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Description of the inclusive (d, d ′x) reaction with the semiclassical distorted-wave model

Hibiki Nakada ,1,* Kazuki Yoshida ,2 and Kazuyuki Ogata 3,1

1Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan
2Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan

3Department of Physics, Kyushu University, Fukuoka 819-0395, Japan

(Received 6 March 2023; revised 3 July 2023; accepted 22 August 2023; published 1 September 2023)

Background: The description of deuteron-induced inclusive reactions has been an important subject in direct
nuclear reaction studies and nuclear data science. For proton-induced inclusive processes, the semiclassical
distorted wave model (SCDW) is one of the most successful models based on quantum mechanics.
Purpose: We improve SCDW for deuteron-induced inclusive processes and clarify the importance of the proper
treatment of the kinematics of the deuteron inside a nucleus.
Methods: The double differential cross section (DDX) of the inclusive deuteron-emission process (d, d ′x) is
described by one-step SCDW. The changes in the kinematics due to the distortion effect, the refraction effect,
are taken into account by the local semiclassical approximation.
Results: The calculated DDXs of (d, d ′x) reasonably reproduce experimental data in the small energy-transfer
region and at forward and middle angles with some exceptions. The angular distributions of (d, d ′x) are improved
by including the refraction effect.
Conclusion: The proper treatment of the changes in the kinematics of the deuteron inside a nucleus is necessary
in describing the (d, d ′x) reaction. The effect of the changes on the DDX of (d, d ′x) is significant compared to
on the proton-induced inclusive process (p, p′x) because of the stronger distortion effect on the deuteron.
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I. INTRODUCTION

Deuteron has the smallest binding energy among all stable
nuclei. As originated from the idea of Butler [1], the weakly
bound nature of the deuteron has been utilized for carrying
out one-nucleon transfer reactions to study the single-particle
(s.p.) structure of nuclei [2]. Furthermore, deuteron-induced
reactions have opened many physics cases to reveal three-
body dynamics of reaction systems in which a fragile nucleus
is involved [3–8]. Roles of deuteron breakup channels, in
which the proton and neutron are in continuum states, have
intensively been investigated.

The fragileness of the deuteron is also important for
nuclear data science. The international fusion materials irra-
diation facility (IFMIF) [9], which aims at using the inclusive
(d, nx) reaction at 40 MeV as an intense neutron source, is one
of the most well-known international scientific projects using
a deuteron accelerator. The central idea of IFMIF is that the
incident deuteron is broken up by interacting with the target
and intense neutron with about half the deuteron incident
energy is emitted; statistical decay after forming a compound
nucleus is also considered to contribute to the neutron emis-
sion for large energy transfer. Quite recently, an integrated
code system describing deuteron-induced reactions, which is
designated as DEURACS, has been constructed and successfully
applied to the analysis of (d, nx) reaction data [10–12]. It
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was found that the description of deuteron breakup channels
is of crucial importance for accurately evaluating the amount
of the emitted neutron, its angular and energy distribution in
particular.

From the viewpoint of a direct nuclear reaction study, the
most challenging part for describing (d, nx) is the deuteron
breakup with exciting the target nucleus A, which is called the
nonelastic breakup (NEB). NEB contains a huge number of
final states of A and it is almost impossible to describe each
nuclear state accurately. DEURACS employs the Glauber model
[13] to circumvent the difficulty; the eikonal and adiabatic
approximations allow one to describe NEB as a combination
of neutron elastic and proton nonelastic processes, and the
latter can easily be evaluated by using the closure property
of the proton scattering matrix [14,15]. The validity of the
Glauber model is, however, rather questionable at low incident
energy and/or for large momentum and energy transfer. In
fact, the agreement between the result of DEURACS and exper-
imental data for (d, nx) at middle emission angles are slightly
flawed compared with those at forward angles [12]. Although
the neutron emission cross section is forward-peaked and the
“deviation” is not very serious for practical use, the descrip-
tion of NEB of the deuteron without using the eikonal and
adiabatic approximations will be an important subject of nu-
clear reaction study. Recently, the Ichimura-Austern-Vincent
(IAV) model [16] has successfully been applied to NEB in
several cases [8,17,18]. It should be noted, however, that in
the IAV model for (d, nx), the kinematics of the neutron are
not affected at all by the nonelastic processes for which the
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proton and A undergo. In this sense, the three-body kinematics
are not treated in a fully consistent manner in the IAV model.

