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Projected shell model description of nuclear level density: Collective, pair-breaking,
and multiquasiparticle regimes in even-even nuclei
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There is overwhelmingly experimental evidence indicating that excited nuclear states are dominated by
quasiparticle (qp) excitations, which form many-body configurations with broken nucleon-pairs from different
orbitals. By taking these multi-qp states as building blocks for a shell-model basis, we propose a novel
shell-model method for the calculation of nuclear level density (NLD) in deformed nuclei. The shell-model
diagonalization with two-body residual interactions yields a large ensemble of eigenstates of angular momentum
and parity. We demonstrate that NLD as a statistical quantity depends sensitively on the structure of deformed
single-particle states. As the first example to introduce this method, we take a well-deformed rare-earth nucleus,
164Dy, for which NLD has been studied extensively by the Oslo method. By a quantitative comparison with
discrete levels from spectroscopic measurements, we show that while the pronounced stepwise structure in the
low-energy NLD curve can be understood as the collective excitation and nucleon-pair breaking, the exponential
growth of levels in the higher-energy NLD can be described by the combination of the broken-pair states, subject
to the Pauli principle. According to the nature of NLD with increasing excitation, we divide the entire NLD
curve into (1) collective regime, (2) pair-breaking regime, and (3) multi-qp regime. We discuss the formation
mechanism and characteristic features of NLD for the three regimes. In addition, the parity dependence and
angular-momentum dependence in NLD are investigated with a strong emphasis on the structure effect.
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I. INTRODUCTION

Nuclear level density (NLD), defined as the number of
nuclear levels per unit energy interval, ρ(E ) = �N/�E , is
one of the basic properties of atomic nuclei. NLD is a crucial
ingredient in nuclear reaction theories, in particular, in the
calculation of thermonuclear reaction cross sections of astro-
physical interests, as well as in fission calculations. Moreover,
NLDs are required as important inputs to estimate energy gen-
eration in stars or to determine nuclear abundances in various
astrophysical processes using nucleosynthesis networks. For
practical applications, they are also useful in reactor physics,
nuclear medicine, and nuclear technological applications, e.g.,
in the transmutation of radioactive nuclear waste.

The study of NLD can be traced back to the attempt of
Hans Bethe who, in his seminal work [1,2], derived a simple
analytical formula by treating the nucleus as a gas of nonin-
teracting fermions moving in equally spaced single-particle
orbitals and applying a pure statistical partition function ap-
proach. Over the years, this simple thermodynamic approach
has been subject to various corrections to include shell and
pairing effects, which gradually led to the derivation of the
constant temperature model [3], the back-shifted Fermi-gas
model [4], the generalized superfluid model [5], etc. Con-
sistent attempts have been made throughout nearly the last
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three decades to adjust their parameters empirically to obtain
reasonable agreement with the available experimental data
[6–11].

Apart from the phenomenological models, microscopic
models have also been developed for NLDs. Several combi-
natorial models exist in the literature [12–17], among which
Refs. [15,16] have been widely accepted in practical appli-
cations. An exact shell model diagonalization is cumbersome
due to the large dimension of the Hamiltonian matrix elements
and, in principle, is only possible in a physically truncated
orbital space for relatively lighter nuclei or for nuclei in the
vicinity of shell closure. For example, for several nuclei be-
longing to the sd shell, full shell-model diagonalizations have
been performed to derive NLDs [18,19]. Alternative methods
based on the shell-model concept—namely, the Monte Carlo
method [20–24], the stochastic estimation method [25], mo-
ments method [26,27], the Lanczos method [28], etc.—have
been developed to avoid the computational complexity of full
Hamiltonian diagonalization while trying to retain the phys-
ical essence of the full diagonalization procedure. However,
most of these approaches, being in their early stages of devel-
opment, have only limited applicability [29].

It is predominantly agreed that, with increasing excitation
energy, level density curves grow as exponential functions,
which behave as a straight line in a logarithm plot, connect-
ing the NLD at the low-energy region of discrete states to
that at the neutron separation energy obtained from neutron-
resonance spacing data. In Ref. [30], Alhassid et al. discussed
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the linear function b0 + b1Ex. The parameters b0 and b1 are
sensitively isotope dependent [31]. For the Oslo method,
which is one of the most advanced methods for experimental
determination of NLD (see discussions in Sec. II), it is criti-
cally important to know precisely where the anchor points of
the line lie. The shell-model Monte Carlo (SMMC) method
[20–24] is more advantageous in the high-energy region ow-
ing to its statistical aspects. For the low excitation region,
the experimentally available discrete levels can provide only
limited information. Therefore, the determination of NLDs in
the low-energy region before the exponential behavior sets in,
where the NLDs are totally nuclear structure sensitive [31],
is of great theoretical interest. It is purely a nuclear structure
problem, for which the development of novel shell-model
methods is required.

The present work is devoted to introducing a state-of-the-
art shell-model method for the systematical calculation of
nuclear level density and γ strength function, with an empha-
sis on detailed structural information. We apply the idea of
the projected shell model by Hara and one of the present au-
thors (Y.S.) [32–35], which has been proven to be successful
in the description of nuclear spectroscopy for a wide range
of isotopes of the nuclear chart, from light nuclei [36,37],
where full diagonalizations of the large-scale shell model are
feasible, to the superheavy region [38–41], from which one
may extract information for the anticipated superheavy island
of stability. The present article is designed as the first one of
a series of publications, in which we discuss NLD fully from
a microscopic point of view, by connecting calculated NLD
curves to detailed nuclear structure questions. We demonstrate
that NLD as a statistical quantity depends sensitively on the
structure of deformed single-particle states.

The article is arranged as follows. As the results from
the present theoretical method will be discussed with a close
comparison with the experimental NLD results of the Oslo
method, in Sec. II we give a brief account of how the Oslo
method generates NLDs from measured γ rays. Section III
discusses an important aspect of the basic nuclear structure
in excited nuclear states, where the historic treatment of the
nucleon pairing by the Bardeen-Cooper-Schrieffer (BCS) the-
ory is reviewed. The discussion in this section emphasizes
the unique physical process of pair breaking under nuclear
rotation, for which we point out that, in sharp contrast to
sudden phase transition seen in other systems, the evolution
of pair breaking in rotating nuclei is gradual over a wide
range of excitations. Section IV outlines the projected shell
model, which is a novel shell model based on a deformed
basis with the angular-momentum projection technique. In
this section, we introduce the deformed single-particle basis,
the multiquasiparticle (qp) configuration space, the effective
two-body Hamiltonian, and the state-of-the-art many-body
method that allows us to carry out numerical calculations.
Results and discussion with 164Dy as the example are given
in Sec. V with four subsections. In Sec. V A, we validate
our model by showing a quantitative description of discrete
nuclear levels in 164Dy, with a one-to-one comparison of
our calculated energy levels with the known data. Based on
these results, we present in Sec. V B our theoretical NLD
together with that of experimental discrete levels and the Oslo

