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We investigate the pairing properties of state-of-the-art semilocal coordinate-space and semilocal momentum-
space regularized chiral interactions. Specifically, we calculate the pairing gaps in the 3SD1 channel of symmetric
nuclear matter and in 1S0 and 3PF 2 channels of pure neutron matter within the BCS approximation using these
chiral interactions. We evaluate the truncation errors of chiral expansions of the pairing gaps with a Bayesian
approach. We find overall weak regulator dependence and robust convergence from low to high densities for the
3SD1 and 1S0 pairing gaps, while we find chaotic behavior for the 3PF 2 results. We compare the converged results
of the chiral interactions with the results of the Argonne v18 (Av18) potential. Their discrepancies in the 3SD1

and 3PF 2 channels at high densities demonstrate that the nucleon-nucleon interactions in these two channels
may need further constraints at high scattering energies. We have also investigated the effect of the tensor force
on the 3SD1 and 3PF 2 pairing gaps. The apparently different tensor force effects of the chiral interactions and
the Av18 potential for the 3SD1 and 3PF 2 pairing gaps indicate that the tensor components of these interactions
are quite different.
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I. INTRODUCTION

Nucleon-nucleon (NN) interaction, serving as the sole
input of the ab initio nuclear many-body theory, plays a fun-
damentally significant role in nuclear physics. Chiral effective
field theory (EFT) allows one to derive NN interactions based
on the underlying fundamental quantum chromodynamics and
provides a straightforward path to generate consistent and sys-
tematically improvable many-body interactions and exchange
currents [1].

In Refs. [2,3], a set of semilocal coordinate-space (SCS)
regularized chiral EFT NN interactions were developed up
through the fifth chiral order (N4LO) using a local regula-
tor for the pion-exchange contributions, which allows one to
substantially reduce finite-cutoff artifacts. In particular, the
long-range contributions are regularized in coordinate space

via Vπ (�r) −→ Vπ,R(�r) = Vπ (�r)[1 − e− r2

R2 ]n, where the cutoff
R was chosen in the range of R = 0.8, 0.9, 1.0, 1.1, and
1.2 fm. The exponent n was set as n = 6, but choosing n = 5
or n = 7 led to a comparable description of the phase shifts
[2]. For contact interactions, a nonlocal Gaussian regulator
in momentum space was employed with the cutoff � being
related to R via � = 2/R. These novel chiral EFT interactions
have been successfully applied to ab initio calculations of nu-
clear structure, nuclear reactions, and nuclear matter [4–11].
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However, the numerical implementation of the three-nucleon
potentials with the coordinate-space regulator in the Faddeev
and Yakubovsky equations appears to be challenging, in par-
ticular, as chiral order increases.

Therefore, a new generation of semilocal momentum-
space (SMS) regularized chiral EFT NN interactions was
developed in Ref. [12], where both the short-range and the
long-range contributions to the interaction are regularized in
momentum space. Compared with the SCS regularized inter-
actions, the new SMS regularized interactions remove three
redundant short-range operators at N3LO and use the most
up-to-date values of the pion-nucleon low-energy constants
from the Roy-Steiner equation analysis of Refs. [13,14]. An-
other feature of the SMS regularized interactions is that the
highest chiral order, referred to as N4LO+, includes four
sixth-order contact interactions in F waves in order to pre-
cisely describe the neutron-proton F -wave phase shifts, which
are still not converged at N4LO. These SMS regularized chiral
interactions have also been successfully applied to ab initio
calculations of the nuclear structure and reactions [15–21].

However, as a new generation of high-precision NN inter-
action, the chiral EFT interactions have rarely been used to
investigate the pairing properties of nuclear matter, which is
important to understand the properties of nuclear interactions
and improve nuclear many-body calculations. Especially, the
pairing correlations in the coupled channels, such as 3SD1 and
3PF 2, may shed light on the properties of the tensor compo-
nents of NN interaction. In addition, the reliable knowledge of

2469-9985/2023/108(3)/034002(8) 034002-1 ©2023 American Physical Society

https://orcid.org/0000-0002-8289-361X
https://orcid.org/0000-0002-6585-8257
https://orcid.org/0000-0002-1709-0159
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.108.034002&domain=pdf&date_stamp=2023-09-08
https://doi.org/10.1103/PhysRevC.108.034002


