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Hexadecapole axial collectivity in the rare earth region: A beyond-mean-field study
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Hexadecapole collectivity and its interplay with quadrupole degrees of freedom is studied in an axial symmetry
preserving framework based on the Hartree-Fock-Bogoliubov plus generator coordinate method. Results are
obtained for several even-even isotopes of Sm and Gd with various parametrizations of the Gogny force.
The analysis of the results indicates the strong coupling between the quadrupole and hexadecapole degrees of
freedom. The first two excited states are vibrational in character in most of the cases. The impact of prolate-oblate
shape mixing in the properties of hexadecapole states is analyzed.
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I. INTRODUCTION

Understanding the impact of the intrinsic shape of nuclei
in the dynamics of their lowest lying collective states is one
of the most important challenges in nuclear structure nowa-
days. To quantify the intrinsic shape of the nucleus, multipole
moments of the matter distribution are introduced; of which
the quadrupole moment is the most important one. Moreover,
multipole moments are also used as collective variables in
order to characterize collective dynamics. The presence of
nonzero multipole moments, signaling whether a nucleus is
deformed or not, influences properties of the collective spec-
trum such as rotational bands, parity doublets, etc. On the
other hand, dynamical deformation, associated with vibrations
around the equilibrium position, determines the properties of
the so-called β and γ bands in the quadrupole case. These
ideas can be extended further to higher order multipole ex-
citations like the celebrated 3− octupole vibrational state in
208Pb. Fluctuations on the collective shape degrees of freedom
around the ground state equilibrium point can be analyzed in
terms of collective wave functions. These obtained through
well-defined theoretical procedures like the generator coor-
dinate method (GCM) based on Hartree-Fock-Bogoliubov
(HFB) mean field wave functions.

By looking at the energy as a function of the rele-
vant quadrupole deformation parameters obtained in self-
consistent mean field calculations one can introduce impor-
tant concepts characterizing the nucleus, like prolate/oblate
ground states, triaxiality, shape coexistence, etc. Also impor-
tant is the negative parity set of octupole moments. They
carry three units of angular momentum and negative parity.
Therefore they are disconnected from the quadrupole degrees
of freedom except in nuclei breaking reflection symmetry in
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their ground state. This is a direct consequence of the different
parity quantum number associated with the two sets. There-
fore, it is to be expected that the next shape multipole moment
to strongly couple to the quadrupole one is the positive parity
hexadecapole moment carrying four units of angular momen-
tum. Many different kinds of calculations predict permanent
hexadecapole deformation in several regions of the nuclear
chart [1–4]. Ground state deformation has mostly K = 0+
character and the sign of the associated deformation param-
eter β4 determines whether the nucleus has an equilibrium
“square-like” shape (β4 < 0) or a “diamond-like” (β4 > 0).
On the other hand, hexadecapole K = 4+ vibrational bands,
analogous to the γ bands of the quadrupole dynamics, have
been identified experimentally—see [5–7] for recent exam-
ples. Considering K = 4+ hexadecapole bands implies also
considering the coupling with K = 2+ and K = 0+ bands [8]
which implies a GCM calculation with five degrees of free-
dom (three hexadecapole and two quadrupole) which is out of
reach with present day available computational capabilities.
This is one of the reasons why we focus as a first step on the
axially symmetric hexadecapole degree of freedom associated
with Q40. We will analyze its impact on the binding energy
gain as well as the energy of the hexadecapole β4-vibration-
like excitation.

For K = 0+ states the β quadrupole deformation parameter
is expected to be the dominant degree of freedom. In this case,
the energy as a function of the Q40 hexadecapole deformation
parameter should be parabolic and the β4 zero point energy of
collective motion cancels out the zero point energy correction
leaving the energy unaffected. Contrary to this expectation,
the results of our calculations show that the consideration of
β4 in the ground state dynamic increases in some cases the
binding energy by around 500–600 keV, a quantity that is
similar to the one gained by including the quadrupole degree
of freedom as discussed below.

Recently, it has been argued that hexadecapole deforma-
tion can leave its imprint in the elliptic flow of particles in
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relativistic collisions of 238U nuclei at the BNL Relativistic
Heavy Ion Collider (RHIC) [9]. Therefore, it is of consider-
able interest to analyze the impact of dynamical fluctuations
in the hexadecapole properties of the target nuclei.

There are several examples in the rare-earth region of nu-
clei with a large number of excited 0+ states at low energies
(typically below 3 MeV) that are not easy to interpret [10].
It has been argued that β vibration could be one of these
states. Other candidates could be a double phonon excitation.
One can also argue that a β4 vibrational state could be found
among that large number of 0+ states. As discussed below,
this possibility is largely suppressed due to the high excitation
energy predicted for this state.

