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Advancing the Ichimura-Austern-Vincent model with continuum-discretized coupled-channels wave
functions for realistic descriptions of two-body projectile breakup
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Inclusive breakup is an important reaction mechanism of reactions induced by weakly bound nuclei. The
Ichimura, Austern, and Vincent (IAV) model is widely used to analyze inclusive breakup processes and is based
on a distorted wave Born approximation (DWBA). However, the validity of the DWBA form for inclusive
breakup requires further exploration. In this study, we present a derivation of the IAV model, using the
continuum-discretized coupled-channels (CDCC) wave function, and apply it to the d + 93Nb reaction. We
examine the differences between the CDCC-IAV and DWBA-IAV models by artificially modifying the binding
energy of the deuteron using two distinct types of optical potential. Our findings indicate that the CDCC method
potentially provides a more fundamental description of the d + A interaction and may provide a more realistic
description of the interior part of the wave function. This study offers significant potential in increasing the
precision and dependability of weakly bound nuclei inclusive breakup process estimation within a fully quantum
mechanical model.
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I. INTRODUCTION

Nuclear reactions involving weakly bound nuclei have at-
tracted much attention in recent years due to their unique and
often exotic properties [1–6]. Because of their weak bind-
ing these nuclei usually behave differently from more tightly
bound nuclei. Thus, reactions of weakly bound nuclei can
lead to intriguing and occasionally surprising phenomena [7].
For example, the breakup of the weakly bound nucleus into
smaller fragments can provide insight into the structure of the
nucleus and the behavior of nuclear forces at low energies.
The study of reactions induced by weakly bound nuclei plays
a crucial role in advancing our understanding of fundamental
nuclear physics.

An important reaction mechanism of reactions induced
by weakly bound nuclei is the inclusive breakup, expressed
as a(= b + x) + A → b + B∗. Here, a = b + x and B∗ rep-
resents any possible state between the x and A systems,
including elastic breakup (EBU). In EBU, x undergoes elas-
tic scattering with A and both the fragments and the target
are left in their respective ground states. Various nonelastic
breakup (NEB) channels are also possible, including the ex-
change of nucleons between x and A, projectile dissociation
accompanied by target excitation, and fusion of x by A, among
others.

The Ichimura, Austern, and Vincent (IAV) model [8], pro-
posed during the 1980s, allows for the treatment of inclusive
breakup processes. The first version of the model was based
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on the distorted wave Born approximation (DWBA) so that
the entrance channel wave function was described using a
distorted wave generated with an appropriate optical model
potential. The model was later extended to incorporate a
three-body description of the entrance channel by means of
the continuum-discretized coupled-channels (CDCC) wave
function [9], an approximation of the exact three-body wave
function, solution of the Faddeev equations [10]. Despite the
Faddeev equation being the most accurate method, obtain-
ing an exact solution can be computationally challenging for
a scattering problem. As a result, many applications in the
literature utilize a simpler solution by directly calculating
EBU cross sections with the CDCC method and solving NEB
processes using the DWBA framework [11–16]. However, it
should be noted that while the original IAV model utilizes
the lowest-order (elastic channel) wave function in DWBA
form, the validity of the DWBA form for the inclusive breakup
process requires further exploration.

In our previous work [16], we proposed the first imple-
mentation of the CDCC wave function to the IAV model.
We demonstrated that the DWBA form can approximate the
CDCC wave function for both the deuteron and 6Li cases, at
least in the reactions analyzed in that work. The CDCC wave
function naturally separates the contributions between bound
states and continuum states, enabling the study of continuum
effects in nonelastic breakup processes. In other words, we
can examine nonelastic breakup as a two-step process such as
a + A → b + x + A → b + B∗, or as a one-step process such
as a + A → b + B∗. We can verify the latter by comparing the
results of applying the full CDCC wave function to the IAV
model with only the ground-state portion of the full CDCC
wave function.
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The former study has direct implications in the physical
interpretation of incomplete fusion (ICF), a type of nuclear
reaction between a projectile and a target nucleus in which a
fraction of the projectile nucleus fuses with the target nucleus
and the remaining part moves forward without fusing. By defi-
nition, ICF is part of the NEB process. Several models [17–20]
exist for calculating ICF cross sections, but the challenging
problem remains how to provide an unambiguous calculation
within a fully quantum mechanical model. Previous literature
describes the ICF process as a breakup fusion, a two-step
reaction where the projectile first breaks up into b and x, and
the fragment x is subsequently absorbed by the target nucleus.
However, recent experimental results question the reliability
of the breakup fusion model, suggesting instead that ICF prod-
ucts are consistent with a direct, one-step mechanism [21].
Our prior work identifies that the ICF entails a combination of
one-step and two-step process; however, it is predominantly
dominated by the one-step process.

In this paper, we provide a rigorous derivation of the IAV
model using the CDCC wave function and apply it to the
d + 93Nb reaction. Additionally, we implement a toy model
to investigate the effects of varying the binding energy of
the deuteron, comparing the NEB cross sections obtained via
the full CDCC wave function (CDCC-NEB) and the DWBA
(DWBA-NEB). Our approach offers significant potential to
enhance the precision and dependability of weakly bound
nuclei inclusive breakup process estimation within a fully
quantum mechanical model.

The structure of the paper is as follows. Section II provides
a thorough derivation of the IAV model with CDCC wave
function. In Sec. III, we apply the formalism to inclusive reac-
tions induced by deuterons. Lastly, in Sec. IV, we summarize
the main findings of this study and provide an overview of
potential future developments.

II. THEORETICAL FRAMEWORK

A. CDCC wave function

The CDCC technique was developed as an approximation
to the Faddeev equations [9,22–25]. Its main objective is to
provide a reliable and practical approach to describe reactions
that involve three-body breakup. For example, consider a re-
action system a + A where a = b + x, such as d = n + p or
6Li = α + d . In this case, the effective three-body Hamilto-
nian may be expressed as follows:

H = Hproj + TR + Ub + Ux, (1)

where Hproj represents the projectile internal Hamiltonian, i.e.,
Hproj = Tr + Vbx, with Tr the kinetic energy operator, �r denotes
the internal coordinate of the projectile connecting b and x,
and Vbx the binding potential of projectile. It should be noted
that Hproj is Hermitian and supports the bound state of the
projectile. The operators Ub and Ux describe the optical po-
tentials for the elastic scattering of corresponding subsystems
b + A and x + A at the same energy per nucleon of the incident
projectile. Thus, from the perspective of the internal system
of a two-body projectile, the unit operator of this three-body

model space can be expressed as:

1 =
∑
αn0

∫
R2dR

∣∣φn0
bx Rα

〉〈
φ

n0
bx Rα

∣∣
+ (2π )−3

∑
α

∫
R2dR

∫
d�k∣∣φ�k(+)

bx Rα
〉〈
φ

�k(+)
bx Rα

∣∣, (2)

where the index n0 runs over the discrete spectrum Hproj, the
integral d�k is over its continuous spectrum, �R is the relative
coordinate between a and A, and |α〉 are the angular momen-
tum eigenstates with

|α〉 = |[la(sbsx )sbx] jbx(λAsA) jA; JM〉, (3)

where sb, sx and sA are the spins of b, x, and A particles,
respectively, while la and λA correspond to the orbital angular
momentum of the pair b-x, and of the system a-A, respectively.
The J and M values represent the total angular momentum
and its projection onto the z axis. The discrete state φ

n0
bx and

continuous state φ
�k(+)
bx can be expressed as

〈
rβ
∣∣φn0

bx

〉 = f jbx

lan0
(r)

r
(4)

and〈
rβmjbx

∣∣φ�k(+)
bx

〉 = 4π

kr
ila eiσla f jbx

la
(kr)

{
Y mla ∗

la
(k̂)χ

msbx
sbx (σ̂ )

} jbxmjbx

(5)
where |β〉 = |la(sbsx )sbx; jbx〉, σla are the Coulomb phase
shifts, and χ

msbx
sbx (σ̂ ) are the normalized spin functions. The

radial part of the bound-state wave function, which is ob-
tained by solving the corresponding Schrödinger equation, is
denoted by f jbx

lan0
(r). On the other hand, f jbx

la
(kr) represents the

radial part of the scattering wave function at momentum h̄�k,
which is solved by the radial Schrödinger equation for positive
energies.

For practical reasons, the integral over projectile scattering
states in Eq. (2) is discretized and truncated at a maximum
energy. Several methods can be used for discretization; for
this study, the well-known bin method was chosen. As per the
definition given in Ref. [26], the radial functions of the con-
tinuum bins are a superposition of the scattering eigenstates,〈

rβ
∣∣φn

bx

〉 = √
2 jbx + 1

〈
rβmjbx

∣∣φn
bx

〉
= 1

r

√
2

πNk

∫ kn+1

kn

g(k) f jbx

la
(kr)dk, (6)

where g(k) is the weight function and the normalization
constant is chosen as Nk = ∫ kn+1

kn
|g(k)|2dk. It is important

to note that the bin-state wave functions do not depend
on the magnetic quantum number mjbx . The probability
of identifying all possible magnetic quantum states corre-
sponding to a particular state of angular momentum can be
expressed as

∑
mjbx

|〈rβmjbx |φn
bx〉|2 = |〈rβ|φn

bx〉|2. Thus, for
each bin state with a specific magnetic quantum number
mjbx , it can be evaluated by averaging the corresponding
angular momentum state. Additionally, the bin-state wave
functions are independent of the direction of �k. For the con-
tinuum part of Eq. (2), we can separate it into different cells
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and insert the bin state into the corresponding integration cell, resulting,

(2π )−3
∑

α

∑
n

∫
R2dR

∫ kn+1

kn

d�k∣∣φ�k(+)
bx Rα

〉〈
φ

�k(+)
bx Rα

∣∣
= (2π )−3

∑
α

∑
n

∫
R2dR

∫ kn+1

kn

d�k∣∣φn
bxRα

〉〈
φn

bx

∣∣φ�k(+)
bx

〉〈
φ

�k(+)
bx

∣∣φn
bx

〉〈
φn

bxRα
∣∣

=
∑

α̃

∫
R2dR

∣∣φn
bxRα

〉〈
φn

bxRα
∣∣, (7)

where in the last line we have introduced the notation α̃ ≡ {α, n} and

〈
φn

bx

∣∣φ�k(+)
bx

〉 = ∑
βmjbx

∫
r2dr

〈
φn

bx

∣∣rβmjbx

〉〈
rβmjbx

∣∣φ�k(+)
bx

〉

= 1√
2 jbx + 1

√
2

πNk

2π2

k
g∗(k)eiσla

∑
mjbx

∑
mla

∑
msbx

〈
lamla sbxmsbx

∣∣ jbxmjbx

〉
ilaY mla ∗

la
(k̂)χ

msbx
sbx (σ̂bx ). (8)

The indexes n0 and n can be combined into a single index n. For this study, n � 0 denotes the bound state while n > 0 indicates
the discretized continuum states. By doing so, the unit operator in Eq. (2) can be simplified, i.e.,

1 ≈
∑

α̃

∫
R2dR

∣∣φn
bxRα

〉〈
φn

bxRα
∣∣. (9)

For a reaction of the form a(= b + x) + A, the initial state is characterized by ja, ma, and mA, where ja, ma, and mA are the
spin of projectile and the magnetic quantum numbers of projectile and target, respectively. To simplify the notation, one can
label these states as jin = { ja, ma, mA}. The CDCC wave functions for given incoming states are the solution of Schrödinger
equation

(E − Hproj − TR − Ub − Ux )	 jin (+) = 0. (10)

In the CDCC method one solves the above equation by projecting it onto a bin state of |φn
bxRα〉, so that Eq. (10) becomes

(E − εn − TaA(Rα))
〈
φn

bxRα
∣∣	 jin (+)

〉 = 〈
φn

bxRα
∣∣Ub + Ux|	 jin (+)〉, (11)

where

TaA(Rα) = − h̄2

2μaA

[
1

R

∂2

∂R2
R − λA(λA + 1)

R2

]
, (12)

εn is calculated as 〈φn
bx|Hproj|φn

bx〉, and μaA denotes the reduced mass of the a + A system. Inserting the unit operator in Eq. (11),
the right-hand side becomes

R.H.S. =
∑
α̃′

∫
R′2dR′〈φn

bxRα
∣∣Ub + Ux

∣∣φn′
bxR′α′〉〈φn′

bxR′α′∣∣	 jin (+)
〉
. (13)

By assuming all the interactions are local, then the Schrödinger equation becomes

(E − εn − TaA(Rα))
〈
φn

bxRα
∣∣	 jin (+)

〉−∑
α̃′

Uα̃,α̃′ (R)
〈
φn′

bxRα′∣∣	 jin (+)
〉 = 0, (14)

with the coupling potentials

Uα̃,α̃′ (R) = 〈
φn

bxRα
∣∣Ub + Ux

∣∣φn′
bxRα′〉 = ∫

d�rd �R′d �r′d �R′′ 〈φn
bxRα

∣∣�r �R′〉〈�r �R′|Ub + Ux| �r′ �R′′〉〈�r′ �R′′∣∣φn′
bxRα′〉. (15)

As we have assumed the optical potentials to be local and independent on the internal degrees of freedom of the three
fragments, and denoting U = Ub + Ux we have,

Uα̃,α̃′ (R) =
∫

d�rd �R′U (�r, �R′)
〈
φn

bxRα
∣∣�r �R′〉〈�r �R′∣∣φn′

bxRα′〉. (16)
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In the above equation, 〈�r �R′|φn′
bxRα′〉 takes the form