YIN, SHANG, HU, FU, EPELBAUM, AND ZUO PHYSICAL REVIEW C 108, 034002 (2023)

the pairing gap itself in nuclear matter is key to understanding
various phenomena in compact star physics, such as the cool-
ing of new born stars [22], the afterburst relaxation in x-ray
transients [23], and the glitches [24,25]. We therefore study
in this work the pairing properties of the above-addressed
chiral EFT interactions in nuclear matter within the BCS ap-
proximation. Specifically, we focus on the pairing properties
in the 1S0, 3SD1, and 3PF 2 channels, which are supposed
to be the dominant superfluid channels [26]. We use a free
single-particle spectrum where the only uncertainty of pair-
ing gaps stems from the NN interactions adopted. Therefore,
these investigations may reveal essentially the properties of
NN interactions themselves. We defer to include more realistic
medium polarization effects in the future, where the self-
energy [27] of nucleons (i.e., the effects of nucleon effective
mass [28–30] and quasiparticle strength [31–34]) and vertex
corrections [35] in pairing interaction are embodied.

II. THEORY AND DISCUSSION

Within the BCS approximation, the pairing gap is deter-
mined by the following gap equation:

(
�L(k)

�L+2(k)

)
= − 1

π

∫
dk′k′2

(
VL,L(k, k′) VL,L+2(k, k′)

VL+2,L(k, k′) VL+2,L+2(k, k′)

)

× 1√
ξ 2

k′ + D2(k′)

(
�L(k′)

�L+2(k′)

)
, (1)

with

D2(k) = �2
L(k) + �2

L+2(k), (2)

ξk = 1
2

(
εa

k + εb
k

)
, (3)

where ε
a/b
k = k2

2m − μa/b (with μa/b denoting the chemical
potential) corresponds to the single-particle energy of the
two pairing nucleons. Specifically, we use μn = μp = μa =
μb = μ for the 3SD1 neutron-proton pairing in symmetric
nuclear matter, neglecting the difference between protons and
neutrons, while μa = μb = μn = μ for the 1S0 and 3PF 2

neutron-neutron pairing in pure neutron matter. Due to the
tensor force, the neutron-proton (neutron-neutron) pairing in
the 3SD1 (3PF 2) channel is in the coupled channel. The
nondiagonal element VL,L+2 contains the main contributions
of the tensor force and vanishes for neutron-neutron pair-
ing in the 1S0 channel. The corresponding gap equation for
the 1S0 channel reduces to a 1 × 1 dimension. We ad-
dress here that for non-S-wave pairing (3SD1 and 3PF 2) the
equivalent pairing gap D2(k) is substantially anisotropic and
complicated [36]. Since the anisotropic pairing gap becomes
important only in the asymmetric case [37,38], we adopt
the angle-averaging procedure [39], i.e., D2(k) → D2(k) =

1
4π

∫
d�kD2(k) = �2

L(k) + �2
L+2(k), for the 3SD1 and 3PF 2

pairing gaps in the present work. In nuclear matter, the gap
equation should be solved simultaneously with the density

constraint

ρa/b =
∫

d3k

(2π )3

⎛
⎜⎝1 − ξk√

ξ 2
k + D2(k)

⎞
⎟⎠, (4)

to determine the pairing gaps �L(k) and �L+2(k) and the
chemical potential μ at a given density ρ. Considering the
pairing gap turns out to be important only near the chemical
potential (corresponding to ξk = 0), we hereafter refer to the
pairing gap as

�F = D(kF ), (5)

with ξkF = 0 (or equivalently kF = √
2mμ for a free single-

particle spectrum). One should note that kF = √
2mμ is

tending to kF = (3π2ρ)1/3 [(3π2ρ/2)1/3] for pure neutron
matter (symmetric nuclear matter) when D(k) → 0. To solve
Eq. (1) numerically, we use the chiral interactions in the mo-
mentum space, i.e., VL,L′ (k, k′), for convenience.

