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In this paper a state-of-the-art version of the nucleon-pair approximation to the nuclear shell model is
suggested. The configuration space is constructed by stepwise coupling collective nucleon pairs with given spin.
The one-body and two-body matrix elements, as well as the overlaps, are calculated in terms of the M-scheme
nucleon-basis states, without resorting to any angular momentum couplings. Many redundant commutations are
avoided by using the Wigner-Eckart theorem and an algorithm similar to the coefficients of fractional parentage
in the nuclear shell model calculations. Numerical experiments demonstrate the overwhelming computational
superiority in comparison to all previous approaches of nucleon-pair shell model, particularly for the shell
model Hamiltonian in the form of effective interactions. In addition, we exemplify this state-of-the-art version
of the nucleon-pair approximation by even-even rare-earth 142–152Nd isotopes, for which the model space is
constructed by using SDGI nucleon pairs, and the Hamiltonian is adopted as Vlow-k potential. Our calculation
of the nucleon-pair approximation is able to reproduce reasonably the low-lying energy states of those Nd
isotopes, where the seniority-type, vibrational, transitional, and rotational modes are described on the same
footing, without adjusting any parameter.
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I. INTRODUCTION

The nuclear shell-model (NSM) [1,2] is the fundamental
framework in the nuclear structure theory. However, the NSM
suffers from the explosive growth of the configuration space,
therefore truncations to the NSM space are indispensable.
The nucleon-pair approximation (NPA) to the NSM is one
natural and efficient truncation scheme, and along this line we
mention the efforts of the generalized seniority scheme [3,4],
the broken-pair approximation [5], the fermion dynamical
symmetry model [6–8], the multistep shell model [9], and
the nucleon-pair shell model [10]. Inspired by the interact-
ing boson model (IBM) [11] and subsequent studies of its
microscopic foundation [12–14], the NPA usually constructs
the model space by using collective S and D pairs, namely,
nucleon pairs with spins 0 and 2, respectively, as analogues of
bosons in the IBM. A comprehensive review of the NPA can
be found in Ref. [15].

In the last decade, there have been a number of new de-
velopments of the NPA. In Ref. [16] the isospin degree of
freedom is considered for nucleon pairs, presenting the ver-
sion of the NPA with isospin; in Ref. [17], nucleon pairs of
particle-particle, hole-hole, and particle-hole types are treated
on the same footing, presenting the version of the NPA with
both valence particles and valence holes, by which one is able
to consider the across-shell configurations. These NPA ap-
proaches adopt basis states constructed by stepwise couplings
of nucleon pairs with given spin; for short we call them the
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J-scheme versions of the NPA. In contrast to these J-scheme
versions, there have been a number of M-scheme approaches:
In Ref. [18] the configuration space is constructed in terms
of the M-scheme basis of collective nucleon pairs with given
spins, and this improvement reduces the CPU time by a factor
of 10 for cases with the number of valence-nucleon pairs N
larger than 5, in comparison with the traditional approaches
[10]. In Ref. [19], the configuration space is constructed by the
M-scheme basis, while the commutations of nucleon pairs are
represented in terms of matrix products, and this improvement
further reduces the CPU cost by a factor of 10 or more for
N � 4 in comparison with the version of Ref. [18]. In this
paper, for short we refer to the NPA version of Ref. [19] as the
M-NPA. All these developments are important for the NPA
to be more and more realizable in the studies of heavy nuclei.
Yet, the NPA still faces the challenges of CPU cost for systems
with more and more valence nucleons and of the complexity
due to large dimensions in the M scheme. In addition, in most
cases the NPA assumes pairing plus multipole-multipole in-
teractions, and it is very cumbersome to adopt a more general
form of the shell model Hamiltonian in the NPA.

It is therefore the purpose of this paper to further develop
the NPA, not only substantially saving the CPU cost in com-
parison with all previous versions of the NPA, e.g., the latest
M-scheme versions of the NPA [18,19], but also reserving the
elegant simplicity of the traditional NPA in Refs. [10,15]. In
addition, by resorting to a technique similar to the coefficients
of fractional parentage, computation of matrix elements for a
Hamiltonian in the form of effective interactions in this state-
of-the-art version of the NPA is as simple as that for the phe-
nomenological pairing plus multipole-multipole interaction.
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This paper is organized as follows. In Sec. II, we explain
the NPA basis states, and present reduced matrix elements
in the M-NPA. In Sec. III, the matrix elements of one- and
two-body operators, and the overlaps between nucleon-pair
basis states, are derived for both odd and even systems. In
Sec. IV, we elucidate the calculation of nuclear Hamiltonian
in this state-of-the-art version of the NPA, for both effective
interactions and the phenomenological pairing plus multipole-
multipole interactions. In Sec. V, we exemplify this new
version of the NPA by using even-even rare-earth 142–152Nd
isotopes to demonstrate the power of our algorithm. Finally,
we summarize this paper in Sec. VI.

II. NPA APPROACHES: J SCHEME AND M SCHEME

In this section, we first present the traditional nucleon-pair
basis states [10], for completeness; and then we present trans-
formations between those traditional nucleon-pair basis states
and those in the M-NPA.

A. Nucleon-pair basis states

In the NSM, a single proton or neutron state can be la-
beled by quantum numbers n, l , j, and m, where n is the
radial number of a spherical oscillator, l the orbital angular
momentum, j the total angular momentum, and m the projec-
tion of total angular momentum along the principal axis. For
short, we abbreviate a single-nucleon creation operator with
quantum numbers nα , lα , jα , and mα by a†

jαmα
≡ a†

α . In the
case of angular-momentum couplings, m is implicit, and nl j
is represented by only j without any confusion.

The traditional NPA employs collective nucleon-pair basis
states as building blocks of the configuration space. A col-
lective nucleon pair with spin r and z-axis component m is
defined by

Ar†
m =

∑
j1 j2

y( j1 j2r)
(
a†

j1
× a†

j2

)(r)

m
, (1)

where j1, j2 run over the single-nucleon levels in the valence
space. Here, r and m are the spin of the pair and its projection
to the principal axis, respectively. The structure coefficients
y( j1 j2r) satisfy the symmetry condition

y( j1 j2r) = (−) j1+ j2+r+1y( j2 j1r).

In the presence of an even number of valence nucleons, a
basis state in the traditional NPA is constructed by successive
couplings of collective nucleon pairs, while for a system with
an odd number of valence nucleons there is an unpaired nu-
cleon. The NPA basis state is defined as

|σJM〉 = AJ†
M (r0r1r2 · · · rN , J1J2 · · · J )|0〉

= ( · · · ((Ar0† × Ar1†)(J1 ) × Ar2†)(J2 )

× · · · × ArN †)(J )
M |0〉, (2)

where J and M are the total angular momentum of the
basis state and its projection, and σ denotes additional quan-
tum numbers of the state. Ar0† = 1 for an even system, and
Ar0† = a†

j=r0
for an odd system. For short we call the configu-

ration constructed by states in the form of Eq. (2) as the J-NPA
basis.