Last but not least, hexadecapole deformation can play a
role in the value of the neutrino-less double β decay nu-
clear matrix element in nuclei in the rare-earth region around
150Nd [11].

In this paper the combined dynamic of the quadrupole and
hexadecapole K = 0 collective degrees of freedom is ana-
lyzed with a theoretical framework based on the GCM built
on top of a set of HFB mean field wave functions. As the
HFB systematic with the Gogny D1S shows (see below) the
region with the largest ground state β4 values is located in the
nuclear chart at around Z = 64 and N = 90. For this reason,
the nuclei chosen for the present study are several isotopes of
Sm (Z = 62) and Gd (Z = 64).

II. THEORETICAL METHOD

As a first step, we carry out self-consistent mean field cal-
culations with the finite range Gogny force in order to obtain
a set of HFB wave functions |ϕ(β2, β4)〉 satisfying constraints
on the quadrupole Q20 and hexadecapole Q40 moments. In
order to have a description independent of mass number, we
will parametrize the moments in terms of the βl deformation
parameters [12]

βl =
√

4π (2l + 1)

3Rl
0A

Ql0, (1)

where R0 = 1.2A1/3 fm and A is the mass number. As it is
customary in calculations with the Gogny force we have ex-
panded the Bogoliubov quasiparticle operators in a harmonic
oscillator (HO) basis. The optimal number of HO shells to be
used for a given nucleus depends on its mass number as well
as the variety of shapes to be considered. We have taken 17
major shells in the present study involving rare earth nuclei
and checked that the results do not change in a significant
way (except for a slight increase in binding energy) when the
calculation is repeated with 19 major shells. More important
is the fact that all the wave functions to be used in the subse-
quent generator coordinate method (GCM) calculation, must
have the same oscillator lengths to avoid problems with the
traditional formulas in the evaluation of the operator overlaps
required by the GCM [13–15]. The specific value of the os-
cillator lengths is rather irrelevant given the huge basis size
used. We have chosen equal oscillator lengths b⊥ = bz and for
its value the b = 1.01A1/6 estimation. The set of HFB wave

functions enters linear combinations with weights fσ (β2, β4),

|�σ 〉 =
∫

dβ2dβ4 fσ (β2, β4)|ϕ(β2, β4)〉, (2)

defining the set of physic states |�σ 〉 labeled by the σ quan-
tum number. The fσ amplitudes are determined by the Ritz
variational principle on the energy and are the solution of the
Griffin-Hill-Wheeler (GHW) equation∫

dβ′(H(β,β′) − Eπ
σ N (β,β′)

)
f π
σ (β′) = 0, (3)

where the shorthand notation β = (β2, β4) has been intro-
duced. The Hamiltonian and norm kernels are given by

H(β,β′) = 〈ϕ(β)|Ĥ[ρGCM (�r)]|ϕ(β′)〉,
N (β,β′) = 〈ϕ(β)|ϕ(β′)〉, (4)

where we have used the “mixed” density prescription ρGCM (�r)
for the density dependent term of the Hamiltonian (see
Refs. [16,17] for a discussion of the associated problematic).
We also include a perturbative correction in the Hamiltonian
kernel H(β,β′) to correct for deviations in both the proton
and neutron numbers [18].

Since the wave functions |ϕ(β)〉 do not form an orthonor-
mal set, the f π

σ (β) are not probability amplitudes. One can
define genuine probabilities by folding them with a square
root of the norm N 1

2 kernel

Gπ
σ (β) =

∫
dβN 1

2 (β,β′) f π
σ (β′). (5)

See Refs. [19] for details on how to solve the GHW equation
and how to interpret its solution.

As it is customary in this type of calculation the integrals
over the continuous β2 and β4 variables are discretized in
a mesh with step sizes 	β2 = 0.02 and 	β4 = 0.02. The
intervals considered are [−0.4, 0.8] for β2 and [−0.4, 0.6]
for β4. We have checked that reducing the number of points
in each direction to half the nominal value has a negligible
impact on the results.

For the calculations presented in this study we have used
two sets of parametrizations of the Gogny force. One is the
traditional D1S parametrization [20] which has been used for
more than 40 years to describe many nuclear properties all
over the Segrè chart. The other one is the recently proposed
D1M* [21] parametrization which is a variation of D1M [22]
retaining most of its properties but improving on the descrip-
tion of neutron stars by imposing a different value of the slope
of the symmetry energy [23].