NLD curve. The focus of discussion in this subsection is the
step structures in the NLD curve in the low-energy region of
164Dy. Our results suggest a missing step structure beyond
2.0 MeV of excitation in the Oslo curve, which corresponds
to a simultaneous breaking of a neutron pair and a proton
pair. In a finite self-bound atomic nucleus, various classes
of eigenstates characterized by different quantum numbers,
such as total angular momentum I and parity �, can be very
different. Section V C discusses the structure-dependent be-
havior of even- and odd-parity NLDs at different excitations.
Contrary to expectation, we show that, for 164Dy, nearly dou-
bled NLD of odd parity is predicted as compared to that of
even parity. We provide structure explanations of why it is so.
Furthermore, the distribution of NLD with different angular
momenta (spins) is shown in Sec. V D, where we find that, for
low-energy regions before the consummation of pair breaking,
spin distribution patterns are generally irregular. However,
with increasing energy beyond 4 MeV or so, a Gaussian-like
distribution emerges, consistent with that of the statistical
model assuming random coupling of angular momenta. As the
present PSM and the previous SMMC approaches are both
quantum many-body methods, which aim to study the same
problem from very different viewpoints, in Sec. VI we give a
brief comparison of the two models. Finally, a summary of the
work with the prospect of future works is given in Sec. VII.

II. EXPERIMENTAL ADVANCES: THE OSLO METHOD

For about the last thirty years, the nuclear physics group
at the Oslo Cyclotron Laboratory has been applying a novel
experimental tool based on the particle-γ ray coincidence
technique to simultaneously extract the nuclear level density
and γ -ray strength function in the quasicontinuum and con-
tinuum regions of the nuclear excitation spectrum below the
particle threshold [42]. As many discussions in the present
theoretical work are closely related to the Oslo NLD curve,
we briefly recall the technique and the basic assumptions in
its data analysis.

In the Oslo method, a stable or long-lived target nucleus is
bombarded with light ions to initiate a charged-particle direct
reaction or inelastic scattering reaction, and γ rays emitted
from the excited daughter nucleus are detected in coincidence
with the emitted ejectile. Next, a raw particle-γ ray coinci-
dence matrix is formed from which a primary γ -ray matrix is
obtained after carefully selecting only first-generation γ rays.
After normalizing this primary matrix to unity, it is fitted to
two one-dimensional functions of nuclear structure quantities,
namely, nuclear level density and γ -ray strength function. In
this step, a basic assumption is made that the decay probabil-
ity is proportional to the NLD at the final energy following
Fermi’s golden rule [43] and the decay is also proportional
to the γ -ray transmission coefficient, which is assumed to be
independent of initial and final states as per the Brink-Axel
hypothesis [44,45]. Finally, the unique physical solutions of
the two structure functions are obtained after determining
their scale and slope parameters through normalization with
known data.

The Oslo method, together with its two recent parallel ex-
tensions, namely, the β-Oslo method [46] and the inverse Oslo
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method [47], has produced a wealth of nuclear level densities
for stable as well as unstable radioactive nuclei over a wide
range of excitation energy. However, the method does not
provide NLDs as a function of spin and parity. Moreover, apart
from the fact that uncertainties and systematic errors [48]
occur due to the experimental limitations and assumptions
made at various steps of the method [49], the normalization
procedure involves certain model dependencies, which addi-
tionally gives rise to sizable uncertainties [48,50]. Recently,
as a model-independent approach, the shape method [51] was
introduced, offering a universal and consistent prescription
for determining the slope of the γ -ray strength function and
the NLD function (when extracted simultaneously in the Oslo
method) in the absence of experimental auxiliary data for
normalization. However, one deficiency of the method is that
it cannot provide the absolute values of the γ strength func-
tions when neutron resonance widths are not available from
experimental measurements.

III. MAIN STRUCTURE OF EXCITED NUCLEAR STATES

The pairing correlation is an important aspect in nuclear
structure and plays a decisive role in the discussion of NLDs
[26]. In the ground state of a nucleus, the system tends to cou-
ple nucleons into pairs. The concept of nuclear superfluidity,
analogous to that of electrons in condensed-matter physics
described by the BCS theory [52], is crucial for explaining
many basic properties in nuclei throughout the nuclear chart.
In fact, nuclear physicists adopted the BCS theory into nuclear
structure [53,54] immediately after its establishment in 1957.
For example, the observed moment of inertia (MoI) in nuclei
near their ground state could only be explained when pairing
correlation is considered [55]. Soon after, it was realized that,
when collective rotation sets in, pair breaking occurs due
to the Coriolis antipairing effect [56]. Furthermore, thermal
excitations provide energy to overcome the pair correlation
(measured by the pair gap �), which breaks the pairs. Thus,
generally, configurations of multi-qp states in the presence of
pairing correlation dominate the structure of NLDs in excited
regions of nuclei.

Nuclei, being small quantum systems with typically
101–102 particles, are not ideal places to accomplish truly a
phase transition between the superfluid state and the normal
state. It was pointed out [22] that the phase transition in
the mean-field level is washed out via quantum fluctuation.
The pairing transition itself has also been discussed theoreti-
cally and experimentally. Calculations showed [57,58] that the
quantum effects can wash out or delay the phase transition.
The situation is clearly distinguished from condensed-matter
systems, mainly because, in nuclei, nucleons sit in states
labeled by different j’s, with j being total single-particle
angular momentum coupled by orbital angular momentum l
and spin s ≡ 1/2. When a nucleus is excited, nucleon pairs
with higher- j orbitals, due to the stronger Coriolis effect, are
more easily broken. Hence, nuclear excitation is accompanied
by successive processes of pair breaking. One well-known ex-
ample is the pair breaking along the Yrast band (the rotational
band consisting of the lowest energy levels for each spin).
In this process, the observed rapid increase in MoI at spin

I ≈ 10–14 h̄ in rare earth nuclei is explained by the first band
crossing between the ground-state band (g-band) and a 2-qp
band (the so-called S band) [59], where a pair of neutrons
in the highest j orbit ( j = i13/2) are broken. As the nucleus
rotates faster and the Coriolis effect becomes stronger, a band
crossing between 2-qp and 4-qp bands could account for the
observed second increase of MoI at I ≈ 22h̄ [60], correspond-
ing to the breaking of an additional proton pair in j = h11/2.
Another, even more popular example is the wide existence
of K-isomeric states in the nuclear chart, especially in those
well-deformed nuclei with axial symmetry [61]. The forma-
tion of K isomers involves the breaking of more nucleon pairs
that align their individual angular momenta with the rotation
[62]. There are numerous experimental results (see, for exam-
ple, Refs. [63–66]) showing long-lived K-isomeric states, and
their formation has been interpreted as the breaking of three,
four, or more nucleon pairs. These K isomers are outstanding
because of their suppressed transitions due to the selection
rules. It is natural that many other nonisomeric excited nuclear
states are formed in the same way by broken pairs.