Alternatively, one can construct a basis state without suc-
cessive couplings of nucleon pairs, as was done in Ref. [18]:

|ζM〉 = Ar0†
m0

Ar1†
m1

Ar2†
m2

· · · ArN †
mN

|0〉. (3)

Here M = ∑N
i=0 mi and ζ represent additional quantum num-

bers of the state, and we call the basis states in the form of
Eq. (3) the M-NPA basis. Clearly, calculations in the J-NPA
basis and the M-NPA basis are equivalent to each other, in the
case where all nontrivial intermediate and necessary spins Ji in
Eq. (2) and projections mi in Eq. (3) are properly considered.

B. Transformation between the M-NPA and J-NPA basis states

The transformation between the M-NPA and J-NPA basis
states is straightforward in terms of Clebsch-Gordan (CG)
coefficients,

|σJM〉 =
∑

ζ

T (M )
ζσ |ζM〉, (4)

where

T (M )
ζσ = CJ1M1

r0m0,r1m1
CJ2M2

J1M1,r2m2
· · ·CJM

JN−1MN−1,rN mN
,

with the requirement that M1 = m0 + m1 and Mi = Mi−1 +
mi. It is worthwhile to note that the states represented by
Eq. (3) with different ζ are not necessarily independent with
each other. States denoted by ζ = {r0r1 . . . rN , m0mi1 . . . miN },
where {i1, . . . , iN } represents any permutation of {1, . . . , N},
are all the same provided r1 = r2 = · · · = rN . Therefore we
need only basis states in which magnetic quantum numbers
of identical nucleon pairs are in decreasing or increasing
order. Numerical experiments in general cases indicate that
the overcompleteness of the nucleon-pair bases is eliminated
by considering |ζM〉 without duplication. Consequently, the
transformation matrix elements for the pair basis state with
the number of Ari† being ni is written as

T (M )
ζσ = C

r0J1...Jn1
r1,m0m1...mn1

× C
Jn1 Jn1+1...Jn1+n2
r2,Mn1 mn1+1...mn1+n2

× · · · × C
JN−nl JN−nl +1...JN−1J
rl ,MN−nl mN−nl +1...mN−1mN

, (5)

where N = ∑l
i=1 ni and

CJ0J1...Jn
r,M0m1...mn

=
∑

{i1,i2,...,in}
CJ1M1

J0M0,rmi1
CJ2M2

J1M1,rmi2
· · ·CJnMn

Jn−1Mn−1,rmin
.

(6)

Here {i1, i2, . . . , in} again denotes all possible permutations
of the series {1, 2, . . . , n}, and the intermediate projections
satisfy the conditions Mk = Mk−1 + mik with k ranging from
1 to n.

C. Reduced matrix elements

In the NSM, the Hamiltonian and physical observables are
written in terms of spherical tensor operators, Ôt

μ, with t and
μ here the spin and corresponding z-component projection of
the operator.
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In this new version of the NPA, the reduced matrix element
of Ôt is calculated by using the Wigner-Echkart theorem, as
follows:

〈σJ‖Ôt‖σ ′J ′〉 = 〈σJM|Ôt
μ|σ ′J ′M ′〉/CJM

J ′M ′,tμ

=
∑
ζ ζ ′

T (M )
ζσ 〈ζM|Ôt

μ|ζ ′M ′〉T (M ′ )
ζ ′σ ′

/
CJM

J ′M ′,tμ.

(7)

In this formula the reduced matrix elements 〈σJ‖Ôt‖σ ′J ′〉 are
given in terms of the matrix elements 〈σJM|Ôt

μ|σ ′J ′M ′〉 and
Clebsch-Gordan coefficient CJM

J ′M ′,tμ, and this is one of the ad-
vantages of J-NPA: In the M-NPA [18,19], one actually has to
calculate matrix elements with all possible magnetic numbers;
while in Eq. (7) one needs the M-NPA matrix elements for
only one set of arbitrary projections M, μ, and M ′. Interesting
issues related to the particular choice of M, μ, and M ′, are
given in Appendix A.

III. MATRIX ELEMENTS

In this section, we derive the matrix elements of one-body
and two-body operators, and overlaps in our new approach of
the NPA. For short we adopt the Einstein summation conven-
tion using subscripts of greek letters.

A. One- and two-body operators

In all previous versions of the NPA, one calculates the
matrix element of an operator in an explicit manner, namely,
in the complete form of very complicated summations. Here
in this new version of the NPA, we present the results of one-
and two-body operators in a factorial form.

A general one- and two-body operators in the uncoupled
representation are defined as

Q̂ = qαβa†
αaβ, (8)

Ô = oαβγ δa†
αa†

βaδaγ , (9)

where the structure coefficients qαβ construct a matrix q. The
structure coefficients oαβγ δ form a four-dimensional tensor o,
with antisymmetry of changing the first or last two indices:

oαβγ δ = −oβαγ δ = −oαβδγ = oβαδγ . (10)

According to Ref. [19], a matrix element in the M-NPA can
be represented as a number of traces and matrix products of
the structure coefficients. Therefore, the matrix element of an
operator is a linear superposition of its structure coefficients.
For one- and two-body operators, we have

〈ζ ′M ′|Q̂|ζM〉 = fαβqαβ, (11)

〈ζ ′M ′|Ô|ζM〉 = gαβγ δoαβγ δ, (12)

with fαβ and gαβγ δ defined by

fαβ = 〈ζ ′M ′|a†
αaβ |ζM〉, (13)

gαβγ δ = 〈ζ ′M ′|a†
αa†

βaδaγ |ζM〉. (14)

In principle, one might use Eqs. (34)–(35) and (38)–(39) in
Ref. [19] to calculate fαβ and gαβγ δ . However, such compu-

tations involve of a huge number of redundant recursions.
Below we propose a novel approach to calculate fαβ and
gαβγ δ .

B. Uncoupled basis states and their contractions

We begin with the uncoupled representation of the basis
states. In that case a general nucleon-pair creator is defined as

P†
i = p(i)

αβa†
αa†

β, (15)

where p(i)
αβ are the structure coefficients of a pair with

antisymmetry p(i)
αβ = −p(i)

βα . In an odd-nucleon system, an
unpaired-nucleon creator is represented by a linear combina-
tion of single-nucleon states:

a† = sαa†
α, (16)

with sα the structure coefficients of the unpaired nucleon.
Here, p(i)

αβ and sα correspond to a matrix pi and a column vec-

tor s, respectively. By defining p(i)
αβ = y( jα jβri)C

rimi
jαmα, jβ mβ

and
sα = δ jαr0δmαm0 , the M-NPA basis state of Eq. (3) is rewritten
as

|ζM〉 = P†
0 P†

1 · · · P†
N |〉, (17)

with

P†
0 =

{
1 in even systems,
a† in odd systems.