〈
�r �R′∣∣φn′

bxRα′〉 = ∑
LS

[(2L + 1)(2S + 1)(2 j′bx + 1)(2 j′A + 1)]1/2

⎧⎨
⎩

l ′
a λ′

A L
s′

bx sA S
j′bx j′A J

⎫⎬
⎭〈�r �R′|rR(l ′

aλ
′
A)L((sbsx )s′

bxsA)S; JM〉〈rβ ′∣∣φn′
bx

〉
(17)

and likewise for 〈φn
bxRα|�r �R′〉 so Eq. (16) becomes

Uα̃,α̃′ (R) =
∑
LS

(2S + 1)[(2 j′bx + 1)(2 jbx + 1)(2 j′A + 1)(2 jA + 1)]1/2

⎧⎨
⎩

l ′
a λ′

A L
sbx sA S
j′bx j′A J

⎫⎬
⎭
⎧⎨
⎩

la λA L
sbx sA S
jbx jA J

⎫⎬
⎭

×
∫

r2dr
〈
rβ ′∣∣φn′

bx

〉〈
φn

bx

∣∣rβ〉 ∫ d�rd�R

∑
ML

∑
ml m′

l

∑
mλm′

λ

Y
m′

l
l ′a

(r̂)Y m′
λ

λ′
A

(R̂)Y ml ∗
la

(r̂)Y mλ∗
λA

(R̂)

× 〈l ′
am′

lλ
′
Am′

λ|LML〉〈lamlλAmλ|LML〉U (�r, �R). (18)

In the above equation, the potential and spherical harmonics Y depend on the angles r̂ and R̂. For the evaluation of the integral,
we choose R̂ as z direction, and assume r̂ is in the x-z plane:

�R =
⎛
⎝0

0
R

⎞
⎠ �r =

⎛
⎝r

√
1 − x2

0
rx

⎞
⎠, (19)

where x is the cosine of the angle between �r and �R. In addition, one should note that
∫

d�rd�R = 8π2
∫

dx. Then, Eq. (18)
becomes

Uα̃,α̃′ (R) =
∑
LS

2π (2S + 1)[(2 j′bx + 1)(2 jbx + 1)(2 j′A + 1)(2 jA + 1)(2λA + 1)(2λ′
A + 1)]1/2

⎧⎨
⎩

l ′
a λ′

A L
sbx sA S
j′bx j′A J

⎫⎬
⎭

×
⎧⎨
⎩

la λA L
sbx sA S
jbx jA J

⎫⎬
⎭
∫

r2dr
〈
rβ ′∣∣φn′

bx

〉〈
φn

bx

∣∣rβ〉∑
ML

〈l ′
aMLλ′

A0|LML〉〈laMLλA0|LML〉
∫

dxY ML
l ′a

(r̂)Y ML∗
la

(r̂)U (�r, �R).

(20)

In the particular case in which the intrinsic spins of the particles can be ignored, the equation above takes a particularly simple
form

Uα̃,α̃′ (R) = 2π

2L + 1
[(2λA + 1)(2λ′

A + 1)]1/2
∫

r2dr
〈
rβ ′∣∣φn′

bx

〉〈
φn

bx

∣∣rβ〉∑
ML

〈l ′
aMLλ′

A0|LML〉〈laMLλA0|LML〉

×
∫

dxY ML
l ′a

(r̂)Y ML∗
la

(r̂)U (�r, �R). (21)

To solve the coupled equations of Eq. (14), one can use the technique discussed, for example, in Refs. [27,28] with the
following outgoing boundary conditions〈

φn
bxRα

∣∣	 jin (+)
〉 →

R→∞
4π

kα0 R eiσλ0
∑

α̃0

∑
mλ0 mjA

〈
λ0mλ0 sAmA

∣∣ jAmjA

〉〈
jama jAmjA

∣∣JMJ
〉
iλ0Y

mλ0 ∗
λ0

(k̂a) i
2

[
H (−)

λ δα̃α̃0 −
√

vα̃

vα̃0
Sα̃α̃0 H (+)

λ

]
,

(22)

where H (+)
λ is the Coulomb-Hankel function, the velocity vα̃ verifies vα̃ = √

(E − εn)/μα , μα is the reduced mass, and the
S-matrix Sα̃α̃0 gives the amplitude of an outgoing wave in channel α̃ that arise from an incoming wave in channel α̃0. One
can note that the boundary condition also depends on the incoming channel index α̃0, corresponding to the α̃ index in which
projectile and target are in their ground state. In practical calculations, it is convenient to separate the angular and radial parts of
〈φn

bxRα|	 jin (+)〉, i.e.,〈
φn

bxRα
∣∣	 jin (+)

〉 = ∑
α̃0

〈
φn

bxRα
∣∣	 jinα̃0(+)

〉 = 4π

kα0 R

∑
α̃0

eiσλ0

∑
mλ0 mjA

〈
λ0mλ0 sAmA

∣∣ jAmjA

〉〈
jama jAmjA

∣∣JMJ
〉
iλ0Y

mλ0 ∗
λ0

(k̂a)uα̃α̃0 (R), (23)

where the radial functions uα̃α̃0 (R) verify the coupled equations[
− h̄2

2μaA

d2

dR2
+ h̄2λ(λ + 1)

2μaAR2
+ εn − E

]
uα̃α̃0 (R) +

∑
α̃′

Uα̃,α̃′ (R)uα̃′α̃0 (R) = 0, (24)
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FIG. 1. Coordinates used in the breakup reaction.

subject to the boundary condition

uα̃α̃0 (R) →
R→∞

i

2

[
H (−)

λ δα̃α̃0 −
√

vα

vα0

Sα̃α̃0 H (+)
λ

]
. (25)

Finally, the CDCC wave function can be represented in
angular momentum basis, |rRα〉, as

〈rRα|	 jinα̃0(+)〉
=
∑
α′n

∫
R′2dR′〈rRα

∣∣φn
bxR′α′〉〈φn

bxR′α′∣∣	 jinα̃0(+)
〉

=
∑

n

〈
rα
∣∣φn

bx

〉〈
φn

bxRα
∣∣	 jinα̃0(+)

〉
(26)

B. IAV model of inclusive breakup

First, one can write the process under study in the form

a(= b + x) + A → b + B∗, (27)

where the projectile a, made up of b and x, interacts with
the target A, leaving the particle b and other fragments. Thus
B∗ is any possible state of the x + A system. By apply-
ing energy conservation in Jacobi coordinates, the following
equation holds: Ebx + Ea = Eb + Ex. Here, Ebx represents the
relative energy of the pair b + x, and Ex represents the relative
energy of the pair x + A. Similarly, Ea and Eb represent the
relative energy of the third particle with respect to the pair.
Moreover, ka, kb, and kx correspond to the wave numbers of
Ea, Eb, and Ex, respectively. The relevant coordinates of these
processes are depicted in Fig. 1.