These experimental results give us a clear hint for con-
structing shell-model configurations for NLD calculations.
Accordingly, we build our many-particle configuration space
in terms of multi-qp states [32]. We may regard this clas-
sification of many-particle states as a generalization of the
seniority concept [67], which describes the degree of unpaired
particles in the spherical basis, to deformed systems. The
theoretical treatment of the quantum states with broken-pair
configurations can be realized by the Tamm-Dancoff method
[55], in which the many-particle states are written as linear
combinations of different orders of qp configurations. For a
deformed nucleus, it is desired to work with a deformed basis
having a deformation closer to the “true” nuclear deforma-
tion [68] (see also discussions in [32]). Furthermore, such a
deformed basis incorporates efficiently important correlations
through the concept of spontaneous symmetry breaking [32].
The violated quantum numbers in the deformed basis can be
recovered by the projection technique [69]. As we shall see
below, the final shell-model diagonalization is then carried
out in the (angular-momentum) projected basis defined in the
laboratory frame.

IV. OUTLINE OF THE PROJECTED SHELL MODEL

To describe deformed nuclei, it is convenient to adopt a
deformed potential to start with, such as that of the Nils-
son model that generates deformed single-particle states [70].
In a deformed potential, the single-particle distribution near
the Fermi surface is qualitatively different from that at the
spherical limit. One then has to answer the question of how
to efficiently treat the many-particle problems for deformed
nuclear systems using the shell-model concept. The solution
lies in the numerical angular momentum projection [69], for
which the calculation started in the 1970s [71] and has become
popular today for nuclear structure calculations. One repre-
sentative example applying this technique is the projected
shell model (PSM) [33–35].

The PSM calculation starts from the deformed Nilsson
model [70] with pairing correlations incorporated from the
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BCS calculation [33]. Three major harmonic oscillator shells
with N = 4, 5, 6 (N = 3, 4, 5) are considered to have orbitals
for valence neutrons (protons) for rare earth nuclei. The stan-
dard Nilsson parameters (κ and μ) have been adopted from the
literature [72–76] to generate deformed single-particle states
for different mass regions. The PSM multi-qp model space is
constructed from the deformed Nilsson+BCS qp basis. The
multi-qp configurations up to 6-qp states can be written as

{ |φ〉, a†
νi

a†
ν j

|φ〉, a†
πi

a†
π j

|φ〉, a†
νi

a†
ν j

a†
πk

a†
πl

|φ〉,
a†

νi
a†

ν j
a†

νk
a†

νl
|φ〉, a†

πi
a†

π j
a†

πk
a†

πl
|φ〉,

a†
νi

a†
ν j

a†
νk

a†
νl

a†
νm

a†
νn

|φ〉, a†
πi

a†
π j

a†
πk

a†
πl

a†
πm

a†
πn

|φ〉,
a†

πi
a†

π j
a†

νk
a†

νl
a†

νm
a†

νn
|φ〉, a†

νi
a†

ν j
a†

πk
a†

πl
a†

πm
a†

πn
|φ〉, . . .

}
, (1)

where, a†
ν (a†

π ) labels the neutron (proton) qp-creation oper-
ator associated with the deformed qp-vacuum |φ〉. The “. . . ”
in Eq. (1) denotes those higher order qp states that are not
included in the present calculation but can be added back
when necessary. As the PSM works with multiple harmonic-
oscillator shells for both neutrons and protons, the indices ν

and π in Eq. (1) are general. 2-qp configurations, for exam-
ple a†

νi
a†

ν j
|φ〉 (a†

πi
a†

π j
|φ〉), are built by considering all possible

combinations of two neutrons (protons) from a same shell for
positive parity (or even parity, with the parity quantum number
+1), or each from neighboring shells for negative parity (or
odd parity, with the parity quantum number −1) states, with
the respective indices running over all possibilities from the
valence shells. In the construction of the combinational states,
the Pauli exclusion principle is fully considered.

The deformed multi-qp basis states are projected onto good
angular momenta to form shell-model configurations in the
laboratory frame. Finally, the two-body shell-model Hamilto-
nian (see Eq. (2) in the following paragraph) is diagonalized
in the projected space, which mixes different configurations.
We would like to mention that for the so-constructed qp con-
figurations, labeled by the quantum numbers with the Nilsson
notation [70], one can usually find their experimental corre-
spondence. For example, one could find the dominant 2-qp
configurations that cause the observed back-bending effect
in MoI of the Yrast rotational band in 48Cr [36], or the qp
structure of the experimentally identified 4-qp K isomer in the
superheavy element 254No [38].

Our PSM Hamiltonian consists of separable forces:

Ĥ = Ĥ0 − 1

2
χQQ

∑
μ

Q̂†
2μQ̂2μ − GMP̂†P̂ − GQ

∑
μ

P̂†
2μP̂2μ,

(2)

where Ĥ0 is the spherical single-particle term including the
spin-orbit force [72]. The remaining terms are quadrupole-
quadrupole interaction, monopole-pairing interaction, and
quadrupole-pairing interaction, respectively. It has been sug-
gested by Dufour and Zuker [77] that these terms are essential
in any realistic effective interactions to describe nuclear struc-
ture properly. The two pairing forces in Eq. (2) are assumed to
be of isovector type and act only between like nucleons. The
coupling constant for the monopole-pairing force is taken to

be of the following form:

GM =
(

G1 ∓ G2
N − Z

A

)
1

A
in MeV, (3)

where, “+” (“−”) denotes protons (neutrons), and N , Z , and
A are the neutron number, proton number, and mass number,
respectively. The values of the coupling constants G1 and G2

are adjusted to reproduce the experimental odd-even mass
differences in the respective nuclear mass region. These two
values are fixed as 21.24 and 13.86, respectively, in the present
paper. The quadrupole pairing force GQ is considered to be
proportional to GM by an overall factor of 0.18.

The numerical calculation of angular momentum pro-
jection involves the evaluation of the rotated matrix el-
ements, which is the most technically challenging and
time-consuming part of PSM calculations. For those involving
higher orders of qp states, a breakthrough in computational
many-body techniques is needed. In nuclear structure physics,
the Pfaffian concept was introduced by Robledo as a key
mathematical tool for solving the long-standing problem in
the phase determination of the rotated matrix elements [78].
Soon after its introduction, it was realized that the Pfaffian
algorithm is very efficient also for calculating overlap matrix
elements [79,80]. The Pfaffian algorithm has been used to
enlarge the PSM space to high-order qp configurations [81],
which enables an aggressive extension of qp configurations
in the PSM up to 10-qp states [82]. A large number of en-
ergy levels (in the present work, ≈105 eigenstates of angular
momentum and parity) can be obtained with a reasonable
computational effort. Based on the new development, a PSM
analysis of structural evolution and chaoticity in fast-rotating
nuclei was given in Ref. [83], and detailed rotational bands
up to high spins could be obtained from one diagonalization
[84,85].