On the other hand, for proton-induced inclusive processes,
(p, p′x), several quantum-mechanical models [19–22] have
been developed and successfully reproduced experimental
data. Among them, the semiclassical distorted wave model
(SCDW) [22–27] has no free adjustable parameter and allows
a simple intuitive picture of (p, p′x). The original SCDW
adopted the local Fermi-gas model (LFG) for initial and final
nuclear s.p. states. Although LFG will be totally unrealistic for
modeling specific nuclear states, it will reasonably describe
the total response of a nucleus to which many initial and final
states contribute. It should be noted that, in SCDW, there
is no kinematical assumption or restriction for the reaction
particles. This idea for treating processes via a huge number
of nuclear states is expected to work also for deuteron-induced
reactions. Note that the latest version of SCDW adopts the
Wigner transform of one-body density matrices calculated
with a s.p. model for nuclei [26] instead of LFG; for reducing
numerical task, we use LFG in this work.

The main purpose of this study is to extend SCDW to
deuteron-induced inclusive processes. Although our ultimate
goal is to describe (d, nx), as the first step, we focus on the
inclusive deuteron-emission process (d, d ′x). We assume for
simplicity that scattering waves of the incoming and outgoing
deuterons can be described with a phenomenological optical
potential, meaning that deuteron breakup channels are not
explicitly treated but net loss of probability is implicitly taken
into account by the absorption effect of the deuteron optical
potential. On the other hand, as in SCDW studies on (p, p′x),
we respect the kinematics of a deuteron inside a nucleus,
by using the local semiclassical approximation (LSCA) [22]
to the deuteron distorted waves. We clarify how the proper
treatment of the “refraction” of the deuteron by the distorting
potential is important to describe (d, d ′x) experimental data.
We include only the one-step process and mainly discuss the
small energy-transfer region.

The construction of this paper is as follows. In Sec. II we
describe SCDW for the inclusive (d, d ′x) reaction, applying
LFG and LSCA. In Sec. III we compare the calculated DDXs
of the inclusive (d, d ′x) reaction with experimental data and
demonstrate the effect of nuclear refraction. Finally, a sum-
mary is given in Sec. IV.

II. FORMALISM

We describe the inclusive (d, d ′x) reaction by one-step
SCDW. The foundation of SCDW is the DWBA series expan-
sion of the transition matrix (T matrix). The T-matrix element,
for which the target nucleus is excited from the initial s.p. state
φα to the final one φβ , is given by

Tβα = 〈χ (−)
f (r0)φβ (r) | v(r0 − r) | χ (+)

i (r0)φα (r)〉, (1)

where r0 and r are the coordinates of the incident deuteron
and the nucleon inside the target, respectively. χi (χ f ) is the
distorted wave for the deuteron in the initial (final) state. The
superscripts (+) and (−) denote the outgoing and incoming
boundary conditions for χ , respectively. v is the effective
interaction between the deuteron and the target nucleon.