In order to have a rough view of the pairing properties
of the chiral interactions, we present in Fig. 1 the pairing
properties of the SMS regularized chiral interactions in the
3SD1 channel in symmetric nuclear matter and the 1S0 and
3PF 2 channels in pure neutron matter. We calculate these
pairing gaps using the BCS approximation from NLO up
through N4LO+ for regulators � = 400–550 MeV. We do
not show the results for the LO interaction, which is much
less accurate than the higher-order interactions. We find in
Fig. 1 that the regular dependence of the 3SD1 pairing gaps is
weak at low densities and becomes apparent with the density
increasing. The density dependence and regulator dependence
of the pairing gaps in the 1S0 and 3PF 2 channels in Fig. 1 are
overall similar to those calculated with the SCS regularized
interactions in Ref. [40] for the same chiral order from LO
to N4LO, since the regulations in momentum space and in
coordinate space can be approximately correlated via � ∼ 1

R .
One of the exceptions, in contrast to the SCS case, is that the
sensitivity of the 1S0 gaps to the regulator � becomes rather
weak starting from N3LO and almost invisible at N4LO and
N4LO+ due to the removal of the redundant contact terms
in these SMS regularized chiral interactions. Similar regulator
dependence was found in Ref. [10] for the equation of states in
symmetric nuclear matter and neutron matter calculated with
the SCS regularized interactions. These complicated regula-
tor dependence patterns may stem from different ranges of
NN interactions or interplay of interactions at different ranges.

In Fig. 2, we investigate the convergence of the pair-
ing gaps in the 3SD1, 1S0, and 3PF 2 channels with respect
to the chiral order employing the SCS and SMS regular-
ized chiral interactions, with regulators R = 0.9 fm and � =
450 MeV, respectively. Each of them corresponds to one of
the most accurate regularizations found in Refs. [2,3,12]. We
also present the results of the Argonne v18 (Av18) potential
[41] for comparison.

We find in Fig. 2(a) that the 3SD1 gaps tend to conver-
gence at N3LO for the SCS regularized chiral interactions.
However, the results calculated with the most accurate N4LO
interaction diverge from the Av18 results at high densities,
which indicates that the NN interaction in the 3SD1 channel
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FIG. 1. Pairing gaps in the 3SD1 channel in symmetric nuclear matter (upper panels) and pairing gaps in the 1S0 (middle panels) and
3PF 2 (lower panels) channels in neutron matter calculated with the SMS regularized chiral NN interactions from NLO up through N4LO+ for
regulators � = 400–550 MeV.

at high scattering energy might need to be further constrained.
We find in Fig. 2(b) that the 1S0 gaps are very close for all
the SCS regularized interactions. The 1S0 gaps show apparent
convergence pattern with respect to the chiral order and the
N4LO results are very close to the Av18 results, which may
be due to the NN phase shift in the 1S0 being well con-
strained for different potentials. In Fig. 2(c) we notice that
the SCS regularized chiral interactions predict different 3PF 2

gaps at even rather low densities. We observe a convergence
trend for the results calculated with the chiral interactions
from N3LO to N4LO at low densities, and the converged
results are consistent with the Av18 results since these three

interactions describe reasonably the NN phase shifts in the
3PF 2 channel (regardless of F wave) for scattering energies
up to 300 MeV. However, the convergence trend is broken
at high densities, indicating that we may need higher chiral
orders to reach convergence for the 3PF 2 pairing gaps. A
similar convergence pattern of the 3PF 2 pairing gaps was
observed in Ref. [40] for local chiral interactions from LO
to N2LO. Our results for the SCS regularized interactions are
exactly the same as those in Ref. [40] calculated with a free
spectrum approximation.

In panels (d)–(f) of Fig. 2 we observe chiral order depen-
dencies of the 3SD1, 1S0, and 3PF 2 pairing gaps for the SMS

FIG. 2. Pairing gaps (solid lines) in the 3SD1 [panels (a) and (d)], 1S0 [panels (b) and (e)], and 3PF 2 [panels (c) and (f)] channels calculated
with the Av18 potential and chiral NN interactions. Upper (lower) panels show the results of the SCS (SMS) regularized interactions from
NLO up through N4LO (N4LO+) with the same regulator R = 0.9 fm (� = 450 MeV). The contributions of the 3S1 [panels (a) and (d)] and
3P2 [panels (c) and (f)] single channels to the pairing gaps of the coupled 3SD1 and 3PF 2 channels are represented by the dotted lines.
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FIG. 3. Neutron-proton phase shifts in the 3P2 and 3F2 channels and the mixing parameter ε2 as functions of the scattering energy Elab

predicted with the SMS regularized chiral interactions (from N2LO to N4LO+) and the Av18 potential (solid lines). The results from the
Nijmegen partial-wave analysis [46] (solid dots) are shown for comparison.

regularized chiral interactions similar to the dependencies in
panels (a)–(c) for the SCS regularized chiral interactions from
NLO to N4LO. We find in panels (d)–(f) that the 3SD1, 1S0,
and 3PF 2 pairing gaps for the N4LO and N4LO+ interactions
are rather close. Though the leading F -wave contact interac-
tions of the N5LO level introduced in the N4LO+ interaction
have a small effect on the 3PF 2 pairing gaps, one may need a
complete N5LO interaction to assess the convergence pattern
of the 3PF 2 pairing gaps in a more conclusive way.