V. RESULTS AND DISCUSSION

In the determination of level densities, it is crucial to get
information on the true spin-parity distributions as functions
of excitation energy, ρ(E , I,�). However, for a calculation
of reaction rates, only a few experimental data are available
that can provide detailed level densities with true spin-parity.
As discussed above, we provide a novel shell-model method
for arbitrarily heavy, deformed nuclei to obtain discrete lev-
els, with corresponding wave functions being eigenstates
of angular momentum and parity. From these wave func-
tions, observables such as electromagnetic transitions, decay
rates, and other quantities related to thermodynamic proper-
ties can be calculated. γ rays of definite multipolarity are
obtained directly for any given initial and final states. In
this section, we discuss a numerical example from rare-earth
isotopes, for which we have sufficient knowledge about the
deformation property. Nuclear deformation parameters can be
extracted from experiment [68], or from systematical calcu-
lations with the finite-range droplet macroscopic and folded-
Yukawa single-particle microscopic structure model [86]. We
adopt the deformation parameters as inputs for our PSM
calculation.
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FIG. 1. Calculated energy levels for 164Dy, and comparison with available discrete levels taken from [87] for the low-lying excited bands
with known spin and parity.

A. Quantitative description of discrete nuclear levels

To describe NLD at a quantitative level, it is desired that the
model is able to reproduce all experimentally known discrete
levels that are available in a published database. Without this
step, one may doubt the model’s predictive ability for cases
where no data exist. For comparison of our calculation with
the discrete nuclear data, we refer to the database from the
National Nuclear Data Center at the Brookhaven National
Laboratory [87].

As one will see, the following discussion is mainly of a nu-
clear structure problem. For well-deformed even-even nuclei
of the rare-earth region, the structure of the low-energy NLD
below 1 MeV is rather simple. For 164Dy, for example, there
are only a total of eight excited states known in the database
falling into the 1-MeV energy interval. They all belong to
collective excitations, among which the lowest three levels
contributing to the NLD up to about 0.7 MeV of excitation
are from the Iπ = 2+, 4+, and 6+ states of the ground-state
rotational band. The second known collective band starting
from the 2+ state at 762 keV, which is followed by the 3+ state
at 828 keV and 4+ state at 916 keV, belongs to the collective
γ vibrational band. Starting from somewhat higher energy at
977 keV, an odd-parity 2− collective band is experimentally
known to be an octupole vibrational band [88]. Roughly from
1.5 MeV up, states with pair breaking dominate the structure.
Thus, a correct theoretical description requires that the model
can reproduce all these nuclear states.

The calculation is performed by using the PSM, outlined
in Sec. IV, with its extensions. The extended versions of
the PSM include one with multi-qp configurations in the
PSM up to 10-qp states [82], one with a triaxially deformed
basis which enables a simultaneous description of the γ vi-
brational band [89–91], and one that spontaneously breaks

reflection symmetry and can therefore describe low-lying oc-
tupole vibrational bands [92,93]. The quadrupole deformation
parameter for the 164Dy calculation is taken as ε2 = 0.28.
In Fig. 1, we present partial energy levels calculated for
164Dy and compare them with the available discrete levels
with known spin and parity, taken from [87]. Overall, the
experimental levels are well reproduced. For the first three
collective bands, except for the high-spin states in the γ band
and in the 2− octupole vibrational band where our calculated
energies are higher than data, the other states are correctly
described. The remaining four experimentally known bands
are 2-qp bands with either even or odd parity which start from
an excitation between 1.5 to 2 MeV. It can be seen from Fig. 1
that our calculation reproduces all of them satisfactorily.

The overall good description for the low-lying states in the
present 164Dy example, as well as from many previous exam-
ples documented in the literature, suggests that the PSM (with
its extensions) is a practical shell model for heavy, deformed
nuclei. It is a promising model that can quantitatively describe
the known discrete nuclear levels that the NLD models and the
Oslo experiment often use for calibration of the low-energy
side. However, as we shall point out in the following discus-
sion, for many cases the existing information extracted from
the discrete level data must be taken with great caution.

B. Comparison of NLD with discrete levels and the Oslo curve

Before starting the discussion, we note that the currently
available discrete nuclear levels from an open database (such
as those in the NNDC database [87]) are generally far from
being complete. Especially for those with excitation energy
higher than 2 MeV, i.e., above the energy that is needed to
break the first nucleon pair, discrete levels cannot provide a
complete picture for NLD. Furthermore, for many measured
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energy levels, spin and/or parity are uncertain. Therefore,
great caution must be taken when using the information from
the discrete levels to extrapolate the level density further up
to connect that at the neutron separation energy derived from
neutron resonance level spacing data.

While comparing our results with other theoretical mod-
els and with experimental data, we have used the definition
of nuclear level density using the concept of energy bins.
We remark that this is not a necessary step for presenting
theoretical results, especially for the low-energy region with
discrete levels where statistics does not make much sense.
As our shell model produces individual nuclear states with
definite spin and parity, we obtain level density ρ(E ) not as
a smooth function of the excitation energy E , but rather as a
sum of δ functions, each corresponding to one state with good
spin and parity. Nevertheless, to present our results, we take
roughly eight bins in a 1-MeV interval, with 0.12-MeV steps,
consistent with the Oslo curves. In this way, our NLD curves
are drawn with about eight data points in a MeV interval, with
each point containing all levels counted in the 0.12-MeV step.
As our NLD plots are given as usual in the unit of MeV−1,
a factor of 1/0.12 ≈ 8.33 is applied to our theoretical data
points.

For the known discrete levels in 164Dy with experimen-
tally assigned spin, except for the first two collective bands,
namely the ground-state band and the 2+ γ band starting from
762 keV, where the measurement was extended to high-spin
states, spin quantum numbers seldom exceed 10h̄. Therefore,
in our comparison with data, we include the calculated levels
with spin I � 10h̄ only. With this spin cutoff, the comparison
is made for level energies up to 4.5 MeV. Extensions to higher-
spin states and/or to higher excitations are possible. However,
further extension of our configuration space is rather time
consuming in computation. To compare with the Oslo curve,
the experimental level density curve from the discrete levels is
drawn to contain all levels (of known or unknown parity), and
in our theoretical results, unless specified, we add levels with
both parities together. Therefore, the NLD presented from
our theoretical model calculation in this paper designates the
following:

ρ(E ) =
∑
�

∑
I � 10

ρ(E , I,�). (4)

In Fig. 2, we show the calculated level density points (filled
squares) for 164Dy, together with the experimental ones ob-
tained from the known discrete levels (red open squares) [87]
and the level density curve of the Oslo method (blue solid
line) taken from Ref. [94]. All the curves are consistently
given in 0.12-MeV energy bins. As one can see, a nearly
perfect one-to-one match between our calculation and exper-
imental discrete levels is found up to the peak of the curve
from discrete levels at 1.75 MeV. The nice agreement of our
calculation with the known discrete levels up to 1.75 MeV
suggests that the model works correctly for describing the col-
lective states in the low-energy regime (0–1.5 MeV range; see
Fig. 2) and the pair-breaking regime with some pair-breaking
configurations contained in the bin energies larger than
1.5 MeV.