The double differential cross section (DDX) for the emitted
deuteron energy E f and the solid angle � f is given by

∂2σ

∂E f ∂� f
= C

k f

ki

∑
α,β

|Tβα|2δ(Ei + εα − E f − εβ ), (2)

where C = 4μ2/(2π h̄2)2, Ei is the deuteron incident energy,
μ is the reduced mass between the deuteron and the target
nucleus and ki (k f ) is the asymptotic momentum of the inci-
dent (emitted) deuteron. εγ (γ = α or β ) is the kinetic energy
of the target nucleon. The summation is taken over all the
initial and the final s.p. states, α and β, which are relevant
to the inclusive (d, d ′x) reaction. On expanding the squared
modulus in Eq. (2), one obtains

∂2σ

∂E f ∂� f
=C

k f

ki

∫
dr0drχ∗(−)

f (r0)v(r0 − r)χ (+)
i (r0)

×
∫

dr′
0dr′χ (−)

f (r′
0)v∗(r′

0 − r′)χ∗(+)
i (r′

0)K (r, r′),

(3)

where the kernel K (r, r′) is defined by

K (r, r′) ≡
∑

α

φα (r)φ∗
α (r′)

∑
β

φ∗
β (r)φβ (r′)

× δ(Ei + εα − E f − εβ ). (4)

When a large number of s.p. states are involved, K (r, r′)
becomes a short-ranged function of |r − r′| [23,24,28]. The
center-of-mass and relative coordinates of the d-N system, R
and s, respectively, are given by

R = Ad

Ad + 1
r0 + 1

Ad + 1
r, (5)

s = r0 − r. (6)

Inversely, r0 and r are written as

r0 = R + 1

Ad + 1
s, (7)

r = R − Ad

Ad + 1
s, (8)

where Ad is the mass number of the deuteron, i.e., Ad = 2.
With the coordinates R and s, one can rewrite Eq. (3) as

∂2σ

∂E f ∂� f
=C

k f

ki

∫
dR ds dR′ ds′

× χ
∗(−)
f (R + s/3)v(s)χ (+)

i (R + s/3)

× χ
(−)
f (R′ + s′/3)v∗(s′)χ∗(+)

i (R′ + s′/3)

× K (R, s, R′, s′), (9)

where

K (R, s, R′, s′) =
∑

α

φα (R − 2s/3)φ∗
α (R′ − 2s′/3)

×
∑

β

φ∗
β (R − 2s/3)φβ (R′ − 2s′/3)

× δ(Ei + εα − E f − εβ ). (10)
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Here, we make two approximations to Eq. (9). One is LFG for
nuclear states and the other is LSCA for the distorted waves as
mentioned in Sec. I. In LFG, φγ (γ = α or β ) is approximated
by the plane wave with momentum kγ within a smaller cell
size of |s| than the range of v. The summation of γ is then
expressed as an integral over kγ , where the threshold momen-
tum between channels α and β is the local Fermi momentum
kF (R), which is related to the nuclear density ρ(R) through

ρ(R) = 4
4π

3

k3
F (R)

(2π )3
. (11)

In LSCA, the short-range propagation of the distorted wave
χc (c = i or f ) from a reference point R is approximated by
the plane wave, i.e.,

χc(R + s/3) � χc(R)eikc (R)·s/3. (12)

This approximation is valid because the range of the d-N
interaction v is short and therefore only a small s is relevant to
the reaction. In Eq. (12), kc(R) is the real local momentum of
the deuteron. The direction of kc(R) is taken to be the same as
that of the flux of the distorted wave χc(R). The magnitude of
kc(R) is given by that of the real part of the complex local
momentum Kc(R) satisfying the local energy conservation
[24]

h̄2k2
c

2μ
= h̄2K2

c (R)

2μ
+ Uc(R), (13)

where Uc(R) (c = i or f ) is a complex distorting potential for
the deuteron. In the present calculation, we use the optical
potential for Uc(R) as mentioned in Sec. III A.

