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Over the past decade, machine learning has been successfully applied in various fields of science. In this
study, we employ a deep learning method to analyze a Skyrme energy density functional (Skyrme-EDF), which
is a Kohn-Sham type functional commonly used in nuclear physics. Our goal is to construct an orbital-free
functional that reproduces the results of the Skyrme-EDEF. To this end, we first compute energies and densities
of a nucleus with the Skyrme Kohn-Sham + Bardeen-Cooper-Schrieffer method by introducing a set of external

fields. Those are then used as training data for deep learning to construct a functional which depends only on
the density distribution. Applying this scheme to the **Mg nucleus with two distinct random external fields, we
successfully obtain a new functional which reproduces the binding energy of the original Skyrme-EDF with an
accuracy of about 0.04 MeV. The rate at which the neural network outputs the energy for a given density is about
10°-10° times faster than the Kohn-Sham scheme, demonstrating a promising potential for applications to heavy

and superheavy nuclei, including the dynamics of fission.
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I. INTRODUCTION

Recent progress of deep learning is quite remarkable. It
has actually gained popularity in various fields of science
and technology, such as natural language processing, com-
puter vision, and speech recognition [1-5]. In several fields
of physics, such as condensed-matter physics, a multitude of
ideas to utilize machine learning are arising. For instance,
in Ref. [6], an energy density functional (EDF) for electron
systems that depends solely on an electron number density
was constructed using the method developed in Ref. [7], in
which an attempt was made with a neural network to predict
the solution of a two-dimensional Schrodinger equation in a
random potential. Other applications have already existed also
for a variety of problems, including those in spin systems [8]
and superconducting systems [9].

In contrast, an application of deep learning to nuclear
physics has still been in its early stage [10-26]. We mention
that nuclear physics continues to face numerous unresolved
challenges that call for innovative solutions, including a
description of large amplitude collective motions. Such
problems may be solved efficiently by applying the machine-
learning techniques developed in other fields of physics.

In particular, the recent application of deep learning to
the Kohn-Sham type DFT [6] mentioned above could be
readily applied also to nuclear physics. In nuclear physics,
phenomenological models for a functional have often been
employed [27]. The resultant Kohn-Sham type energy den-
sity functional (KS-EDF) is not an explicit functional of the
particle number density only, but is parametrized together
with other local densities, such as the kinetic-energy density,
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the spin-orbit density, and the pair density when considering
explicitly the nucleonic superfluidity. To calculate observables
using the KS-EDF, such as the binding energy of a nucleus,
one needs to solve a self-consistent differential equation of
the same form as that in the mean-field theory many times,
which is computationally expensive, especially for heavy sys-
tems. Therefore, it is desirable to develop an orbital-free EDF
(OF-EDF) theory that depends solely on the particle number
density, without explicitly depending on Kohn-Sham orbitals
and other local densities such as the kinetic and the spin den-
sities. Deep learning can be a powerful tool for that purpose
[6]. Such theory will be based on a functional that depends
solely on the particle number density. Notice that this is totally
consistent with the original philosophy of density-functional
theory (DFT).

The aim of this paper is to apply the method developed
in Ref. [6] to a nuclear system and construct a deep-
learning-based nuclear OF-EDF that reproduces results of
the Skyrme-EDF. In applying the method of Ref. [6] to a
nuclear system, one has to take into account several aspects
that make nuclear systems different from electron systems.
One obvious difference is that a nucleus is a self-bound at-
tractive system. In a electron system without phonons, the
only interaction between electrons is the repulsive Coulomb
force, which causes two electrons to distribute as far as
possible. In marked contrast, nucleons tend to get closer to
each other due to a short-ranged attractive nuclear force, and
thus the mechanism which determines the density distribu-
tion is quite different between electron and nucleon systems
[28]. In addition, for electron systems, the KS-EDFs, which
are inspired by the Hartree-Fock method, works well in

©2023 American Physical Society
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general. On the other hand, in nuclear systems, superfluid-
ity plays a crucial role in open-shell nuclei, and observables
are better explained using a KS-EDF that is inspired by the
Hartree-Fock-Bardeen-Cooper-Schrieffer (BCS) or Hartree-
Fock-Bogoliubov method rather than by the Hartree-Fock
method. This leads to a technical difference in that a nuclear
KS-EDF depends also on the pair density. It will be intriguing
to investigate how well the deep learning method works in
such attraction-dominated nuclear systems.

This paper is organized as follows: In Sec. II, we introduce
the KS-EDF which we employ, and define a protocol for deep
learning. We also discuss how to generate data sets to train
neural networks. In Sec. III, we carry out the deep learning
for the >*Mg nucleus and discuss how well the data sets can be
learned. We then summarize the paper in Sec. IV and discuss
future perspectives.

