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Landau sum rules with noncentral quasiparticle interactions
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We derive explicit expressions for the Landau sum rules for the case of the most general spin-dependent
quasiparticle interaction including all possible tensor interactions. For pure neutron matter, we investigate the
convergence of the sum rules at different orders of approximation. Employing modern nuclear Hamiltonians
based on chiral effective field theory, we find that the inclusion of noncentral interactions improves the
convergence of the sum rules only for low densities (n � 0.1 fm−3). Around nuclear matter saturation density,
we find that even ostensibly perturbative nuclear interactions violate the sum rules considerably. By artificially
weakening the strength of the nuclear Hamiltonian, the convergence can be improved.
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I. INTRODUCTION

In Landau’s theory of normal Fermi liquids [1–6], the
properties of a system made of strongly interacting fermions
are described in terms of weakly interacting quasiparticles.
For low-energy and long-wavelength excitations, the quasi-
particles interact near the Fermi surface via a particle-hole
(ph) interaction that is fully characterized by the so-called
Landau parameters. Some of these parameters are related to
macroscopic properties of the system such as the specific
heat, the incompressibility, or the spin susceptibility, which in
systems such as liquid helium-3 or cold atoms are obtained
directly from experimental measurements [7,8]. In isospin-
symmetric nuclear matter, these quantities can be deduced
only indirectly from experiments, and therefore the Landau
parameters are often calculated from phenomenological or
microscopic interactions. In principle, the Landau interaction
is the long-wavelength limit of the true interaction, so that it
can provide a useful benchmark to compare different inter-
actions and methods. The Landau parameters are constrained
under general grounds. First, they must satisfy certain sum
rules which follow from the Pauli exclusion principle applied
to the forward scattering amplitude [9–11]. Second, the stabil-
ity of the spherical Fermi surface against small deformations
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can be expressed in terms of inequalities involving combina-
tions of the Landau parameters [3,5].

Since the first application of the theory to atomic nuclei [5],
it has been recognized that the most important contributions
to the quasiparticle interaction come in the form of central
interactions that depend on quasiparticle spin and isospin. The
inclusion of a tensor component to the quasiparticle inter-
action was made by Dabrowski and Haensel [12–14], and it
was shown that tensor terms modify the stability criteria [15]
and forward scattering sum rules [16]. In these references, the
noncentral component was assumed to have the same form as
the one-pion exchange interaction

S12(k̂12) = 3(k̂12 · σ )(k̂12 · σ ′) − (σ · σ ′), (1)

where k12 = k − k′, and k, σ refer to the momentum and spin
of the quasiparticles. Several authors have highlighted the im-
portance of tensor terms to properly describe the properties of
various Fermi liquids such as nuclear matter [17,18], atomic
nuclei [19], and cold atom [20,21] systems. Within nuclear
physics, the Landau theory has also been used successfully to
study the properties of excited states by describing the nuclear
response function in both the static [22–24] and dynamic
cases [25,26].

Schwenk and Friman [17] have pointed out that in a many-
body medium the presence of the Fermi sea defines a preferred
frame, and two additional tensor contributions to the quasipar-
ticle interaction can be constructed from the center-of-mass
momentum vector P12 = k + k′. These have the form

K12(P̂12) = 3(P̂12 · σ)(P̂12 · σ ′) − (σ · σ ′), (2)

A12(k̂12, P̂) = (σ · P̂12)(σ ′ · k̂12) − (σ · k̂12)(σ ′ · P̂12) (3)

and are designated as the center-of-mass tensor and cross-
vector interactions, respectively. The latter arises at second
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order in perturbation theory from the coupling of spin-orbit
terms in the free-space interaction with any other non-spin-
orbit term [27]. As discussed in Ref. [18], these three tensor
terms contribute with a similar magnitude and thus they
should be treated on the same footing. By performing specific
calculations, it is then possible to quantify their impact on
specific observables, as done in Ref. [28] for the case of the
response function for pure neutron matter.