Using LFG and LSCA, one can rewrite Eq. (9) as

∂2σ

∂E f ∂� f
= C

(2π )3

k f

ki

∫
dR|χ (−)

f (R)|2|χ (+)
i (R)|2

×
∫

kα�kF (R)
dkα

∫
kβ>kF (R)

dkβ

×
∣∣∣∣
∫

dsv(s)e−iq(R)·s
∣∣∣∣
2

× δ(ki(R) + kα − k f (R) − kβ )

× δ(Ei + εα − E f − εβ ), (14)

where q(R) is the local momentum transfer defined by
ki(R) − k f (R). In Eq. (14), Dirac’s δ functions and the ranges
of the integrations, kα � kF (R) and kβ > kF (R), guarantee
that the d-N elementary process satisfies the Pauli princi-
ple and the energy and local momentum conservation in the
(d, d ′x) reaction. We make the on-the-energy-shell approxi-
mation to the squared modulus of the matrix element of v:

μ2
dN

(2π h̄2)2

∣∣∣∣
∫

dsv(s)e−iq(R)·s
∣∣∣∣
2

�
(

dσdN

d�

)
θdN (R),EdN (R)

, (15)

where μdN is the reduced mass of the d-N system. θdN (R)
is the local d-N scattering angle between the initial rela-
tive momentum κ(R) and the final one κ′(R), which are

defined by

κ(R) ≡ 1

Ad + 1
ki(R) − Ad

Ad + 1
kα, (16)

κ′(R) ≡ Ad

Ad + 1
k f (R) − 1

Ad + 1
kβ. (17)

The local d-N scattering energy ER is defined by

EdN (R) = h̄2κ2(R)

2μdN
. (18)

By substituting Eq. (15) for Eq. (14) and integrating over kβ ,
one obtains the following closed form of the DDX of the
inclusive (d, d ′x) reaction:

∂2σ

∂E f ∂� f
=

[
Ad A

Ad + A

]2 k f

ki

∫
dR

× |χ (−)
f (R)|2|χ (+)

i (R)|2
[

∂2σ

∂E f ∂� f

]
R

ρ(R),

(19)

where A is the mass number of the target nucleus. The DDX
of the elementary process averaged over kα at R in the Fermi
sphere characterized by k3

F (R) is given by[
∂2σ

∂E f ∂� f

]
R

= 1

(4π/3)k3
F (R)

[
Ad + 1

Ad

]2

×
∫

kα�kF (R)
dkα

(
dσdN

d�

)
θdN (R),EdN (R)

× δ(Ei + εα − E f − εβ ). (20)

LSCA can incorporate the distortion effect on the kinemat-
ics of the incident and emitted particles. This effect can be
regarded as refraction due to the distorting potential because
the direction of the local momentum changes continuously
as a function of R. To clarify the refraction effect, we also
consider the asymptotic momentum approximation (AMA),
which replaces kc(R) with kc, i.e., kc(R) → kc in Eq. (12):

χc(R + s/3) � χc(R)eikc·s/3. (21)

If AMA shown in Eq. (21) is used instead of LSCA, kc(R) is
constant with respect to R in Eqs. (13)–(20). The effect of the
refraction is discussed in Sec. III C. The validity of LSCA and
AMA is given in the Appendix.

III. RESULTS AND DISCUSSION

A. Numerical inputs

We assume the Woods-Saxon shaped global optical po-
tential by An and Cai [31] for the distorting potential Uc(R)
of the deuteron scattering off target nuclei. The effect of the
nonlocality of the deuteron distorting potentials is taken into
account by multiplying the scattering waves by the Perey
factor [32] Fc(R) = [1 − μβ2/(2h̄2)Uc(R)]−1/2, where μ is
the reduced mass of the deuteron and the target. The range
of nonlocality β for the deuteron is taken to be 0.54 [33]. We
assume the Woods-Saxon form for the nuclear density as

ρ(R) = ρ0

1 + exp
(

R−Rρ

aρ

) , (22)
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where the radial parameter is given by Rρ = rρA1/3 with rρ =
1.15 fm, the diffuseness parameter is set to aρ = 0.5 fm as in
Ref. [22], and A being the mass number of the target nucleus.
The constant ρ0 is determined to normalize the integrated
value of ρ(R) to A. The local Fermi momentum is calculated
from the nucleon density as in Eq. (11).