II. FORMULATION

A. Skyrme energy density functional

We first introduce a Kohn-Sham type energy density func-
tional (KS-EDF) for training on a neural network. Throughout
this study, we consistently employ the following Skyrme-type
EDF [29]:
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where m is the nucleon mass and A is the mass number of a
nucleus. Eyin, Eint, Epair, and Ecom are the kinetic energy, the
interaction energy, the pairing energy, and a cost function for
the center of mass, respectively. p, 7, J, and p are the particle
number density, the kinetic density, the spin density, and the
pair density, respectively, in which the subscript g refers to

neutron or proton. Those are defined as
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where ¢, (r) is the kth Kohn- Sham orbital in a spinor form
with isospin ¢, and v2 r=1- u? & s the occupation prob-
ability for the kth orbital. Notice that we take the BCS
approximation for the treatment of the pairing correlation.

In the interaction part of the functional, b; and b; (i = 1-4)
as well as o are the Skyrme parameters. In this paper, we use
the SLy4 parameter set [30] for these parameters. For sim-
plicity, we ignore the Coulomb interaction, even though the
entire Coulomb interaction term can be explicitly described
as a functional of the proton number density if the Slater
approximation is introduced to the exchange term.

For the pairing part, we employ a surface-type functional
of the density-dependent delta-interaction (DDDI) [31] [see
Eq. (4)], which contains the parameters Vo(q), po, and y. In
this study, we take ¥ = 1 and py = 0.16 fm > and determine
Vo(q) so that the average pairing gap coincides with the empiri-
cal pairing gap, A, = 12/+/A MeV [29,32]. The zero-range
pairing interaction has to be supplemented with an energy
cutoff. In this paper, the sharp cutoff energy of 60 MeV is
introduced to the single-particle energy of the Kohn-Sham
orbitals. The resultant strengths for the pairing are VO(") =

V” = —683.344 MeV fm’.

In addition to the ordinal Skyrme EDF, we introduce a
functional Ecom[p] to fix the center-of-mass position in the
z direction, even though this can be done also by constraining
the Q1o = Y, z; operator. This is necessary because we intro-
duce external fields (see Sec. I C below) to generate various
density distributions. By fixing the center-of-mass position,
one can prevent a nucleus from localizing around the edges of
the box, which is useful to generate various deformed states
in a small box. In this study, we take 0.625 MeV/ fm? for the
value of C.

In this paper, we consider only the 2*Mg nucleus. This
choice of a nucleus is convenient, because this nucleus has
equal numbers of protons and neutrons, and thus the pro-
ton and the neutron densities coincide with each other when
the Coulomb interaction is ignored. Furthermore, we impose
the axial symmetry and the time-reversal symmetry on the
system, enabling the local densities to be expressed in the
cylindrical coordinates (r, z) [33]. Notice that Ref. [6] also
used a two-dimensional EDF for electron systems. With these
simplifications, in principle, the EDF of the system should be
able to be expressed solely with the nucleon number density
p(r, z), which can be considered as a monochromatic image.

We solve the Kohn-Sham equations for this EDF by intro-
ducing various external fields to obtain a set of ground-state
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FIG. 1. A neural network employed in this work to learn the
Skyrme-EDF, E[p]. It consists of 10 hidden layers, all of which
are fully connected. Their activation functions are the ReLU, and
the sigmoid activation function is employed for the output layer. The
number of neurons in each layer is listed below the layers.

energies and nucleon number densities. The explicit forms
of the external fields are specified in Sec. Il C. We solve the
Khon-Sham equations by discretizing the real space, with the
mesh size of 0.8 fm in both the r and z directions, which
is a standard choice in solving the Kohn-Sham-Bogoliubov
equation in the real space, as in Ref. [34] and references cited
therein. We take 10 grid points in the r direction and 20 points
in the z direction, with which the density p(r, z) can be consid-
ered as a 10 x 20-dimensional vector in our calculations. We
choose the box boundary condition and include the z compo-
nent of angular momentum up to 9/2. Without the external
potentials, the ground state of >*Mg becomes spherical in our
setup with the binding energy of —222.59 MeV.!

B. Neural network

In this paper, we carry out a regression analysis of E =
E[p] using a set of the particle number density and the energy
D = {E®, p}); generated by the KS-DFT. To this end, we
utilize a neural network with fully connected layers for the
fitting function. The fundamental structure of a neural network
involves a repetition of linear and nonlinear transformations
on the input vector; fully connected layers signify that all the
neurons in the previous layer are connected to all the neutrons
in the next layer.