III. RESULTS AND DISCUSSIONS

Results obtained for two isotopic chains in the rare earth
region are discussed in this section. The nuclei considered
are those of Sm (Z = 62) and Gd (Z = 64) and the choice
is guided by the results of systematic HFB calculations with
the Gogny D1S force. In Fig. 1 the ground state β4 deforma-
tion parameter obtained for a large set of even-even nuclei is
depicted as a color map. The ground state β4 values in the
figure range from β4 = −0.1 up to β4 = 0.3. One observes
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FIG. 1. Color map of the ground state hexadecapole deformation
obtained with the HFB method and the Gogny D1S force. The color
scale ranges from β4 = −0.2 up to β4 = 0.5 with β4 = 0 correspond-
ing to green.

that a large fraction of nuclei show zero hexadecapole defor-
mation in their ground states. The largest positive values are
obtained in the lower Z sector of rare earth (actinide) with
proton numbers 60 (90) and neutron numbers 90 (136), a few
units above magic numbers. On the other hand, the largest
negative values are also located in the same regions but this
time in the upper Z sector with values around 72 (118) and
neutron numbers around 110 (170) which are a few units
below magic numbers. There are two additional regions with
large positive β4 values at the proton drip line with Z = 60
and close to the neutron drip line at Z = 90 and N = 200.
The regions of positive and negative β4 values are consistent
with the polar-gap model of Ref. [24] developed to understand
β4 deformation parameters in the rare earth nuclei [25]. In the
model, positive (negative) β4 values appear at the beginning
(end) of the shell.

The figure points to very large positive β4 deformation
parameters in the region under study with N around 90 and Z
around 60. For the nucleus 154Sm considered below a ground
state hexadecapole deformation β4 = 0.21 is obtained. The β4

deformation parameter is obtained with Eq. (1) and may differ
from other deformation parameters defined, for instance, in
terms of 〈r4〉 instead of R4

0. Those tend to be smaller, and in
the case of 154Sm one gets β4 = 0.17 instead of β4 = 0.21
obtained with Eq. (1).

Finally, let us mention that our results for β4 are consistent
in absolute value with those of a recent Skyrme interaction
BSkG1 [3]. However, both our results and the ones in [3] tend
to be larger than the ones obtained with mic-mac models [2].
For instance, for 154Sm Moller et al. obtain β4 = 0.11. The
source for the discrepancy could be associated to the different
definition of the βl parameters as discussed above.

In a recent publication [26] very large values of both β2

and β4 have been obtained in inelastic proton scattering ex-
periments in inverse kinematics on the rare isotopes 74Kr and
76Kr. For 76Kr one obtains β2 = 0.40 and β4 = 0.201 whereas
for 74Kr one obtains β2 = 0.35 and β4 = 0.23. Those findings
do not agree with the results obtained with Gogny D1S (see
Fig. 1 above and Ref. [1]) that seem to favor spherical or
nearly spherical ground states for those two isotopes. The
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FIG. 2. Contour plot of the HFB energy as a function of β2

(horizontal axis) and β4 (vertical axis). The position of the absolute
minimum is indicated by a large dot. The lowest four contours
(blue) correspond to energies Emin + δEn with δE = 0.25 MeV. The
next four (green) correspond to energies Emin + 1 MeV + δEn with
δE = 0.5 MeV. The remaining contours, starting at Emin + 4 MeV
are separated by 1 MeV. The filled (empty) dots connected by a curve
correspond to the self-consistent values of β4 (β2) obtained in the 1D
calculation as a function of β2 (β4). The paths are labeled P1 and
P2, respectively. The two perpendicular dotted lines crossing at the
minimum are drawn along the two principal axes (A and B) of the
parabola that approximates the HFB energy around the minimum.

discrepancy could possibly be resolved by taking into account
that the Kr isotopes represent one of the most prominent
examples of shape coexistence with very flat potential energy
surfaces and large fluctuations along the quadrupole degree of
freedom. This is the realm where the theoretical techniques
used in this paper are most relevant and therefore the present
calculations are being extended to the Kr region and will be
reported in the future.