For the free d-N scattering cross section, we use the numer-
ical table fitted with several Gaussian functions to reproduce
the experimental data of p-d scattering from 5 to 800 MeV
[34]. In this table, the cross section does not diverge at 0◦
because we neglect the Coulomb elastic scattering. For the
free p-N scattering cross section used in the calculation of
the (p, p′x) process, we use the nucleon-nucleon t matrix by
Franey and Love [35,36].

B. Results of the SCDW calculation for (d, d ′x) reactions
and comparison with data

We show the DDXs of the inclusive (d, d ′x) reaction cal-
culated with SCDW using LSCA and AMA, and compare
them with experimental data. Below we discuss the DDXs as a
function of the emission energy E f of the deuteron with fixed
� f . Figure 1 shows the calculated DDXs as a function of E f at
the several laboratory scattering angles θ . The solid (dashed)
lines represent the DDXs using LSCA (AMA). The DDXs are
calculated for 27Al and 58Ni at the incident energy Ei = 100
and 80 MeV, 208Pb at 100 and 70 MeV, and 93Nb and 181Ta
(90Zr and 232Th) at 100 MeV (70 MeV). The experimental
data at 100 MeV are taken from Ref. [29] and those at Ei = 80
and 70 MeV are taken from Ref. [30]. In the experimental data
at 80 and 70 MeV, the sharp increase at very large E f is due
to the elastic scattering events.

The contribution of multistep processes becomes larger
as the energy transfer ω or θ increases, as discussed in the
(p, nx) reaction in Ref. [27]. For this reason, we focus only on
the regions: ω = Ei − E f � 15 MeV and θ � 60◦ in Fig. 1,
where the one-step process is expected to be dominant. The
calculated DDXs with LSCA reproduce the experimental data
reasonably well, although in some cases undershooting is
found. It turns out that the undershooting is pronounced at
smaller Ei or for heavier target nuclei and is particularly
noticeable in the DDXs on 58Ni at 100 MeV. Further inves-
tigation is needed on this underestimation issue.

In the small energy-transfer region, ω � 15 MeV, the
DDXs with AMA decrease rapidly as θ increases and show
too strong angular dependence compared to the data. In con-
trast to the AMA results, the DDXs with LSCA show better
agreements with the data in the angular dependence. At θ �
30◦, DDXs with LSCA are much closer to the experimental
data than those with AMA as discussed in Sec. III C. These
results imply that the inclusion of the nuclear refraction, i.e.,
the change in the kinematics of the deuteron inside the nu-
cleus, is necessary to describe the angular dependence of the
experimental data.

C. The effect of the refraction

Below we discuss the angular dependence of the nu-
clear refraction on the DDX of the 58Ni(d, d ′x) at 80 MeV.

Figure 2 shows the calculated DDXs as a function of the
center-of-mass scattering angle θc.m. with ω = 5 MeV and
the experimental data in Ref. [30]. The solid (dashed) line
represents the DDX with LSCA (AMA). It is shown that
the DDX with LSCA gives moderate angular dependence and
the results at the middle and backward angles are improved,
compared with those with AMA. However, the gap between
the result with LSCA and the experimental data remains and
the multistep processes will be necessary to fill it.

By comparing the calculated DDXs using LSCA and
AMA, one can see that there are mainly two effects of the
nuclear refraction. One is the extension of the allowed region
of θc.m.. For the DDX with AMA, the (d, d ′x) reaction is only
allowed to about 42◦. On the other hand, the DDX with LSCA
extends up to θc.m. = 73◦ and does not drop off at very small
θc.m.. This is because kinematics forbidden in AMA become
allowed in LSCA by the refraction of the momentum of the
deuteron in the target nucleus. It should be noted that, as one
may find from Eq. (19), the R dependence of the kinematics of
the deuteron due to the refraction dictates the averaged local
cross section of the d-N elementary process. In other words,
whether the d-N process can take place or not depends on R
through q(R) and kF (R).