We mention that neural networks composed solely of fully
connected layers may encounter an issue of an excessive num-
ber of parameters when the dimension of an input vector is
large. To avoid this problem, a convolutional neural network
(CNN) is often employed, which has demonstrated remark-
able success in the field of computer vision [35,36]. In fact, in
the previous application of deep learning to KS-DFT [6], the
input size of a vector has as large as 256 x 256 dimension,
and thus a CNN was employed. However, the dimension of
our studies in this paper is much smaller, with a 10 x 20
dimension. Therefore, we do not need to introduce the CNN,
and a simpler neural network consisting of the fully connected

"We have confirmed that a smaller pairing strength yields a prolate
shape.

layers, as depicted in Fig. 1, is employed in this study (see the
caption for the details).

We use the Adam optimizer [37], which has several tunable
parameters. Among these parameters, we set a learning rate to
be 10~ and the others to be default value of the Keras API
[38].2 The batch size is 128, namely, we divide training data
into subsets, each of which contains 128 components. In each
update of the fitting parameters, we do it only within each
subset to minimize a loss function, for which we take a mean
square loss function. To avoid the problem of overfitting, we
adopt the early stopping strategy and stop the learning at the
500th epoch. We decrease the learning rate sequentially to
107 (at epoch = 101), 107° (at epoch = 201), 5.0 x 10~/
(at epoch = 301), and 10~7 (at epoch = 401).

C. External fields

For a given EDF, one can make a correspondence between
the particle number density and the energy of the ground state
for a specific external field. This property will be used to
construct a data set to be trained for an OF-EDF. For this
purpose, a diverse range of external fields is required. In this
section, we introduce two methods to generate the external
potentials used in this study. The basic idea of these methods
is adapted from the previous studies [6,7] on two-dimensional
systems, but we modify them for the axial-symmetric systems.

1. Simple harmonic oscillators

The first method is to use external fields based on a simple
harmonic oscillator (SHO). As the name implies, this is a de-
formed harmonic-oscillator potential shifted in the z direction:

. . . L2
vsho(r ) = sk + 3k (e —2g'). (10)

The parameters in the range of 0 < k., k, < 1.1 MeV /fm?,
and —1.6 fm < zp < 1.6 fm in the potential are generated
from uniform random parameters.’

The SHO potentials would be able to encompass only a
small portion of a domain of the external fields to be used in
the Skyrme-EDF. However, for practical calculations, only a
limited variety of external fields, such as a quadrupole mo-
ment, has frequently been utilized, if a constrained field is
regarded as an external field in a broad sense. It is therefore
still useful to examine the effectiveness of the learning process
with the SHO potentials.

2. Random potentials

As the second method, we introduce a random potential
(RND). In this regard, we mention that a primary purpose of
introducing external fields in this study is to generate various
types of density distributions p. It is highly nontrivial to
generate external fields which efficiently lead to a multitude
of densities with low binding energies, as one does not know

2We have also tested the Rectified Adam optimizer (RAdam) [39],
but results were not improved.

3Unless otherwise noted, all the random numbers used in this paper
are uniform random numbers.
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a priori the relation between a distribution of p and that
of external fields. While Gaussian processes (GPs) [40] are
certainly one of the powerful tools for this purpose, in this
paper we follow the idea of Refs. [6,7] to generate random
potentials as follows.

These are highly random potentials with many random
numbers:

v (1 2) = m(r, 2) x stV (r, 2), (11)

where m(r, z) and sr(r, 7) are defined as,

m(r, z) = exp (—4.0max{0, vr2 + 22 — ro}*/rj), (12)
and

st(r,z) = Z sO(r,zir, 2ymd (', 2), (13)

rz
respectively, with
SO zr ) = exp [{(r = 'V + @ = P/, D).
(14)

The meaning of rnd(r, z) in Eq. (13) and /L;i)(}”, z)in Eq. (14)
is as follows: First, for each grid point (r, z), a random number
within the range of [Umin, Umax] 1S generated and labeled as
md®(r, z). Since the potential with those random numbers is
too irregular to be used as a potential, it is smoothed with a
Gaussian filter, denoted as sV, as in Eq. (13). At this stage, the
square of the Gaussian width pc(z')(r, z)in Eq. (14) is randomly
generated within the range of [omin, Lomax] tO prevent the
external field from acquiring scale information due to the
standard deviation of the Gaussian. Finally, a mask defined
by Eq. (12) is applied in Eq. (11) to circumvent a numerical
instability caused by a reduction of the external field near
the boundary. In this study, we take ro = 1.4 x 1.24'/3 fm,
Umin = —1.1 MeV, vpmax = 1.1 MeV, fomin = 0.8 fm?, and
Uomax = 1.2 fm?, which are determined to obtain a large num-
ber data for >*Mg with excitation energies below 5 MeV.

