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Dependence of the fission half-lives of heavy nuclei on the highest proton magic
number within a macro-microscopic approach
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The potential barriers in the cold fission valley were determined within the original generalized liquid drop
model, which takes into account the proximity energy, the charge and mass asymmetries, the microscopic shell
and pairing corrections, and quasimolecular one- and two-body shapes. Due to microscopic effects and the
proximity energy, double-humped fission barriers appear. The calculations were done within four hypotheses for
the heaviest proton magic number: 114, 116, 118, and 120. The calculated partial or total fission half-lives of
actinides and superheavy nuclei follow roughly the trend of the experimental data, the agreement being better
for Z = 118.
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I. INTRODUCTION

The stability, sphericity, and mass of the 208Pb nucleus
allow one to consider that 82 and 126 are respectively the next
proton and neutron magic numbers beyond 2, 8, 20, 28, 50 for
protons and 82 for neutrons. The next neutron shell closure
was predicted from the early shell model at N = 184 [1] and
was confirmed by most of the recent calculations. For more
than 50 years the next proton-shell closure has been positioned
at Z = 114 [2,3]. More recently, the finite range droplet model
[4] predicted a maximal negative shell correction for Z = 114
and N = 178. The mean field model [5] plunges the nucleons
in a Woods-Saxon or Nilsson potential and leads to a small is-
land of superheavy nuclei around Z = 114 and N = 184. The
relativistic mean field approach uses an effective interaction
which simulates the meson exchange [6] and predicts Z = 120
and N = 172 as the next proton and neutron magic numbers.
The Hartree-Fock-Bogoliubov method approach uses Skyrme
or Gogny forces and leads to Z = 126 and N = 184 [7]. The
possible proton shell shift from 114 to Z = 122 has been
advanced also [8]. The differences between the model pre-
dictions come mainly from the description of the spin-orbit
coupling since the macroscopic liquid-drop barriers disappear
for Z higher than around 103. Consequently, the shell effects
dramatically influence the potential barrier of the heaviest
nuclei and, with increasing proton and neutron numbers, the
regions of nuclei stabilized by shell effects become poorly
localized in particle number. A deformed minimum is also
predicted around Z = 108 and N = 152 or 162.

Experimentally, most of the observed superheavy nuclei
decay via α emission or simultaneous fission [9–11]. The-
oretically, the spontaneous fission modes and lifetimes of
superheavy elements have been deeply investigated within the
nuclear density functional theory [12]. Using a generalized
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liquid drop model with a modified proximity energy term
[13,14], the decay modes of superheavy nuclei were predicted
recently by comparing the half-lives of α emission and spon-
taneous fission and the experimental observations [13]. The
same comparison has also been done [15] within a unified
fission model and analytical formulas [16].

The purpose of this work is, for the actinide and superheavy
nuclei, to compare the partial and total fission half-lives deter-
mined from the original version of the generalized liquid drop
model [14] within four hypotheses for the heaviest proton
magic number: 114, 116, 118, and 120. All possible mass
and charge asymmetries are taken into account as well as the
ellipsoidal deformations of the two different fission fragments,
the proximity interaction, and the shell and pairing energies.
The study is limited to quasimolecular shapes since these
shapes are hardly accessible using the usual development of
the nuclear radius.

II. GENERALIZED LIQUID DROP MODEL

The energy of a deformed nucleus is the sum of the GLDM
energy and the microscopic energies. The GLDM energy is
expressed as [14]

E = EV + ES + EC + Eprox, (1)

where the different terms are, respectively, the volume, sur-
face, Coulomb, and proximity energies.

All along the fission path the proximity energy term Eprox

takes into account the nuclear attractive forces between nu-
cleons in regard in the neck or the gap between the nascent
fragments. In the quasimolecular shape valley where the necks
are narrow and well developed, this correction to the surface
energy plays a main role on a large part of the fission path and
especially around the touching point. The absence of this term
leads to an unrealistic Coulomb peak. When the proximity
energy is taken into account, the potential barrier is smooth.
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The proximity energy is defined as

Eprox(r) = 2γ

∫ hmax

hmin

�[D(r, h)/b]2πh dh, (2)

where r is the distance between the mass centers. � is the
proximity function of Feldmeier [17]. h is the transverse dis-
tance in the neck relatively to the fission axis. hmin is zero for
separated fragments or the neck radius for one-body shapes
and hmax is the maximum value for which surfaces of the two
nascent or separated fragments are still in regard. b the surface
width fixed at 0.99 fm. D is the distance between the opposite
surfaces on a line parallel to the fission axis. γ is the surface
parameter.