The parameters of NN interactions adopted in this work
are obtained via different fitting procedures. Therefore, their
off-shell constituents could be quite different though their
on-shell properties have been well constrained by the same
NN scattering phase shifts. These difference might be revealed
in their predictions of various nuclear properties. For example,
the D-wave probabilities of the deuteron calculated with these
interactions are apparently different [2,3,12,41]. In order to
investigate the detailed constituents of these interactions, es-
pecially the tensor force components, we show in Fig. 2 the
pairing gaps of the 3S1 (and 3P2) single channel (dotted lines),
which are calculated by considering only the 3S1 (and 3P2)
single channel in solving Eq. (1) as in the earlier investigation
[42,43] [that is, we remove the VL,L+2 elements in Eq. (1)].
We emphasize that the calculations with all the adopted inter-
actions predict the nonexistence of the pairing gaps in the 3D1

and 3F2 single channels.
As is well known, the 3SD1 gap equation reduces to the

Schrödinger equation for the deuteron bound state in the
limit of vanishing density [44,45]. The accurate description
of the adopted interactions of the deuteron binding energy
ensures the similar behavior of the 3SD1 pairing gaps at low
densities in Fig. 2. However, it does not mean that the con-
tributions of different components of NN interactions to the
3SD1 pairing gaps are similar. Actually, the discrepancies of
the 3S1 pairing gap among different interactions (especially
the distinction between chiral interaction and Av18 potential)
are remarkable, which indicates the tensor force components
of these interactions in the 3SD1 channel are different, as
expected. The differences of the tensor force effects for these
interactions become more significant at higher densities. One
of the common features of the chiral interactions (regardless
of the inaccurate LO interactions) and the Av18 potential is
the contributions of the tensor force components are much
more important than the 3S1 single channel. Similarly, we

find significant distinctions of the tensor force effects for the
adopted interactions in the 3PF 2 channel [see Figs. 2(c) and
2(f)]. Therefore, the tensor force components of these interac-
tions in the 3PF 2 channel are also different. Unlike with the
results in the 3SD1 channel, the tensor force effects are less
important than the 3P2 single channel for the chiral interac-
tions, while it is opposite for the Av18 potential in the 3PF 2

channel.
In order to analyze the large spread of the 3PF 2 pairing

gaps in Fig. 2 [panel (c), for example] at high densities,
we present in Fig. 3 the neutron-proton phase shifts in this
channel. We find in Fig. 3 that the SMS regularized N2LO
interaction is not well constrained by the phase shifts at even
low scattering energies. Therefore, the 3PF 2 pairing gap
of the N2LO interaction is quite different from the results
of other more accurate interactions at even low densities
as shown in Fig. 2(c). We notice in Fig. 3 that the N4LO
interaction is much less accurate in describing the 3F2 phase
shift compared to the improved N4LO+ interaction. However,
the 3PF 2 pairing gaps in Fig. 2(c) calculated with these two
interactions are nearly the same. Therefore, the interaction in
the 3F2 channel has nearly no effects on the 3PF 2 pairing gaps,
and the large spread of the 3PF 2 pairing gaps in Fig. 2(c)
(solid lines) at high densities may stem mainly from the
difference of interactions in the 3P2 channel and the coupling
of 3P2 and 3F2. Both the Av18 potential and the N4LO+ chiral
interaction provide good descriptions for the 3P2 phase shifts
and the mixing parameter ε2 below Elab = 300 MeV as shown
in Fig. 3. Accordingly, the 3PF 2 pairing gaps calculated
with these two interactions in Fig. 2(c) are overall close to
each other from low to intermediate densities. However, the
contributions of the 3P2 channel [dotted lines in Fig. 2(c)]
behave quite differently for these two interactions starting
from low densities. Therefore, the detailed constitutes of
NN interactions could be very different though they provide
similar descriptions for the phase shifts.