In Refs. [6,7], random {0, 1} binary data were utilized
for rnd”(r, z). For electronic systems, such a choice would
be plausible because the potential primarily arises from the
Coulomb potential due to a nucleus. On the other hand, in
nuclear systems, it would be a highly nontrivial question to
ask which potential is useful to describe static and dynamical
properties of atomic nuclei. While many calculations employ
a phenomenological deformed mean-field potential with, e.g.,
a quadrupole deformation to study deformed nuclei, it is not
obvious whether such choice is optimal. Therefore, in this
study, we use random real numbers for rnd”(, z) to generate
more diverse external fields than in the previous studies. Ad-
ditionally, since the constraint on the center-of-mass position
is included in the definition of the KS-EDF (1), a different
mask function m from that in the previous studies is also
introduced.

II1. RESULTS

A. Generation of a dataset

Let us now apply the deep learning protocol discussed
in the previous section to the Skyrme EDF. We first

SHO, By SHO, By
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FIG. 2. Histograms for the results of the Skyrme EDF calcula-
tions with 250 000 different external fields based on the SHO (the
first row) and the RND (the second row) fields. The left and right
panels show the binding energy and the pairing energy in units MeV,
respectively. It can be observed that the structure in the shape of
the histograms is washed out to a large extent for the RND external
fields, which are more random than the SHO cases.

prepare 250 000 data sets for each of the SHO and the RND
external fields. For each calculation, the outputs are (i) the
nucleon number density p, (ii) the kinetic energy Eyi,, (iii)
the interaction energy Ejy, (iv) the pairing energy Ep,, and
(v) the energy for the external field E.x. The binding energy
Epin is also computed as a sum of Eyp,, Eiy, and Epgr, as
Evin = Eyin + Eint + Epair. Figure 2 displays the distribution
of Eyiy and Ep,; for each of the SHO and the RND external
fields. The distributions of the other components of the energy
are summarized in Appendix A (see Fig. 8). To use these data
for deep learning, we reject those outside the regions given in
Table I to remove outliers. Following Ref. [6], we randomly
select 200 000 data for dataset from the remaining data. Out
of those 200 000 data, we randomly adopt 90% of them for
training data, while the rest for test data, which are not used
for training.

TABLE I. The lower and the upper cutoff energies, in units MeV,
for the two different types of the external fields, SHO and RND.
The numbers in the parentheses denote the number of data after
each cutoff is implemented for the original 250 000 data. For each
learning, only the data within the intervals are employed. The value
of cutoffs are determined so that approximately all the data shown in
Figs. 2 and 8 can be included.

SHO RND
Type Lower Upper Lower  Upper
Epin —oo  —217.5 (239827) —oo 2175 (245740)
Exin 395.0 450.0 (249491) 360.0 420.0 (249 310)
Ey —650.0 —600.0 (248782) —630.0 —550.0 (249 398)
Epir  —220 400 (248911) 350 +oo (249112)
Eex —00 120.0 (249704) —70.0 50.0 (249 468)
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B. p — Elp]

We first discuss the results for each energy as an objective
variable with the nucleon number density as an explanatory
variable. In other words, we construct the OF-EDF, which
yields the energies from a density distribution as an input. In
DFT, apart from an external field, there would be an ambiguity
to divide the functional into components: Eyn, Ejn, and Epyi;
themselves may not have strict physical meanings. Neverthe-
less, these components can be employed as indicators at least
for qualitative discussions, and we thus follow Ref. [6] to
examine the subparts of the EDF. In particular, it is interesting
to investigate the pairing energy Eq; because it qualitatively
verifies whether we can learn the effect of superfluidity, or
the pair density, with deep learning. Notice that this was not
addressed in the previous study in Ref. [6].

The panels in the first row in Fig. 3 show the difference
between the results of the Kohn-Sham method and the neural
network predictions for the test data with the RND external
fields not used in learning. The results with the SHO external
fields (see the panels in the third row) are found to be more
accurate.* Figure 3 shows only Epjg, Epair, and Eey, while the
other components of the energy are displayed in Appendix A
(see Fig. 9). One can see that our neural network can predict
most of the data except for the energy of the external fields
plotted in the rightmost figure.

We have found that the large error in E. was not im-
proved by changing the learning method, such as a CNN
model (see Appendix). This may be due to the fact that the
particle number densities with different external fields tend
to have a similar shape because of the saturation property,
which results in an information loss in the process of com-
pressing information on the external fields into the density
distributions. Of course, according to the principle of DFT,
ideally there should be no loss of information because there
is a bijection between an appropriately defined density and
an external field. However, in actual calculations, information
on the detailed structure of external fields may be lost due to
several numerical errors such as rounding errors, finite differ-
ence errors, and errors associated with a convergence criterion
in self-consistent calculations. It is then natural that the pre-
diction error becomes large when one attempts to recover the
external field information from such a density distribution.
The inaccuracy in predicting the energy of external fields was
reported also in the previous study [6], but the inaccuracy
seems more pronounced in atomic nuclei, which are systems
with an attractive interaction. As we will show in the next
section, this problem can be improved by using the external
fields as explanatory variables.

