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Calibration of nuclear charge density distribution by back-propagation neural networks
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Based on the back-propagation neural networks and density functional theory, a supervised learning is
performed firstly to generate the nuclear charge density distributions. The charge density is further calibrated
to the experimental charge radii by a composite loss function. It is found that, when the parity, pairing, and shell
effects are taken into account, about 96% of the nuclei in the validation set fall within 2 standard deviations of
the predicted charge radii. Moreover, the kink in charge radii on Hg isotopes has been successfully reproduced.
The calibrated charge density is then mapped to the matter density and further mapped to the binding energies
according to the Hohenberg-Kohn theorem. It provides an improved description of some nuclei in both binding
energies and charge radii. Moreover, the anomalous overbinding in 48Ca implies that the segmental calibrations
by neural networks for beyond-mean-field effects deserve further discussion.
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I. INTRODUCTION

The charge density distribution, experimentally given by
electron scattering experiments [1–3], is essential for extract-
ing nuclear structure information, including the shell-structure
evolution, shape coexistence, shape transition, and neutron-
skin thickness [4–7]. The relative radii of neighboring nuclei
can also be determined using muonic-atom spectra as well
as isotope shifts of laser spectroscopy [1,8]. Since a strong
connection exists between charge densities and matter densi-
ties, one generally calculates the charge density distribution
by merging the nucleon form factors [9,10] with the matter
densities determined by scattering experiments, the (−1p)
reaction [11], or even heavy-ion collisions [12]. Theoreti-
cally, the Fermi distributions [13,14] and the Fourier-Bessel
expansion [14,15] were used to describe nuclear matter and
charge densities approximately in the early stages of nuclear
physics development. With the development of computational
power, various branching models [16–25] derived from den-
sity functional theory (DFT) and shell-model calculation have
become more popular among theorists. However, due to the
complexity of nuclear many-body systems, the calculations of
these theories still face challenges in describing the beyond-
mean-field effects and nucleon-nucleon correlations [26–29].

For nuclear complex systems, back-propagation neural net-
works [30] have achieved a series of successes in various
aspects [31–45]. In early research, machine learning was em-
ployed as a universal approximator. Typically, the input and
the output consist of low-dimensional experimental data, such
as nuclear binding energy and charge radius [46,47], and its
performance is largely indistinguishable from that of regular

polynomial fitting. Taking into account the fundamental phys-
ical essence behind experimental data, the research emphasis
has been shifted towards integrating theories for forecasting
experimental outcomes. During this period, machine-learning
research dominated by Bayesian neural networks began to
learn and predict the residuals between theoretical and ex-
perimental values, which has an advantage that the corrected
predictions are more accurate than the existing theoretical
model [31,43,48]. As various theoretical models further ma-
ture, it became urgent to study the dependence of predictions
on the model framework. As early as in Ref. [48], the variation
in predicting nuclear masses with Bayesian neural networks
based on several theoretical models was discussed. The model
dependence of β-decay half-lives was also extensively dis-
cussed in Ref. [43]. In order to eliminate the dependencies,
the “world average” scheme was initially adopted in Ref. [48],
where the root-mean-square errors between experimental val-
ues and neural network predictions are taken to weight each
model so as to obtain an average prediction. This later evolved
into the Bayesian model averaging (BMA) [49,50], where the
reliability of mass predictions is determined through separa-
tion energies under the Bayes principle. That is to say, the
BMA allows a more targeted and physical determination of
weights.

On the other hand, generative models have gained
widespread acceptance across diverse fields, with their re-
search focus transitioning from low-dimensional data to
large-scale data such as images and texts. In accordance with
the trend of popular pretraining generative models [51], and
in order to further enhance the interpretability of network pre-
dictions and the correlation among different observables, we
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FIG. 1. Schematic diagram of the structure of the charge density
generator neural networks.

embark on this research by incorporating density information
into the prediction of charge radii. Based on the Hohenberg-
Kohn maps [52] of DFT and the proven strong generalization
ability of neural networks in describing density distributions
[53], in this paper, we collectively constrain the charge density
distributions by back-propagation with experimental data of
charge radii, which makes the residual information flow back
from radii to densities. We also construct the map from charge
densities to binding energies to achieve further transfer of
information from radii to binding energies.