To see this more clearly, we show in Fig. 3(a) q(R)
calculated with LSCA, and in Figs. 3(b) and 3(c) the kine-
matically allowed reaction regions of the elementary process
with LSCA and AMA, respectively, at θc.m. = 60◦ of the Fig. 2
case. In Figs. 3(b) and (c), a color bar with the value of “1”
indicates the regions where the d-N processes are allowed
while “0” indicates the regions where the d-N processes are
not allowed. In AMA, which does not include the nuclear
refraction, q(R) is the same as the asymptotic momentum
transfer q. Figure 3(c) shows that there are no kinematically
allowed reaction regions; it is found that this is because q is
too large to allow the elementary process. On the other hand,
with LSCA, there is a region in which the d-N process is
allowed because q(R) is dispersed by the nuclear refraction
and may have smaller values.

The other effect of refraction is the decrease in the DDX
at forward angles. This is because LSCA makes kinematically
allowed reaction regions narrower. Figures 3(d)–3(f) are the
same as Figs. 3(a)–3(c), respectively, but at θc.m. = 15◦. In
Fig. 3(f), one can see that the d-N process is kinematically
allowed in the very broad region when AMA is used. On
the other hand, in Fig. 3(e), the reaction region with LSCA
becomes narrower than that with AMA. This is because q(R)
is dispersed and can have too large values, as in Fig. 3(d), to
kinematically allow the d-N process.

From these results, we conclude that the two effects of
the nuclear refraction can be understood as the changes in
the kinematically allowed reaction regions associated with the
dispersion of q(R). Figure 4 is the same as Fig. 2 but with
ω = 30 MeV. In Fig. 4, we can see that the two effects of
refraction remain even when ω is large. The angular distribu-
tion of the DDX with LSCA gives a better agreement with the
experimental data than that with AMA, as in the case of ω = 5
MeV shown in Fig. 2. Figures 5(a) and 5(b) show the DDXs,
with ω = 5 MeV, of 58Ni(d, d ′x) at 80 MeV (40 MeV per nu-
cleon) and 58Ni(p, p′x) at 40 MeV, respectively. One sees that
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FIG. 1. Comparison of the experimental data and calculated DDXs of the inclusive (d, d ′x) reaction on 27Al and 58Ni at 100 MeV and
80 MeV, 208Pb at 100 MeV and 70 MeV, 93Nb and 181Ta at 100 MeV, and 90Zr and 232Th at 70 MeV for different deuteron emission angles.
The solid (dashed) lines represent the DDXs with LSCA (AMA). The experimental data at 100 MeV are taken from Ref. [29] and those at 80
and 70 MeV are from Ref. [30].
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FIG. 2. DDXs of the 58Ni(d, d ′x) at 80 MeV as a function of
the scattering angle with ω = 5 MeV. The solid (dashed) line corre-
sponds to the calculation with LSCA (AMA). The experimental data
are taken from Ref. [30].

FIG. 3. (a) The local momentum transfer with LSCA of
58Ni(d, d ′x) at 80 MeV with ω = 5 MeV at θc.m. = 60◦. (b) The
reaction region with LSCA. The color bar with the value of “1”
means the region in which the d-N process is allowed, while with the
value of “0” means the region in which the process is not allowed.
(c) Same as (b) but with AMA. (d), (e), and (f) same as (a), (b), and
(c), respectively, but at θc.m. = 15◦.

FIG. 4. Same as Fig. 2 but for ω = 30 MeV.

the effects of the refraction are more significant in the (d, d ′x)
reaction than in the (p, p′x) reaction. This is mainly because
the distorting potential between the deuteron and the target is
deeper than that between the proton and the target. Although
the importance of the nuclear refraction has been pointed out
in the preceding studies of (p, p′x) reactions with SCDW [22],
its effect is found to be not very significant. For (d, d ′x), as
shown in Fig. 1, the nuclear refraction completely changes the
behavior of the DDX. To analyze the (d, d ′x) reaction data,
inclusion of the nuclear refraction will be necessary.