The selected one-body shape sequence consists of two con-
nected half-elliptic lemniscatoids, allowing the development
of a deep neck while keeping almost spherical ends [14]. For
a given final asymmetry, there is a one-to-one correspondence
between the distance r between the centers of the future frag-
ments and the shape of the deformed nucleus.

For one-body shapes, the first three contributions are given
by

EV = −15.494(1 − 1.8I2)A MeV, (3)

ES = 17.9439(1 − 2.6I2)A2/3 S

4πR2
0

MeV, (4)

EC = 0.6e2(Z2/R0)BC . (5)

I = (N − Z )/A is the relative neutron excess and S is the sur-
face of the deformed nucleus. The Coulomb shape dependent
function BC was determined within the method proposed by
Cohen and Swiatecki [18] using the axial symmetry of the
system and complete elliptic integrals:

BC = 0.5
∫

[V (θ )/V0][R(θ )/R0]3 sin θ dθ. (6)

V (θ ) is the electrostatic potential at the surface and V0 the
surface potential of the sphere. The radius R0 of the compound
nucleus is given by R0 = (1.28A1/3 − 0.76 + 0.8A−1/3) fm.
For two-body shapes, the coaxial ellipsoidal deformations
were considered [19]. For a distance r between the mass cen-
ters of the fragments, the shape depends on two parameters:
The ratios si (i = 1, 2) between the transverse semiaxis ai =
Ris

1/3
i and the radial semiaxis ci = Ris

−2/3
i of the fragments.

The prolate deformation is characterized by s � 1 and the
eccentricity is e2 = 1 − s2, while in the oblate case s � 1 and
e2 = 1 − s−2.

In the prolate case, the relative surface energy is given by

BS,i =
(
1 − e2

i

)1/3

2

[
1 + sin−1(ei )

ei
(
1 − e2

i

)1/2

]
(7)

and in the oblate case

BS,i =
(
1 + ε2

i

)1/3

2

[
1 + ln(εi + (

1 + ε2
i

)1/2
)

εi
(
1 + ε2

i

)1/2

]
,

ε2
i = s2

i − 1. (8)

The Coulomb self-energy of the spheroid i reads

EC,self = 3e2Z2
i BC,i

5Ri
. (9)

The relative self-energy is, respectively, in the prolate and
oblate cases

BC,i =
(
1 − e2

i

)1/3

2ei
ln

1 + ei

1 − ei
, (10)

BC,i =
(
1 + ε2

i

)1/3

εi
tan−1 εi. (11)

The Coulomb interaction energy between the two fragments
is calculated as

EC,int = e2Z1Z2

r
[s(λ1) + s(λ2) − 1 + S(λ1, λ2)],

λ2
i = c2

i − a2
i

r2
. (12)

In the prolate and oblate cases, s(λi) is expressed as

s(λi) = 3

4

(
1

λi
− 1

λ3
i

)
ln

(
1 + λi

1 − λi

)
+ 3

2λ2
i

, (13)

s(λi) = 3

2

(
1

ωi
+ 1

ω3
i

)
tan−1 ωi − 3

2ω2
i

, ω2
i = −λ2

i . (14)

S(λ1, λ2) can be calculated within a twofold summation:

S(λ1, λ2) =
∞∑
j=1

∞∑
k=1

3

(2 j + 1)(2 j + 3)

3

(2k + 1)(2k + 3)

× (2 j + 2k)!

(2 j)!(2k)!
λ

2 j
1 λ2k

2 . (15)

This GLDM has been used to study the fission [20,21], fusion
[14,22,23], and cluster [24,25] and α [16,26] reactions.

III. ANALYTICAL SHELL ENERGY

The shape-dependent shell corrections were calculated
within the droplet model formulas [27] with slightly different
values of the parameters. The shell energy is

Eshell = E sphere
shell (1 − 3.1θ2)e−θ2

, (16)

θ2 = (δR)2/a2. (17)

δR is the deviation of the nuclear surface from the sphere. The
range a was chosen to be 0.286r0. The shell corrections for a
spherical nucleus are given by

E sphere
shell = 5.8[(F (N ) + F (Z ))/(0.5A)2/3 − 0.28A1/3] MeV,

(18)

where, for Mi−1 < X < Mi, Mi being the magic numbers,

F (X ) = qi(X − Mi−1) − 0.6
(
X 5/3 − M5/3

i−1

)
, (19)

qi = 0.6
(
M5/3

i − M5/3
i−1

)
/(Mi − Mi−1). (20)

For the two-body shapes, the shell energy is the sum of the
shell corrections of the fragments. This algebraic method to
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calculate the shell effects is simple but gives, at least for ellip-
soidal deformations, almost the same results as Strutinsky’s
method.