In order to calculate fαβ and gαβγ δ , we use fundamental
commutative relations as below:

[A, B1B2 · · · BN ] =
N∑

k=1

B1 · · · Bk−1[A, Bk]Bk+1 · · · BN , (18)

where A and Bk are arbitrary operators. The commutators have
been derived extensively in Refs. [19,20], and here we cite
some basic commutators given in Ref. [19]:

[P1, P†
2 ] = −2tr(p2 p1) + Q̂1 with q1 = 4(p2 p1),

[Q̂2, P†
3 ] = P†

4 with p4 = q2 p3 + p3q�
2 ,

[a1, P†
5 ] = a†

2 with s2 = 2(s�
1 p),

[Q̂3, a†
3] = a†

4 with s4 = q3s3,

{a5, a†
6} = {a†

6, a5} = s�
5 s6, (19)

where pk and qk are the structure matrices of P†
k and Q̂k ,

respectively, and sk are the structure arrays of a†
k . The super-

script � means the transposition of matrix or column array.
Using Eqs. (18) and (19), an uncoupled basis state can be
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contracted by N pairs of annihilators as follows:

P′
0P′

1 · · · P′
N |ζM〉 = P′

0P′
1 · · · P′

NP†
0 P†

1 · · · P†
N |0〉 = P′

0P′
1 · · · P′

N−1[P′
N, P†

N P†
N−1 · · · P†

0 ]|0〉

=
N∑

k=1

P′
0 · · · P′

N−1P†
0 · · · P†

k−1P†
k+1 · · · P†

N−1P
†
k |0〉

+
N∑

k=1

k−1∑
i=1

P′
0 · · · P′

N−1P†
0 · · · P†

i−1P†
i+1 · · · P†

k−1P†
k+1 · · · P†

NP†
i,k|0〉

+
N∑

k=1

P′
0 · · · P′

N−1a†
kP†

1 · · · P†
k−1P†

k+1 · · · P†
N |0〉|odd syst., (20)

where the last term with subscript “odd syst.” corresponds
to the odd-proton or odd-neutron systems and thus vanishes
for even-even cases, and we use this convention through-
out this paper. The structure coefficients of P†

k , P†
i,k , and

a†
k are

pk = −2tr(pk p′
N )pN ,

pi,k = 4(pk p′
N pi + pi p

′
N pk ),

sk = 4(pk p′
Ns).

This formula is applicable to both odd number and even
number of systems, and can be applied recursively until all
possible commutations are exhausted.

In the case of N − N = 2, the righ-hand side of Eq. (20)
corresponds to the “quartet” wave function.

P′
0P′

1 · · · P′
N−2|ζM〉 =

∑
{ξ,ς}

P†
ξ P†

ς |0〉 = Q†|0〉. (21)

Here structure matrices of collective pairs pξ and pς , are
derived via the recursive procedures of Eq. (20), therefore
the structure coefficients of the quartet wave function, Q†|0〉,
are as follows:

qαβγ δ =
∑
{ξ,ς}

p(ξ )
αβp

(ς )
γ δ . (22)

According to the Pauli principle, the structure coefficients of
Q† equal

q̄αβγ δ = 1
6 (qαβγ δ − qαγβδ + qαδβγ

+ qβγαδ − qβδαγ + qγ δαβ ), (23)

and follow the antisymmetry as below:

q̄αβγ δ = (−1)Ninv q̄iα iβ iγ iδ , (24)

where the indices {iα, iβ, iγ , iδ} represents any permutation
of {α, β, γ , δ}, and Ninv denotes the inversion number in this
permutation.

In the case of N − N = 1, the results are similar:

P′
0P′

1 · · · P′
N−1|ζM〉 = P′

N−1P′
0P′

1 · · · P′
N−2|ζM〉

= P′
N−1Q†|0〉 = B†|0〉. (25)

The last step of the above formula means that the final result,
B†|0〉, is obtained by commutation between P′

N−1 and Q† in
Eq. (21). The structure coefficients of B† are given by

bαβ = 12 p′(N−1)
γ δ q̄αβγ δ. (26)

The factor 12 originates from the different choices of indices
in q̄ to be summed. The antisymmetry condition bαβ = −bβα

is satisfied using this expression.
One useful case of Eq. (20) is that of an odd system con-

tracted by N − 1 annihilating pair operators, which yields a
“triad” state,

P′
1 · · · P′

N−1|ζM〉|odd syst. =
∑
{ξ,ς}

a†
ξP

†
ς |0〉

= T †|0〉 ≡
∑
αβγ

tαβγ a†
αa†

βa†
γ |0〉, (27)

where structure arrays sξ and the structure matrices pς on the
right-hand side of the first identity symbol are calculated by
using Eq. (20), and structure coefficients of T †, i.e., tαβγ , are
given by

tαβγ =
∑
{ξ,ς}

s(ξ )
α p(ς )

βγ . (28)

Again, coefficients tαβγ of T † are

t̄αβγ = 1
3 (tαβγ − tβαγ + tγαβ ), (29)

and follow the antisymmetry

t̄αβγ = (−1)Ninv t̄iα iβ iγ . (30)

For an odd system, B† can also be obtained through com-
mutator of P′

0 and T †, and its structure coefficients are

bαβ = 3s′
γ t̄αβγ , (31)

where s′ is the structure array of the odd nucleon P′
0.
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C. Formulation of noncollective matrix elements and overlaps

We present the formulas of fαβ and gαβγ δ as follows. For gαβγ δ , we have

gαβγ δ ≡ 〈0|P′
0P′

1 · · · P′
N a†

αa†
βaδaγ |ζM〉 = 〈0|[P′

0P′
1 · · · P′

N , a†
αa†

β]aδaγ |ζM〉

= 2
N∑

k=1

p′(k)
αβ 〈0|aδaγ P′

0 · · · P′
k−1P′

k+1 · · · P′
N |ζM〉 + 4

N∑
k=1

k−1∑
i=1

[
p′(k)

αα′ p
′(i)
β ′β + p′(i)

αα′ p
′(k)
β ′β

]〈0|aδaγ aβ ′aα′

× P′
0 · · · P′

i−1P′
i+1 · · · P′

k−1P′
k+1 · · · P′

N |ζM〉 + 2
N∑

k=1

[
s′
α p′(k)

βα′ − s′
β p′(k)

αα′
]〈0|aδaγ aα′P′

1 · · · P′
k−1P′

k+1 · · · P′
N |ζM〉|odd syst.

= 2
N∑

k=1

p′(k)
αβ 〈0|aδaγB†

k |0〉 + 4
N∑

k=1

k−1∑
i=1

[
p′(k)

αα′ p
′(i)
β ′β + p′(i)

αα′ p
′(k)
β ′β

]〈0|aδaγ aβ ′aα′Q†
i,k|0〉

+ 2
N∑

k=1

[
s′
α p′(k)

βα′ − s′
β p′(k)

αα′
]〈0|aδaγ aα′T †

k |0〉|odd syst.

= 4
N∑

k=1

p′(k)
αβ b(k)

γ δ + 96
N∑

k=1

k−1∑
i=1

[
p′(k)

αα′ q̄
(i,k)
α′β ′γ δ p′(i)

β ′β + p′(i)
αα′ q̄

(i,k)
α′β ′γ δ p′(k)

β ′β

] + 12
N∑

k=1

[
s′
α p′(k)

βα′ − s′
β p′(k)

αα′
]
t̄(k)
α′γ δ|odd syst.. (32)

The factors 4, 12, and 96, on the right-hand of the above formula, originate from permutation symmetry. Structure coefficients
q̄i,k and t̄k are calculated by using Eq. (20), and are symmetrized by using Eqs. (23) and (29). We note that, according to Eqs. (26)
and (31), the structure coefficients bk can be obtained arbitrarily from either one of q̄i,k by b(k)

αβ = 12p′(i)
γ δ q̄

(i,k)
αβγ δ or one of t̄k by

b(k)
αβ = 12s′

γ t̄
(k)
αβγ .

