter distribution

Figures 9(a) and 9(c) show the distributions of event points
on the M0 and ptot

t0 plane for Ebeam = 120 and 50 MeV/u,
respectively. The events points are sorted into five clusters
by the K-means clustering algorithm, and are represented
by different color regions. The centroids of each cluster are
represented by the black solid circles. The overlap between
different clusters is less than 10%, and caused by the algo-
rithm for seeking the minimum of Eq. (13). In Figs. 9(b)
and 9(d), we plot the predicted reduced impact parameter
b0 = b/bmax distributions by using the Bayesian method, i.e.,

P(b|X ∈ Ck ) =
P(b)

∫
X∈�(Ck ) P(X|b)dX∫

X∈�(Ck ) P(X)dX
. (18)

Two kinds of P(X|b) are used. One is direct fitting calcula-
tion (dashed lines), and another is the reconstructing method
(shaded regions) with different nmax and mmax combinations.
The real reduced impact parameter distributions obtained with
the ImQMD model (open circles) are used for checking the
ability of the two methods. As illustrated in Figs. 9(b) and
9(d), the predicted reduced impact parameter distributions
from the reconstructing method agree well with the actual
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FIG. 9. (a) and (c) Contour plot of M0 vs ptot
t0 for five clusters.

(b) and (d) Reduced impact parameter distributions for five clusters;
open circles are the real impact parameter distributions obtained with
ImQMD model, and shaded regions are the results inferred with the
reconstructing method with different nmax and mmax combinations
(dashed lines for direct fitting calculation).

impact parameter distributions under the different combina-
tions of nmax and mmax, which have χ2

r < 2.
The reasons why the reconstructing method can reproduce

the real impact parameter distribution and is less influenced
by the deviations of the covariance matrix can be understood
from the following two aspects: one is the validity of Gaussian
assumptions on the P(X|b), and another is the reconstructing
method on P(b|X) based on Eq. (18).

The validity of Gaussian assumptions comes from the
reaction mechanism, as discussed in Sec. II. The event-
by-event fluctuations of final observables with respect to b
are dominated by the mechanism of initialization, the mean
field potential, and nucleon-nucleon elastic collisions. In the
ImQMD simulations, the sampled events are distributed as a
Gaussian form in the event space since the initial nuclei in
each event are randomly sampled at a given binding energy
and radius of the nucleus. The mean field and nucleon-nucleon
elastic collisions do not destroy the Gaussian shape of the
fluctuations of observables to b at the beam energy we studied.
It is a reason why the χ2

r is less than 3 in our studies, as
shown in Table III, and are smaller than the χ2

r obtained in
high energy collisions [23].

The weak influence of �i j on the reconstruction of P(b|X),
as shown in Fig. 9, is related to the range of �(Ck ) in the
domain of X. The extreme case is to take only 1 cluster by
using K-means; one can expect that the influence of different
values of �i j completely disappears due to the integration
over the full X space. Quantitatively, in Fig. 10, we present the
reconstructed b distributions of 112Sn + 112Sn at 50 MeV/u
for ten clusters. The values nmax = 3 and mmax = 2, which
correspond to the largest deviations of �i j between the re-
constructing method and direct fitting calculations, are used

FIG. 10. Same as Fig. 9(d), but for ten clusters. The lines with
different colors are the results inferred by the reconstructing method
with nmax = 3 and mmax = 2.

to see the effects. The real b distributions for ten clusters are
presented as symbols. The left panel is the results from C1, C3,
... to C9 and the right panel is from C2, C4, ... to C10. It is clear
that the differences between the reconstructed b distribution
and real b distribution become larger in the case of ten clusters
than that in five clusters [Fig. 9(d)].

V. SUMMARY AND DISCUSSIONS

In summary, we investigate the inherent fluctuation mech-
anism of intermediate energy heavy ion collisions within the
framework of the ImQMD model before studying the re-
construction of the impact parameter distribution from HIC
observables. Our calculations show that the inherent fluc-
tuations come from the stochasticity of initialization and
nucleon-nucleon scattering in HICs. These inherent fluctua-
tions cause the heavy ion collision observables to fluctuate
with b, and an accurate determination of the impact parameter
is impossible even with as many observables as possible.
Thus, the reconstruction of the impact parameter distribution
from the selected HIC observables should be done.

To model-independently reconstruct the impact parameter
distributions for the selected centrality or events for low-
intermediate energy HICs, we extend the Bayesian method in
which two observables, i.e., multiplicity of charged particles
and total transverse momentum of light charged particles,
are used simultaneously. A two-dimensional Gaussian-shape
fluctuation kernel is adopted, and the parameters of the fluc-
tuation kernel are learned model independently by fitting the
pseudoevents data. Since the b dependence of mean values
and covariance matrix of experimental data are not known in
advance, we also investigate the uncertainties of the extracted
b dependence of mean values and covariance matrix. With
this form of fluctuation kernel of two observables at a given
impact parameter b, the impact parameter distributions for
selected events can be derived based on Bayes’s theorem.
For sorting the centrality of heavy ion collisions with mul-
tiple observables, we propose to use an unsupervised machine
learning method, i.e., the K-means clustering method, which
can automatically select the event sample in the multiob-
servables space if the class number is given. The validity of
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using the K-means clustering method to sort the centrality
of HICs is also proved in the theory. Our calculations show
that the reconstructed b distributions agree well with the real
b distributions when the number of sorted centrality is around
5 in this energy region.

Further, the knowledge of the covariance matrix can be
used to extract the fluctuations and correlation between the
multiplicity of charged particles and the total momentum of
light charged particles, which will be useful for learning the
fragmentation mechanism.
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APPENDIX: RELATION BETWEEN THE CENTROID
OF EACH CLUSTER AND CENTRALITY

The centroid of each cluster,

μk = 1

Nk

∑
i∈Ck

Xi, (A1)

can be rewritten as

μk = 1

Nk

∑
X∈�(Ck )

NCk (X)

�s
· X · �s

= N0

Nk

∑
X∈�(Ck )

P∈Ck (X) · X · �s. (A2)

Here, NCk (X) is the number of events in cluster Ck in the inter-
val �s = dM0d ptot

t0 . The values of X in the Ck cluster appear
in the domain of �, and their probability density function is
P∈Ck (X). In the K-means clustering algorithm, the overlapped
event points between different clusters are less than 10%,
and thus PCk (X) ≈ P(X). Consequently, the centroid of each
cluster μk can be approximately described as follows:

μk ≈ N0X∗

Nk

∑
X∈�(Ck )

P(X) · �s

= N0X∗

Nk
c(Ck ). (A3)

c(Ck ) is the centrality defined from the event points of cluster
Ck , i.e.,

c(Ck ) =
∑

X∈�(Ck )

P(X) · �s, (A4)

The definition is similar to the idea of experimental centrality
by Abelev et al. [46]. X∗ is a certain value that satisfies the
equality of∑

X∈�(Ck )

P∈Ck (X) · X · �s = X∗ ∑
X∈�(Ck )

P(X) · �s. (A5)
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