II. THEORY

A. The charge density generators

Previously, a multilayer feed-forward neural network with
a back-propagation algorithm of error has been elaborated to
perform the maximum likelihood estimation in the process
of generating density distributions [53] approximating the
theoretical calculation. It is shown that a network trained by
the density distributions of about 200–300 nuclei is sufficient
to describe the density distributions of all the nuclei on the
nuclear chart and has a powerful extrapolation capability [53].

Based on such a high computational efficiency and gen-
eralization ability, in this study, we introduce the correlation
between the theoretical charge densities and the experimental
root-mean-square charge radii (Rc) to a new hybrid neural net-
work. The structure of this network is shown in Fig. 1, where
ρc,i = ρc(ri ) is the density on the mesh with ri = 0.1 × i fm
(i = 0, 1, . . . , 149). The input is the proton and neutron num-
bers of a nuclide, x = {Z, N}. The outputs are the charge
density ρc and the root-mean-square charge radius Rc gained
by the customized integration layer l̂ρc→Rc ,

l̂ρc→Rc : Rc,pre =
√∫

ρc,pre(r)r4dr∫
ρc,pre(r)r2dr

, (1)

where ρc,pre is the normalized predicted charge density dis-
tribution, i.e.,

∫
4πρc,pre(r)r2dr = Z . For the hidden module,

three attempts are made: (i) a deep fully connected neural net-
work, (ii) a convolutional neural network, suitable for learning
the gradient information of features, and (iii) a neural network
with a feature layer l̂i2→i8, containing the parity, pairing, and
shell effects,

l̂i2→i8 : {Z, N} → {Z, N,Op,On, δ, vp, vn,P}, (2)

where
Op = Z mod 2, On = N mod 2,

δ = [(−1)Z + (−1)N ]/2, P = vpvn/(vp + vn),
(3)

and vp (vn) is the difference between the actual proton (neu-
tron) number Z (N) and the nearest magic number (8, 20, 28,
50, 82, or 126). Hereinafter, we refer to the three schemes
of neural networks M as charge density generator-1 (CDG-
1), CDG-2, and CDG-3, respectively. See the Supplemental
Materials (SM) for details [54], where Refs. [53,55–58] are
also referred. The map is denoted as

(ρc, Rc)pre = M(x, w), (4)

where w is the set of trainable parameters.
In general, the charge density distribution calculated

by physical models ρc,theo, e.g., that calculated by the
Skyrme Hartree-Fock (SHF) theory with the Bardeen-Cooper-
Schrieffer (BCS) pairing, is expected to be quite accurate. The
Rc residuals between theory and experiment can be eliminated
by assuming a correction to the charge density δρc, satisfying∫ ∞

0 δρc(r)r2 dr = 0. We refer to this process as calibration.
The calibrated charge density distribution ρc,cali, whose Rc is
expected to be close to Rc,exp [1], can be obtained by

ρc,cali(r) = ρc,theo(r) + δρc(r). (5)

Additionally, we aim at making the smallest possible correc-
tions δρc to the theory.

To this end, we design a composite loss function. The
normalized mean-square-error Lρ [53] is employed as an as-
sessment of the density distribution:

Lρ = 1

Ng

149∑
i=0

[ρc,pre(ri) − ρc,theo(ri)]
2 × 1 fm6, (6)

where Ng = 150 indicates the number of grid points and the
factor 1 fm6 makes Lρ dimensionless. The charge density
distributions ρc,theo(r) are calculated by the SHF + BCS the-
ory with the SkM∗ energy density functional (EDF) [59].
The BCS correlation is treated by the commonly accepted
constant-gap approach [58], which simply adopts the relation-
ship that the pairing gap is inversely proportional to the square
root of the number of nucleons. The ρc,theo(r) are obtained
from the charge form factor Fc by the inverse Fourier-Bessel
transform,