For fαβ , we have

fαβ = 〈0|P′
0P′

1 · · · P′
N a†

αaβ |ζM〉 = 〈0|[P′
0P′

1 · · · P′
N , a†

αaβ]|ζM〉

=
N∑

k=1

2p′(k)
αγ 〈0|aγ aβP′

0 · · · P′
k−1P′

k+1 · · · P′
N |ζM〉 + s′

α 〈0|aβP′
N P′

1 · · · P′
N−1|ζM〉∣∣odd syst.

=
N∑

k=1

2p′(k)
αγ 〈0|aγ aβB†

k |〉 + s′
α 〈0|aβP′

NT †
N |0〉∣∣odd syst.

=
N∑

k=1

4(p′
kb�

k )αβ + 6 s′
α t̄

(N )
βγ δ p′(N )

γ δ

∣∣
odd syst.

. (33)

In addition to the matrix elements gαβγ δ and fαβ , the overlap between the two basis states can also be formulated using bN as

〈ζ ′M ′|ζM〉 = 〈0|P′
0P′

1 · · · P′
N |ζM〉 = p(N )

αβ 〈0|aβaαP′
0 · · · P′

N−1|ζM〉
= p(N )

αβ 〈0|aβaαB†
N |0〉 = −2 tr(pN bN ). (34)

IV. APPLICATION TO SHELL MODEL HAMILTONIAN

In this section we discuss the shell model Hamiltonian Ĥ , and decompose it into operators defined in Eqs. (8) and (9). Once
the structure coefficients, qαβ and oαβγ δ , of these operators are given, one can easily calculate the matrix elements of Ĥ in the
nucleon-pair configuration space by using the formulas in the last section. In this section we also use numerical experiments to
demonstrate the computational power of this state-of-the-art version of the NPA.

A. Effective interactions

The general form of Ĥ with effective interactions is expressed with good isospin, corresponding to

Ĥ =
∑

j

ε jNj +
∑
jα� jβ
jγ � jδ

∑
JM

∑
T MT

VJT
(

jα jβ jγ jδ
)

√(
1 + δ jα jβ

)(
1 + δ jγ jδ

)AJT †
MMT

( jα jβ )AJT
MMT

( jγ jδ ), (35)
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where Nj = ∑
mτ a†

jm 1
2 τ

a jm 1
2 τ , and

AJT †
MMT

( jα jβ ) =
∑
mαmβ
τατβ

CJM
jαmα, jβ mβ

CT MT
1
2 τα, 1

2 τβ
a†

jαmα
1
2 τα

a†
jβ mβ

1
2 τβ

.

VJT ( jα jβ jγ jδ ) in Eq. (35) represents the two-body matrix elements VJT ( jα jβ jγ jδ ), which take, in the first step, the matrix
elements based on realistic nuclear force as corresponding initial values, and then in the second step are refined by optimizing
these matrix elements to achieve a best agreement with experimental data.

In the NPA calculations, the Hamiltonian Ĥ is rewritten in three parts, the proton part, neutron part, and proton-neutron part,
which are as follows:

Ĥ = Ĥπν +
∑

η=π,ν

Ĥη, Ĥπν =
∑

i,t

V πν
i,t (−)t

√
2t + 1

(
Q̂i,t

π × Q̂i,t
ν

)(0)
, Q̂i,t

η,μ =
∑
jα jβ

qη,i( jα jβt )(a†
η, jα

× ãη, jβ )t
μ,

Ĥη =
∑

α

ε jα aη†
α aη

α +
∑
jα� jβ
jγ � jδ

∑
J

VJT =1( jα jβ jγ jδ )√(
1 + δ jα jβ

)(
1 + δ jγ jδ

)√
2J + 1

[
AJ†

η

(
jα jβ

) × ÃJ
η

(
jγ jδ

)](0)
, (36)

with ÃJ
M = (−)J−MAJ

−M , and index i is used to distinguish one-body operators with same spin number t and different structure
coefficients. Structure coefficients of Q̂i,t

η,μ satisfy a sum rule for the index i,

∑
i

qπ,i( jα jβt )V πν
i,t qν,i( jγ jδt ) =

∑
J

(−)J+ jγ + jβ
2J + 1

2

{
jα jγ J
jδ jβ t

} ∑
T =0,1

VJT ( jα jγ jβ jδ )
√

(1 + δ jα jγ )(1 + δ jβ jδ ). (37)

To calculate the matrix element of Ĥη, we treat it as a one-body operator Q̂ plus two-body operator Ô, and fix the structure
coefficients in Eqs. (8) and (9) as

qαβ = δαβε jα ,

oαβγ δ =
∑

J

√(
1 + δ jα jβ

)(
1 + δ jγ jδ

)
4

VJT =1( jα jβ jγ jδ )CJ mα+mβ

jαmα, jβ mβ
CJ mα+mβ

jγ mγ , jδmδ
. (38)

For Ĥπν , those of one-body operators Q̂i,t
η,μ are written as follows:

q(i)
αβ = (−) jβ+mβ qη,i( jα jβt )Ctμ

jαmα, jβ−mβ
. (39)

Now it is practical to calculate the (reduced) matrix elements of corresponding operators using formulas in the previous sections,
and accordingly derive the reduced matrix elements of Ĥ as in the J-NPA approach.

B. Phenomenological interactions

In the case that Ĥ takes the form of pairing forces and multipole-multipole interactions [21], we have

Ĥ = Ĥπν +
∑

η=π,ν

Ĥη, Ĥπν =
∑

t

κπν
t (−)t

√
2t + 1

(
Q̂t

π × Q̂t
ν

)(0)
,

Ĥη =
∑

α

ε jα aη†
α aη

α +
∑

r

Gr

√
2r + 1

(
Ar†

η × Ãr
η

)(0) +
∑

t

κt (−)t
√

2t + 1
(
Q̂t

η × Q̂t
η

)(0)
, (40)

where ε jα are single-particle energies and Gr , κt , and κπν
t

are adjustable parameters optimized by experimental data of
energy levels. For the pairing forces, the structure coefficients
in the uncoupled representation are fixed as

oαβγ δ = y( jα jβr)y( jγ jδr)CJ mα+mβ

jαmα, jβ mβ
CJ mα+mβ

jγ mγ , jδmδ
. (41)

Here y( jα jβr) are simply the structure coefficients of operator
Ar† in Eq. (40); while, for the proton-neutron multipole-
multipole interactions, the structure coefficients have the same
form of Eq. (39), with the operator Qt defined in Eq. (40).
The (Q̂t × Q̂t )(0) between like nucleons is in the form of
multipole pairing interactions plus single-particle terms. By

using
〈ζ ′M ′|a†

αaβa†
γ aδ|ζM〉

= 〈ζ ′M ′|a†
α{aβ, a†

γ }aδ − a†
αa†

γ aβaδ|ζM〉
= δβγ fαδ − gαγ δβ (42)

we obtain

〈ζ ′M ′|(−)t
√

2t + 1
(
Q̂t × Q̂t

)(0)|ζM〉
= oαβγ δ (δβγ fαδ − gαγ δβ ),

where
oαβγ δ = (−) jβ+mα+ jδ+mδ q( jα jβt )q( jγ jδt )

×Ct mα−mβ

jαmα, jβ−mβ
Ct mβ−mα

jγ mγ , jδ−mδ
. (43)
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TABLE I. Maximal dimensions of the Hamiltonian matrices
for J-NPA and the dimension of M-scheme NPA, with SD-pair
configuration and the number of pairs Nπ = Nν . The nucleon-pair
configuration in the NPA version of this paper takes that of the
J-NPA.