FIG. 2. Calculated level density (filled squares) of 164Dy are
compared with (1) experimental level density obtained from the
known discrete levels (red open squares) [87], and (2) level density
of the Oslo method (blue solid line) [94].

It is interesting and important to discuss step structures of
the NLD curve in the low-energy region of 164Dy. Data of the
discrete levels show two rapid rises in the curve, starting at
0.75- and 1.5-MeV bin energies. The former is understood as
the contribution from the collective vibrational states and the
latter corresponds to the beginning of the first pair breakings
following which states of qp excitations start to contribute to
the NLD curve. The Oslo curve agrees nicely with the two
step structures found in the discrete levels in 164Dy.

As one can see from Fig. 2, our theoretical curve agrees
perfectly with both curves up to the 2.0-MeV bin, including
both rises. Beyond 2.0 MeV, our calculated curve is predicted
to keep rising, showing remarkably a third step structure. This
structure is found to cross over a wide energy range from 2.3
to 4.0 MeV (see Fig. 2). Within 2.4–2.9 MeV, a plateau-like
structure shows up in the level density curve, indicating a
nearly constant value in this energy interval. It is followed by
a rapid rise until it meets the Oslo curve at 4 MeV.

The appearance of the third step structure in NLD for 164Dy
is at odds with the Oslo curve, which suggests a straight
line in the logarithm plot from 2 MeV and higher. The for-
mation of our predicted third step structure is understood as
follows. The second rise due to the first pair breaking is seen
to saturate in the 2.4–2.9 MeV plateau, meaning that in the
energy range of the plateau, no new 2-qp states from one-pair
breaking contribute to this energy interval. To keep the NLD
curve rising, more nucleon pairs need to be broken to form
new configurations. We find that the third rise is attributed
to the beginning of the contribution from 4-qp states, which
correspond mainly to a simultaneous breaking of two nucleon
pairs: A neutron pair and a proton pair. The required energies
for breaking a neutron pair and a proton pair are 2�n and 2�p,
respectively, and therefore, the minimum energy for the 4-qp
states is 2(�n + �p), which is about 3 MeV in the present
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case. Because many such 4-qp configurations contribute suc-
cessively to the NLD, we expect that the third rise starts at the
3.0-MeV bin and continues to 4.0 MeV and higher where the
theoretical curve meets the Oslo one.

As seen in Fig. 2, the experimental level density curve
constructed from the known discrete levels (red open squares)
begins to drop at the 2.0-MeV energy bin, which is about the
energy needed to break one nucleon pair to form 2-qp states.
This implies that a large amount of 2-qp and almost all the
4-qp configurations are missing in the spectroscopic data. The
4-qp state with breaking of one neutron pair and one proton
pair in rare-earth nuclei was experimentally confirmed a long
time ago for the Yrast line [60]. However, the present discus-
sion is about many excited 4-qp states above the Yrast line.
The Oslo curve, which makes use of experimental discrete
levels to determine the anchor point of the power-law curve,
misses this important structure.

Based on the above discussions, we may divide the entire
NLD curve into three regimes, emphasizing their structures:
The collective regime, the pair-breaking regime, and the mul-
tiquasiparticle regime. In Fig. 2, we draw vertical lines (dotted
green lines) at 1.5 and 4.0 MeV to separate the three regimes
for 164Dy. The structure of the collective regime (0–1.5 MeV)
is relatively simple. As the NLD in this regime is made by only
a few well-known collective bands, it is not difficult to identify
all the levels in this regime. A more pronounced structure
effect occurs in NLD in the pair-breaking regime (1.5–4.0
MeV), which is characterized by the interplay between the
collective (with all nucleons paired) and the pair-breaking
configurations [95]. The processes of one neutron pair or one
proton pair breaking as well as the simultaneous breaking of
a neutron pair and a proton pair happen in this regime. It is
to be noted that because of the isospin degree of freedom, the
formation of two kinds of Fermionic pairs, neutron pairs and
proton pairs, and the existence of respective pairing gaps, �n

and �p, are unique properties only in nuclear systems. Our
inference is that the appearance of the additional step structure
in NLD at about 2(�n + �p) in energy is a manifestation
of two distinct Fermionic pair gaps in nuclei. Finally, with
excitation energy going further up, the system enters into
the multi-qp regime beyond 4.0 MeV, where the NLD ap-
proaches the order of 104 in even-even nuclei (see Fig. 2). As
more and more nucleon pairs are broken, the system evolves
from the state of collective motion into a state characterized
by chaotic motion [96,97]. Features of the dynamics in a
chaotic nuclear system are controlled by residual interactions
of quasiparticle configurations. The actual stationary states
become extremely complicated superpositions of the origi-
nal simple configurations. Zelevinsky et al. call this process
stochastization [18]. For this reason, the multi-qp regime can
also be called the chaotic regime. With increasing complex-
ity in this regime, the characteristic individual configurations
are smoothed out completely. The NLD curve begins to fol-
low the power law, as predicted by the constant temperature
model.

Our finding in the pair-breaking region revises the general
belief that the exponential behavior of the NLD sets in im-
mediately when the first nucleon pairs are broken at E > 2�

[31] (which implicitly assumed the same � for neutrons and

protons). Our calculation generally suggests a much delayed
observation of the exponential behavior in NLD, due to the
recognition of the simultaneous breaking of a neutron pair
and a proton pair. This implies that structure dominance by
individual configurations becomes more pronounced in the
collective and pair-breaking regimes. In the present 164Dy
example, our calculated NLD curve begins to follow the
power law beyond 4 MeV where it meets with the Oslo curve
(see Fig. 2).

C. Structure dependence of NLD for opposite parities

In nuclei, the state of each nucleon has even or odd parity,
depending on its orbital angular momentum l . The parity of
many-nucleon configurations can be predicted in the present
PSM calculation. For a given excitation energy, it is usually
thought that the total nuclear states, thus NLD, can be divided
into two equal groups of even and odd parity [98]. However,
this conclusion was obtained from a statistical consideration
by totally neglecting the shell effect. Our following discus-
sion suggests that it is generally not the case. Depending on
the structure, the NLDs for decomposed parities at a given
excitation energy may differ considerably. We take the present
example of 164Dy to show that, for the discussed energy region
up to 4.5 MeV, the ratio of the level density for opposite
parities fluctuates with different excitation energies. Below,
we explain in detail why this can happen.

By the symmetry requirement, in even-even nuclei, the
energy levels in the ground-state band and the two common
types of collective vibrational bands (i.e., β- and γ -vibrational
bands) have even parity. In contrast, odd-parity states occur in
collective octupole vibrational bands; however, the formation
must meet the special requirement in structure. The condition
for the occurrence of low-lying octupole collectivity in nuclei
is that the deformed single-particle orbitals near the respective
Fermi surfaces consist mainly of those that satisfy �l = 3
[99]. In the present 164Dy example, the proton Fermi surface
lies in the vicinity of h11/2 and d5/2, and the neutron Fermi
surface is close to both i13/2 and f7/2. In fact, a 2− octupole
vibrational band was experimentally observed in 164Dy at
very-low energy starting at 977 keV [87], thus contributing
to the odd-parity states of the first NLD regime.