A. The nucleus 154Sm

In this section we discuss at length all the details and
peculiarities of our methodology in the paradigmatic case of
154Sm. The HFB energy corresponding to the nucleus 154Sm
obtained with the D1S parametrization of the Gogny force
is shown in Fig. 2. The energy shows a parabolic behavior
around the minimum (marked by a large dot) with principal
axes going in directions not parallel to the horizontal and
vertical axes. This fact implies that in this case β4 changes
substantially when one moves along the bottom of the energy
valley as a function of β2. In a more quantitative way we
can say that the hexadecapole deformation corresponding to
the bottom of the energy valley shows an approximate linear
relation β4 = 1.8β2 − 0.4 as a function of β2. This direction in
the β2-β4 plane is denoted as A. The perpendicular direction,
denoted by B, will be discussed below. The linear behavior
implies that a GCM calculation using as generating parameter
the β4 deformation alone (path P2 in the figure) will explore
roughly the same configuration around the energy minimum
as a GCM calculation with the β2 deformation alone (path
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FIG. 3. In (a) the potential energy surface as a function of β2 is
drawn for the nucleus 154Sm along the path P1 of Fig. 2. The three
dots correspond to the three lowest solutions of the 1D GCM and are
plotted at the corresponding energies and average β2 values. In (b) the
self-consistent β4 deformation is plotted as a function of β2. Finally,
in (c) the collective amplitudes of the GCM gσ (β2) are plotted for
the lowest three solutions of the GCM. The curves are shifted by the
excitation energy of the corresponding states (y axis).

P1). Therefore, except for those situations where the bottom of
the valley runs parallel to either β2 or β4 axis the quadrupole
and hexadecapole degrees of freedom cannot be decoupled
and the full fledged two-dimensional (2D) GCM has to be
considered. In contrast, β3 usually decouple from β2 when
the two degrees of freedom are considered together [18]. As
discussed below, an alternative to the 2D calculation could be
the use of collective variables along A and B directions.

For the valley in the oblate side one has β4 ≈ −0.37β2 and
an energy exceeding 4 MeV the one of the prolate side. This
energy difference between both minima implies that the oblate
minimum is not playing an active role except for high lying
excited states.

The results of the calculation just considering β2 as col-
lective coordinate (path P1 in Fig. 2) are shown in the three
panels of Fig. 3. In Fig. 3(a) the HFB energy as a function
of β2 is shown. Two minima, one prolate and the other oblate
are found, with the deeper prolate one the ground state. The
oblate minimum has little influence in this case as it lies
high up in energy as compared to the ground state. The β4

deformation parameter is shown in Fig. 3(b). The deformation
parameter decreases almost linearly for negative β2 reaching
a value close to zero at β2 = 0. From there on, a linear in-
crease is observed. The ground state at β4 = 0.21 is rather
large as compared to other regions of the nuclear chart. In
Fig. 3(c) the collective wave function gσ (β2) obtained in the
one-dimensional (1D) GCM is shown for the three lowest
states. The wave functions are situated with respect to the
y axis according to the corresponding excitation energy of
the collective state. Typical shapes, similar to the ones of the
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FIG. 4. Same as Fig. 3 but for the path B shown in Fig. 2.

lowest states of the 1D harmonic oscillator (HO), are seen for
the collective wave functions. The ground state has a Gaus-
sian distribution peaked at the ground-state β2 deformation.
The fist excited state has a node at the β2 deformation of
the ground state and decays like a Gaussian away from the
minimum. The next excited state shows two nodes. All the
wave functions show some distortions with respect to the ones
of the HO. This can be attributed to deviations of collective
potential and inertia from the harmonic form [27]. The abso-
lute energy of the three states is plotted in Fig. 3(a) as bullets
placed in the β2 axes according to the average β2 value of
the correlated state. In the present case, the average β2 value
is rather similar for the three states. A similar calculation but
using the β4 deformation as collective coordinate (path P2 inf
Fig. 2) shows similar results as will be discussed below. This
is not surprising if one compares the paths explored in both
calculations and depicted in Fig. 2. As expected [28] (Chap.
7) the paths do not coincide with the bottom of the 2D valley
due to the fact that in the 1D calculations the minimum of the
energy is obtained subject to the corresponding constraint, i.e.,
along vertical (horizontal) lines in the β2 (β4) potential energy
surface (which is the quantity shown in Fig. 2). However, the
two paths are rather close to each other in the region close to
the minimum and, as a consequence, the dynamics is rather
similar in the two 1D GCM calculations.