Nπ = Nν 1 2 3 4 5 6

J-NPA 3 17 61 216 601 1530
M-NPA 8 65 350 1452 4942 14518

C. Computational superiority

In this subsection, we perform numerical experiments to
demonstrate the computational power of our approach, in the
costs of both RAM and CPU. This is done by calculating
low-lying spectra of a few even-even nuclei in the SD-pair
subspace with three approaches, the traditional J-NPA [10],
the M-NPA [19], and the approach suggested in this paper,
for systems with valence proton pairs in the 50–82 major
shell, and valence neutron pairs in the 82–126 major shell,
and the number of pairs Nπ = Nν . We take both forms of
the Hamiltonian, i.e., the monopole and quadrupole pair-
ing plus quadrupole-quadrupole interactions, corresponding
to Eq. (40) with r = 0, 2, and t = 2, and the effective interac-
tions in the form of Eq. (35).

In Table I we list maximal dimensions of the Hamiltonian
matrices for J-NPA and the dimension of M-scheme NPA,
with SD-pair configuration and the number of pairs Nπ = Nν .
The approach suggested in this paper takes the same basis
states as the J-NPA, in which the dimensions of matrices are
one order smaller than that of the M-NPA when Nπ = Nν � 6,
thus the RAM cost is reduced by two orders or more in our
approach compared to that in the M-NPA. This simplicity
is crucial if one has to consider nucleon pairs with higher
spins other than the SD pairs, because in those cases the
model space is considerably expanded and the storage of the
Hamiltonian matrix becomes an issue.

In Fig. 1, we plot the serial CPU time of our numerical
experiments. One sees that the CPU-time cost of the M-NPA
approach is systematically lower than that of the traditional J-
NPA; in particular, the CPU-time cost of the M-NPA approach
is lower by about two orders in the case of Nπ = Nν � 4,
which is consistent with Fig. 2 of Ref. [19] and the discussions
therein. In Fig. 1(a), one sees that the CPU time of the ap-
proach suggested in this paper is further reduced by one order
or more for the case of Nπ = Nν � 4, with the Hamiltonian
in the form of the phenomenological pairing plus multipole-
multipole interactions. This improvement is given partially by
the fact that in the present approach only matrix elements with
specific projection are necessary while in the M-NPA one has
to calculate those with all possible projections; more details
of relevant discussion are given in Appendix A.

The CPU times for the new approach with the effective
two-body interactions are plotted in Fig. 1(b). One sees that
the CPU times in this case are very close to those with the
simple phenomenological interaction. By contrast, the CPU
times for both J-NPA and M-NPA increase by about two
orders if one use the effective interaction rather than the

FIG. 1. Serial CPU time of the SD nucleon-pair truncated config-
uration versus valence nucleon pair numbers Nπ = Nν , with valence
proton pairs in the 50–82 major shell, and valence neutron pairs in
the 82–126 major shell. In panel (a) we use the phenomenological
pairing plus quadrupole-quadrupole interactions, and in panel (b) we
use the effective interactions. The results of the traditional J-NPA of
Refs. [10] and the M-NPA of Ref. [19] are presented for comparison.
The calculations are carried out on a conventional PC with CPU
frequency 4.9 GHz.

simple phenomenological pairing plus multipole-multipole
interaction. This is another very important superiority of the
present approach. The key improvement accounting for this
superiority is that the noncollective matrix elements, gαβγ δ

and fαβ , are given in a unified way by Eqs. (32) and (33),
and then the matrix elements of Ĥ are calculated with a sum
of those noncollective values according to Eqs. (11) and (12).
This is similar to the technique of the coefficients of fractional
parentage in the traditional J-scheme shell model calculations.

V. APPLICATION TO EVEN-EVEN Nd ISOTOPES

In this section we apply our approach to even-even Nd iso-
topes, from the semimagic 142Nd to the well-deformed 152Nd,
with the Hamiltonian assuming a general form of effective
interaction defined in Eq. (35).

A. Parameters and model space

Let us first explain the parameters in our calculations. Our
single-particle energies, ε j , are taken from the experimental
spectra of 133Sb and 133Sn compiled in the National Nuclear
Data Center (NNDC) [22], as shown in Table II. In this
case valence protons are in the 2s1/2, 1d3/2, 1d5/2, 0g7/2, and
0h11/2 orbits, and valence neutrons are in the 2p1/2, 2p3/2,
1 f5/2, 1 f7/2, 0h9/2, and 0i13/2 orbits. The two-body effective
matrix elements, VJT ( jα jβ jγ jδ ), were obtained by integrat-
ing the model-independent low-momentum nucleon-nucleon
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TABLE II. Single-particle energies of valence protons (π ) and
valence neutrons (ν) adopted in this work. These values are taken
from the experimental spectra of 133Sb and 133Sn [22].

jπ 2s1/2 1d3/2 1d5/2 0g7/2 0h11/2

ε jπ 2.990 2.440 0.962 0.000 2.793

jν 2p1/2 2p3/2 1 f5/2 1 f7/2 0h9/2 0i13/2

ε jν 1.363 0.854 2.005 0.000 1.561 2.690

interaction [23,24], i.e., Vlow-k , using the harmonic oscillator
eigenfunctions with the oscillator energy h̄ω = 7.87 MeV.

The effective charges of valence nucleons used in this
paper are obtained by the χ2-fitting procedure, yielding
that eπ = 2.53 e and eν = 1.27 e, which are slightly larger
than the values adopted in Refs. [25] and [26]. For effec-
tive g factors, we use the values gsπ = 5.586 × 0.7 µN and
gsν = −3.826 × 0.7 µN (0.7 is the usual quenching factor in
the NSM calculations). The orbital g factors are taken as
glπ = 1.0 µN and glν = 0 µN .

Now we elaborate which nucleon pairs are chosen as the
building blocks of our model space. The even-even 142–152Nd
chain provides us with a very typical example of excitation
modes from seniority-type (142Nd), vibrational (144Nd), tran-
sitional (146Nd and 148Nd), and rotational (150Nd and 152Nd)
modes. The nucleon-pair structure of optimal collective pairs
for these nuclei are expected to be very different, as clarified in
Ref. [27]. Hence we utilize both the generalized seniority-like
(GS) and the Hartree-Fock (HF) approaches, explained in
Appendix C, to obtain the structure coefficients of nucleon
pairs. For 142Nd and 144Nd, the neutron-proton interaction is
very small because the valence neutron numbers are small.
In those cases we use the generalized seniority scheme to
extract the structure coefficients of collective pairs. We use
S, D, G, and I pairs for both valence protons and neutrons in
those two isotopes. For the 146Nd nucleus, there are four va-
lence neutrons, therefore the neutron-proton interaction starts
to play a role towards deformation; for this nucleus, our S
pair is optimized by assuming the ground state to be S-pair
condensation state, as in Eq. (C3), while the non-S pairs are
derived from the Hartree-Fock ground state (see Appendix C
for a detailed description); for this nucleus the non-S pairs
are chosen to be D and G pairs. For 148,150,152Nd isotopes,
all pair structures are fixed by nucleon pairs extracted from
corresponding deformed Hartree-Fock ground states. More
specifically, apart from the dominated S and D pairs, there
are two types of G pairs which contribute about 4% to the
Hartree-Fock ground state of 148Nd, and we choose the one
which contributes relatively more to the Hartree-Fock ground
state, with the number of G pairs below 3 for both valence
protons and valence neutrons in the calculation; for 150,152Nd
isotopes, collective nucleon pairs with largest amplitudes in
the Hartree-Fock ground states are S, D, G, and I pairs,
respectively, for both valence neutrons and protons. Again
we restrict the number of G and I nucleon pairs below 2,
individually for both valence neutrons and valence protons,
in order to have our model space procurable by a PC (we
note that for the number of 8+ states of 152Nd in such selected
configuration space is already 419 243, requiring the storage

space over 1 TB). In all cases, the number of nucleon pairs
other than SD pairs is restricted to be equal to or less than 2.