IV. PAIRING ENERGY

The pairing energy was determined with the following
formulas given in [28].

For even Z , even N nuclei

EPairing = 0. (21)

For even Z , odd N nuclei

EPairing = 4.8/N1/3. (22)

For odd Z , even N nuclei

EPairing = 4.8/Z1/3. (23)

For odd Z , odd N , and N = Z nuclei

EPairing = 4.8/N1/3 + 4.8/Z1/3 − 6.6/A2/3 + 30/A. (24)

For odd Z , odd N , and N �= Z nuclei

EPairing = 4.8/N1/3 + 4.8/Z1/3 − 6.6/A2/3. (25)

As a first approach, the pairing energy of the compound nu-
cleus is constant till the scission and is the sum of the pairing
energy of the two fragments after the separation. The rear-
rangement of the nuclear matter during the violent scission is
poorly known. This simple approach adopted to determine the
pairing energy has been sufficient to reproduce the peaks and
wells of the multiple-humped barriers of actinides [21].

V. HALF-LIVES

Within this asymmetric fission model the decay constant is
simply given by λ = ν0P. The assault frequency ν0 was taken
as ν0 = 1020 s−1. The barrier penetrability P is calculated
within the action integral

P = exp

[
−2

h̄

∫ rout

rin

√
2B(r)[E (r) − Eg.s.]dr

]
. (26)

The inertia B(r) is related to the reduced mass by

B(r) = μ{1 + 24 exp[−3.25(r − Rsph )/R0]}, (27)

where Rsph is the distance between the mass centers of the
future fragments in the initial sphere, Rsph/R0 = 0.75 in the
symmetric case. Around the ground state the inertia is higher
than the irrotational flow since large internal reorganization
occurs at level crossings. The reduced mass is reached asymp-
totically. The formula (27) is a simplified version of the one
proposed in Ref. [29]. The partial half-life for a specific decay
channel i is related to the decay constant λi by T1/2,i = ln 2

λi
.

To determine the total fission decay constant λ = λ1 + λ2 +
· · · + λn the partial half-lives of all the possible spontaneous
fission channels were calculated, and the total fission half-
lives follow T1/2 = ln 2

λ
.

As an example, for 255Db, the partial half-lives of the main
fission channels are displayed in Fig. 1 as functions of the
mass of the heaviest fragment and the charge of the two
fragments. More precisely, from left to right in the figure,

FIG. 1. Partial spontaneous fission half-lives (in s) of 255Db as a
function of the heaviest fragment mass number (A1) and the different
Z1/Z2 pairs of charges of the two fragments.

the solid black line, dotted line, and dashed-dotted line cor-
respond respectively to the 53/52, 55/50, and 57/48 Z1/Z2

ratios. The dashed–double-dotted curve and heavy gray curve
(three points) correspond to the 59/46 and 61/44 Z1/Z2 ratios.
For a given pair (Z1, Z2) the half-lives are positioned on a nice
parabola and vary as a function of the mass of the fragments.

VI. POTENTIAL BARRIERS

The potential barriers corresponding to the lowest partial
half-life and consequently to the most probable fission path
are displayed in Fig. 2 for several heavy and superheavy
nuclei. The gray dashed-dotted line, the black solid line, the
dotted line, the gray dashed line, the black solid line, the
dashed black curve, and short dashed curve correspond to
the 236U, 243Am, 248Cm, 255Es, 258Rf, 259Lr, and 286Fl. The
zero energy corresponds to the deformation energy of the
initial spherical nucleus when the microscopic energies are
not taken into account. The shell effects generate the deformed
ground state. For 286Fl the proximity of the next proton magic
number leads to a quasispherical ground state. When the neck
is formed, the proximity energy and the shell effects intro-
duce progressively a plateau or a shallow second minimum.
Later on, the second peak corresponds to the transition from

FIG. 2. Potential barriers for some actinide and superheavy nu-
clei as a function of the distance r between the mass centers of the
fragments.
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FIG. 3. Fission barriers for 236U as a function of the asymmetry
of the decay indicated by the charge of the heaviest fragment. The
change of tint in the potential surface occurs every 5 MeV.