To quantitatively evaluate the errors, we calculate the mean
absolute errors (MAESs) for each learning, which are summa-
rized in Table II. It is remarkable that the MAE for the binding
energy is as small as 0.0051 MeV for the SHO external fields
and 0.0433 MeV for the RND external fields, which are much
more accurate than the accuracy required, e.g., for a fission

“This is a natural outcome from the simplicity of the SHO external
fields.

TABLE II. The mean absolute error (MAEs) for each learning
with the SHO and the RND external fields. The units are MeV
for E[p] and E[v], while the MAE for p[v] is dimensionless [see
Eq. (16)].

SHO RND
Type E[p] E[v] E[p] E[v]
Euin 0.0051 0.0054 0.0433 0.0237
Exin 0.0165 0.0071 0.1131 0.0900
Eip 0.0105 0.0182 0.0431 0.1499
Epair 0.0233 0.0261 0.1567 0.1411
E 0.0318 0.0105 6.6973 0.1338

plv] plv]

0.1107 0.4101

barrier of heavy nuclei as well as for nuclear masses. For
instance, for the latter, the accuracy of 100 keV is required for
the r-process studies [41]. The MAE for the pairing energy
is 0.0233 MeV for the SHO and 0.1567 MeV for the RND.
These values indicate that the particle number density predicts
well the contribution of the pairing correlation, even though
the error is slightly larger than that for the binding energy.

Finally, let us discuss a computational time. For the **Mg
nucleus, it typically takes about a minute to solve the Skyrme-
EDF with the Kohn-Sham method and obtain a single training
data point. In marked contrast, the time to predict the energy
with the neural network used in this paper from a given
density is much shorter, about 0.1 ms. The difference in the
computational speed will become larger for heavy nuclei. This
makes a great advantage of using the deep learning method,
e.g., in plotting a multidimensional potential-energy surface
for nuclear fission studies of heavy nuclei.

C. v—= E[v]

While it is somewhat tangential to the topic of DFT, there
is a certain demand in electronic systems for a functional
that directly predicts the energy from a given external field.
Because of this, in the previous study [6], an energy functional
E[v] was constructed following the same procedure as that to
construct a functional E[p]. Even though it is unclear whether
such a functional is useful in nuclear physics, it may be worth
investigating whether a functional E[v] can be constructed in
connection to the discussion in Ref. [6]. We therefore carry
out similar calculations using the same neural network and
dataset as those in the previous section, but with the external
fields as the explanatory variables.

The MAEs for E[v] are summarized in Table II, which
shows that the MAE for E[v] tends to be decreased compared
with that for E[p]. This is because the external field contains
more information than the density distribution. This is par-
ticularly true for learning the energy from the external fields.
On the other hand, the accuracy gets lowered for the binding
energy with the SHO external fields. To investigate the origin
for this, the panels in the second and the fourth rows in
Fig. 3 show the differences between E[v] from the Skyrme KS
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FIG. 3. The differences between the Kohn-Sham result and the predicted results from the neural network for E[p] and E[v] for the RND
(the first and the second rows) and the SHO (the third and forth rows) external fields. These are given as a function of the corresponding
Kohn-Sham energies, all given in units of MeV. From the left to the right columns, the training results are shown for the binding energy,
the pairing energy, and the energy of the external fields. The results for 20 000 test data points are plotted in each figure, in which densely
populated (under populated) points are displayed in red (blue).
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FIG. 4. A neural network with the encoder-decoder structure em-
ployed in this work for a mapping from an external v to a particle
number density p. It consists of 10 hidden layers, all of which
are fully connected. Their activation functions are ReLU, and the
softmax activation function is employed for the output layer.

calculations and the result of the deep learning. We find that
the points with large errors are due to external fields that have
small amplitudes; that is, almost flat potentials. Since many
SHO potentials used in the dataset have a large curvature, it is
difficult to learn information about external fields with a small
curvature. Such a problem is less likely to occur in fermionic
systems when density distributions are used as the explanatory
variables, leading to a somewhat better accuracy.

D. v - p[v]

Observables are in general calculated in DFT with a parti-
cle number density, which is obtained with a given functional.
That is, a functional has to be known in advance in obtaining
a particle number density. As demonstrated in Ref. [6], if a
neural network can directly predict the density for a given
external field, the calculation speed will be significantly im-
proved. We therefore carry out deep learning for the nuclear
system with the external fields as the explanatory variables
and density distributions as the objective variables. To this
end, we have to take into account the fact that the densities are
normalized to the particle number; that is, f d*rp = A. The

10!