ρc,theo(r) = 1

2π2

∫
dk k2 j0(kr)Fc(k; ρn, ρp, . . .). (7)

where j0 is the spherical Bessel function. The contributions
of the matter density and the spin-orbit current are folded in
Fc [58] (see the SM [54] for details). Here, Rc has a large
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range of variation (about 1–6 fm) and, therefore, the Pearson
χ2 divergence is picked; i.e., its loss function LR reads

LR = (Rc,pre − Rc,exp)2

Rc,pre
× 1 fm−1, (8)

where the factor 1 fm−1 also makes LR dimensionless. The
two loss functions Lρ and LR are combined as

Loss(W, w) ≡ 1

Bs

Bs∑
nu=1

[
(1 − W )L(nu )

ρ (w) + WL(nu )
R (w)

]
,

(9)

where W is the weighting factor and Bs = 64 is the batch size,
which means that 64 nuclei are constrained simultaneously for
each training session. Actually, the corrections for different
nuclei are derived from the same parameter updates δw; i.e.,
the correction of each nucleus is uniformly constrained by the
other nuclei.

In comparison to traditional methods, the corrections of
the densities based on CDGs are no longer restricted by the
level of an EDF or the Kohn-Sham scheme, but are driven
by experimental data. For example, it has been shown that
the nucleon correlation including the α-cluster formation on
the surface affects charge radii when the numbers of protons
and neutrons are similar [27,60]. In the present study, the
CDG-based corrections aim at making the smallest possible
corrections to the traditional DFT calculations and improving
the capabilities in the description of charge radii. In other
words, some missing but crucial terms in an existing EDF can
be implemented by the CDG-based corrections in an implicit
way. We randomly take 640 nuclei (10 batches) of about 900
nuclei with measured charge radii to date as the training set.
The remaining nuclei are recorded as the validation set (see
the SM [54] for details). It is recorded as an epoch when all
nuclei on the training set have been trained once.

B. Machine-learning processes

The process of machine learning is divided into two stages:
simulating the SHF + BCS results and correcting with exper-
imental data. The evaluation of these processes is shown in
Fig. 2. The first 3000 epochs are the stage of simulating the
SHF + BCS results, during which Loss(0, w) = Lρ is being
minimized. One can see that the loss functions of the training
and validation sets almost overlap. This means neither ρc nor
Rc is overfitted, which shows the generalization ability of
the network. As a theoretical reference, the dashed magenta
line is the Pearson χ2 divergence LR,theo on the validation set
between the SHF + BCS and experimental values:

LR,theo = 1

Nv

∑
nu∈val.

(
R(nu )

c,theo − R(nu )
c,exp

)2

R(nu )
c,theo

× 1 fm−1, (10)

where Nv is the number of nuclei on the validation set. After
a short training, the loss values LR overlap with LR,theo. This
indicates that the network naturally captures the Rc informa-
tion well in the process of learning the density distribution.

After 3000 epochs, the pretrained model is further tuned
with an objective function, Loss(W = 0.7, w), which allows
the importance of experimental data to slightly exceed that of
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FIG. 2. (a) Normalized mean-square error for density distribu-
tions on the training and validation sets as a function of epochs
with CDG-3. (b) Pearson χ 2 divergence for charge radii as a func-
tion of epochs with CDG-3. Inserts: The loss values on validation
sets (a) Lρ,val and (b) LR,val for CDG-1, CDG-2, and CDG-3 with
W = 0.7.

theoretical calculations. Thus, the charge density distributions
under constraints are spontaneously corrected by the network.
Since the correction makes the predicted charge radius close
to the experimental value and the distribution naturally deviate
from the model, the value of LR falls and the value of Lρ

jumps as shown in Fig. 2. Remarkably, the training costs only
10 GPU min.

It is clear that machine learning successfully eliminated a
portion of residuals between SHF + BCS and experimental
values. Such a process can be migrated to any other theoretical
model. Certainly, we should be aware of the dependence of
predictions on functionals and models, as theoretical calcula-
tions hold considerable weight in the target (loss) functions
during the pretraining and calibration processes. Actually,
such dependence is widely present in neural network-based
nuclear structure studies and is one of the interesting research
directions. An option for future research could be utilizing
the BMA combined with multiple functionals for predictions,
which has the potential to enhance the accuracy of predictions
as model dependence is eliminated partially.