On the other hand, odd-parity states in deformed nuclei
can appear as qp states in the second and third regimes. In
even-even nuclei, for example, odd-parity 2-qp states can be
formed by two (broken-pair) nucleons sitting separately in the
neighboring major shells having opposite parity. We find that
in 164Dy there are many orbitals available to contribute to odd-
parity configurations. They include the neutron single-particle
orbitals ν 7

2
+

[633], ν 1
2

−
[521], and ν 5

2
−

[512] above the N =
98 gap, and ν 5

2
+

[642] and ν 5
2

−
[523] below it. One also finds

the proton single-particle orbitals π 7
2

−
[523] and π 1

2
+

[411]

above the Z = 66 gap, and π 3
2

+
[411] and π 5

2
+

[413] below
it. Because the 164Dy neutron and proton Fermi levels both
lie inside of their respective energy gaps in the deformed
Nilsson states, abundant odd-parity 2-qp states can be formed
at very low excitations, ranging from 1.6 to 2.4 MeV (see the
following discussions).
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(a)

(b)

FIG. 3. Calculated total level density in 164Dy (filled squares,
taken from Fig. 2) are separately shown in (a) + parity (filled tri-
angles) and (b) − parity (open triangles).

The fact, that odd-parity 2-qp states occur more in number
than their even-parity counterparts can be recognized in 164Dy
NLD curves if we plot states with opposite parities separately.
In Figs. 3(a) and 3(b), we show theoretical NLD curves drawn
separately for even and odd parities and compare each of them
with that of the total NLD curve seen in Fig. 2. Both plots,
same as in Fig. 2, include all calculated spin states up to
I = 10h̄, i.e.,

ρ(E ,�) =
∑
I�10

ρ(E , I,�). (5)

It can be recognized from Figs. 3(a) and 3(b) that for most
of the bin-energies, our results clearly indicate a non-half-
half allocation for opposite parities. In the pair-breaking and
multiquasiparticle regimes, the number of levels for a given
bin energy is obviously different for different parities, depend-
ing on the structure of deformed single particles. To see the
differences clearly, we draw in Fig. 4, the ratio of the NLD
curves of odd and even parities. The first, sharp peak in the
ratio is seen at 1.9 MeV, where the number of odd-parity
states is more than that of even parity by nearly a factor of 4.
The second and wider peak is extended over the energy range
from 3.2 to 4.5 MeV. The appearance of the second peak is
attributed to the odd-parity 4-qp states formed by the same
odd-parity 2-qp states which make the first peak, plus a pair of
2-qp states of even parity. Some studies exist in the literature
which also reported that the basic assumption of equal parity
distribution for NLDs were often not realized. For example,
in Ref. [100], authors investigated the parity distribution for
several nuclei in the Fe region and concluded that the equal
parity ratio was not fulfilled at low excitation energies, not
even at the particle separation energies. In Ref. [101], from
shell model Monte Carlo calculation as well as by using a

FIG. 4. Ratio of calculated level density of − parity and that of
+ parity. The numbers are taken from Fig. 3.

simple formula, Alhassid et al. found that at low energies only
a single parity dominated, and crossover to equal parity ratio
was seen only at sufficiently higher excitation energies. Early
theoretical work based on the combinatorial model [102–104]
and the equidistant model [105] also found deviations from
the equiparity approximation.

We remark that our 164Dy results in Figs. 3 and 4 demon-
strate sensitive dependence of the parities on the structure,
which should not be taken as a general conclusion for the
allocation of the parity states. As we have seen, NLDs are
generally determined by the detailed structure of a nucleus
under discussion, especially in the pair-breaking regime. In
Figs. 3(a) and 3(b), one sees similar low-energy oscillations
and a plateau structure in the 2.4–2.9 MeV energy range in
the decomposed parity curves, suggesting that the structure
effect in a given nucleus totally determines the NLD behavior.
Nevertheless, from our present findings, we conclude that the
sensitive structure dependence on parity in the NLD curve
is another important consequence of the present shell-model
study.

D. Spin distribution in NLD

When applying NLD in nuclear reaction calculations, for
instance in the study of thermonuclear reaction cross sec-
tions of astrophysical interests, information on NLD with
definite angular momentum (i.e., spin) states is needed. In
early works by Ericson [98,106], a formula to estimate spin
distribution of NLD, ρ(E , I ), was first introduced by using a
statistical model assuming random coupling of angular mo-
menta. Ericson obtained a Gaussian-like distribution (see also
Ref. [107]),

ρ(E , I ) ≈ ρ(E )
2I + 1

2
√

2πσ 3
exp − I (I + 1)

2σ 2
, (6)

where ρ(E ) is the spin-independent level density. The actual
shape of the distribution is determined by dispersion σ , which
is an unknown parameter in the model [106]. Ericson argued
that if the nuclear moment of inertia, J , can be approximated
by the classical rigid value, Jrigid, then a relation

σ 2 = JT

h̄2 (7)
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(a)

(b)

(c)

FIG. 5. Histogram of integrated level density in different regimes
as functions of angular momentum (spin), decomposed into even
and odd parities, and normalized to 1 over each respective integrated
energy range.

holds [98]. The above relation involves a thermodynamic
quantity, the nuclear temperature T , defined as

1

T
= d

dE
ln ρ(E ). (8)

However, J , in reality, is not a constant, but a changing quan-
tity with E . Generally,J is smaller thanJrigid as it approaches
the highest excitation, and, at low excitation, deviations in
either direction can be expected.

The calculated states by the PSM are eigenstates of spin
and parity. Therefore, we have precise information on spin-
parity dependence for all calculated levels, as well as on
internal transitions connecting them. The latter feature of the
PSM provides a basis for us to study γ strength functions.
To see the spin dependence, we group the calculated total
NLD results in 164Dy according to spin over the three different
energy regimes discussed in Sec. V B. The accumulated levels
in each of the three energy regimes are normalized to 1,
decomposed into even and odd parities, and drawn as func-
tions of spin in the form of histograms as shown in the three
segmented plots of Fig. 5. Therefore, what we have shown in
the three different histogram plots of Fig. 5 are the relative
distribution probability of NLD as a function of spin-parity
for definite energy ranges. In the following, we discuss the
characteristic features of these plots.

Fig. 5(a): It shows the result of the first energy regime,
i.e., the collective regime (0–1.5 MeV). For the collective
states in even-even nuclei, one has a good understanding
of the structure and knows well the spin and parity for

each level. In the current 164Dy example, only 17 known
levels fall in this regime, among which 5 are of odd
parity.