SHO

100_

absolute error

107L

—233 =032 —221 —220 —219 —218
Kohn-Sham binding energy (MeV)

softmax function, which is commonly used in classification
problems, enables one to require the normalization condition.
We shall employ this approach in this study for the output
layer. For the axial symmetric system, the following relation-
ship exists with a discretized spatial mesh:

2 2 ArA
7”// rdrdz p(r, z):;p(r,.,zj)% =1, (15)

where Ar = Az = 0.8 fm are the mesh width.

Thus, by selecting 27 r; ArAzp(r;, z;)/A as the objective
variable, the normalization is automatically imposed. In this
study, we use a neural network with an encoder-decoder struc-
ture for training, as is shown in Fig. 4. The MAE for p[v] [42]
is defined as

MAE =2r /f rdrdz |ppred(ra 2) = Pans(7, 2)|, (16)

where pprea (7, 2) and pans(7, z) denote a predicted density and
a Kohn-Sham result, respectively. Here, the bar symbol repre-
sents the average over the test data. We apply the same cutoff
energies to the training data as those for the binding energy
(see Table I).

Figure 5 shows the error for each test data point plot-
ted as a function of the corresponding binding energy from
the Kohn-Sham calculation. Their average corresponds to the
MAE (16), which is 0.1107 for the SHO external fields and
0.4101 for the RND external fields. Figure 6 presents the
images of the predicted densities for a few randomly selected
data points for the RND external fields, in comparison with the
corresponding Kohn-Sham densities. These examples clearly
show that our neural networks successfully reproduce the
Kohn-Sham densities.

We also evaluate the error obtained when the OF-EDF in
Sec. III B is supplemented with the density obtained from the
mapping p[v] discussed in this subsection. For the test data of
SHO and RND, the MAE of E[p[v]] is found to be 0.0847 and
0.3059 MeYV, respectively. These values are larger compared
with those in Table II. This large error is referred to as the

10!

RND

absolute error

107!

—033 —292 —921 —230 —219 —21%
Kohn-Sham binding energy (MeV)

FIG. 5. The absolute error of the density distribution directly generated by a deep learning from a given external field v. It is plotted as a
function of the binding energy from the corresponding Kohn-Sham calculation. The left and the right panels show the results with the SHO
and the RND external fields, respectively. The densely populated points are displayed in red, while the underpopulated points are shown in

blue.
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FIG. 6. Examples of the predicted densities (the panels in the third row) generated directly from the RND external potentials shown in the
panels in the first row. For a comparison, the corresponding Kohn-Sham densities are also plotted in the second row. The panels in the fourth
row show the difference between the predicted densities and the Kohn-Sham densities, on which the numbers denote the absolute error for
each sample. The units of the color coordinate are MeV for the external potentials and fm > for the densities.

density-drive error (DDE) [6,43] and is considered to be due
to the lack of information in the neural network p[v] about the
impact of the generated error on the energy during the learning
process. Because of this defect, it would be more appropriate
to use E[v] directly when calculating the energy from a given
external field.

E. Generalization performance

We have so far introduced the two types of external
fields and constructed the two independent datasets. For each
dataset, we have successfully provided predictions for the
training data with sufficient accuracy; however, this does not
guarantee performance for unknown data. For instance, a neu-
ral network trained with the RND data does not necessarily
yield accurate predictions for the SHO data. This is because
the RND and the SHO external fields yield density profiles in
a different way to each other. In general, such generalization
performance is a critical concern in applying a trained neural
network to another dataset.

To investigate this issue in the context of nuclear physics,
let us consider ESHO[,ORND] and ERND[,OSHO]» where PSHO
and prnp are the Kohn-Sham densities obtained with the

SHO and the RND external fields, respectively, and Esyo
and Egxnp are the functionals trained with psgyo and prap,
respectively. In Sec. III B, we have investigated Espolpsuo]
and Ernp[ornp ], but here we are interested in the performance
of the functionals when the densities obtained with the other
types of external fields are used as inputs. The left panel
in Fig. 7 compares the binding energies obtained with the
Kohn-Sham calculations with the RND external fields with
Espolprnp]- The right panel shows similar quantities, but
by inverting RND and SHO, that is a comparison between
the Kohn-Sham calculations with the SHO external potentials
and Ernplposaol]. One can see that the performance of the
neural network trained with the SHO external fields Espo
is quite poor in reproducing the RND data with large ran-
domness. On the other hand, the neural network trained with
the RND external fields Egnp successfully predicts the SHO
data, although the errors are larger than those for Ernp[orND]
shown in Fig. 3. The MAEs between Kohn-Sham results and
predictions are 1.1523 MeV for Espyolprnp] and 0.122 MeV
for Ernplpsuol. A similar conclusion has been obtained
also in Ref. [6]. Therefore, we can conclude that the RND
potentials which we adopted are random enough for deep
learning.
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FIG. 7. A verification of generalization performance for the present deep learning. The left and right panels show the results with the RND
and the SHO external fields, respectively. The horizontal axes denote the energies obtained with the Kohn-Sham calculations. On the other
hand, the vertical axes denote the difference between the Kohn-Sham energy of RND Esyo[prnp] and Ernp[osuol, that is, the predictions of
deep learning trained with the SHO (the left panel) and the RND (the right panel) external fields. Both the training and test data (200 000 data
in total) are plotted in each panels because the RND (SHO) dataset are not used in training Espolp] (Ernplp])-