At this point it is worth to discuss the results of another
1D calculation, this time along the line marked as B in Fig. 2
and perpendicular to the bottom of the energy valley. In order
to carry out the calculation, a set of HFB states was gen-
erated with β2 in the range [0.1,0.6] and β4 constrained to
be in the β4 = −0.56β2 + 0.41 line. The results obtained are
summarized in Fig. 4. In panel (a) the HFB energy shows
a well defined and deep quadratic well. In panel (b) the β4

deformation follows a straight line as it should be. Finally, in
panel (c) the collective wave functions are shown. They follow
closely the expectations for a pure harmonic oscillator. The
correlation energy gained by the ground state in this 1D GCM
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FIG. 5. Contour plot of the collective amplitudes gσ (β2, β4) as
a function of β2 (horizontal axis) and β4 (vertical axis) for the
three lowest stated obtained in the 2D GCM. Black (red) contours
correspond to positive (negative) values of gσ . Contours (dashed)
correspond to 90%, 80%, . . . of the maximum value of gσ except
the last two (dotted) that are drawn at 5% and 1% of the maximum
value. The perpendicular straight lines are the same drawn in the
HFB energy case in Fig. 2.

calculation is 0.555 MeV. The excitation energy of the lowest
excited state is 3.075 MeV and at roughly twice the excitation
energy, 6.509 MeV, the second phonon state is located.

Coming back to the 2D calculation, it is interesting to an-
alyze the behavior of the collective wave function gσ (β2, β4)
solution to the Hill-Wheeler-Griffin equation. The quantities,
corresponding to the three lowest solutions are shown in
Fig. 5. The upper panel (a) corresponds to the ground state and
shows the typical 2D Gaussian shape but tilted with respect
to the β2 and β4 axes and closely aligned with respect to
the A and B directions, shown as perpendicular dotted lines
in the plot. The A and B directions run along the bottom
of the energy valley (A) and the perpendicular direction (B).
The middle panel (b) is for the first excited state. The shape
corresponds to a Gaussian along the B principal axis. Along
the direction of the principal axis A the shape of the wave
function corresponds to a one-phonon state in a 1D HO. By
comparing with the collective wave functions of Fig. 3 we
conclude that this state corresponds to a collective phonon in
which the quadrupole and hexadecapole degrees of freedom

TABLE I. Results of GCM calculations for 154Sm. First column
labels the type of calculation, either 1D (β2 along path P1 or β4 along
path P2) or 2D (β2 − β4). The upper (last) three rows correspond to
the results obtained with D1S (D1M*) parametrization of the Gogny
force. The remaining columns are divided into sets of three. The first
set shows the correlation energy and the two moments β2 and β4 of
the density distribution. The other two sets show excitation energies
and corresponding moments.

Ec β2 β4 E1 β2 β4 E2 β2 β4

β2 (P1) 0.694 0.33 0.19 2.576 0.27 0.13 3.827 0.37 0.21
β4 (P2) 0.663 0.33 0.21 2.407 0.30 0.16 4.230 0.28 0.11
β2 − β4 1.239 0.33 0.21 2.635 0.30 0.17 3.059 0.37 0.20
β2 (P1) 0.637 0.32 0.18 2.933 0.29 0.14 4.261 −0.23 0.10
β4 (P2) 0.707 0.32 0.19 2.447 0.28 0.12 4.615 0.28 0.12
β2 − β4 1.305 0.32 0.19 2.685 0.27 0.13 3.210 0.37 0.22

are mixed together. Finally, the last panel (c) corresponds to
the second excited state that can be interpreted as a 1D phonon
along the B direction. We conclude from the present analysis
that both quadrupole and hexadecapole degrees of freedom are
strongly interleaved and it is better to talk about the A and B
directions (or degrees of freedom) instead. It is interesting to
note that A and B are given by linear relations (see above) in
terms of β2 and β4 at least locally around the HFB minimum.

In Table I we show several quantities obtained in the
GCM calculation in the 2D and 1D cases with both D1S and
D1M* parametrizations of the Gogny force. The correlation
energy Ec gained in the two 1D calculations for D1S are
similar corroborating the conclusion previously drawn about
the equivalence of the 1D GCM results irrespective of the
use of the β2 and β4 collective coordinates (paths P1 and
P2). The 2D correlation energy is, accidentally, twice as large
as the 1D one with a significant energy gain of 0.6 MeV
due to the inclusion of the hexadecapole degree of freedom.
This quantity is not negligible and its evolution with proton
and neutron numbers could have significant impact on the
reproduction of experimental binding energies. In this respect,
modern energy density functionals (EDFs) are able to reach a
root mean square (rms) deviation for the binding energies of
around 700 keV [22,29]. For a systematic study of octupole
correlation energies the reader is referred to Ref. [30]. It is also
important to note that the 2D correlation energy is consistently
given as the sum of the quantity obtained in the 1D calculation
along path P1 plus the correlation energy obtained along path
B. In this example as well as in the other nuclei considered
below the additional correlation energy gained in going from
the 1D to the 2D case is similar to the one of the quadrupole
dynamics alone indicating a very slow convergence of the
correlation energy with the (even) multipole degrees consid-
ered in the GCM. Whether this is a feature of this specific
region or a general trend should be analyzed by extending this
type of calculation to a significantly wider sample of nuclei in
the nuclear chart. It is to be expected that correlation energy
corresponding to multipoles of order six or higher should be
significantly smaller than the one of lower multipole orders
and the general argument was given in the Introduction. This
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is, however, a still to be answered question that deserves
further consideration.