III. RESULTS

To explore the network performance, the errors of the den-
sities and radii given by CDG-1, CDG-2, and CDG-3 on the
validation set are plotted in the inserts of Fig. 2. It can be seen
that the errors by CDG-3 are minimal for both densities and
radii. This indicates the predictions of CDG-3 are closest to
the experimental radii, while its corrections to the theory are
the smallest. This agrees with our assumption.

Accuracy is more intuitive to show the CDGs’ performance
than error. Figure 3(a) shows the prediction accuracy of the
three networks, where the accuracy indicates the percentages
of the experimental data on the validation set falling within
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FIG. 3. (a) The accuracy of neural networks CDG-1, CDG-2, and
CDG-3, expressed by the percentages of the experimental data on the
validation set falling within different predicted standard deviations
(red for 1 standard deviation (s.d.), blue for 1.5 s.d., and pink for
2 s.d.). (b) Charge radii predicted by CDG-3, where the nuclei in the
training set are denoted with the blue squares. The results are shown
in the unit of fm.

different predicted standard deviations (red for 1 s.d., blue
for 1.5 s.d., and pink for 2 s.d.). The values of accuracy are
consistent with the errors on the validation set shown in Fig. 2
for different networks; i.e., the smaller the error, the higher
the accuracy. In particular, the numbers of experimental data
falling within 2 s.d. do not exceed 80% for CDG-1 and CDG-
2. Meanwhile, the accuracy of CDG-3 (1 s.d.) is already close
to 80%, which even reaches 96% for 2 s.d. Compared to
CDG-1 and CDG-2, CDG-3 takes into account the odd-even
staggering, pairing, and shell effects. Therefore, we conclude
that the network structures considering more physical proper-
ties are more sufficient to improve the prediction accuracy,
which is consistent with the mass research [31]. It can be
speculated that CDG-3 can predict the radii of the remaining
∼2000 unmeasured nuclei with high precision. We present the
predictions for nuclear charge radii in Fig. 3(b). In this regard,
the risk of extrapolation still exists. Compared to the Kohn-
Sham network proposed in Ref. [61], the current model lacks
the modeling of single-particle information, which would
lower its extrapolation performance. As such, this work draws
on the experience of Bayesian neural networks to mitigate
the risk of extrapolation. By constructing multiple networks
with identical architectures through repeated training from
different initializations, the results are then averaged to derive
predictions that are relatively reliable.
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FIG. 4. Charge radii predicted by CDG-3 with 1 s.d. error for the
Ca, Pb, Dy, and Tb isotopes, where the training regions are indicated
by shadows and the magic numbers are indicated by the vertical
dashed lines. The SHF + BCS results and experimental data are also
shown for comparison.

By taking several isotopic chains as examples, we compare
the charge radii calculated by SHF + BCS and the predictions
of CDG-3 with 1 s.d. error with the available experimental
data in Fig. 4. It is found that CDG-3, containing the parity,
pairing, and shell effects, describes well the odd-even stagger-
ing for the Ca isotopes. Meanwhile, CDG-1 and CDG-2 failed
in benchmarking the experimental data (see the SM [54]). For
Pb isotopes, CDG-3 performs comparably with the theoretical
model. The present predictions almost match the experimental
data in the case of training several Pb isotopes. In particular,
the predictive power remains strong even when we remove the
Ca and Pb isotopes from the training set (see the SM [54]).
Remarkably, it is believed that there are substantial beyond-
mean-field effects in the charge radius evolution in the Ca
isotopes, in particular, from 40Ca to 48Ca [62,63]. Given the
excellent performance of CDG-3, we predicted the untrained
Dy and Tb isotopes. For the Dy isotopes, the predictions are
in agreement with experiment, but with much smaller uncer-
tainty than the experimental error. The simultaneous precise
description of the spherical (Pb and Ca) and deformed nuclei
(Dy) is evidence of the validity of the CDG-based correction
scheme. Originally, spherical symmetry is imposed in our
theoretical calculations (SHF + BCS). However, after migrat-
ing the calculations to CDGs, the density can change more
arbitrarily. Although the deformation is not fully considered
physically (the densities before and after correction are still
spherical, which in some sense correspond to the density dis-
tributions in the laboratory frame), the network also to some
extent includes the information on the deformation under
the influence of the features of input and the loss function.
In detail, the shell and parity effects have been included in
the input, with the experimental data integrated into the loss
function. Those are closely tied to deformation, thus enabling
the impact of deformation to be predicted from a macro
perspective. From this point of view, we can compromise