In Fig. 4 we estimate the truncation errors of chiral
expansion for the pairing gaps calculated by the SMS reg-
ularized interactions using a Bayesian approach with the
degree-of-belief intervals of 1σ and 2σ (see Appendix A
for details). Since the N4LO+ interaction is not a complete
N5LO interaction, we do not evaluate the truncation errors
of pairing gaps at N4LO+. From NLO to N4LO, the trun-
cation errors of the 3SD1 and 1S0 gaps decease systematically
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FIG. 4. Pairing gaps with truncation errors in the 3SD1, 1S0, and 3PF 2 channels calculated by the SMS regularized chiral NN interactions
with regulator � = 450 MeV from LO up through N4LO. The dark-shaded band for each color indicates the 1σ degree-of-belief interval,
while the light-shaded bands correspond to 2σ standard deviation.

order by order. The truncation errors become rather small at
N4LO in particular. These calculations demonstrate that the
chiral potentials in these two channels present rather good
convergence for the current application. The truncation errors
of the 3PF 2 gaps decrease also systematically order by order
at low densities. However, such a systematic evolution is
broken as the density increases, though the truncation errors
at N3LO and N4LO are of comparable size. It indicates that
we may need higher chiral orders to reach convergence in this
channel as we point out in Fig. 2. The truncation errors of
chiral expansion for the 1S0 and 3PF 2 gaps calculated with
the SCS regularized interactions have been investigated in
Ref. [40] with an easily operational analysis methodology
proposed in Refs. [2,3]. These evaluations neglect the LO
contributions to the higher-order uncertainties, and a term
ensuring that the next order always lies within the uncertainty
band of the previous order, in contrast to Refs. [2,3]. There-
fore, the systematic evolution of the truncation errors for the
1S0 gaps with the chiral order we observe in Fig. 2 was not
found in Ref. [40]. The systematic evolution of the truncation
errors for the 3PF 2 gaps with the chiral order at low densities
we observe in Fig. 2 was also not found in Ref. [40]. We are
consistent with Ref. [40] that the uncertainties are very small
for the 1S0 channel but sizable for the 3PF 2 channel. We find
similar behavior for the truncation errors obtained with the
SCS regularized interactions (see Appendix B for details).

We emphasize that we investigate the pairing properties
of the two-nucleon forces and do not include the contribu-
tions of three-nucleon forces in this work. The pairing gaps

and the truncation errors starting from N2LO are incomplete
and should be revisited once the calculations with the three-
nucleon forces become available. The results at N2LO and
beyond obtained in this work may reveal a potentially achiev-
able accuracy at the corresponding chiral orders.

III. CONCLUSIONS AND OUTLOOK

In conclusion, we investigated the pairing properties of
state-of-the-art SCS and SMS regularized chiral EFT inter-
actions in nuclear matter within the BCS approximation.
Specifically, we calculated the pairing gaps in the 3SD1, 1S0,
and 3PF 2 channels.

We investigated the regulator dependence and the chiral-
order convergence pattern of pairing gaps. The 3SD1 and 1S0

pairing gaps show overall weak regulator dependence and
robust convergence from low to high densities, while the
3PF 2 results show chaotic behavior. The truncation errors
evaluated with the Bayesian approach present similar features
for these channels. Comparing the converged results of the
chiral interactions with those of the Av18 potential, we found
they coincide with each other at low densities for all of these
three channels. However, we observed an apparent discrep-
ancy in the results of the chiral interaction and Av18 potential
in the 3SD1 and 3PF 2 channels at high densities, indicating
the NN interactions in these two channels may need further
constraints at high scattering energies in the future.

In addition, we have investigated the effect of the
tensor force on the 3SD1 and 3PF 2 pairing gaps with the Av18
potential and the chiral interactions. We found significant
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differences of the tensor force effects for the 3SD1 and 3PF 2

pairing gaps, indicating that the tensor components in these
interactions are quite different. One of the common features
of the chiral interactions (regardless of the inaccurate LO
interactions) and the Av18 potential is the contribution of the
tensor force components are overall more important than the
3S1 single channel. In contrast to the 3SD1 channel, the tensor
force effects are less important than the 3P2 single channel for
the chiral interactions, while it is the opposite for the Av18
potential in the 3PF 2 channel.