Fig. 5(b): The plot shows the spin-parity dependence of
NLD for the pair-breaking regime (1.5–4.0 MeV). This
regime covers the entire pair-breaking process starting
from the breaking of the very first nucleon pair till the
boundary energy at which almost all the neutron pairs
and proton pairs, no matter what orbitals they occupy,
are broken. We can view this regime, in contrast to the
collective one in (a) and the chaotic one in (c), as a
transitional regime where the actual content of break-
ing pairs, thus the wave functions, are changing with
excitation. Thus physically this is the most interesting
regime. Overall in Fig. 5(b) one sees that there are more
odd-parity states than even-parity ones, consistent with
what we have seen in Fig. 3. Furthermore, for even-parity
states in Fig. 5(b), irregular spin distribution is seen,
indicating a pronounced structure-dependence, while for
odd parity the distribution shows a tendency to become
bell shaped. Especially, for the even-parity states, there
is an interesting odd-even effect in spin for which an
even-spin distribution is clearly larger than either of its
neighboring odd-spin ones. Interestingly, a similar odd-
even effect in spin was found before by Alhassid et al.
in Ref. [108] from the SMMC calculation for the light
even-even nucleus 56Fe.

Fig. 5(c): In this plot with energy range 4.0–5.0 MeV,
where the total level density approaches 104 (see plots in
Figs. 2 and 3), we observe nearly perfect Gaussians in the
calculated spin distribution for both parities. The peak of
the Gaussian for even parity is centered around I = 4, 5,
and 6, while that for odd parity is at I = 5 and 6, which
clearly imply distinct σ values in Eq. (7). The odd-even
effect in spin seen in Fig. 5(b) seem to become much
weaker here. This energy regime, and excitations higher
than 5 MeV, consist of multi-qp states all from broken
pairs. One can expect Gaussian-type patterns in the spin
distribution, and therefore applying the spin distribution
using Eq. (6) begins to make sense.

From Fig. 5(c), it can be seen that for the multi-qp regime
(i.e., the chaotic regime) our shell-model calculation indicates
Gaussian-like spin distribution as suggested earlier by Ericson
[98,106]. Moreover, since the present result comes from a
spectroscopic calculation, it can help in deepening our under-
standing of the spin-dependent NLD at least in two aspects.
First, it provides a detailed description of the low-energy col-
lective and pair-breaking regimes where the spin-distribution
is generally irregular, and thus Eq. (6) is invalid. Second, for
the higher-energy multi-qp regime where Eq. (6) may apply,
the value of the dispersion σ , which determines the shapes of
the Gaussian and is closely related to nuclear structure prop-
erties, can now be obtained using shell-model calculations
without the need of approximation in Eq. (7). The determi-
nation of the σ parameter has been discussed by some authors
(see, for example, Refs. [109,110]).
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FIG. 6. Least-squares fitting with the Ericson’s formula of Eq. (6) for the spin distribution in the levels within 4.0–5.0 MeV, for (a) odd
parity and (b) even parity.

It is straightforward to perform a numerical fitting for the
calculated spin-distribution in Fig. 5(c) to the Ericson formula
in Eq. (6), and find our theoretical σ . We adopt the least-
squares method by using the MATLAB lsqcurvefit feature. In
Fig. 6, we show, respectively in (a) and (b) for odd and even
parity, the fitting results from the levels in Fig. 5(c) within the
energy range of 4.0–5.0 MeV. Note that in order to include the
long tail in the high-spin part of the Gaussian, we extend the
projection calculation up to I = 24h̄. Therefore, as compared
to Fig. 5(c), Fig. 6 include more levels: 8447 levels with
odd parity and 5606 levels with even parity. Consequently,
we obtain σ = 5.622 and 5.272 for odd- and even-parity,
respectively. We remark that σ alone absorbs all the nuclear
structure information containing in the spin distribution, and
calculation by using microscopic models is therefore of great
interest.

The 2007 work of Alhassid et al. [108] on spin distribu-
tion has significant overlap with our current results, despite
a totally different concept of the model. Originally, in their
SMMC approach, thermal averages were taken over all pos-
sible states of a given nucleus, and thus the computed level
densities are those summed over all possible spin states. The
authors introduced a spin-projection method that enables cal-
culating thermal observables at given spins. Their discussion
[108] used the complete (p f + g9/2) shell for the iron-region
nuclei. As they clearly showed, for even-even nuclei and at
low excitation energies, they observed a similar odd-even
staggering in the spin dependence of level densities, which,
according to the authors, was related to the pairing effect. In
the same work [108], σ values were explicitly extracted from
the calculation as functions of excitation energy.

A close inspection in the plots in Fig. 5 indicates that
the odd-parity levels follow the statistical Gaussian spin-
distribution in lower energies, even in the pair-breaking
regime (see Fig. 5(b)). This is clearly different from the even-
parity levels of the same energy region, where an odd-even
staggering in the spin dependence is clearly evident. Another

interesting observation in Ref. [108] is that, in the case of
odd-mass and odd-odd nuclei, such a spin-staggering effect is
much suppressed. Notice that in the odd-parity levels in even-
even nuclei and in odd-mass and odd-odd nuclei, there are
always qp states that do not participate in the pair correlation,
thus effectively reducing the pairing of the system.

VI. COMPARISON WITH THE SHELL-MODEL
MONTE CARLO APPROACH

The study of NLD is an old subject, from the time of
Hans Bethe. Many models have been developed for theoret-
ical calculations. In particular, the current PSM work may
have significant overlaps with the shell-model Monte Carlo
(SMMC) approach [24], which has been successfully applied
to the NLD study [30,111,112]. Although we have already
mentioned some of the SMMC results throughout the paper,
we try to summarize the similarities and differences as well as
advantages and disadvantages of the SMMC as compared to
the PSM in this section.

For a quantitative, microscopic description of physical ob-
servables, in principle one solves the many-body eigenvalue
equation, Ĥ |�〉 = E |�〉, to obtain all solutions in the Hilbert
space. Here |�〉 is the many-body wave function, containing
all necessary information on the participating particles with
the interactions among them. Since exact solutions for the
present problem are not possible, one is compelled to seek
approximations [113]. The PSM, as introduced in the early
part of the present paper, adopts a large single-particle space
but a restricted many-body configuration space in terms of
pair breakings. Within the truncated configuration space, it
is possible to solve the many-body eigenvalue problem, and
obtain all eigenvalues and eigenstates. NLDs with definite
spin-parity can then be directly constructed from the solution.

The SMMC [24] treats the many-body problem differ-
ently. Instead of solving the eigenvalue problem directly, it
deals with the imaginary-time many-body evolution operator
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exp(−βĤ ), with β being a c number, which is reduced to
a coherent superposition of one-body evolutions in fluctuat-
ing one-body fields. The resultant path integral is evaluated
stochastically. In contrast to the PSM, the SMMC does not
result in a complete solution to the many-body problem in the
sense of giving all eigenvalues and eigenstates of Ĥ . However,
it can still provide very useful information when the expec-
tation value of observables in the grand canonical ensemble
is calculated [24]. For the NLD problem, the calculated total
NLD contains those with all possible spins and both parities.
NLDs with definite spin-parity can be obtained by spin and
parity projection from the total NLD [22,108].