In the present article, we address a problem presented in
Ref. [27] concerning the violation of specific sum rules [16]
for Landau parameters extracted from modern nuclear Hamil-
tonians based on chiral effective field theory. In that article,
the authors observed a clear violation of the forward scatter-
ing sum rule in pure neutron matter when the quasiparticle
interaction was computed up to second order in perturbation
theory. On the one hand, this might not seem surprising since
the quasiparticle scattering amplitude and sum rules depend
nonlinearly on the Fermi liquid parameters. In particular,
Babu and Brown [29] emphasized that an infinite number
of terms would be needed in the quasiparticle interaction to
match the exchange diagrams generated in the integral equa-
tion for the quasiparticle scattering amplitude.1 On the other
hand, starting from the same perturbative nucleon-nucleon
interactions, it was found (1) that the equation of state of
pure neutron matter is well converged at second order in
perturbation theory [30] and (2) that Weinberg eigenvalue
analyses [31,32] of the free-space and in-medium particle-
particle scattering amplitudes imply a rapid convergence of
the Born series. Therefore, one might expect a second-order
perturbation theory calculation of the Fermi liquid parameters
to be sufficient for a well converged quasiparticle scattering
amplitude. In Ref. [27] it was assumed that the violation of
the sum rule might be due to an incorrect approximation done
in deriving it, i.e., the lack of an explicit tensor term in the
derivation of the equations. To address such an issue, in the
present work we perform a complete derivation of the sum
rules following Ref. [16], but including explicitly the effects
of the most general tensor terms as detailed in Ref. [17].

II. SUM RULES

In order to simplify the notation, we start by considering
a uniform system made of spin-saturated neutrons. Such a
system, hereafter named pure neutron matter (PNM), is very
convenient in order to perform sophisticated many-body cal-
culations in order to test various models without the additional
difficulties related to finite size effects as in atomic nuclei;
moreover PNM can be considered as a first approximation
to describe macroscopic systems such as neutron stars. The
current formalism can also be easily extended to an infinite
system made of an equal number of neutrons and protons:
symmetric nuclear matter (SNM). The details on how to per-
form such an extension are given at the end of this section.

1In contrast, a calculation of the quasiparticle scattering amplitude
directly at some given order in perturbation theory should automati-
cally satisfy the sum rules.

In the long-wavelength limit, the quasiparticles are re-
stricted to be at the surface of the Fermi sphere (|k| = |k′| =
kF ) so that the interaction depends only on kF and the relative
angle θ between vectors k and k′. It is convenient to deal
with dimensionless quantities. We thus divide the interaction
by the density of states N0 = kF m∗/π2, where kF and m∗
are the Fermi momentum and quasiparticle effective mass,
respectively. The PNM ph interaction is written as

F (k, σ ; k′, σ ′) = F (θ ) + G(θ )(σ · σ ′) + H (θ )
k2

12

k2
F

S12(k̂12)

+ K (θ )
P2

12

k2
F

S12(P̂12) + L(θ )
(P12 · k12)

k2
F

A12(k̂12, P̂12).

(4)

The dimensionless functions F, G, H, K, L encode the angular
dependence of the quasiparticle interaction in the different
spin channels and can be expanded in the form

F (θ ) =
∑

�

F�P�(cos θ ), (5)

and similarly for the other functions. The coefficients
F�, G�, H�, K�, L� are the dimensionless Landau parameters.

Tensor terms have been written in Eq. (4) following the
conventional definition given in Ref. [14]. However, some
authors [17,23,27,33] have defined them without the prefac-
tors k2

12/k2
F , P2

12/k2
F , and (P12 · k12)/k2

F because this leads to
a faster convergence [23] in the sense that the absolute values
of the parameters H�, K�, L� decrease as � increases. Although
the physical information contained in the ph interaction is the
same in both cases, the Landau parameters are different. Both
sets of parameters are actually connected through a recurrence
relation [23,28]. However, the form (4) is more suited to the
deduction of the sum rules.

Analogously to Eq. (4), we write the expression for the
forward scattering amplitude as

A(k, σ ; k′, σ ′) = B(θ ) + C(θ )(σ · σ ′) + D(H )(θ )
k2

12

k2
F

S12(k̂)

+ D(K )(θ )
P2

12

k2
F

S12(P̂12) + D(L)(θ )
(P12 · k12)

k2
F

A12(k̂12, P̂12).