034315-4



CALIBRATION OF NUCLEAR CHARGE DENSITY … PHYSICAL REVIEW C 108, 034315 (2023)

116 120 124 128 132

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

116 120 124 128 132

Pb

δ<
r2

>
N

,1
2

6
(f

m
2
)

CDG-3

Exp.

Exp.

Hg

N

FIG. 5. The relative changes in the mean-square charge radii
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imental values in black stars are sourced from Ref. [1] and those
in blue spherical symbols are sourced from Ref. [8]. The training
regions are indicated by shadows and the magic number N = 126 is
indicated by the vertical dashed lines.

and assume that the density ρc(r, θ, φ) has been angularly
averaged out as ρc,pre(r) = ∫

ρc(r, θ, φ) dθ dφ. These conclu-
sions well demonstrate the effectiveness of the present scheme
beyond the existing forms of an EDF and the Kohn-Sham
scheme. For the Tb isotopes, compared to the SHF + BCS
results, the predicted isotope shifts are in good agreement
with the experimental data, although the predicted charge radii
are systematically larger than the present experimental central
values by ∼0.1 fm. The above predictions can be testified to
in the coming experiments.

As a further validation, we turn our attention to the kink in
charge radii across the N = 126 shell closure, which is com-
monly believed to be present in relativistic structural models
and to be absent in nonrelativistic frameworks. Regarding the
kink, new experimental data for 207,208Hg have been presented
in the Ref. [8], along with theoretical explanations. The rel-
ative changes in the mean-square charge radii δ〈r2〉N,126 for
lead and mercury are shown in Fig. 5, where δ〈r2〉N,126 is
defined as

δ〈r2〉N,126 = 〈r2〉N − 〈r2〉126. (11)

In line with previous findings, there is generally good charac-
terization of both the nuclei in the training regions and those
internally inferred. A strong signal is manifested as the new
experimental values for 207,208Hg coincide accurately with the
predicted average values of CDG-3, which again reinforces
the reliability of our method. As such, this seems to imply
that a neural network pretrained with a nonrelativistic model
already contains the kink in the charge radii at the N = 126
neutron shell closure under experimental corrections. The ma-
jority of nonrelativistic EDFs, including the SkM∗ EDF used
in this study, cannot reproduce such a kink, with the excep-
tion of a few EDFs such as SkI3 and SAMi. That is to say,
CDG-3 has at least surpassed the level of the normal Skyrme
interaction with the strength of the spin-orbit interaction W0 =
W ′

0 [63]. The formation of a kink is the result of complex
physical processes, involving tensor interaction, spin-orbit in-
teraction, symmetry energy, and the pairing interaction [63].
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FIG. 6. Schematic diagram of the structure of a feed-forward
neural network for the CDTBE map.

Single-particle occupation probability decided by these com-
plex correlations ultimately determines the existence of kink
or anti-kink. In our method, the inclusion of experimental
data from the corresponding nuclei (such as 210,211,212Pb) is
a natural way to incorporate such a kink at N = 126 shell
closure into the neural network. In this sense, it is reasonable
to assume that the majority of physical phenomena, including
those yet to be discovered, have already been encapsulated to
a large extent in the form of a black box.

IV. EXTENSION AND DISCUSSION

To understand what neural network-based calibration
brings to DFT further, the impacts of the calibrated charge
densities on binding energies are investigated by constructing
and linking a series of neural networks.