FIG. 5. (a) Same as Fig. 2 but the horizontal axis is the momen-
tum transfer. (b) Same as (a) but of 58Ni(p, p′x).
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IV. SUMMARY

We have improved SCDW to the inclusive (d, d ′x) reac-
tion. The calculated DDXs of the (d, d ′x) were compared with
the experimental data of various targets at several deuteron
emission angles. Except for some cases, the calculated DDXs
with LSCA reasonably reproduce the experimental data in the
regions where the one-step process is expected to be domi-
nant, i.e., for small energy transfer and at forward angles. On
the other hand, the DDXs with AMA, which does not include
changes in the kinematics of the deuteron due to the distorting
potential, has too strong angular dependence and considerably
underestimate the experimental data at θ � 30◦. These results
imply that the nuclear refraction effect on the d-N elementary
process is necessary to reproduce the experimental data.

We have shown two effects of the refraction by compar-
ing the DDXs with LSCA and AMA as a function of the
scattering angle. One is the extension of the kinematically
allowed scattering angles to the backward region. The other
is the decrease in the DDX at forward angles. Both effects
can be understood by the changes in the regions where the
d-N elementary processes are allowed. It is confirmed that the
refraction effect is more significant on the (d, d ′x) than on the
(p, p′x) due to the strong distortion effect on deuteron.

For better agreement with experimental data in the large
energy-transfer region, it will be necessary to modify the
present SCDW model for multistep processes. Another future
work will be to consider the deuteron breakup, which is not
explicitly treated in this study, to describe the inclusive (d, nx)
reaction that is important in nuclear data science.
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APPENDIX: VALIDITY OF LSCA AND AMA

The validity of LSCA in nucleon scattering has been exam-
ined in Refs. [24,37]. In these papers, it is shown that LSCA
works well for the propagation up to about 1.5 fm at ener-
gies above 50 MeV. The validity of LSCA for the α particle
was also verified in Ref. [38]. For the deuteron, however, its
validity has not been confirmed. In Fig. 6, we examine the
validity of LSCA and AMA for the d-58Ni distorted wave χ

(+)
i

at 50 MeV per nucleon. Figure 6 shows the propagation in the

FIG. 6. The validity of LSCA and AMA. The real part of the
exact χ

(+)
i (solid line), with LSCA (dashed line), and with AMA

(dotted line) are compared. In (a) and (b), the propagation in radial
direction from (6 fm, 120◦, 0◦) and (2 fm, 90◦, 0◦) in the spherical
coordinate representation are shown, respectively.

radial direction from (a) Ra ≡ (6 fm, 120◦, 0◦) and (b) Rb ≡
(2 fm, 90◦, 0◦) in the spherical coordinate representation. The
solid, dashed, and dotted lines show, respectively, the real part
of the exact wave function, that with LSCA, and that with
AMA. In Fig. 6(a), both approximations reproduce well the
propagation up to about 0.7 fm. It should be noted that the
range of the interaction between the deuteron and the nucleon
is about 2.2 fm, and from the factor 1/(Ad + 1) = 1/3 for s
in Eq. (7), LSCA and AMA are required to be valid for the
propagation up to about 0.7 fm. In Fig. 6(b), on the other hand,
while LSCA reproduces the propagation of the wave function
well, AMA does not. This is because the direction of the
propagation direction s from Rb is orthogonal to the asymp-
totic momentum kc of the deuteron, i.e., kc · s = 0 in Eq. (12).
These results show that the kinematics of the deuteron at Rb

are significantly different from the asymptotic ones due to
the distorting potential, thus LSCA is essential to trace the
deuteron momentum inside the target nucleus.
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