(6)

The scattering amplitude and the ph interaction are related via
an integral equation [3,16],

A(k, σ ; k′, σ ′) = F (k, σ ; k′, σ ′)

− 1

2
Trσ ′′

∫
dk̂′′

4π
F (k, σ ; k′′σ ′′)A(k′′σ ′′; k′σ ′), (7)

where the factor 1/2 is related to the spin degrees of freedom.
This expression follows by carefully taking the low-energy,
long-wavelength limit of the Bethe-Salpeter equation resum-
ming particle-hole ladder diagrams. Its solution is easily
obtained in the spin-independent channel, with the well-
known result

B� = F�

1 + 1
2�+1 F�

. (8)
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In the absence of tensor terms, the parameters C� are similarly
obtained as

C� = G�

1 + 1
2�+1 G�

. (9)

Such a result was already given in Ref. [16], where we refer
the reader for additional details. However, in the presence
of tensor terms, the sum rule involving the spin-dependent
Landau parameters becomes more complicated. In order to
obtain the modified expression, we have to recouple the orbital
angular momentum and the spin of the quasiparticles to a good
total angular momentum J . The ph interaction written in the
angular momentum coupled form reads

F J
��′ = 1

2

1

4π
[(2� + 1)(2�′ + 1)]1/2

×
∑

mm′msm′
s

(�, 1, J; m, ms, M )(�′, 1, J; m′, m′
s, M )

×
∫

dk̂ dk̂′Y ∗
�m(k̂)Y�′m′ (k̂′)〈1, ms|F (k, σ ; k′, σ ′)|1, m′

s〉,
(10)

where |1, ms〉 is the spin state of the ph pair, and
(L, S, J; ML, MS, M ) is a Clebsh-Gordan coefficient. The ex-
plicit expression for F J

��′ in terms of Landau parameters is
given in Appendix A. Proceeding analogously for the scat-
tering amplitude, Eq. (7) takes the form

AJ
��′ = F J

��′ −
∑
�′′

1

2�′′ + 1
F J

��′′AJ
�′′�′ . (11)

Solving this equation, one fully determines the forward scat-
tering amplitude in terms of Landau parameters.

A. Scattering amplitude and Landau parameters

The solutions of the system (11) were given in Ref. [16].
For completeness, we rewrite them here. One must distinguish
two cases: first, for (�, �′) = (J ± 1, J ∓ 1) one deals with a
system of coupled equations, whose solutions are written as

AJ
�� = 1

�J
��′

[
F J

��

(
1 + F J

�′�′

2�′ + 1

)
− 1

2�′ + 1

(F J
��′

)2
]
, (12)

AJ
��′ = 1

�J
��′

F J
��′, (13)

�J
��′ =

(
1 + F J

��

2� + 1

)(
1 + F J

�′�′

2�′ + 1

)

− 1

(2� + 1)(2�′ + 1)

(F J
��′

)2
. (14)

In the second case we have J = � = �′ and J = 0, � = �′ = 1.
Only a single equation remains, whose solution is

AJ
�� = F J

��

1 + F J
��/(2� + 1)

. (15)

As stated in Ref. [16], the denominators of AJ
�� provide the

simple generalization of the stability criteria associated with

the Landau parameters [24]:

1 + 1

2l + 1
F J

ll > 0. (16)

Notice that when � = 1 this inequality is not generally
valid. As Kiselev et al. have shown [34], in case one deals
with operators that do not correspond to conserved quanti-
ties in the long-wavelength limit, there are nonquasiparticle
contributions to the response functions. With these results, the
parameters C� are then obtained using the relation

C� = 1

3

∑
J

2J + 1

2� + 1
AJ

��. (17)

It is interesting to observe that in this sum the tensor
parameters D(H )

� , D(K )
� , D(L)

� are exactly canceled out. How-
ever, C� does depend on the Landau tensor parameters
H�, K�, L� via the matrix elements F J

��′ .