In the IAV model, the inclusive breakup cross section is
expressed as

d2σ

dEbd�b
= − 2

h̄va
ρb(Eb) Im〈ρ(�kb)|G(+)

x |ρ(�kb)〉, (28)

where ρb(Eb) = μbkb/(8π3h̄2) is a density of states, μb is the
reduced mass of b + B∗ system, Gx = (Ex + iε − Tx − Ux )−1

is resolvent operator, and the source term takes the form

〈�rx|ρ(�kb)〉 = 〈�rxχ
(−)
b (�kb)|Vpost|	3b(+)〉, (29)

where χ
(−)∗
b (�kb, �rbB) is the distorted wave (obtained with some

optical potential UbB) describing the relative motion between
b and B, Vpost = Vbx + Ub − UbB is the postform transition
operator and 	3b(+) the three-body scattering wave function.
The imaginary part of the Green’s function can be expressed
as [29]

Im G(+)
x = (1 + U †

x G(+)†
x ) Im G0(1 + G(+)

x Ux )
+ G(+)†

x WxG(+)
x , (30)

where Wx is the imaginary part of optical potential Ux. Insert-
ing the above equation into Eq. (28), one gets

d2σ

dEbd�b
= − 2

h̄va
ρb(Eb)〈ρ(�kb)|(1 + U †

x G(+)†
x )

× Im G0(1 + G(+)
x Ux )|ρ(�kb)〉

− 2

h̄va
ρb(Eb)〈ρ(�kb)|G(+)†

x WxG(+)
x |ρ(�kb)〉. (31)

The first and second terms correspond, respectively, to the
elastic and nonelastic breakup contributions of the inclusive
breakup cross section. The former can be written in a more
familiar form using the energy-conserving δ function operator

Im G0 = −πδ

(
Ex − h̄2k2

x

2μx

)
, (32)

μx is the reduced mass of x + A system, so that the EBU terms
results

d2σ

dEbd�b

∣∣∣∣∣
EBU

= 2π

h̄va
ρb(Eb)〈ρ(�kb)|(1 + U †

x G(+)†
x )δ

(
Ex − h̄2k2

x

2μx

)
(1 + G(+)

x Ux )|ρ(�kb)〉

= 2π

h̄va
ρb(Eb)

∫
〈ρ(�kb)|(1 + U †

x G(+)†
x )|�kx〉〈�kx|δ

(
Ex − h̄2k2

x

2μx

)
|�k′

x〉〈�k′
x|(1 + G(+)

x Ux )|ρ(�kb)〉(2π )−6d�kxd�k′
x. (33)

By noting that 〈χ (−)
x (�k′

x )| = 〈�k′
x|(1 + G(+)

x Ux ), then

d2σ

dEbd�b

∣∣∣∣∣
EBU

= 2π

h̄va
ρb(Eb)

∫
|〈χ (−)

x (�kx )|ρ(�kb)〉|2δ
(

Ex − h̄2k2
x

2μx

)
(2π )−3d�kx

= 2π

h̄va
ρb(Eb)ρx(Ex )

∫
|〈χ (−)

x (�kx )|ρ(�kb)〉|2d�kx , (34)
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where ρx(Ex ) = μxkx/(8π3h̄2) is a density of states. The nonelastic breakup differential cross section [second part of Eq. (31)]
takes the form

d2σ

dEbd�b

∣∣∣∣∣
NEB

= − 2

h̄va
ρb(Eb)〈G(+)

x ρ(�kb)|Wx|G(+)
x ρ(�kb)〉. (35)

The common part of Eqs. (34) and (35) is the source term. In the next section, the partial wave expansion of the source term will
be discussed.

C. Source term expression in angular momentum basis

The source term can be expressed in the angular momentum basis |γ 〉 = |lx(sxsA)sxA; jxAmjxA〉 index with selected spin
projection of the incoming and outgoing particles as

〈rxγ |ρmb, jin (�kb)〉 = 〈
rxγχ

mb(−)
b (�kb)

∣∣Vpost|	 jin (+)〉. (36)

Here we use the CDCC wave function to approximate the three-body scattering wave function. By inserting the complete basis,
one gets

〈rxγ |ρmb, jin (�kb)〉 =
∑
αout

∫
drbr2

b

〈
rxγχ

mb(−)
b (�kb)

∣∣rxrbαout
〉∑
αcdcc

∫ 1

−1
dxVpost (rx, rb, x, αcdcc)Gout←in

αcdcc,αout
(rxrbx)〈rbxraαcdcc|	 jin (+)〉,

(37)

with〈
rxγχ

mb(−)
b (�kb)

∣∣rxrbαout
〉 = 4π

kbrb

∑
mλb

∑
mjb

〈
λbmλbsb − mb

∣∣ jbmjb

〉
(−)sb+mb

〈
jxAmjxA jbmjb

∣∣JM
〉
f jb
λb

(kb, rb)eiσλb i−λbY
mλb
λb

(k̂b), (38)

where f jb
λb

(kb, rb) is the radial part of the solution of the Schrödinger equation with the optical potential UbB and

Gout←in
αcdcc,αout

(rxrbx) =
∑
LS

(2S + 1)
√

(2 jbx + 1)(2 jA + 1)(2 jxA + 1)(2 jb + 1)

⎧⎨
⎩

lx sxA jxA

λb sb jb
L S J

⎫⎬
⎭
⎧⎨
⎩

la sbx jbx

λA sA jA
L S J

⎫⎬
⎭

× 8π2
L∑

ML=−L

{
Y mlx ∗

lx
(r̂x )Y

mλb ∗
λb

(r̂b)
}LML{

Y mla
la

( ̂a�rx − �rb)Y
mλA
λA

( ̂b�rx + c�rb)
}LML

× (−)sbx+2sA+sx+sb
√

(2sxA + 1)(2sbx + 1)

{
sA sx sxA

sb S sbx

}
, (39)

where the angular momentum states are defined as

|αcdcc〉 = |(la(sbsx )sbx ) jbx(λAsA) jA; JM〉
|αout〉 = |(lx(sxsA)sxA) jxA(λbsb) jb; JM〉, (40)

where l is the angular momentum between the b-x pair and λ is the one between the pair and the third fragment. The coefficients
a, b, and c are the mass ratios

a = mA

mA + mx

b = (mb + mx + mA) mx

(mA + mx )(mb + mx )

c = mb

mb + mx
. (41)

The relevant coordinates of the incoming channel are given by

rbx(rxrbx) =
√

a2r2
x + r2

b − 2arxrbx

ra(rxrbx) =
√

b2r2
x + c2r2

b + 2bcrxrbx. (42)

In Eq. (39) the curly brackets grouping the spherical harmonics indicate that they are coupled to a state of total orbital angular
momentum L and third component ML. For the evaluation, one can choose r̂b as z direction and assume that r̂x is in the x − z
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plane, i.e.,

�rb =
⎛
⎝0

0
rb

⎞
⎠; �rx =

⎛
⎝rx

√
1 − x2

0
rxx

⎞
⎠, (43)

where x is the cosine of the angle between �rb and �rx. Then r̂a and r̂bx can be computed accordingly.