The deformation parameters of the ground and first excited
states do not change much in going from the 1D to the 2D
GCM results. It is also remarkable that the ground state β2

and β4 GCM values are similar to the ones obtained at the
HFB level. This result is not surprising as the ground state
collective wave function is centered at the position of the
HFB minimum. However, the deformation parameters change
significantly for the second excited states with respect to the
ground state values. Regarding the excitation energies, the
first excited state behaves similarly in the 1D and 2D calcula-
tions, but this is not the case for the second state. It is easy to
understand the origin of the difference by looking at Fig. 5: the
second excited state is a 1D phonon along path B, not present
by definition in the 1D case. It is worth to remember that this
state is the first excited state in the 1D calculation along path
B discussed previously. Its excitation energy is slightly above
3 MeV and therefore could be one of the many 0+ excited
states found in many nuclei in the region. However, the value
of the excitation energy is perhaps a bit too high and therefore
its features would be difficult to characterize experimentally.

As a side comment, the mild dependence of the results with
the parametrization of the Gogny force used is remarkable.
Both share the same functional form, but the parameters were
adjusted with rather different targets in mind. For instance,
D1M∗ produces much better quality binding energies than
D1S and it is also expected to behave better in the neutron
rich sector.

A comparison with the experimental data [31] for the
lowest excited 0+ states reveals a discrepancy of more than
a factor of two between theory and experiment being the
experimental data smaller than the theoretical predictions. In
the 154Sm nucleus there are a couple of known excited 0+
at excitation energies slightly above 1 MeV. However, it is
not clear whether those two states can be unambiguously
identified with a genuine β vibration as discussed in [32,33].
In these references, it is argued that β vibrations should lie
higher in energy due to the kind of excitations involved and
its excitation energy very sensitive to pairing effects, not taken
explicitly into account in the present description. On the other
hand, the theoretical description includes a limited set of col-
lective degrees of freedom and it is very likely that triaxial
and pairing effects can play a role in the properties of the
first excited state. One also should not forget that the GCM
formalism does not take into account collective momentum
degrees of freedom. The impact of those on the dynamics is
not well studied but based on the large differences between
collective inertias for fission obtained with the adiabatic time
dependent (ATD) and the GCM frameworks [34] an important
reduction of the excitation energies consequence of the use of
collective momentum degrees of freedom is to be expected.
There is additional insight pointing to this effect coming from
random phase approximation results [35]. As a conclusion, all
the above effects should be considered to have a more precise
estimation of the hexadecapole K = 0+ vibrational excitation
energy. It is likely that its value will be lower than the present
prediction and therefore more likely to be characterized ex-
perimentally.
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FIG. 6. The matter density distribution of the mean field ground
state of 154Sm is shown. The mean field deformation parameters
[Eq. (1)] for this state are β2 = 0.32 and β4 = 0.21.

The quadrupole deformation parameter is larger than the
one in [36] and also in [2] but the difference could be at-
tributed to the definition of β2. If one uses the definition of
β2 with 〈r2〉 instead of 3/5R2 with R = r0A1/3 used here,
smaller values are obtained (typically 20% smaller). The same
also holds true for β4 but in this case the deviation of the
present results with respect to the ones of Refs. [2,36] is as
large as a factor of two. A comparison with experimental data
of Refs. [37,38] also indicates an overestimation of β4 with
respect to the experiment by a factor of 2.

As the deformation parameters for 154Sm and all the stud-
ied nuclei considered in this paper (see below) are rather
large, larger than the ones predicted by Moller in [2], it is
therefore instructive to have a look at the spatial distribution
of the matter density for the HFB solution at the minimum
shown in Fig. 6. One observes the typical diamond-like shape
characteristic of positive β4 values.