IV. SUMMARY AND FUTURE PERSPECTIVES

Starting from a Skyrme functional, as a surrogate model,
we have successfully constructed an energy density functional
(EDF) which depends only on a particle number density. This
functional does not require Kohn-Sham orbitals and thus can
be regarded as an orbital-free EDF (OF-EDF). To this end, we
have applied deep learning, in which the density distributions
obtained with two types of random external fields (SHO and
RND) were mapped on the energy with a neural network.
For RND, we employed the external fields which are similar
to those used in Refs. [6,7], even though one could carry
out a similar study with Gaussian processes. The resultant
EDF was found to predict various energies for the original
Skyrme EDF with reasonable accuracy, except for the energy
of the RND external fields, whose accuracy could however

be considerably improved when the energies were predicted
with deep learning in which the external fields themselves
were directly learned. The latter feature is more pronounced in
systems with an attractive interaction than in electron systems.
‘We have also found that deep learning with less random SHO
external potentials has smaller errors as compared with that
with the RND external fields.

In this paper, we have employed simple supervised learn-
ing. However, there are various methods of machine learning
besides this. For example, generative models such as a genera-
tive adversarial network (GAN) [44,45] and a diffusion model
[3,46] may provide efficient ways to generate the particle
number densities, that is the input for deep learning used in
this work to construct an OF-EDF. These methods may be
useful alternatives for future application of the deep learning
method discussed in this paper.

4000f
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0
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FIG. 8. Same as Fig. 2, but for the kinetic energy, the interaction energy, and the energy for the external field.
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FIG. 9. Same as Fig. 3, but for the kinetic and the interaction
energies.

In nuclear physics, a triaxial deformation often plays an
important role, particularly in nuclear fission. In that occa-
sion, one needs to deal with three-dimensional (3D) densities,
accounting also for spin and isospin indices. We mention
that traditional neural networks, comprising fully connected
layers, tend not to perform efficiently with such three-
dimensional data, primarily because the data size tends to
become huge when the data are converted to one-dimensional
data. On the other hand, CNNs have shown adaptability
to data of general dimensions. With the Keras API [38],
3D CNNs can be conveniently implemented, making a
straightforward extension of the present work to 3D cases.
Furthermore, the vision transformer (ViT) [4], which has
recently demonstrated success in image recognition tasks,
can also be extended to three-dimensional data. With those

TABLE III. The mean absolute errors (MAEs) for each learn-
ing with the SHO and the RND external fields using the CNNs.
The units are MeV for E[p] and E[v], while the MAE for p[v] is
dimensionless.

SHO RND
Type E[p] E[v] E[p] E[v]
Euin 0.0049 0.0055 0.0336 0.0245
Exin 0.0151 0.0079 0.1010 0.1134
Ein 0.0119 0.0191 0.0484 0.1619
Epair 0.0179 0.0250 0.1505 0.1852
E. 0.0220 0.0108 4.7059 0.0889

plv] plv]

0.1092 0.3484

schemes, the dimensionality of the density itself is not a cru-
cial issue in learning EDFs, without incurring additional costs
for preparing training data.

One of the big advantages of using deep learning methods
is that energies can be rapidly computed once test data are
prepared and trained. With such low-cost calculations, numer-
ical experiments will become much easier than before. We
mention that, as objectives of research become more and more
sophisticated, the number of DFT calculations required to
publish a single research paper has in general been increased
in these days. A typical example is a calculation for fission
barriers in a multidimensional space. Even though computer
performance continues to be improved, a computational cost
of research has in general been increased, and it has been more
complicated than before to test an idea with a numerical exper-
iment. Fast computational methods like the one developed in
this work, particularly when they are provided in a convenient
format such as a Python library, can significantly shorten the
time required to test and validate ideas. If numerical accuracy
is an issue, one may revalidate ideas obtained with deep
learning by using the traditional Kohn-Sham scheme. This
could be interpreted as an application of the idea of materials
informatics (MI) [47] to a theoretical research.