D. Elastic breakup

The elastic breakup cross section Eq. (34) in the angular momentum basis can be rewritten as

d2σ

dEbd�b

∣∣∣∣∣
EBU

= 2π

h̄va
ρb(Eb)ρx(Ex )

1

2 ja + 1

1

2sA + 1

∑
ma

∑
mA

∑
mb

∑
mx

∫ ∣∣〈χ (−)mx,mA
x (�kx )

∣∣ρmb, jin (�kb)
〉∣∣2d�x. (44)

By inserting the complete basis, one obtains

d2σ

dEbd�b

∣∣∣∣∣
EBU

= 2π

h̄va
ρb(Eb)ρx(Ex )

1

2 ja + 1

1

2sA + 1

×
∑
ma

∑
mA

∑
mb

∑
mx

∫ ∣∣∣∣∣∣
∑

γ

∫ 〈
χ (−)mx,mA

x (�kx )
∣∣rxγ

〉〈
rxγ |ρmb, jin (�kb)〉r2

x drx

∣∣∣∣∣∣
2

d�x, (45)

where 〈
χ (−)mx,mA

x (�kx )
∣∣rxγ

〉 = 4π

kxrx
f jxA

lx
(kxrx )eiσlx (−)sxA+mx+mA

∑
mlx

〈
lxmlx sxA − (mx + mA)

∣∣ jxAmjxA

〉
i−lxY mlx

lx
(k̂x ), (46)

in which f jxA

lx
(kxrx ) is the radial part of the distorted wave solution for the optical potential Ux.

E. Nonelastic breakup

In the angular momentum basis, the NEB cross section of Eq. (35) can be rewritten as

d2σ

dEbd�b

∣∣∣∣∣
NEB

= − 2

h̄va
ρb(Eb)

1

2 ja + 1

1

2sA + 1

∑
ma

∑
mA

∑
mb

∑
γ

∫
r2

x

∣∣ψγ,mb, jin
x (rx, �kb)

∣∣2W γ
x (rx )drx, (47)

where

ψγ,mb, jin
x (rx, �kb) ≡ 〈rxγ |G(+)

x ρmb, jin (�kb)〉 =
∫

r′2
x G(+)

x (rx, r′
x, γ )〈r′

xγ |ρmb, jin (�kb)〉dr′
x, (48)

with

G(+)
x (rx, r′

x, γ ) = −2μx

h̄2

1

kxrxr′
x

fγ (rx<)h(+)
γ (rx>), (49)

where rx< (rx>) means the lesser(greater) of rx and r′
x, fγ , and h(+)

γ are the radial parts of the regular and irregular solutions with
optical potential U γ

x , respectively.
To assist the discussion in the next section, we introduce also for completeness the expression for the angle-integrated NEB

differential cross section, which is given by:

dσ

dEb
=
∫

d2σ

dEbd�b
d�b = − 1

2π h̄va
ρb(Eb)

1

2 ja + 1

1

2sA + 1

∑
αin

∑
αout

∫
r2

x

∣∣Rαin,αout
x (rx )

∣∣2W γ
x (rx )drx, (50)

where

Rαin,αout
x (rx ) = 16π2

kakb

∫
r′2

x G(+)
x (rx, r′

x, γ )dr′
x

∫
drbrb f jb

λb
(kb, rb)eiσλb i−λb

∑
α̃cdcc

∫ 1

−1
dxVpost (r

′
x, rb, x, αcdcc)

× Gout←in
αcdcc,αout

(r′
xrbx)

〈
rbxαcdcc

∣∣φn
bx

〉uα̃cdccα̃in (ra)

ra
eiσλin iλin . (51)

where |αin〉 = |(la(sbsx )sbx ) ja(λinsA) jA; JM〉 is the set of quantum numbers characterizing the spin-angular part of the incident
channel.
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TABLE I. Fitted parameters for various binding energies while
keeping the rest of parameters constant, namely rv = 1.17 fm, av =
0.81 fm, rw = 1.56 fm, aw = 0.9 fm, rwd = 1.33 fm, and awd =
0.67 fm.

Enp (MeV) 1.224 2.224 3.224 4.224 10 20

V (MeV) 69.1 105.7 71.3 71.6 71.6 71.5
W (MeV) 7.9 2.7 3.7 2.8 2.3 1.9
Wd (MeV) 0.8 11.4 6.2 7.2 6.7 7.1

III. NUMERICAL RESULTS

In this section, we assess the validity of DWBA-NEB cal-
culations by comparing them with CDCC-NEB results for the
breakup reaction of 93Nb(d, pX ) at Ed = 25.5 MeV using a
toy model in which the deuteron binding energy is varied ar-
tificially. This reaction has already been studied in our earlier
work [11] using the DWBA versions of the IAV model, and
good agreement with the experimental data was found.

We have employed the same potentials as in our previous
calculations for this reaction. The proton-target and neutron-
target interactions were taken from the global parametrization
of Koning and Delaroche [30] while omitting the spin-orbit
term. In the CDCC calculations, � = 0–4 partial waves and
up to a maximum excitation energy of 20 MeV were consid-
ered for n-p continuum states. Intrinsic spins are disregarded
to simplify the calculations. The deuteron-target potential
used for the DWBA calculations was initially adopted from
Ref. [31], but the potential depths were readjusted to repro-
duce the elastic scattering differential cross section calculated
by CDCC. Table I lists the fitted parameters for various
binding energies of the toy deuteron model. During the fitting
process, the remaining parameters were kept unchanged. The
rationale behind this adjustment is to limit the variability when
comparing the NEB cross-sectional differentials derived by
these methods.

Figure 2 shows the angular distribution of the elastic
scattering cross section of d + 93Nb at an incident energy
of 25.5 MeV for the deuteron binding energies [Fig. 2(a)]
Enp = 1.224 MeV, [Fig. 2(b)] Enp = 2.224 MeV, [Fig. 2(c)]
Enp = 3.224 MeV, [Fig. 2(d)] Enp = 4.224 MeV, [Fig. 2(e)]
Enp = 10 MeV, and [Fig. 2(f)] Enp = 20 MeV. The CDCC
results are depicted by solid lines, whereas the dashed lines
represent the phenomenological optical model calculations
with parameters adjusted to reproduce the CDCC result. Over-
all, we find good agreement between both calculations in the
whole angular range. The OM so obtained was used to com-
pute the entrance channel distorted waves in the DWBA-NEB
calculations [cf. Eq. (48)]. It is worth noting that the effect of
the deuteron continuum on the elastic cross section becomes
progressively smaller as the binding energy increases, becom-
ing negligible for the well bound cases. This is illustrated in
Fig. 2(f) where, in addition to the full CDCC calculation, we
also include (dotted line) the CDCC calculation omitting the
p-n unbound states, which is equivalent to an optical model
calculation with the so-called Watanabe potential [32], i.e., the
diagonal ground-state potential from the CDCC calculation.