B. Calculated results and discussion

In Fig. 2, we plot our calculated energies of low-lying
states with the Vlow-k shell model Hamiltonian, by using the
NPA in the SDGI nucleon-pair configuration (number of nu-
cleon pairs beyond SD pairs below 3 for both valence protons
and valence neutrons), and compare them with experimental
data. For 142Nd and 144Nd, the calculated excitation energies
of 2+

1 states are close to the experimental values. The general
features of yrast states in these two nuclei are well reproduced;
in particular, the 2+

1 state energies are very consistent with
experimental data. For 142Nd, the 4+

1 and 6+
1 states are nearly

degenerate, and the 8+
1 are relatively high in energy. These

yrast states are expected to be “nucleon-pair states” suggested
in Ref. [28], and, according to the present calculation,

|2+
1 〉 = 0.98|S4D〉π + · · · ,

|4+
1 〉 = 0.98|S4G〉π + · · · ,

|6+
1 〉 = 0.97|S4I〉π + · · · ,

|8+
1 〉 = 0.93|S3(D × I )(8)〉π + · · · ,

For 144Nd, the calculated excitation energies for the 4+
1 and

6+
1 states are sizably lower than corresponding experimental

data. For 146Nd, good agreement between the experimental
and calculated values is achieved for the low-lying yrast states,
up to the high-spin 8+

1 and 10+
1 states. For these states the

“nucleon-pair state” picture are not applicable. The maxima
of overlaps between eigenstates and pair basis states are 0.62,
0.48, 0.38, 0.33, and 0.36, for the 2+, 4+, 6+, 8+, and 10+
band states, respectively. For 148Nd and 150Nd, our calcu-
lations reproduce the ground band energies very well. Yet,
the side bands of these nuclei are not well described in our
calculations. For example, the second 0+ state is even higher
than the second 2+ and 4+ states, and the energy gaps be-
tween the 2+ and 4+ states are too small in comparison with
experimental data. This is partially understandable, as our pair
structure coefficients are derived from the HF ground state. To
simulate the side band states, one might need to consider other
pairs, as exemplified for 68Se and 68Ge in Ref. [29]. For 152Nd,
the moment of inertia for the ground band is about one-half of
the experimental value. This disagreement might come from
two origins: one is the constraint of number of G and I pairs
in the configuration space, and the second is that the Vlow-k

matrix elements are not properly refined with experimental
data in this region.

Our calculated B(E2) and μ values for the yrast states of
even-even Nd isotopes are presented in Table III (denoted by
“Th”), and are compared with experimental data accessible
in the NNDC. For 142Nd, B(E2; 0+

1 → 2+
1 ) and μ(2+

1 ) are
slightly larger than the experimental values, and the calculated
E2 transition probabilities between 2+

1 , 4+
1 , 6+

1 , and 8+
1 states

are very close to zero or very small. As the neutron number
increases from 142Nd to 152Nd, the E2 transition probabilities
between 2+

1 , 4+
1 , 6+

1 , and 8+
1 states, for both calculated and

experimental data, become stronger and stronger successively,
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FIG. 2. Low-lying energy spectra for even-even Nd isotopes. The experimental data are extracted from the NNDC [22], and the theoretical
results are calculated by using the NPA with Vlow-k potential. Refer to the text for details.

TABLE III. Reduced transition probability B(E2) (in e2b2) and magnetic moment μ (in νN ) for low-lying states of even-even 142–152Nd.
The effective charges are eπ = 2.53e, eν = 1.27e, glπ = 1.0 µN , glν = 0 µN , gsπ = 5.586 × 0.7 µN , gsν = −3.826 × 0.7 µN . Experimental data
are taken from the NNDC [22]. The theoretical values based on the SDGI-pair configuration are represented by “Th”, and those based on the
SD-pair configuration are represented by “Th1”.

Expt. Th Th1 Expt. Th Th1 Expt. Th Th1

B(E2) 142Nd 144Nd 146Nd
0+ → 2+ 0.265(4) 0.463 0.453 0.58(1) 0.489 0.449 0.728(9) 1.11 1.06
2+ → 4+ 0.001 0.184 0.153(19) 0.162 0.263 0.354(90) 0.665 0.590
4+ → 6+ <0.001 0.162 0.157(16) 0.065 0.248 0.638 0.535
6+ → 8+ 0.063 0.163 0.160 0.252 0.610 0.513

B(E2) 148Nd 150Nd 152Nd
0+ → 2+ 1.37(2) 2.06 1.85 2.75(7) 2.96 2.32 4.17(24) 3.28 2.20
2+ → 4+ 0.784(24) 1.13 0.991 1.54(1) 1.54 1.24 1.96(9) 1.72 1.09
4+ → 6+ 0.685(47) 1.01 0.865 1.41(6) 1.33 1.08 1.57(30) 1.45 0.956
6+ → 8+ 0.596(103) 0.961 0.766 1.34(14) 1.14 0.966 1.33 0.865

μ 142Nd 144Nd 146Nd
2+ +1.69(15) +2.43 +2.41 0.35(3) −0.309 −0.167 +0.582(14) +0.581 +0.682
4+ +5.46 +4.67 −0.934 +2.28 +0.77(10) +1.31 +1.63
6+ +6.27 +6.20 −1.75 +4.70 +2.51 +3.40
8+ +8.92 +7.93 +0.743 +6.61 +4.29 +5.04

μ 148Nd 150Nd 152Nd
2+ +0.73(3) +1.06 +1.14 +0.84(4) +0.786 +1.09 +1.00 +1.10
4+ +1.4(2) +2.17 +2.38 +1.8(3) +1.65 +2.20 +2.07 +2.17
6+ +1.6(3) +3.35 +3.68 +2.1(4) +2.82 +3.31 +3.40 +3.15
8+ +4.68 +4.98 +4.5(10) +4.29 +4.38 +4.78 +4.02
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FIG. 3. Low-lying energy levels of (a) semimagic 142Nd and (b) well deformed 150Nd. “SD” represents the NPA calculation by using SD
nucleon pairs, “SDGI ′′ represents that by using SDGI nucleon pairs. Experimental data are taken from the NNDC [22].

and this pattern is well described by our NPA calculations.
Similarly, the general feature of the magnetic moments is well
reproduced in the NPA calculation, with an exception that
the calculated μ(2+

1 ) of 144Nd has a different sign than the
experimental value.