one-body quasimolecular shapes to two-body ellipsoidal
shapes. In Fig. 3, for 236U, the potential energy surface is
displayed as functions of the charge number of the heaviest
fragment and the distance between mass centers. In the figure,
the change of gray tint occurs every 5 MeV. The height of the
first maximum is quasiconstant since it depends mainly on the
shell effects of the decaying nucleus. The height of the ex-
ternal maximum generally increases with the asymmetry but
the shell effects in the fragments lead to favoring exit channels
containing fragments close to the doubly magic 132

50 Sn nucleus.
More precisely, in this example, Table I indicates the height
of the second maximum as a function of the charge Z1 of
the heaviest fragment. The exit channel via the emission of
a 130

50 Sn is favored. Figures 1, 2, and 3 are drawn considering
Z = 118 as the next proton magic number.

VII. DEPENDENCE OF THE HALF-LIVES ON THE
NEXT MAGIC PROTON NUMBER

In Tables II and III the experimental spontaneous fission
half-lives of actinide and superheavy nuclei are compared
with our predictions assuming 114, 116, 118, and 120 as the
next proton magic number. The most probable exit channel is
indicated in the first column for 114 and 116 and in the fifthe
column for Z = 118 and 120. It is not obvious whether the
comparison must be done with the partial or the total theo-
retical fission half-lives, especially for the superheavy nuclei.
So, the partial and total half-lives are compared in columns 6
and 7 for Z = 118. There is generally a factor of around 10
between the two values.

The root-mean-square deviations between the decimal log-
arithms of the theoretical and experimental half-lives of the
actinides are respectively 3.89, 2.55, 2.68, and 4.22 for the
partial half lives when Z = 114, 116, 118, and 120 and 2.64
for the total half-lives when Z = 118.

TABLE I. Height of the second maximum (in MeV) of the fission
barrier as a function of the charge of the heaviest fragment.

Z1 46 47 48 49 50 51 52 53 54
Height 4.37 4.36 3.99 5.13 3.87 4.63 4.66 4.81 5.05

TABLE II. Comparison between experimental and theoretical
spontaneous partial or total fission half-lives of actinide nuclei as-
suming 114, 116, 118, and 120 as the next proton magic number.