B. Sum rules

The Pauli exclusion principle imposes a restriction on the
scattering amplitude and hence on the Landau parameters.
Indeed, antisymmetry of the wave function requires that the
forward scattering amplitude satisfies

P(k ↔ k′)PσA(k, σ ; k′, σ ′) = −A(k′, σ ′; k, σ ), (18)

where the P(k ↔ k′) and Pσ are exchange operators of mo-
mentum and spin, respectively. In other words, in PNM the
forward scattering amplitude should vanish in the triplet state
when k = k′. A very interesting consequence is that in this
configuration there is no contribution coming from the cou-
pling S = 0 and S = 1 as discussed in Ref. [27]. Looking to
Eq. (7) one can see that the tensor term involving D(K ) does
not vanish in that case, contrary to terms involving D(H ) and
D(L). Working with states of good angular momentum, as in
Eq. (10), one obtains the following triplet sum rule:

∑
�

(
B� + C� − 2

[
D(K )

�

2� + 1
+ 2

D(K )
�+1

2� + 3
+ D(K )

�+2

2� + 5

]

× 3
√

(� + 1)(� + 2)(2� + 1)(2� + 5)

2� + 3

)
= 0. (19)

We notice that this equation depends on all Landau parameters
F�, G�, H�, K�, L�, whose dependence is included through C�

by solving Eq. (7).
From these results, it is possible to generalize to the SNM

case. First of all, isospin should be included in both the ph
interaction and the forward scattering amplitude. In Eqs. (4)–
(6) one has to duplicate all terms, multiplied with (τ · τ ′), and
labeling the new functions as B′,C′, D(H ′ ), D(K ′ ), D(L′ ). The
ph interaction and the scattering amplitude must include an
isospin index, and in Eq. (10) one uses the notation F JT

��′ for
the ph interaction (and similarly for the scattering amplitude).
The Pauli principle constrains the spin-singlet/isospin-triplet
and spin-triplet/isospin-singlet states, leading to two sum
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FIG. 1. First- and second-order diagrammatic contributions to the quasiparticle interaction consisting of (a) the first-order term and the
second-order (b) particle-particle, (c) hole-hole, and (d) particle-hole terms.

rules: ∑
�

(B� − 3C� − 3B′
� + 9C′

�) = 0, (20)

∑
�

(
B� + C� − 2

[
D(K )

�

2� + 1
+ 2

D(K )
�+1

2� + 3
+ D(K )

�+2

2� + 5

]

× 3
√

(� + 1)(� + 2)(2� + 1)(2� + 5)

2� + 3

+ B′
� + C′

� − 2

[
D(K ′ )

�

2� + 1
+ 2

D(K ′ )
�+1

2� + 3
+ D(K ′ )

�+2

2� + 5

]

× 3
√

(� + 1)(� + 2)(2� + 1)(2� + 5)

2� + 3

)
= 0. (21)

Notice that the singlet sum rule, Eq. (20), implicitly depends
on the tensor Landau parameters through Eq. (11).

III. PURE NEUTRON MATTER RESULTS FROM CHIRAL
EFFECTIVE FIELD THEORY

Having extended the formalism of the sum rules to in-
clude all possible noncentral interactions, we are now in a
position to test the sum rules when using Landau parameters
extracted from a microscopic nuclear Hamiltonian. Previous
works [18,27,35] have included chiral effective field theory
three-body forces in the calculation of the Landau parameters.
In the present study, it is sufficient to consider only two-body
forces, since the sum rules should be valid for any model of
the nuclear force. The inclusion of three-body forces would
result in more realistic values of the Fermi liquid parameters,
but their presence would not remedy sum rule convergence
problems arising already at the level of two-body forces alone.
We include contributions to the quasiparticle interaction up
to second order in perturbation theory, consisting of a single
first-order antisymmetrized term together with three second-
order antisymmetrized terms with particle-particle, hole-hole,
and particle-hole intermediate states, as shown in Fig. 1. For
simplicity we consider only a free-particle spectrum for the
intermediate-state energies appearing in the expressions for
the second-order perturbation theory diagrams.

As discussed in Ref. [35], the Landau parameters ex-
tracted with this approach do not satisfy the sum rules
without the tensor terms; meaning that the truncation at
second order may not be sufficient to have a full con-

vergence. In addition, Eq. (7) is an integral equation that
iterates the quasiparticle interaction to all orders in a series
of reducible particle-hole bubble diagrams. The exchange
terms needed to enforce antisymmetry, however, should be
included as particle-hole irreducible diagrams in the direct
interaction to all orders. Hence, keeping only the first-order
contribution and the second-order particle-hole contribution
to the quasiparticle interaction should provide a better ap-
proximation for fulfilling the sum rules, which we will test
below.