C. Important role of G and I nucleon pairs

In most previous NPA calculations, e.g., [25,26], the model
spaces are constructed by only collective S and D pairs. It has
been well known for a long time that collective G and I pairs
are also important for well deformed nuclei. This was recently
revisited in Refs. [27,29]. As a byproduct of our NPA calcu-
lation, we investigate the role of G and I nucleon pairs for
even-even 142–152Nd isotopes. This can be easily performed
by the NPA calculations with only SD nucleon pairs. In this
SD nucleon-pair approximation, the structure coefficients of
the S and D pairs are taken the same as above.

In Fig. 3, we plot our calculated low-lying energy lev-
els for 142Nd and 150Nd by using the NPA, in both the SD
nucleon-pair space, denoted by “SD”, and the SDGI nucleon-
pair space in Fig. 2, denoted by “SDGI”. For the semimagic
142Nd, good agreement between the two calculations is seen
for the excitation energies of the 2+

1 state, while excitation
energies for other states of SD-pair calculation are much
higher than those of the SDGI-pair calculation. For 150Nd,
the rotational behavior is reproduced in both calculations;
however, the moment of inertia in the SD-pair calculation is
much lower than the experimental value. This clearly demon-
strate the important roles played by G and I nucleon pairs for
deformed nuclei. In Table III we present calculated B(E2)
and μ values in the SD-pair configuration (see the column
“Th1”). In general, B(E2) values of the ‘Th1” column are
smaller than those of the “Th” column, with few exceptions.
On the other hand, the μ values of the “Th1” column are larger
than those of the “Th” column. Overall, the electromagnetic
properties obtained from the SDGI-pair space are closer to
reality.

VI. SUMMARY AND DISCUSSION

In this paper, we have suggested a new version of the NPA
to the nuclear shell model. In our new formulation, we take
the J-NPA basis states, on the one hand, and make use of
the commutators of the M-NPA in calculations for the one-
and two-body matrix elements as well as the overlaps, on
the other hand. The advantages for this new development of
the NPA, as explained in the text and exemplified by even-
even Nd isotopes, are that the costs of CPU and RAM are
reduced substantially, in comparison with all previous M-NPA
calculations, while the simplicity of the J-scheme NPA is
reserved. Therefore, this new version of the NPA is much
more realizable to study the low-lying structure of medium
and heavy nuclei.

One of key improvements in this new version of the NPA is
that one needs reduced matrix elements with only one specific
projection, while one needs those with all possible projec-
tions in all previous M-NPAs. Numerical experiments have
demonstrated that our new approach reduces the CPU time by
more than one to two orders of magnitude for Nπ = Nν � 4, in
comparison with the M-scheme approaches of Refs. [18,19].
Furthermore, calculations with the shell model Hamiltonian
in the form of effective interactions are as simple as those
with the simple pairing plus multipole-multipole interactions
in this new approach, owing to a technique similar to the
coefficient of fractional parentage in the traditional J-scheme
shell model calculation. Therefore we call our approach the
state-of-the-art version of the NPA.

To exemplify our approach, we study the low-lying states
of even-even 142–152Nd isotopes. These isotopes were re-
cently studied by using the NPA [25], but with monopole and
quadrupole pairing plus quadrupole-quadrupole interaction,
in the SD nucleon pair configuration. In this paper we use
the shell model Hamiltonian derived from the Vlow-k poten-
tial. Our nucleon-pair structure coefficients are fixed by the
generalized seniority approach for 142Nd and 144Nd, by the
Hartree-Fock ground state for 148Nd, 150Nd, and 152Nd, and
by the generalized seniority approach for S pairs of 146Nd and
by the Hartree-Fock ground state for non-S pairs of 146Nd.
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We use the SDGI nucleon pairs as the building blocks of
our wave functions, with the constraint that the number of
pairs beyond SD pairs is below 2. For the first time, the NPA
calculations reproduce the general features of low-lying states
for rare-earth isotopes, including seniority-type, vibrational,
transitional, and rotational modes, without any refinements of
Vlow-k matrix elements, and on the same footing. As a byprod-
uct of this exemplification, we investigate the important role
played by the collective G and I pairs. Because the NPA
calculation with the Vlow-k effective interactions provides us
with a reasonable description of even-even 142–152Nd isotopes,
in future it would be desirable to refine carefully the Vlow-k

effective interactions by using experimental data of rare-earth
nuclei, including both even-even and odd-mass Nd isotopes.
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APPENDIX A: CLEBSCH-GORDAN
COEFFICIENT IN EQ. (7)

In this Appendix, we discuss an interesting feature of the
Clebsch-Gordan coefficient used in Eq. (7). In Eq. (7) it would
be very desirable to fix the values of M, μ, and M ′ in advance,
and once for all.

Below we demonstrate how this can be done in our NPA
calculations. Let us first discuss the case of an odd-nucleon
system where both J and J ′ are half-integers; in this case we
fix μ = 0 and M = M ′ = 1/2, and it suffices to prove that the

Clebsch-Gordan coefficient C
J 1

2

J ′ 1
2 ,t0

is always nonzero, once J ,

J ′, and t satisfy the triangle rule of three vectors. This proof

is straightforward. The basic idea is to use recursive relations
and fundamental symmetry properties of the CG coefficients,

and to see that C
J 1

2

J ′ 1
2 ,t0

is proportional to Ct0
J ′ 1

2 ,J −1
2

and Ct0
J ′ −1

2 ,J 1
2
.

If C
J 1

2

J ′ 1
2 ,t0

= 0 it means that both Ct0
J ′ 1

2 ,J −1
2

and Ct0
J ′ −1

2 ,J 1
2

are

zero. On the other hand, Ct0
J ′ 1

2 ,J −1
2

= Ct0
J ′ −1

2 ,J 1
2

= 0 yields all

CJM
J ′M ′,tμ = 0, according to recursive formula of the Clebsch-

Gordan coefficient with the same J ′tJ . Therefore one needs
only matrices with the smallest magnetic number in this ver-
sion of the NPA. In contrast, in all previous M-NPA [18,19],
the matrix elements with all possible magnetic numbers are
necessary in calculations. This is one of the advantages in this
new version of the NPA.

For the case of an even system, the situation is similar, but
with a slight difference. In this case both J and J ′ are integers,
thus CJ0

J ′0,t0 = 0 for J + J ′ + t odd. In this situation one sees
that CJ0

J ′,1;t,−1 is always nonzero. Therefore, in our calculation
we take M = M ′ = 0 if J + J ′ + t is even, or M ′ = −μ = 1
and M = 0 if J + J ′ + t is odd. Again we do not need to
calculate matrix elements of any other M, M ′, and μ.

APPENDIX B: SIMPLE CASES OF THE CONTRACTION

In this Appendix, we present some simple results of
Eqs. (19) and (20). For the case of two-pair creation operators
and one annihilation operator, we have

P′
1P†

1 P†
2 |0〉 = (P†

1 + P†
2 + P†

1,2)|0〉 = B†|0〉,

where the pair structure coefficient matrix b for B† equals

b = 4(p1 p′
1 p2 + p2 p′

1 p1) − 2[tr(p1 p′
1)p2 + tr(p2 p′

1)p1].