Partial Tth Partial Tth

Reaction Texp(s) Z = 114 Z = 116

232
92 U → 134

52 Te + 98
40Zr 2.5 × 1021 4.8 × 1018 1.3 × 1020

234
92 U → 134

52 Te + 100
40 Zr 4.7 × 1023 4.6 × 1019 1.1 × 1021

235
92 U → 131

50 Sn + 104
42 Mo 3.1 × 1026 1.1 × 1024 2.0 × 1025

236
92 U → 130

50 Sn + 106
42 Mo 7.8 × 1023 1.7 × 1022 5.4 × 1023

238
92 U → 130

50 Sn + 108
42 Mo 2.6 × 1023 5.2 × 1023 1.1 × 1025

239
94 Pu → 130

50 Sn + 109
44 Ru 2.5 × 1023 9.9 × 1022 4.1 × 1024

240
94 Pu → 128

50 Sn + 112
44 Ru 3.7 × 1018 2.3 × 1020 1.2 × 1022

241
94 Pu → 128

50 Sn + 113
44 Ru 2.3 × 1024 2.6 × 1021 1.3 × 1023

243
95 Am → 133

51 Sb + 110
44 Ru 6.3 × 1021 3.6 × 1022 2.0 × 1024

243
96 Cm → 122

48 Cd + 121
48 Cd 1.7 × 1019 2.3 × 1016 6.0 × 1018

245
96 Cm → 130

50 Sn + 115
46 Pd 4.4 × 1019 2.0 × 1020 2.2 × 1022

248
96 Cm → 130

50 Sn + 118
46 Pd 1.3 × 1014 1.9 × 1018 2.3 × 1020

249
97 Bk → 128

50 Sn + 121
47 Ag 6.1 × 1016 6.5 × 1015 1.9 × 1018

249
98 Cf → 127

50 Sn + 122
48 Cd 2.2 × 1018 4.8 × 1010 1.9 × 1014

250
98 Cf → 125

49 In + 125
49 In 5.2 × 1011 4.2 × 1011 1.2 × 1015

253
99 Es → 128

50 Sn + 125
49 In 2.0 × 1013 6.5 × 106 3.7 × 109

255
99 Es → 128

50 Sn + 127
49 In 8.4 × 1010 5.5 × 106 3.5 × 109

250
100Fm → 125

50 Sn + 125
50 Sn 2.6 × 107 1.8 × 103 4.3 × 105

252
100Fm → 126

50 Sn + 126
50 Sn 4.0 × 109 1.0 × 104 2.8 × 106

254
100Fm → 127

50 Sn + 127
50 Sn 1.9 × 107 1.9 × 104 5.6 × 106

256
100Fm → 128

50 Sn + 128
50 Sn 1.0 × 104 1.1 × 104 3.2 × 106

255
101Md → 129

51 Sb + 126
50 Sn 1.1 × 106 1.8 × 102 4.1 × 104

257
101Md → 130

51 Sb + 127
50 Sn 2.0 × 106 1.1 × 103 2.7 × 104

259
101Md → 130

51 Sb + 129
50 Sn 5.8 × 103 7.7 × 10−1 1.3 × 103

252
102No → 126

51 Sb + 126
51 Sb 1.2 × 101 2.5 × 10−1 4.3 × 101

254
102No → 127

51 Sb + 127
51 Sb 3.0 × 104 1.1 × 100 1.9 × 102

256
102No → 128

51 Sb + 128
51 Sb 1.1 × 102 1.9 × 100 3.7 × 102

257
102No → 129

51 Sb + 128
51 Sb 1.7 × 103 2.1 × 100 4.3 × 102

259
102No → 130

52 Te + 129
50 Sn 3.5 × 104 3.7 × 100 1.1 × 102

252
103Lr → 127

52 Te + 125
51 Sb 3.6 × 101 1.6 × 10−3 2.6 × 10−1

253
103Lr → 128

52 Te + 125
51 Sb 2.9 × 101 5.0 × 10−3 8.2 × 10−1

255
103Lr → 130

52 Te + 125
51 Sb 2.2 × 104 2.0 × 10−2 8.9 × 100

256
103Lr → 132

53 I + 124
50 Sn 9.0 × 105 3.6 × 10−2 6.7 × 100

257
103Lr → 132

53 I + 125
50 Sn 2.2 × 103 4.3 × 10−2 8.2 × 100

259
103Lr → 132

53 I + 127
50 Sn 5.8 × 103 1.3 × 10−3 1.3 × 100

Reaction Partial Tth Total Tth Partial Tth

Z = 118 Z = 118 Z = 120

232
92 U → 120

48 Cd + 112
44 Ru 1.1 × 1019 3.5 × 1017 3.6 × 1020

234
92 U → 128

50 Sn + 106
42 Mo 3.3 × 1021 1.2 × 1021 7.2 × 1022

235
92 U → 128

50 Sn + 107
42 Mo 1.8 × 1023 3.5 × 1022 7.5 × 1025

236
92 U → 128

50 Sn + 108
42 Mo 5.5 × 1023 3.25 × 1023 1.1 × 1025

238
92 U → 130

50 Sn + 108
42 Mo 2.0 × 1026 9.4 × 1025 3.3 × 1027

239
94 Pu → 127

50 Sn + 112
44 Ru 7.5 × 1022 1.8 × 1022 3.4 × 1024

240
94 Pu → 134

52 Te + 106
42 Mo 1.3 × 1023 9.1 × 1022 2.2 × 1025

241
94 Pu → 134

52 Te + 107
42 Mo 4.3 × 1024 1.1 × 1024 2.1 × 1026

243
95 Am → 128

50 Sn + 115
45 Rh 4.8 × 1023 1.3 × 1023 2.6 × 1025
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TABLE II. (Continued.)