Since the Landau parameters depend on the density of the
system, we have performed our calculations at four densities
ρn = 0.05, 0.1, 0.15, 0.2 fm−3. As an example, we report in
Table I the Landau parameters obtained from the N3LO-450
chiral nucleon-nucleon interaction of Ref. [36], considering
all relevant contributions the quasiparticle interaction at first
and second order. As we see from the table, the convergence of
the tensor Landau parameters defined in Eq. (4) is extremely

TABLE I. Dimensionless Landau parameters at ρn = 0.1 fm−3

including all contributions at first and second order.

� F� G� H� K� L�

0 −0.7921 1.0593 0.1009 −0.0433 0.0253
1 0.1568 0.5663 0.0047 0.0236 0.1136
2 0.0342 0.1855 −0.0828 0.0501 0.0945
3 0.1239 0.1388 −0.0590 0.0181 0.0151
4 0.0235 0.0706 −0.0460 0.0018 −0.0137
5 0.0904 0.0554 −0.0084 0.0044 −0.0459
6 0.0107 0.0110 0.0003 0.0032 −0.0467
7 0.0669 0.0112 0.0195 0.0020 −0.0311
8 0.0070 −0.0098 0.0139 0.0013 −0.0183
9 0.0453 −0.0021 0.0185 0.0005 −0.0122
10 −0.0018 −0.0113 0.0091 0.0003 −0.0081
11 0.0308 −0.0009 0.0114 0.0001 −0.0066
12 −0.0067 −0.0077 0.0039 0.0001 −0.0051
13 0.0217 0.0009 0.0067 0.0000 −0.0046
14 −0.0089 −0.0052 0.0011 0.0000 −0.0037
15 0.0163 0.0018 0.0041 −0.0000 −0.0034
16 −0.0095 −0.0038 −0.0002 0.0000 −0.0029
17 0.0129 0.0021 0.0028 0.0000 −0.0026
18 −0.0094 −0.0030 −0.0008 −0.0000 −0.0023
19 0.0107 0.0021 0.0020 0.0000 −0.0021
20 −0.0087 −0.0025 −0.0011 0.0000 −0.0019
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FIG. 2. Convergence of the sum rule given in Eq. (19) at several
densities as a function of the maximum value of the partial wave
included in the calculations. The Landau parameters have been ob-
tained taking into account the full interaction [case “1+2(full)”].

slow and one has to go to very high values of the multipolar
expansion in order to observe convergence.

In order to test the relevance of the tensor interactions on
the forward scattering sum rules, we perform three types of
calculations:

(1) Central (C). We test the sum rule (SR) ignoring both
the tensor coupling and the tensor terms of the interac-
tion, as done in Ref. [16].

(2) Full (F). We take into account all the terms in Eq. (19)
and all the terms in the quasiparticle interaction.

We also need to distinguish some cases in the way we
manipulate the Landau parameters obtained from the χEFT,
in particular we consider the cases

(1) Case “1+2(full).” We take into account the full inter-
action at first and second order, by also including all
the particle-particle, particle-hole and hole-hole terms.

(2) Case “1+2(ph).” We keep only the first-order and
second-order particle-hole diagrams, leaving out the
second-order particle-particle and hole-hole diagrams.

(3) Case “3×[1+2(full) (V/3)].” We take into account
the full interaction at first and second order, by also
including all the particle-particle, particle-hole, and
hole-hole terms, but we re-scale each order by a fac-
tor 1/α, here α = 3. Notice that, to avoid a trivial
reduction of the SR, we rescale the final result by a
factor 3.

The idea of rescaling the Landau parameters by a factor
1/α at each order is useful in order to make the residual inter-
action more perturbative so that the diagrammatic truncation
does not introduce further errors on the convergence. Case
“1+2(ph),” instead, is useful to illustrate the role of the pp
and hh interaction at second order.