(B1)

For the case of three-pair creation operators and one annihi-
lating operator, we have

P′
1P†

1 P†
2 P†

3 |0〉 = (P†
2 P†

1 + P†
1 P†

2 + P†
1 P†

3 + P†
1,2P†

3 + P†
2 P†

1,3 + P†
1 P†

2,3)|0〉 = Q†|0〉,
with

qαβγ δ = 4
[(

p1 p′
1 p2 + p2 p′

1 p1 − 1
2 tr(p1 p′

1)p2
)
αβ

p(3)
γ δ + (

p1 p′
1 p3 + p3 p′

1 p1 − 1
2 tr(p3 p′

1)p1
)
αβ

p(2)
γ δ

+(
p2 p′

1 p3 + p3 p′
1 p2 − 1

2 tr(p2 p′
1)p3

)
αβ

p(1)
γ δ

]
. (B2)

For an odd-nucleon system, there are in total three cases. In the first case there are one-pair and an unpaired nucleon creation
operators, with a one-particle annihilation operator on the left-hand side; and in this case we have

a′a†P†
1 |0〉 = ({a′, a†}P†

1 − a†[a′, P†
1 ])|0〉 = B†|0〉, with b = (s′�s)p1 − ss′� p1 − p1s′s�. (B3)

In the second case there are two-pair and an unpaired nucleon creation operators, with a one-particle annihilation operator on
the left-hand side; and in this case we have

a′a†P†
1 P†

2 |0〉 = ({a′, a†}P†
1 P†

2 − a†[a′, P†
1 ]P†

2 − a†P†
1 [a′, P†

2 ])|0〉 = Q†|0〉,
with

qαβγ δ = (s′�s)p(1)
αβ p(2)

γ δ − (ss′� p1 + p1s′s�)αβ p(2)
γ δ − (ss′� p2 + p2s′s�)αβ p(1)

γ δ . (B4)
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In the third case, there are two-pair and an unpaired nucleon creation operators, with a one-pair annihilation operator on the left
hand side; in this case we have

P′
1a†P†

1 P†
2 |0〉 = (a†P†

1 + a†P†
2 + a†P†

1,2 + a†
1P†

2 + a†
2P†

1 )|0〉 = T †|0〉,
with

tαβγ = 4sα

[(
p1 p′

1 p2 − 1
2 tr(p1 p′

1)p2
)
βγ

+ (
p2 p′

1 p1 − 1
2 tr(p2 p′

1)p1
)
βγ

] + 4(p1 p′
1s)α p(2)

βγ + 4(p2 p′
1s)α p(1)

βγ . (B5)

These results are useful in writing computer codes of this
version of the NPA.

APPENDIX C: OPTIMIZATION OF NUCLEON-PAIR
STRUCTURE

In this Appendix we summarize how to obtain the nucleon-
pair structure coefficients in the NPA calculations.

In many NPA calculations, the pair-structure coefficients,
y( jη j′ηr), of the collective pairs are obtained by the broken-
pair approximation [5]. For a given NSM Hamiltonian, one
solves the BCS equation to obtain the empty and occupied
amplitudes, u jη and v jη , for each orbit jη. Then the structure
coefficients of the S pair is given by

y( jη j′η0) = δ jη j′η

√
2 jη + 1

v jη

u jη

, (C1)

corresponding to the number-projected BCS wave function.
The structure of non-S pairs is subsequently determined by
using phonon excitation. For example, one derives the D pair
using the commutator D† = 1

2 [Q, S†], and obtains the struc-
ture coefficients

y( jη j′η2) = 1

2
q( jη j′η2)

[
y( jη jη0)√

2 jη + 1
+ y( j′η j′η0)√

2 j′η + 1

]
, (C2)

where q( jη j′η2) express the inherent structure of the
quadrupole phonon Q. These operations are performed for
protons and neutrons individually. Clearly, the proton-neutron
correlations are not considered.

Alternatively, in some previous works, the structure of the
collective pairs is optimized using the generalized seniority-
like (GS) approach [30]. First, the structure of the S pair is
obtained by minimizing the expectation value of Hamiltonian
in a pair-condensation state, resorting to a nonlinear optimiza-
tion like the Levenberg-Marquardt algorithm [31,32]. For an
open-shell nucleus, y( jπ j′π0) and y( jν j′ν0) are obtained by
optimizing

〈(Sπ )Nπ (Sν )Nν |Ĥ |(Sπ )Nπ (Sν )Nν 〉
〈(Sπ )Nπ (Sν )Nν |(Sπ )Nπ (Sν )Nν 〉 . (C3)

Second, for the structure coefficients of non-S pairs, one di-
agonalizes the Hamiltonian matrix in a subspace spanned by
the one-broken-pair states, (a†

jπ
× a†

j′π
)(r)(S†

π )Nπ−1(S†
ν )Nν |0〉,

for non-S proton pairs as an example. The yrast state in this
small space is a superposition of the broken pair states,∑

jπ� j′π

cr ( jπ j′π )
(
a†

jπ
× a†

j′π

)(r)
(S†

π )Nπ−1(S†
ν )Nν |0〉, (C4)

and we take y( jπ j′π r) = cr ( jπ j′π )(1 + δ jπ j′π )/2. If the
monopole-monopole contribution is absent from the neutron-
proton interaction, as in the case of the phenomenological
Hamiltonian, the above procedure can be done for protons
and neutrons independently. Again, the proton-neutron corre-
lations, important for rotational nuclei, are not considered in
the GS approach.

The third method is as follows. One also obtains the
structure coefficients of transitional and rotational nuclei
from a Hartree-Fock (HF) Slater determinant, as summarized
in Ref. [33]. One first performs the HF calculation in the
NSM model space with an NSM effective interaction [34].
The HF single-particle states obtained from this calculation
are represented by a transformation from the original NSM
single-particle states, Uiα with i and α = { jα, mα} being the
indices of the HF and the NSM states, respectively. The HF
ground state with 2N of valence protons (or neutrons) can be
written as a pair condensate:

|ϕHF〉 = (N!)−1

⎛
⎝∑

ikαβ

gikUiαUkβa†
αa†

β

⎞
⎠

N

|0〉

= (N!)−1(B†)N |0〉, (C5)

where g12 = g34 = · · · = g(2N−1)(2N ) = 1 and other gi j = 0.
Due to the symmetry breaking in the HF calculation, the
condensate pair B† does not possess good spin. On the other
hand, one can project out pairs with good spin (and parity)
from the deformed HF pair,

B(J )†
MK =

∑
jα, jβ

yJK ( jα jβ )(a†
jα

× a†
jβ

)(J )
M , (C6)

where

yJK ( jα jβ ) =
∑

ikmαmβ

gik (UiαUkβ − UkαUiβ )CJK
jαmα jβ mβ

. (C7)

For a given angular momentum J , we diagonalize the norm
matrix

N (JM )
KK ′ = 〈0|B(J )

MK B(J )†
MK ′ |0〉, (C8)

leading to the unique pairs with rotational invariance. The
nonzero eigenvalues of N (JM )

KK ′ are amplitudes of these pairs,
reflecting their contribution in the deformed HF pair. It has
been demonstrated that the nucleon pairs obtained in this way
provide us with a good description of low-lying states for
deformed nuclei [27].
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