Partial Tth Partial Tth

Reaction Texp(s) Z = 114 Z = 116

243
96 Cm → 127

50 Sn + 116
46 Pd 4.6 × 1020 1.3 × 1020 5.0 × 1022

245
96 Cm → 128

50 Sn + 117
46 Pd 9.5 × 1021 3.3 × 1021 9.0 × 1023

248
96 Cm → 130

50 Sn + 118
46 Pd 2.5 × 1022 1.1 × 1022 2.1 × 1024

249
97 Bk → 128

50 Sn + 121
47 Ag 4.0 × 1020 1.5 × 1020 5.9 × 1022

249
98 Cf → 127

50 Te + 122
48 Cd 1.4 × 1017 7.2 × 1016 5.0 × 1019

250
98 Cf → 128

50 Sn + 122
48 Cd 2.4 × 1017 1.4 × 1017 8.3 × 1019

253
99 Es → 128

50 Sn + 125
49 In 4.2 × 1013 2.2 × 1013 8.2 × 1016

255
99 Es → 129

50 Sn + 126
49 In 2.2 × 1013 7.55 × 1012 5.1 × 1016

250
100Fm → 125

50 Sn + 125
50 Sn 1.2 × 108 1.7 × 107 4.5 × 1010

252
100Fm → 126

50 Sn + 126
50 Sn 9.5 × 108 1.5 × 108 4.4 × 1011

254
100Fm → 127

50 Sn + 127
50 Sn 2.0 × 109 3.7 × 108 1.1 × 1012

256
100Fm → 128

50 Sn + 128
50 Sn 1.2 × 109 2.3 × 108 6.4 × 1011

255
101Md → 129

51 Sb + 126
50 Sn 1.1 × 107 1.3 × 106 3.3 × 109

257
101Md → 130

51 Sb + 127
50 Sn 7.4 × 106 9.3 × 105 2.3 × 109

259
101Md → 133

52 Te + 126
49 In 3.0 × 103 2.0 × 103 3.9 × 108

252
102No → 126

51 Sb + 126
51 Sb 7.8 × 103 2.5 × 101 1.6 × 106

254
102No → 127

51 Sb + 127
51 Sb 4.1 × 104 4.2 × 103 9.2 × 106

256
102No → 128

51 Sb + 128
51 Sb 8.0 × 104 8.8 × 103 1.9 × 107

257
102No → 129

51 Sb + 128
51 Sb 9.7 × 104 9.75 × 103 2.4 × 107

259
102No → 133

53 I + 126
49 In 4.6 × 102 2.9 × 102 5.1 × 107

252
103Lr → 127

52 Te + 125
51 Sb 4.5 × 101 3.3 × 100 8.1 × 103

253
103Lr → 128

52 Te + 125
51 Sb 1.4 × 102 1.05 × 101 2.7 × 104

255
103Lr → 129

52 Te + 126
51 Sb 6.6 × 102 5.3 × 101 1.4 × 105

256
103Lr → 129

52 Te + 127
51 Sb 9.5 × 102 8.6 × 101 2.0 × 105

257
103Lr → 130

52 Te + 127
51 Sb 1.3 × 103 1.2 × 102 2.8 × 105

259
103Lr → 131

53 I + 128
50 Sn 2.3 × 102 2.5 × 101 5.3 × 105

The root-mean-square deviations between the decimal log-
arithms of the theoretical and experimental half-lives of these
superheavy nuclei are respectively 4.66, 2.67, 1.73, and 2.85
for the partial half lives when Z = 114, 116, 118, and 120
and 2.06 for the total half-lives when Z = 118. For all
the actinide and superheavy nuclei the rms deviations are
respectively 4.11, 2.58, 2.46, and 3.90 for the partial half lives
when Z = 114, 116, 118, and 120 and 2.5 for the total half-
lives when Z = 118. These deviations are displayed in Fig. 4.
For one isotope, the experimental and the four theoretical data
are given on a vertical line. Some isotopes are indicated on the
figure. The isotopes are arranged from the lightest actinide nu-
clei on the left to the heaviest superheavy nuclei on the right.
The hypothesis of a next proton magic number of Z = 114
(indicated by gray solid triangles on the figure) leads generally
to lower half-lives than the experimental values (black dots) of
the actinide and superheavy nuclei while, with Z = 120 (grey
dots), the predicted values for the actinides are generally too
high. The hypotheses Z = 116 (crosses) or Z = 118 (diamond
shaped symbols) lead to comparable deviations for the ac-
tinides but Z = 118 lowers the deviations for the superheavy
nuclei. Nevertheless, in various regions different values of Z
are better at reproducing experimental data. This confirms that

TABLE III. Comparison between experimental and theoretical
spontaneous partial or total fission half-lives of superheavy nuclei
assuming 114, 116, 118, or 120 as proton magic number.