A potential problem in performing supervised learning is
that one has to collect a large set of training data. In this work,
we have chosen a relatively light nucleus **Mg and imposed
axial symmetry, and thus we have treated a relatively low-cost
system. However, heavy and superheavy nuclei, such as ura-
nium isotopes, will be very costly in terms of data collection,
especially when no symmetry is imposed, even though those
nuclei have attracted lots of attention in nuclear physics, such
as, e.g., a finding the optimal pathway in fission has still been a
big theoretical challenge. In this regard, we would like to point
out that a data collection needs not be performed individually;
it could actually be done collaboratively by many researchers.
A lot of good quality data, which are ready to be used in deep
learning, may have already existed for some selected nuclei.
Therefore, we believe that it is desirable to establish a frame-
work in the nuclear theory community to collect numerical
data and/or to carry out numerical calculations with unified
hyperparameters such as a mesh size. Such a collaborative
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TABLE IV. A CNN employed in this work to learn E[p] and E[v]. The type of each layer is expressed
with the language of Keras API [38], with which one can reproduce this neural network easily. In each

layer, all arguments not mentioned are default values.

Layer Type

Input Input[shape = (10, 20, 1)]

1 Conv2D(filters = 32, kernel_size = 3, activation = “relu”)

2 Conv2D (filters = 64, kernel_size = 3, activation = “relu”)

3-8 Conv2D(filters = 64, kernel_size = 4, padding = “‘same,” activation = “relu”)
9 Conv2D(filters = 128, kernel_size = 3, activation = “relu”)

10-13 Conv2D(filters = 128, kernel_size = 3, padding = “same,” activation = “relu”)
14 Flatten()

15 Dense(units = 128, activation = “relu”)

Output Dense(units = 1, activation = “sigmoid”)

approach will help advance research more efficiently and ef-
fectively, benefiting the whole nuclear physics community.
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APPENDIX A: FIGURES FOR Ey;, AND E;¢

In this Appendix, we show Figs. 8 and 9 for Ey;, and Ejy
which are not shown in Sec. III. We also show a figure for a
histogram for E.y. The conclusions remain the same as those
for Figs. 2 and 3.

APPENDIX B: CONVOLUTIONAL NEURAL NETWORK

In a previous study [6], the convolutional neural network
(CNN) was used for calculating an OF-EDF. An efficient
structure in the CNN enables computers to recognize images,

which reduces the trainable parameters, and the CNN works
well in learning with large-size images. Since the input image
size is small enough in this study, we can use the neural net-
work only consisting of the fully connected layer. We can in
principle perform the training with CNNs as well, but we find
that the results are not significantly different (see Table III).
To this end, we use the CNN listed in Tables IV and V. The
learning methods are the same as for the fully connected layer.
Considering that the CNN is computationally more expensive
than the fully connected layer, the benefit of using the CNN
does not seem to be substantial, at least for the system studied
in this paper.

Of course, there are many choices and hyperparameters in
deep learning. Therefore, we do not mean to claim that there is
no sufficient benefit from using CNNs. However, if one needs
better and more accurate training results, skill and experience
are required. In that occasion, one way to proceed is to ask
professionals to submit their ideas in a competition on sites
such as Kaggle [48], for example. Hopefully, such approach
could help identify optimal machine-learning methods and
hyperparameters. For example, the IceCube held a competi-
tion on Kaggle [49].

TABLE V. A CNN employed in this work to learn p[v]. The neural network has encoder-decoder
structure. Layers 1—4 are reducing convolutional layers, and layers 5—7 are nonreducing convolutional
layers, where the size of images are (2, 12). We use layers 8—11 as deconvolution layers to enlarge them up
to (10, 20). In each layer, all arguments not mentioned are default values.

Layer Type

Input Input[shape = (10, 20, 1)]

1 Conv2D(filters = 32, kernel_size = 3, activation = “relu”)

2 Conv2D(filters = 64, kernel_size = 3, activation = “relu”)

3 Conv2D(filters = 128, kernel_size = 3, activation = “relu”)

4 Conv2D(filters = 256, kernel_size = 3, activation = “relu”)

5-7 Conv2D(filters = 256, kernel_size = 4, padding = “same,” activation = “relu”)
8 Conv2DTranspose(filters = 256, kernel_size = 3, activation = “relu”)
9 Conv2DTranspose(filters = 128, kernel_size = 3, activation = “relu”)
10 Conv2DTranspose(filters = 64, kernel_size = 3, activation = “relu”)
11 Conv2DTranspose(filters = 32, kernel_size = 3, activation = “relu”)
12 Flatten()

13 Dense(units = 200, activation = “softmax’)

output Reshape[target_shape = (10, 20, 1)]
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