B. Potential energy surfaces of Gd and Sm

The HFB energy as a function of β2 and β4 for the nu-
clei in the isotopic chain of Gd is shown in Fig. 7. Most of
the energies show a valley whose bottom roughly follows a
straight line with positive slope in the β2-β4 plane for prolate
deformations. The valley bends at β2 ≈ 0 to acquire a negative
slope but the excitation energy in that region is large and
its effect on the ground state low energy dynamic can be
disregarded. The only two exceptions are the isotope of 180Gd
where the oblate minimum lies quite low in energy and the
isotope of 190Gd with magic neutron number N = 126 which
shows the characteristic behavior of a spherical nucleus. The
ground state minimum takes place at rather large β4 values and
all of them are prolate deformed. For the Sm isotopes to be
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FIG. 7. Potential energy surfaces as a function of β2 and β4

deformation parameters for the Gd isotopes considered. The results
are obtained with Gogny D1S.

discussed later on, the results look very similar and therefore
are not shown here. The HFB energy looks rather similar to
the 154Sm one discussed in the previous section and therefore
all the considerations there apply to all the nuclei in the chain
exception made of 180Gd where prolate and oblate minima
coexist and 190Gd which is a semimagic spherical nucleus.

C. Generator coordinate method results for Gd and Sm

In Fig. 8 the collective amplitude corresponding to the
ground state is shown for the considered nuclei. Following
the discussion of the 154Sm case, one clearly identifies the
characteristic two-dimensional Gaussian shape with principal
axes aligned roughly in the same directions A and B as in the
154Sm case.

In Fig. 9 the collective amplitude corresponding to the first
excited state is shown for the considered nuclei. Following
the discussion of the 154Sm case, one clearly identifies the
characteristic two-dimensional shape corresponding to a 1D
phonon in the collective variable along the bottom of the
valley (path A). In the 180Gd case, the first excited state cor-
responds to a shape coexisting oblate configuration and the
collective amplitude is concentrated in the oblate minimum.
In the 190Gd magic nucleus, the first excited state is a pure β2

vibration.
In Table II the results obtained for the ground state and

two first excited states in the 2D β2-β4 calculations are given
as a function of mass number A for the Gd isotopes. In the
second column the correlation energy gained by the collective
motion β2-β4 on top of the mean field ground state energy
is given. Overall, one observes a gain of around 1.2 MeV
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FIG. 8. Contour plots of the collective ground state wave func-
tion g0(β2, β4) of Eq. (5) obtained by solving the GHW equation in
the Gd isotopes. The results are obtained with Gogny D1S.
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FIG. 9. Contour plots of the collective first excited state wave
function g1(β2, β4) of Eq. (5) obtained by solving the GHW equa-
tion in the Gd isotopes. Black (red) contour lines correspond to
positive (negative) values of the collective wave function g1(β2, β4).
The results are obtained with Gogny D1S.
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TABLE II. Same as Table I but for the 2D GCM calculation of
all the Gd isotopes considered and using the D1S parametrization of
the force.

A Ec β2 β4 E1 β2 β4 E2 β2 β4

152 1.384 0.23 0.10 1.547 0.27 0.13 1.638 −0.16 0.06
154 1.464 0.30 0.16 1.874 0.29 0.13 2.790 −0.21 0.08
156 1.325 0.33 0.18 2.631 0.29 0.14 2.836 0.38 0.20
158 1.290 0.34 0.17 3.191 0.35 0.16 3.876 0.35 0.15
160 1.148 0.35 0.15 3.502 0.36 0.16 4.422 0.38 0.14
162 1.153 0.35 0.13 3.710 0.39 0.20 4.836 0.38 0.14
164 0.991 0.36 0.11 3.665 0.41 0.21 4.830 0.35 0.11
166 1.028 0.36 0.09 3.114 0.41 0.18 3.854 0.37 0.10
168 1.141 0.35 0.07 2.217 0.42 0.17 4.514 0.36 0.09
170 1.233 0.34 0.05 1.887 0.39 0.12 4.161 −0.25 0.06
180 1.491 0.23 −0.05 0.612 −0.19 0.00 1.776 0.30 0.01
190 1.196 0.00 0.00 3.987 −0.00 0.00 5.735 −0.00 0.01