Partial Tth Partial Tth

Reaction Texp(s) Z = 114 Z = 116

255
104Rf → 134

54 Xe + 121
50 Sn 3.2 × 100 3.1 × 10−4 1.5 × 10−1

256
104Rf → 128

52 Te + 128
52 Te 6.4 × 10−3 3.5 × 10−4 5.6 × 10−2

257
104Rf → 128

52 Te + 129
52 Te 3.9 × 102 6.0 × 10−4 1.1 × 10−1

258
104Rf → 129

52 Te + 129
52 Te 9.4 × 10−2 8.2 × 10−4 1.6 × 10−1

259
104Rf → 130

52 Te + 129
52 Te 4.0 × 101 3.3 × 10−4 5.9 × 10−2

260
104Rf → 130

52 Te + 130
52 Te 5.1 × 10−2 2.8 × 10−4 4.7 × 10−2

262
104Rf → 131

52 Te + 131
52 Te 2.1 × 100 1.8 × 10−4 3.5 × 10−2

263
104Rf → 132

52 Te + 131
52 Te 6.6 × 102 8.3 × 10−5 1.6 × 10−2

255
105Db → 129

53 I + 126
52 Te 8.0 × 10−1 2.5 × 10−6 3.6 × 10−4

258
106Sg → 130

54 Xe + 128
52 Te 5.2 × 10−3 1.1 × 10−6 2.2 × 10−4

260
106Sg → 130

53 I + 130
53 I 7.2 × 10−3 2.1 × 10−7 3.4 × 10−5

262
106Sg → 131

53 I + 131
53 I 7.2 × 10−3 2.9 × 10−7 5.2 × 10−5

266
106Sg → 133

53 I + 133
53 I 2.0 × 10−1 1.6 × 10−8 4.0 × 10−6

264
108Hs → 132

54 Xe + 132
54 Xe 4.5 × 10−4 2.1 × 10−10 3.5 × 10−8

Reaction Partial Tth Total Tth Partial Tth

Z = 118 Z = 118 Z = 120
255
104Rf → 128

52 Te + 127
52 Te 6.2 × 100 4.1 × 10−1 1.2 × 103

256
104Rf → 128

52 Te + 128
52 Te 9.7 × 100 8.2 × 10−1 1.9 × 103

257
104Rf → 128

52 Te + 129
52 Te 1.9 × 101 1.5 × 100 3.7 × 103

258
104Rf → 129

52 Te + 129
52 Te 3.1 × 101 7.1 × 100 6.3 × 103

259
104Rf → 130

52 Te + 129
52 Te 1.4 × 101 8.5 × 10−1 2.6 × 103

260
104Rf → 130

52 Te + 130
52 Te 8.7 × 100 7.7 × 10−1 1.7 × 103

262
104Rf → 131

52 Te + 131
52 Te 7.1 × 100 6.1 × 10−1 1.5 × 103

263
104Rf → 132

52 Te + 131
52 Te 3.1 × 100 2.4 × 10−1 6.7 × 102

255
105Db → 129

53 I + 126
52 Te 5.9 × 10−2 4.0 × 10−3 9.4 × 100

258
106Sg → 136

56 Ba + 122
50 Sn 4.1 × 10−4 1.2 × 10−4 5.5 × 10−2

260
106Sg → 130

53 I + 130
53 I 5.3 × 10−3 4.0 × 10−4 9.5 × 10−1

262
106Sg → 131

53 I + 131
53 I 9.5 × 10−3 7.0 × 10−4 1.9 × 100

266
106Sg → 133

53 I + 133
53 I 5.2 × 10−4 3.8 × 10−5 1.1 × 10−1

264
108Hs → 135

56 Ba + 129
52 Te 3.0 × 10−6 3.4 × 10−7 6.6 × 10−3

FIG. 4. Comparison between experimental and theoretical deci-
mal logarithm log10[T (s)] of the fission half-lives assuming a proton
magic number of 114, 116, 118, or 120.
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the gap between the shells is narrow for the heaviest nuclei.
Furthermore the experimental data have large error bars for
the superheavy nuclei.

VIII. SUMMARY AND CONCLUSION

The deformation energy of fissionning nuclei was deter-
mined using the original generalized liquid drop model, which
takes into account the proximity energy, the charge and mass

asymmetries, the microscopic corrections, and quasimolec-
ular one- and two-body shapes. Due to shell effects and
proximity energy, double-humped fission barriers appear. The
calculations were done within four hypotheses for the heaviest
proton magic number: 114, 116, 118, and 120. The calculated
partial or total spontaneous fission half-lives of actinide and
superheavy nuclei follow roughly the trend of the experi-
mental data. The agreement is better for Z = 118 within our
simple approach.

[1] M. Göppert-Mayer and H. D. Jensen, Elementary Theory of
Nuclear Shell Structure (Wiley, New York, 1955).

[2] A. Sobiczewski, F. Gareev, and B. N. Kalinkin, Phys. Lett. 22,
500 (1966).

[3] H. Meldner, Ark. Fys. 36, 593 (1967).
[4] P. Möller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, At. Data.

Nucl. Data Tables 59, 185 (1995).
[5] S. Cwiok, J. Dobaczewski, P. H. Heenen, P. Magierski, and W.