0.01

0.1

1

dσ
/d

σ R CDCC
OM-fit

0.01

0.1

1

dσ
/d

σ R

0 50 100 150
θc.m. (deg)

0.01

0.1

1

dσ
/d

σ R

0 50 100 150
θc.m. (deg)

OM-Wat

Enp=1.224 MeV

Enp=3.224 MeV

Enp=2.224 MeV

Enp=4.224 MeV

(a) (b)

(d)(c)

(e) (f)Enp=10 MeV Enp=20 MeV

FIG. 2. Elastic scattering of d + 93Nb at 25.5 MeV with dif-
ferent binding energy of n-p pair, (a) Enp = 1.224 MeV, (b) Enp =
2.224 MeV, (c) Enp = 3.224 MeV, (d) Enp = 4.224 MeV, (e) Enp =
10 MeV, and (f) Enp = 20 MeV.
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FIG. 3. The NEB contribution to the 93Nb(d, pX ) reaction at a
laboratory energy of 25.5 MeV for an outgoing proton center-of-
mass energy of 14 MeV versus the neutron-target orbital angular
momentum. Each panel corresponds to an assumed binding energy
of the deuteron, as indicated by the labels.
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FIG. 4. Top panels: Modulus of the reduced radial part of elastic
channel wave function for d + 93Nb at E = 25.5 MeV for the incom-
ing partial waves λ = 0 (a) and λ = 10 (b). Bottom panels: Modulus
square of the radial part of neutron-target wave function defined in
Eq. (48) for λ = 0 (c) and λ = 10 (d).

In Fig. 3, we present the angle-integrated NEB differential
cross section, dσ/dEp, as a function of the neutron-target or-
bital angular momentum at a proton energy of Ep = 14 MeV
in the center-of-mass (c.m.) frame [cf. Eq. (50)]. The solid
and dashed lines correspond, respectively, to the CDCC-NEB
and DWBA-NEB calculations. Figures 3(a)–3(f) correspond
to the deuteron separation energies 1.224 MeV, 2.224 MeV,
3.224 MeV, 4.224 MeV, 10 MeV, and 20 MeV, respectively.
Several conclusions can be drawn from this figure. First, one
sees that the NEB cross section decreases as the binding
energy increases. Specifically, a significant change can be ob-
served by comparing the binding energies Enp = 1.224 MeV
and Enp = 2.224 MeV. This is because the former repre-
sents a loosely bound halolike case, which will be extremely
vulnerable to breakup during a collision. Second, the CDCC-
NEB and DWBA-NEB calculations are found to yield almost
identical results for the least bound case, but they progres-
sively depart from each other as the binding energy grows.

To further investigate these results, we analyze in more
detail the cases Enp = 2.224 MeV and Enp = 20 MeV, as rep-
resentative examples of the weakly bound and strongly bound
cases. In the top panels of Fig. 4, we present the modulus of
the elastic channel wave function (χ (+)

aA ) for the partial waves
λ = 0 [Fig. 4(a)] and λ = 10 [Fig. 4(b)] and a binding energy
of Enp = 2.224 MeV, where λ refers to the orbital angular
momentum between the deuteron and the target. In each plot,
we include the results obtained with the phenomenological
optical potential (OMP-fit) and with the CDCC calculation.
It is apparent that both calculations agree well in phase and
magnitude, both in the asymptotic and internal regions. In
the bottom panels of this figure, we show the quantity Rαin

x =
1

2J+1

∑
αout

|Rαin,αout
x |2, where Rαin,αout

x is the radial part of he
neutron-target wave function given by Eq. (51). The quantity
Rαin

x is meant to provide information on the spatial location of
the NEB cross section along the x-A coordinate. Again, the
solid and dashed lines represent the results obtained evaluat-
ing the source term with the CDCC wave functionn or in the
DWBA approximation with the phenomenological optical po-

50 100 150
θp (deg)

0.01

0.1

1

d2 σ/
dE

dΩ
 (m

b/
M

eV
 s

r)

CDCC
DWBA-fit
DWBA-Wat

93
Nb(d,pX)@25.5 MeV

FIG. 5. NEB double differential cross section angular distribu-
tion for the d + 93Nb reaction at 25.5 MeV and an outgoing proton
energy of 14 MeV in the center-of-mass frame, using a deuteron
binding energy of 20 MeV.

tential, respectively. The wave function calculated with both
methods are remarkably close, which explains the results in
Fig. 3(b).

We now consider the well-bound case, Enp = 20 MeV. The
elastic scattering distributions predicted by the three calcula-
tions are remarkably similar, as shown in Fig. 2(f). However,
the NEB results, shown in Fig. 5, exhibit significant differ-
ences, with the DWBA-IAV NEB cross section exceeding
greatly the CDCC-IAV result. To pin down the effect of
the continuum states in the CDCC-IAV calculation, we also
show the NEB cross section computed with the DWBA-IAV
formula but with the Watanabe potential. This calculation is
very close to the full CDCC-IAV result, confirming the fact
that continuum states are not responsible for the disagreement
between the CDCC-IAV and DWBA-fit calculations.

These findings indicate that the description of the entrance
channel wave function can drastically affect the calculated
NEB cross sections. In the particular case analyzed here, we
consider that the CDCC wave function, being based on the
better known nucleon-nucleus potentials, should provide more
reliable results. Indeed, we cannot rule out the possibility that
an alternative choice of the phenomenological optical poten-
tial may give results closer to those obtained with CDCC, but
we have not explored this possibility further in this work.

To clarify the differences between the DWBA-IAV and
CDCC-IAV results we have performed some additional cal-
culations, summarized in Fig. 6. Figure 6(a) presents the
partial wave distributions of the reaction cross section ob-
tained with the CDCC approach, with the phenomenological
optical model (OMP-fit), and with the Watanabe potential
(OMP-Wat) mentioned earlier. The three calculations give
very similar results. This is consistent with the results shown
in Fig. 2(f) for the elastic scattering cross section. Figure 6(b)
displays the partial wave distribution of the NEB differential
cross-section energy distribution, dσ/dE , for a CM frame
outgoing proton energy of 14 MeV. The CDCC and DWBA
results agree only for partial waves with λ > 10, while sig-
nificant differences are evident at lower partial waves. Note
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FIG. 6. (a) Partial wave distributions of reaction cross section be-
tween projectile and target d + 93Nb at E = 25.5 MeV with a
(hypothetical) deuteron binding energy of 20 MeV. (b) Partial wave
distributions of NEB cross-section (with λ the projectile-target rela-
tive angular momentum). (c) and (d) Modulus squared of the reduced
radial part of the d + 93Nb elastic scattering wave function for λ = 7
and λ = 10, respectively.

that the DWBA calculation utilizing the Watanabe potential
produces comparable results to the full CDCC calculation.