According to the Hohenberg-Kohn theorem [52,64], there
exists a bijective map between the local matter density and
the one-body potential. This means that the corrections on the
density distributions can be mapped to other observables, such
as binding energies [65]. Thus, we reconstruct a map from the
charge density to the binding energy (CDTBE). The schematic
structure of such a feed-forward neural network is shown in
Fig. 6. There are three parts in the CDTBE map—M1, M2,
and M3: M1 is the previously trained charge density gener-
ator, and we take the CDG-3; M2 is a map from the charge
density to the matter density as the inverse of Eq. (7), where
N and Z are also inputs; M3 is a map from the neutron, pro-
ton, and charge densities to the binding energy per nucleon.
It is found that the networks adequately capture the rela-
tionship between densities and binding energy with different
DFT effective interactions. As the charge density updates in
CDG-3, the residual information flows to other observables,
i.e., δRc → δρc → {δρn, δρp} → δ(E/A). It is worth men-
tioning that, while M1 is driven by the experimental data, M2
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FIG. 7. Binding energy per nucleon of Ca isotopes with the sta-
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The SHF + BCS results and experimental data are also shown.

and M3 adopted here are trained by the relations among the
charge, proton, and neutron densities and the binding energy
generated by the SHF + BCS calculations with given EDFs:
SkM, SkM∗, SkIII, SLy4, SkT, and SkT3 [66].

Taking the Ca isotopes as examples, the binding energies
per nucleon obtained by the CDG-3 residual information flow
are shown in Fig. 7. We note that the propagated corrections
provide a better description, except 47,48,49Ca. Especially for
40,42,44Ca, both radii [see Fig. 4(a)] and binding energies coin-
cide well with the experimental values. This illustrates that the
physical features contained in the CDTBE map based on the
density functional theory are adequate for these nuclei. In con-
trast, for 48Ca, the radius is corrected to a value smaller than
that of SHF + BCS, leading to an increase of nuclear densities
in the central region and a further decrease of binding en-
ergy, which is consistent with the equation of state. However,
it results in further deviations from the experimental value,
which can be attributed to the incompatibility of the corrected
densities with the used functional form. In Refs. [62,63], it
is discussed that an indispensable beyond-mean-field effect
appears near 48Ca. As a future study, one can train M3 using
EDFs with different structures to assess the effect of incor-
porating different terms. This may provide additional insights
into the overbinding observed in 48Ca.

On the other hand, we believe the present studies provide
a systematically improvable method for the global description
of various properties. For example, more corrections can be
implemented step by step, such as incorporating experimental
corrections for neutron-skin thicknesses in M2 and using the
binding-energy residuals between theory and experiment as
output for M3. Following this strategy, the description of each
kind of observable can be improved by making segmental
calibrations.

V. SUMMARY

In this study, a novel supervised learning on the combi-
nation of the theoretical charge density distributions and the
experimental charge radii has been performed. In such a way,
the physics features embedded in nuclear density functional
theory can be preserved to a large extent and the feedback
from the experimental data can be considered quantitatively.
It is found that the description of charge radii can be improved
globally on the nuclear chart. In particular, the specific charge
radii evolution in the Ca isotopes can be well reproduced
by taking the parity, pairing, and shell effects into account.
This property remains valid even when all the Ca isotopes
are excluded in the learning set. The predictive power is also
shown with the charge radii in the Dy and Tb isotopes, where
the present experimental uncertainties are much larger than
the prediction uncertainties. Moreover, the charge-radius kink
phenomenon observed across the N = 126 shell closure has
been successfully reproduced, and it matches closely with the
latest experimental data on 207,208Hg.

Inspired by the Hohenberg-Kohn theorem, an information
flow from the charge density to the binding energy has also
been constructed and investigated. It is found that for the Ca
isotopes the improvement in the description of charge radii
can also be propagated to the improvement in the descrip-
tion of binding energies, except 47,48,49Ca. The corresponding
analysis implies the existence of the incompatibility of the
corrected densities with the used functional form near 48Ca,
which merits further discussions on functional forms.

Moreover, constructing the experimental-based observable
networks will facilitate the realization of realistic nonpara-
metric Hohenberg-Kohn maps for nuclear complex systems.
Along this direction, we will not only improve the descrip-
tion of different nuclear observables consistently but also
strengthen the interpretability of the supervised learning.
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