Nazarewicz, Nucl. Phys. A 611, 211 (1996).
[6] M. Bender, W. Nazarewicz, and P. G. Reinhard, Phys. Lett. B

515, 42 (2001).
[7] J. F. Berger, L. Bitaud, J. Dechargé, M. Girod, and K. Dietrich,

Nucl. Phys. A 685, 1 (2001).
[8] P. Armbruster, Eur. Phys. J. A 37, 159 (2008).
[9] D. N. Poenaru and W. Greiner, Experimental Techniques in

Nuclear Physics (Walter de Gruyter, Berlin, 1997).
[10] J. H. Hamilton, S. Hofmann, and Yu. Ts. Oganessian, Annu.

Rev. Nucl. Part. Sci. 63, 383 (2013).
[11] W. Thoennessen, At. Data Nucl. Data Tables 99, 312

(2013).
[12] A. Staszczak, A. Baran, and W. Nazarewicz, Phys. Rev. C 87,

024320 (2013).
[13] K. P. Santhosh, C. Nithya, and T. A. Jose, Phys. Rev. C 104,

024617 (2021).
[14] G. Royer and B. Remaud, Nucl. Phys. A 444, 477

(1985).

[15] X. J. Bao, S. Q. Guo, H. F. Zhang, Y. Z. Xing, J. M. Dong, and
J. Q. Li, J. Phys. G: Nucl. Part. Phys. 42, 085101 (2015).

[16] G. Royer, J. Phys. G: Nucl. Part. Phys. 26, 1149 (2000).
[17] H. Feldmeier, in Proceedings of the 12th Summer School on

Nuclear Physics, Mikolajki, Poland, 1979 (unpublished).
[18] S. Cohen and W. J. Swiatecki, Ann. Phys. (NY) 22, 406 (1963).
[19] G. Royer and C. Piller, J. Phys. G: Nucl. Part. Phys. 18, 1805

(1992).
[20] G. Royer and B. Remaud, J. Phys. G 10, 1541 (1984).
[21] G. Royer, M. Jaffré, and D. Moreau, Phys. Rev. C 86, 044326

(2012).
[22] G. Royer, M. Guillot, and J. Monard, Nucl. Phys. A 1010,

122191 (2021).
[23] G. Royer, Heavy Elements and Related New Phenomena (World

Scientific, Singapore, 1999), Vol. 1, pp 591–631.
[24] G. Royer, R. K. Gupta, and V. Yu. Denisov, Nucl. Phys. A 632,

275 (1998).
[25] G. Royer, Phys. Rev. C 106, 034605 (2022).
[26] J. G. Deng, H. F. Zhang, and G. Royer, Phys. Rev. C 101,

034307 (2020).
[27] W. D. Myers, Droplet Model of Atomic Nuclei (Plenum, New

York, 1977).
[28] W. D. Myers and W. J. Swiatecki, Nucl. Phys. A 601, 141

(1996).
[29] P. Möller, J. R. Nix, and W. J. Swiatecki, Nucl. Phys. A 492,

349 (1989).

034307-6

https://doi.org/10.1016/0031-9163(66)91243-1
https://doi.org/10.1006/adnd.1995.1002
https://doi.org/10.1016/S0375-9474(96)00337-5
https://doi.org/10.1016/S0370-2693(01)00863-2
https://doi.org/10.1016/S0375-9474(01)00524-3
https://doi.org/10.1140/epja/i2008-10607-5
https://doi.org/10.1146/annurev-nucl-102912-144535
https://doi.org/10.1016/j.adt.2012.03.003
https://doi.org/10.1103/PhysRevC.87.024320
https://doi.org/10.1103/PhysRevC.104.024617
https://doi.org/10.1016/0375-9474(85)90464-6
https://doi.org/10.1088/0954-3899/42/8/085101
https://doi.org/10.1088/0954-3899/26/8/305
https://doi.org/10.1016/0003-4916(63)90385-3
https://doi.org/10.1088/0954-3899/18/11/013
https://doi.org/10.1088/0305-4616/10/11/010
https://doi.org/10.1103/PhysRevC.86.044326
https://doi.org/10.1016/j.nuclphysa.2021.122191
https://doi.org/10.1016/S0375-9474(97)00801-4
https://doi.org/10.1103/PhysRevC.106.034605
https://doi.org/10.1103/PhysRevC.101.034307
https://doi.org/10.1016/0375-9474(95)00509-9
https://doi.org/10.1016/0375-9474(89)90403-X