The similarity of the d + A elastic and reaction cross sec-
tion computed with the OMP-fit and CDCC methods suggests
that their elastic d + 93Nb wave functions must agree in the
asymptotic region. However, these functions do not neces-
sarily coincide in the internal region, and this might explain
the differences in the NEB cross sections. To explore this, in
Figs. 6(c) and 6(d), the modulus of elastic scattering wave
functions computed by CDCC, the Watanabe OMP and the
fitted OMP (OMP-fit) are shown for λ = 7 and λ = 10 waves,
respectively. The results confirm that the asymptotic part of
these wave functions agree (both in phase and magnitude) for
all three calculations. However, the CDCC and OMP-fit wave
functions differ considerably in the internal region. This result
suggests that the discrepancy seen in Fig. 6(b) is primarily due
to variations in the internal part of the elastic wave function.
Specifically, the difference is maximum for λ = 7, while for
λ = 10 the interior part of the wave function is relatively small
compared to the external part, resulting in a small difference
in the NEB cross sections.

To investigate how the differences between the elastic
deuteron-target wave function calculated with the different
models can affect the corresponding NEB cross sections,
we compare in Figs. 7(a) and 7(c) the functions Rαin

x (rx ),
defined earlier, for the λ = 7 and λ = 10 partial waves, re-
spectively. We also show in Figs. 7(b) and 7(d) the product
Rαin

x (rx )Wx(rx ) evaluated for the same neutron-target partial
waves. The plots show that, for λ = 7, the CDCC and Watan-
abe potential models produce very close results within the
range of the imaginary part of the neutron-target optical po-
tential, as shown in Fig. 7(b). By contrast, the results obtained
with the phenomenological optical model potential exhibit
considerable disparity when compared to the previous results.
These observations align well with the results presented in

FIG. 7. (a) and (c) Radial dependence of the quantity |Rαin
x |2 (see

main text) as a function of the neutron-target separation for the d +
93Nb reaction at E = 25.5 MeV and an artificial deuteron binding
energy of 20 MeV for the projectile-target orbital angular momenta
λ = 7 (a) and λ = 10 (c). (b) and (d) Product |Rαin

x (rx )|2 Wx (rx ), with
Wx (rx ) the imaginary part of the neutron-target optical potential.

Fig. 6(b) for the NEB cross section, where the DWBA-fit
calculation deviates significantly from the CDCC and DWBA-
Wat results. For the λ = 10 partial wave, although all three
calculations yield slightly different results, the variations are
much smaller than for λ = 7 and this explains the similarity
of the corresponding NEB cross sections found in Fig. 6(b).

IV. SUMMARY AND CONCLUSIONS

In this work, we have presented the numerical implemen-
tation of the IAV model for the inclusive breakup of two-body
projectiles using a full three-body description of the scattering
problem. We have provided a detailed derivation of the IAV
model with the CDCC three-body wave function, employ-
ing an angular momentum channel basis. We have provided
detailed formulas for the CDCC-IAV formulation within a
unified formalism.

The method has been then applied to the d + 93Nb reaction
at an incident energy of 25.5 MeV. Our numerical application
examined the difference between the CDCC-IAV and DWBA-
IAV models, by artificially modifying the binding energy of
the deuteron. For the DWBA calculations, two distinct types
of optical potentials have been used: one fitted to the elastic
scattering cross section obtained from the CDCC calculations
and the other computed with the Watanabe model. Our main
findings can be summarized as follows:

(i) For the weakly bound cases (Epn � 4 MeV), the NEB
cross sections computed with the CDCC and the phe-
nomenological OMP give very similar NEB cross
sections.

(ii) As the deuteron separation energy is gradually in-
creased, the CDCC-IAV and DWBA-IAV calculations
deviate from each other, in spite of the fact that they
give very similar elastic cross sections.

(iii) Inspection of the elastic channel wave function
revealed that, for the weakly bound case, these func-
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tions are very similar for the CDCC and phenomeno-
logical OMP, both in the internal and asymptotic
parts. By contrast, for the well-bound cases, the
elastic wave functions agree only in the asymptotic
region, but they differ considerably in the interior.
This explains the agreement of the elastic cross
sections and the disagreement on the NEB cross sec-
tions since these observables are mostly sensitive to
the asymptotic and internal parts, respectively.

(iv) To investigate the effect of the deuteron continuum,
DWBA-IAV calculations with the Watanabe potential
have been also performed. The elastic and NEB cross
sections obtained in this case are very close to the
CDCC results, indicating that the continuum plays a
minor role in the NEB calculated cross sections and
it is therefore not responsible for the observed differ-
ences between the CDCC-IAV and DWBA-IAV NEB
calculations.

Although the reliability and accuracy of the CDCC-IAV
and DWBA-IAV methods should be further assessed against
experimental data for different systems and energies, we may
foresee that, at least in the case of deuteron induced reactions,
the CDCC wave function should provide a more realistic

description of the entrance channel wave function and hence
more reliable NEB predictions since this method relies on
nucleon-nucleus potentials, which are in general better con-
strained than those for nucleus-nucleus scattering.

Whereas our results have provided significant insights, our
study has limitations. In particular, for very weakly bound
nuclei, such as halo nuclei, new effects might arise due to
the enhanced breakup probability. Because of the larger model
space required in this case, it becomes more demanding com-
putationally. Calculations are nevertheless underway and the
results will be published elsewhere.

ACKNOWLEDGMENTS

This work has been partially supported by National Nat-
ural Science Foundation of China (Grants No. 12105204),
by the Fundamental Research Funds for the Central
Universities, by Grant No. PID2020-114687GB-I00 by
MCIN/AEI/10.13039/501100011033, the project PAIDI 2020
with Ref. P20_01247 by the Consejería de Transformación
Económica, Industria, Conocimiento y Universidades, Junta
de Andalucía (Spain), and by “ERDF A way of making Eu-
rope”.

[1] F. F. Duan, Y. Y. Yang, J. Lei, K. Wang, Z. Y. Sun, D. Y. Pang,
J. S. Wang, X. Liu, S. W. Xu, J. B. Ma, P. Ma, Z. Bai, Q. Hu,
Z. H. Gao, X. X. Xu, C. J. Lin, H. M. Jia, N. R. Ma, L. J. Sun,
D. X. Wang et al. (RIBLL Collaboration), Phys. Rev. C 105,
034602 (2022).