NLD is a statistical quantity by definition. Hence, an
SMMC description naturally has advantages. This is par-
ticularly true for the high-energy region near the neutron
resonance energy, where the NLD reaches 106 per MeV inter-
val in the 164Dy example. With such dense levels, character for
individual levels becomes unimportant. This is the place that
we call the chaotic regime in the present paper. For this energy
region, exact diagonalization calculation by the PSM requires
heavy computational effort. It is not practical to carry out a
systematical NLD calculation with the exact method for the
high-energy region. For the current cutoff energy at 4.5 MeV
(see Fig. 2), it is already very time consuming with our usual
workstation. On the other hand, for NLD in this regime, it
does not necessarily require precise spectroscopic properties.
This is one obvious disadvantage of the PSM.

One advantage of the PSM approach for the NLD calcu-
lation may lie in the lower-energy region, especially in the
phase-transition region that we call the pair-breaking regime.
This energy region is characterized by rich structure changes
and the interplay between the collective and quasiparticle
motions. A good understanding of the levels in this regime
has potential importance in that it determines the energy from
which the linear behavior of NLD starts. This is of practical
help for the Oslo experiment to serve as the anchor point
at the low-energy side, as the existing discrete data in the
nuclear database are far from being complete, and therefore
are unrealistic.

Both approximations, PSM and SMMC, are valid nuclear
many-body methods, but in finding many-body solutions,
they are based on completely different concepts, namely,
spectroscopic versus statistical. It is interesting to find out
connections between the two models when the two methods
are applied to studying the same physical quantity, and if both
can describe experiments successfully. This question deserves
an investigation.

VII. SUMMARY AND FUTURE PROSPECTIVE

Nuclear level density is a basic property of atomic nuclei
and is a crucial ingredient in nuclear reaction theories. For the
research field of nuclear astrophysics, nuclear level density,
together with several other nuclear structure quantities, serve
as important inputs to the study of the rapid neutron capture
process (r process), which is believed to be responsible for
the production of about half of the elements heavier than
iron [114]. All these inputs are nuclear structure quantities,
among which the nuclear mass is a sole ground state property.

The rest, such as internal electromagnetic transitions, β decay
rates, and neutron capture rates, involve excited nuclear states.
In principle, a nuclear shell model is able to calculate all these
quantities in a consistent way.

For example, for a quantitative, microscopic description of
nuclear level density, one should solve the exact many-body
eigenvalue problem Ĥ |�〉 = E |�〉, and obtain all energy
levels in the Hilbert space. However, this has turned out
to be an impossible task for mid-mass and heavy nuclei if
the discussion is confined in the conventional shell model.
One has to develop novel shell-model methods by applying
many-body techniques. The present work takes a step towards
this goal. We extend the projected shell model to study, in
a systematical and consistent way, nuclear level density in
the present paper and γ strength function and other related
problems in forthcoming papers. It is aimed at providing nu-
clear structure information to all these quantities, so that one
may discuss these statistical quantities together with concrete
nuclear structure.

The current article is the first one in our planned series of
publications. As this is the first application of the PSM in the
calculation of statistical quantities, we have introduced the ba-
sic nuclear structure for excited nuclear states and emphasized
the unique process of pair breaking under nuclear rotation and
thermal excitation. We have discussed the gradual evolution
of pair breaking in rotating nuclei which usually occurs over
a wide range of excitations. Taking this phenomenon into
consideration, we have outlined the multi-qp structure of the
PSM. The essence of the PSM is that the model is constructed
based on a deformed basis with the angular-momentum pro-
jection technique. Thus the deformed single-particle states
and the formation of multi-qp configurations enter into the
discussion for level-density calculations.

Throughout the paper, the nuclear structure effect appears
in the discussion. We have shown that the consequences of
pair breaking sensitively influence the behavior of NLD at
different excitations. The particularly interesting excitation
range is 1.5–4.0 MeV in the 164Dy example, which we call the
pair-breaking regime. The pair-breaking effect in this regime
strongly depends on the deformed single-particle states. We
have found a new step structure in NLD beyond 2.0 MeV
of excitation, which physically corresponds to a simultaneous
breaking of a neutron pair and a proton pair. Once this pre-
diction is confirmed, it may amend the general understanding
of the NLD curve in low excitations. We have also shown
that, for 164Dy, in contrast to the usual approach [98], the
total NLD cannot be simply divided into two equal groups of
even and odd parity, not even approximately. This is again at-
tributed to the structure effect of the deformed single-particle
orbitals. Moreover, we have studied the distribution of NLD
with different spins and found that, for low-energy regions
before the consummation of pair breaking, spin distribution
patterns are generally irregular and structure sensitive. With
increasing energy beyond 4 MeV in our 164Dy example, a
Gaussian-like distribution emerges, consistent with what Er-
icson suggested [98,106]. This provides a possibility that, by
fitting the Ericson distribution with our shell-model result,
one can determine the unknown dispersion σ in the Ericson
formula, which is a structure-dependent quantity.
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The present shell-model calculation is limited to lower
excitations (up to E ≈ 5 MeV and ρ < 105 in the 164Dy
example). In principle, the extension of calculation to higher
energy regions is possible but requires heavy computational
effort. On the other hand, the numerical effort can be greatly
reduced if we just use the full set of multi-qp configurations
in Eq. (1) to count levels, without carrying out configuration
mixing calculation in very large matrices. Preliminary results
show that we can obtain an NLD curve qualitatively similar
to the one presented in Fig. 2, and can easily extend the
calculation up to the neutron separation energy to compare the
result with the NLD from the neutron-resonance spacing data.
This work will be presented in a separate publication [115].

In odd-mass nuclei, one last nucleon is blocked from the
pair formation. Usually, a few (and up to about ten) deformed
1-qp states exist around the Fermi levels in an odd-mass nu-
cleus. Therefore, depending on the deformed single-particle
structure, the level density of an odd-mass nucleus is on
average a few to ten times higher than those of their neigh-
boring even-even counterparts at a same excitation energy.
Guttormsen et al. found in Ref. [116] that the level densities
for the 161Dy and 171Yb isotopes are about five times higher

than that for the neighboring 162Dy and 172Yb isotopes. How-
ever, they pointed out that the conclusion works well only
for excitation energies between 3.5 and 7 MeV, which are
about the energies of the multi-qp regime suggested in the
present work. We suspect that, for the low-energy range below
3.5 MeV in odd-mass nuclei, individual single-particle struc-
ture will determine the NLD pattern. In Ref. [117], the
authors, by examining about 280 nuclei, argued interestingly
that for these odd-mass nuclei the entropy scales with the
number of particles that are not coupled in Cooper pairs.
Detailed shell-model study is in progress, and the odd-mass
NLD will be the discussion focus in our forthcoming paper.
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