correlation energy, but the behavior as a function of A is
not constant with a minimum of 0.99 MeV for A = 164 and
a maximum of 1.46 MeV for A = 154. The additional 600
keV binding energy gain associated with the hexadecapole
degree of freedom can be important for a proper description
of binding energies with the accuracy required by modern ap-
plications [22,29]. In the third and fourth columns the β2 and
β4 deformation parameters are given. Our β2 parameters are
typically 25% larger than the ones given by Moller [2] and the
only isotope where they agree is the spherical 190Gd. On the
other hand, our β4 values are a factor of two larger. The GCM
ground state deformation parameters are similar to the ones
obtained at the mean field level. In the next three columns,
the excitation energy of the first excited state 0+ (phonon
along the A direction) along with its β2 and β4 deformation
parameters are given. The excitation energy ranges from 0.6
to 3.7 MeV depending on the isotope and both deformation
parameters are slightly larger than those of the ground state.
In 180Gd, the first excited 0+ is oblate and lies at a quite low
excitation energy of 612 keV with a β2 = −0.19 and zero
hexadecapole deformation. The Gd isotopes with A = 152
and 154 show prolate-oblate shape coexistence that manifest
in a different structure of the collective wave function of the
first excited state (see Fig. 9). As a consequence, the excitation
energy of the first excited state is relatively low with values of
1.5 and 1.9 MeV, respectively. The same holds true for the
isotopes with A = 168 and 170 but with a less pronounced
prolate-oblate mixing. For the intermediate isotopes, without
shape coexistence the energy goes up to around 3.5 MeV. For
the second excited 0+ the excitation energies follow the same
pattern as for the first excited state associated to the existence
of prolate-oblate shape coexistence. For mass numbers around
162 it goes up to around 4.8 MeV. Interestingly, the β2 defor-
mation of the second excited state becomes negative for A =
152, 154, and 170 as a clear manifestation of prolate-oblate
mixing. In all the remaining isotopes excited states have simi-
lar deformations as the ground state. The excitation energy of
the second excited state (phonon along B direction) appears
too high except in those cases where prolate-oblate shape
coexistence is present. As discussed in the previous subsection

TABLE III. Same as Table I but for the 2D GCM calculation of
all the Sm isotopes considered and using the D1S parametrization of
the force.

A Ec β2 β4 E1 β2 β4 E2 β2 β4

150 1.338 0.23 0.10 1.496 0.28 0.14 1.996 −0.16 0.06
152 1.403 0.31 0.18 1.879 0.28 0.12 3.076 0.31 0.17
154 1.239 0.33 0.21 2.635 0.30 0.17 3.059 0.37 0.20
156 1.174 0.35 0.20 3.319 0.33 0.15 4.083 0.36 0.17
158 1.072 0.35 0.18 3.464 0.34 0.16 4.629 0.39 0.16
160 0.968 0.36 0.15 3.554 0.37 0.19 4.943 0.40 0.16
162 0.961 0.36 0.13 3.390 0.39 0.20 4.845 0.36 0.14
164 1.046 0.36 0.11 2.725 0.40 0.18 4.233 0.36 0.11
166 1.194 0.36 0.10 1.648 0.41 0.16 4.172 0.35 0.09
168 1.371 0.35 0.09 1.452 0.37 0.11 3.951 −0.26 0.07

in the 154Sm case, some missing degrees of freedom might
reduce the excitation energy a bit. Using the typical reduction
of a factor 0.7 consequence of considering ATD versus GCM
inertias (a simple way to take into account momentum-like
collective coordinates) one could expect excitation energies
for the phonon along B direction to come down to 3–3.5 MeV
which is perhaps too high to be characterized experimentally.
For those cases where prolate-oblate shape coexistence is
present the above reduction factor will bring the excitation
energy to a quite low value but the price to pay would be to
disentangle the impact of shape coexistence in the character-
istics of the vibrational state.

In Table III the results obtained for the Sm isotopic chain
are presented. The features of the ground, first, and second
excited states are very similar to the ones of the correspond-
ing Gd isotopes with the same mass number plus two. It
becomes apparent that a change of two units in proton num-
ber does not change in a relevant way the Gd results except
in very specific situations like the β2 deformation of the
second excited state in 152Sm. These specific cases can be
traced back to a subtle interplay of the collective wave func-
tions associated to prolate-oblate shape coexistence in those
systems.

IV. SUMMARY

Systematic HFB calculations with the Gogny D1S force
show several regions of the nuclear chart where the ground
state hexadecapole deformation is nonzero. In this paper the
region corresponding with Z = 62 and 64 (Sm and Gd) and
positive β4 values is studied with the GCM method for the
K = 0+ quadrupole and hexadecapole degrees of freedom.
The gain in binding energy due to those correlations is com-
puted as well as the position of the first and second 0+ states
corresponding to vibrational states along collective degrees of
freedom where quadrupole and hexadecapole are strongly in-
terleaved. For some of the isotopes considered, prolate-oblate
shape coexistence impacts excitation energies and deforma-
tion parameters of excited states in a substantial way. For
the more pure vibrational states showing up in some other
isotopes excitation energies come up too high to be amenable
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to an easy experimental characterization. A discussion of
relevant missing degrees of freedom that could reduce the
excitation energies is presented. We conclude that the physics
brought by considering the hexadecapole degree of freedom
is not trivial and its study is worth further consideration.
In a forthcoming publication we plan to extend the present
analysis to nuclei in the rare earth region with negative β4

values in their ground states.
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