In Fig. 2, we illustrate the evolution of the sum rule given in
Eq. (19) as a function of the maximum partial wave included
in the calculations and for case “1+2(full),” as discussed

0 4 8 12
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0
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u
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u
le

 1+2ph(C)

1+2ph(F)
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FIG. 3. Same as Fig. 3, but for cases “1+2(ph)” (dash-dotted)
and “3×[1+2(full) (V/3)]” (dashed lines). See text for details.

above. The SR converges quite fast to a value that is quite
large and nonzero around Lmax = 8. Higher order Landau pa-
rameters give essentially no contribution to the SR. Contrary
to what was hypothesized in Ref. [18], neither the tensor terms
or the tensor couplings can improve the situation in general.

In order to assess the role of the various perturbation theory
contributions to the total SR, in Fig. 3, we show the evolution
of the SR for cases “1+2(ph)” and “3×[1+2(full) (V/3)].”
By leaving out the particle-particle and hole-hole diagrams,
we observe a clear improvement of the SR at all densities,
where the values get much closer to zero. Finally, by reducing
the strength of the interaction (case “3×[1+2(full) (V/3)]”),
one sees that the values of the SR get very close to zero, even
after rescaling by a factor of 3 for the total sum. But even in
this case the effect of the tensor forces is very mild as already
argued in Ref. [37].

For completeness we report the numerical values of the SR
in Table II at convergence in L. As already observed from
the figure, one can appreciate here the case “1+2(full)” shows
the largest violations of the SR, which mainly originates from

TABLE II. Numerical values of the sum rule Eq (19) for different
densities and cases as discussed in the text.

Density (fm−3) Case Central Full

0.05 1+2(full) −0.780 −1.196
1+2(ph) 0.884 −0.075

3×[1+2(full) (V/3)] 0.020 −0.816

0.10 1+2(full) −1.818 −2.327
1+2(ph) 0.550 −0.449

3×[1+2(full) (V/3)] −0.027 −0.980

0.15 1+2(full) −2.8882 −3.965
1+2(ph) 0.278 −1.170

3×[1+2(full) (V/3)] −0.026 −1.122

0.20 1+2(full) −5.651 −6.745
1+2(ph) −0.262 −1.704

3×[1+2(full) (V/3)] −0.018 −1.081
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the central terms; the tensor terms are not important enough
to compensate for such a deviation.

IV. CONCLUSIONS

We have derived the Landau parameter sum rules including
explicitly all tensor terms. The result is general and applies to
any system of fermions where Landau theory is applicable,
such as liquid helium-3 and cold atom systems. We have also
considered in more detail the application of our results to an
interesting system for nuclear physics calculations, i.e., the
case of pure neutron matter. At second order in perturbation
theory, we find that the sum rules are still strongly violated,
even employing chiral effective field theory Hamiltonians that

have been shown to be perturbative in calculations of the
equation of state. We have shown that the effects coming
from the additional tensor terms that depend on the center-of-
mass momentum are typically one order of magnitude smaller
than the contributions arising from the central terms and
thus not sufficient to explain the violation of Pauli principle
reported in Ref. [27] at moderate densities. The origin of
such a violation of the Pauli principle appears to be missing
higher-order diagrams in the direct channel that are needed
to cancel the exchange diagrams that are iterated to all orders
in the quasiparticle scattering amplitude. By keeping only the
particle-hole bubble diagram at second order or by reducing
the overall strength of the nuclear Hamiltonian, we find an
improvement in satisfying the sum rule.

APPENDIX A: THE PH INTERACTION WITH GOOD J

The matrix elements of the Landau interaction are written as

F J
�,�′ = δ��′G� +

[
H� + K�

2� + 1
+ H�′ + K�′

2�′ + 1

]
3(2� + 1)(2�′ + 1)

2J + 1
(1�J; 000)(1�′J; 000)

−
(

HJ − KJ + 2

3
LJ

)
3(2� + 1)(2�′ + 1)

(2J + 1)2
(1�J; 000)(1�′J; 000) − 3[(2� + 1)(2�′ + 1)]1/2(−)1+�−J

×
∑

λ

(
Hλ − Kλ − 2

3
Lλ

)
(1λ�; 000)(1λ�′; 000)W (J�′�λ; 11) − 2δ��′ (H� + K�) + 2δ��′

∑
λ

(Hλ − Kλ)(1�λ; 000)2, (A1)

where W (abcd; e f ) is a 6 j coefficient. An analogous expression is valid for the scattering amplitude, by replacing the Landau
parameters with the corresponding C�, D(H )