[2] A. Di Pietro, A. Moro, J. Lei, and R. de Diego, Phys. Lett. B
798, 134954 (2019).

[3] V. Pesudo et al., Phys. Rev. Lett. 118, 152502 (2017).
[4] F. Duan, Y. Yang, K. Wang, A. Moro, V. Guimarães, D. Pang,

J. Wang, Z. Sun, J. Lei, A. Di Pietro, X. Liu, G. Yang, J. Ma,
P. Ma, S. Xu, Z. Bai, X. Sun, Q. Hu, J. Lou, X. Xu et al., Phys.
Lett. B 811, 135942 (2020).

[5] Y. Y. Yang, X. Liu, D. Y. Pang, D. Patel, R. F. Chen, J. S.
Wang, P. Ma, J. B. Ma, S. L. Jin, Z. Bai, V. Guimarães, Q.
Wang, W. H. Ma, F. F. Duan, Z. H. Gao, Y. C. Yu, Z. Y. Sun,
Z. G. Hu, S. W. Xu, S. T. Wang et al., Phys. Rev. C 98, 044608
(2018).

[6] K. Wang, Y. Y. Yang, A. M. Moro, V. Guimarães, J. Lei, D. Y.
Pang, F. F. Duan, J. L. Lou, J. C. Zamora, J. S. Wang, Z. Y. Sun,
H. J. Ong, X. Liu, S. W. Xu, J. B. Ma, P. Ma, Z. Bai, Q. Hu,
X. X. Xu, Z. H. Gao et al. (RIBLL Collaboration), Phys. Rev.
C 103, 024606 (2021).

[7] V. Jha, V. Parkar, and S. Kailas, Phys. Rep. 845, 1 (2020).
[8] M. Ichimura, N. Austern, and C. M. Vincent, Phys. Rev. C 32,

431 (1985).
[9] N. Austern, Y. Iseri, M. Kamimura, M. Kawai, G. Rawitscher,

and M. Yahiro, Phys. Rep. 154, 125 (1987).
[10] M. Hussein, T. Frederico, and R. Mastroleo, Nucl. Phys. A 511,

269 (1990).
[11] J. Lei and A. M. Moro, Phys. Rev. C 92, 044616 (2015).
[12] J. Lei and A. M. Moro, Phys. Rev. C 92, 061602(R) (2015).
[13] J. Lei and A. M. Moro, Phys. Rev. C 95, 044605 (2017).

[14] J. Lei and A. M. Moro, Phys. Rev. C 97, 011601(R) (2018).
[15] J. Lei, Phys. Rev. C 97, 034628 (2018).
[16] J. Lei and A. M. Moro, Phys. Rev. Lett. 123, 232501 (2019).
[17] J. L. Ferreira, J. Rangel, J. Lubian, and L. F. Canto, Phys. Rev.

C 107, 034603 (2023).
[18] A. Diaz-Torres, D. J. Hinde, J. A. Tostevin, M. Dasgupta, and

L. R. Gasques, Phys. Rev. Lett. 98, 152701 (2007).
[19] H. D. Marta, L. F. Canto, and R. Donangelo, Phys. Rev. C 89,

034625 (2014).
[20] G. D. Kolinger, L. F. Canto, R. Donangelo, and S. R. Souza,

Phys. Rev. C 98, 044604 (2018).
[21] K. J. Cook, E. C. Simpson, L. T. Bezzina, M. Dasgupta, D. J.

Hinde, K. Banerjee, A. C. Berriman, and C. Sengupta, Phys.
Rev. Lett. 122, 102501 (2019).

[22] G. H. Rawitscher, Phys. Rev. C 9, 2210 (1974).
[23] M. Yahiro, Y. Iseri, H. Kameyama, M. Kamimura, and M.

Kawai, Prog. Theor. Phys. Suppl. 89, 32 (1986).
[24] N. Austern, M. Yahiro, and M. Kawai, Phys. Rev. Lett. 63, 2649

(1989).
[25] L. D. Faddeev, Sov. Phys. JETP 12, 1014 (1961) [Zh. Eksp.

Teor. Fiz. 39, 1459 (1960)].
[26] I. J. Thompson and F. M. Nunes, Nuclear Reactions for

Astrophysics: Principles, Calculation and Applications of Low-
Energy Reactions (Cambridge University Press, Cambridge,
2009).

[27] W. Baylis and S. Peel, Comput. Phys. Commun. 25, 7 (1982).
[28] T. Druet, D. Baye, P. Descouvemont, and J.-M. Sparenberg,

Nucl. Phys. A 845, 88 (2010).
[29] A. Kasano and M. Ichimura, Phys. Lett. B 115, 81 (1982).
[30] A. Koning and J. Delaroche, Nucl. Phys. A 713, 231 (2003).
[31] Y. Han, Y. Shi, and Q. Shen, Phys. Rev. C 74, 044615 (2006).
[32] S. Watanabe, Nucl. Phys. 8, 484 (1958).

034612-11

https://doi.org/10.1103/PhysRevC.105.034602
https://doi.org/10.1016/j.physletb.2019.134954
https://doi.org/10.1103/PhysRevLett.118.152502
https://doi.org/10.1016/j.physletb.2020.135942
https://doi.org/10.1103/PhysRevC.98.044608
https://doi.org/10.1103/PhysRevC.103.024606
https://doi.org/10.1016/j.physrep.2019.12.003
https://doi.org/10.1103/PhysRevC.32.431
https://doi.org/10.1016/0370-1573(87)90094-9
https://doi.org/10.1016/0375-9474(90)90159-J
https://doi.org/10.1103/PhysRevC.92.044616
https://doi.org/10.1103/PhysRevC.92.061602
https://doi.org/10.1103/PhysRevC.95.044605
https://doi.org/10.1103/PhysRevC.97.011601
https://doi.org/10.1103/PhysRevC.97.034628
https://doi.org/10.1103/PhysRevLett.123.232501
https://doi.org/10.1103/PhysRevC.107.034603
https://doi.org/10.1103/PhysRevLett.98.152701
https://doi.org/10.1103/PhysRevC.89.034625
https://doi.org/10.1103/PhysRevC.98.044604
https://doi.org/10.1103/PhysRevLett.122.102501
https://doi.org/10.1103/PhysRevC.9.2210
https://doi.org/10.1143/PTPS.89.32
https://doi.org/10.1103/PhysRevLett.63.2649
https://inspirehep.net/literature/9136
https://doi.org/10.1016/0010-4655(82)90039-X
https://doi.org/10.1016/j.nuclphysa.2010.05.060
https://doi.org/10.1016/0370-2693(82)90800-0
https://doi.org/10.1016/S0375-9474(02)01321-0
https://doi.org/10.1103/PhysRevC.74.044615
https://doi.org/10.1016/0029-5582(58)90180-9