� , D(K )
� , D(L)

� . For simplicity, we provide here some useful results:

F �+1,0
�,� = G� − �

2� − 1
H�−1 + 2

�

2� + 3
H� − �(2� − 1)

(2� + 3)2
H�+1, (A2)

F �+1,0
�+2,�+2 = G�+2 − (� + 3)(2� + 7)

(2� + 3)2
H�+1 + 2(� + 3)

2� + 3
H�+2 − � + 3

2� + 7
H�+3, (A3)

F �+1,0
�,�+2 =

[
− H�

2� + 1
+ 2

H�+1

2� + 3
− H�+2

2� + 5

]
3[(2� + 1)(2� + 5)(� + 1)(� + 2)]1/2

2� + 3
, (A4)

F �,0
�,� = G� + 2� + 3

2� − 1
H�−1 − 2H� + 2� − 1

2� + 3
H�+1. (A5)

Notice that in the spin-independent channel the tensor does not act, and these expressions simplify to F J
�,�′ = δ�,�′δJ,�G� and

AJ=�
�,�′ = δ�,�′δJ,�C�.

APPENDIX B: SOLVING THE SYSTEM TO GET C, D(K ) IN TERMS OF LANDAU PARAMETERS

To simplify the notation, let us define new parameters

X� = D(H )
� − D(K )

� , Y� = D(H )
� + D(K )

� , Z� = 2

3
D(L)

� . (B1)

Then, the system of equations can be written as sets of four equations,

− (2� + 3)(� + 1)

(2� − 1)2
X�−1 − 3(� + 1)

2� − 1
Z�−1 + C� + 2(� + 1)

2� − 1
Y� = A�−1

�,� + � + 1

2� + 3
X�+1 − 3(� + 1)

2� + 3
Z�+1, (B2)

− �

2� − 1
X�−1 + 3�

2� − 1
Z�−1 + C� + 2�

2� + 3
Y� = A�+1

�,� + �(2� − 1)

(2� + 3)2
X�+1 + 3�

2� + 3
Z�+1, (B3)

2� + 3

2� − 1
X�−1 − 3

2� − 1
Z�−1 + C� − 2Y� = A�

�,� − 2� − 1

2� + 3
X�+1 − 3

2� + 3
Z�+1, (B4)

− 1

2� + 1
Y� = A�+1

�,�+2

2� + 3

3
√

(� + 1)(� + 2)(2� + 1)(2� + 5)
− 2

2� + 3
X�+1 + 1

2� + 5
Y�+2. (B5)
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One starts by solving the system for � = Lm, assuming XLm+1 = 0, YLm+2 = 0, ZLm+1 = 0. This fixes XLm−1, ZLm−1,CLm ,YLm .
Next, one solves the system for � = Lm − 1 assuming XLm = 0, YLm+1 = 0, ZLm = 0. This fixes XLm−2, ZLm−2,CLm−1,YLm−1. For
a lower value of �, one uses the previously obtained values of X�+1,Y�+2, Z�+1, and solving the system gives X�−1, Z�−1,C�,Y�.

For � = 1, the system is

−10X0 − 6Z0 + C1 + 4Y1 = A0
1,1 + 2

5
X2 − 6

5
Z2, (B6)

−X0 + 3Z0 + C1 + 2

5
Y1 = A2

1,1 + 1

25
X2 + 3

5
Z2, (B7)

5X0 − 3Z0 + C1 − 2Y1 = A1
1,1 − 1

5
X2 − 3

5
Z2 (B8)

−1

3
Y1 = 5

9
√

14
A2

1,3 − 2

5
X2 + 1

7
Y3. (B9)

For � = 0, there are two equations:

C0 = A1
0,0, (B10)

−Y0 = 1√
10

A1
0,2 − 2

3
X1 + 1

5
Y2. (B11)

Finally

D(K )
� = −(Y� − X�)/2. (B12)
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