The pairing gaps obtained in this work can be applied to
compact star physics only if the medium effects are included.
We use a free single-particle spectrum in this work since we
focus solely on investigating the properties of the NN interac-
tions themselves. Besides, the results in this work are obtained
with only the two-body interactions. Including three-body
force (3BF) may change our conclusions. The expressions
for the chiral 3BF have been worked out completely up to
N3LO. We will include the chiral 3BF in nuclear many-body
calculations and investigate the effects of the 3BF on the
pairing correlations in nuclear matter, which is challenging
in numerical implementations. Employing self-consistent 2BF
and 3BF, we will be able to study the effect of the pairing cor-
relations in the neutron star cores on the neutron star cooling
phenomena.
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APPENDIX A: BAYESIAN ANALYSIS

We use the Bayesian scheme of Refs. [47,48] to estimate
the truncation errors of pairing gaps from chiral potentials.
The generic assumption is that a nuclear observable X in
chiral EFT can be expanded with a dimensionless parameter
Q as follows:

X = Xref

∞∑
n=0

cnQn, (A1)

where Xref is the natural size of X and cns are dimensionless
parameters. In this work, we investigate the truncation errors
of the pairing gap �F in nuclear matter. Therefore, the ob-
servable X is �F and the expansion parameter is regarded as

Q = kF
�b

, with kF being the Fermi momentum of the nucleon
determined by the nuclear density ρ and �b being the chiral
EFT breakdown scale. We take �b = 700 MeV, which is
much higher than the maximum Fermi momentum 515 MeV
(corresponding to ρ = 0.6 fm−3 for pure neutron matter) in
this work.

The error of the observable truncated at the order k of
the expansion is defined as Xref�k , with the dimensionless
function �k calculated by

�k =
∞∑

n=k+1

cnQn. (A2)

In practice, we sum over n up to h + k + 1 order and neglect
the higher orders. The coefficients cn, with n � k + 1, are
extracted by the known expansion coefficients cn, with n � k.
In the Bayesian model, we define a probability distribution
function (pdf) for �k as prh(�|ck), determined by a vec-
tor composed of lower coefficients, ck ∈ {c2, c3, . . . , ck}. The
subscript h means only h higher terms are included in the
truncation error, which is 10 in this work. Note that ck does
not include c0 and c1, since c0 is dependent on the natural size
of X and c1 = 0 is required by the symmetry in chiral EFT.

The pdf determines the degree-of-belief p, with the highest
posterior density, as

p =
∫ d (p)

k

−d (p)
k

prh(�|ck)d�, (A3)

where (100 × p)% is the probability for the true value of the
nuclear observable X staying in ±Xref d

(p)
k at the (k + 1) order

(NkLO) prediction.
In Ref. [47], �k was derived in terms of the expansion

coefficients cn’s by assuming them to be random variables
drawn from a shared distribution centered at zero with a
characteristic size or upper bound c̄. The pdf function can be
written with the Bayesian theorem as

prh(�|ck) =
∫ ∞

0 dc̄prh(�|c̄)pr(c̄)
∏k

n=2 pr(cn|c̄)∫ ∞
0 dc̄pr(c̄)

∏k
n=2 pr(cn|c̄)

, (A4)

where we use the following priors:

pr(cn|c̄) = 1

2c̄
θ (c̄ − |cn|), (A5)

pr(c̄) = 1√
2π c̄σ

e−(ln c̄)2/2δ2
.

The prior prh(�|c̄) can be worked out with

prh(�|c̄) = 1

2π

∫ ∞

−∞
dt cos(�t )

k+h∏
i=k+1

sin(c̄Qit )

c̄Qit
. (A6)

With the above equations, we can obtain d (p)
k in Eq. (A3)

numerically as an inversion problem.
In this work, we take Xref to be �F of the LO interactions

for the 3SD1 and 1S0 channels. Since we find nonexistence of
3PF 2 pairing gaps for the LO interactions, we take Xref to be
�F /Q2 of the NLO interactions in this channel.
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APPENDIX B: TRUNCATION ERRORS OF PAIRING GAPS WITH THE SCS REGULARIZED INTERACTIONS

Figure 5 shows the truncation errors of pairing gaps with the SCS regularized interactions.

FIG. 5. Pairing gaps with truncation errors in the 3SD1, 1S0, and 3PF 2 channels calculated by the SCS regularized chiral NN interactions
with regulator λ = 0.9 fm from LO up through N4LO. The dark-shaded band for each color indicates the 1σ degree-of-belief interval, while
the light-shaded bands correspond to 2σ standard deviation.
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E. Epelbaum, H. Krebs, and P. Reinert, J. Phys. G: Nucl. Part.
Phys. 47, 104001 (2020).

[17] V. Urbanevych, R. Skibiński, H. Witała, J. Golak, K.
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[32] P. Bożek, Phys. Lett. B 551, 93 (2003).
[33] M. Baldo and A. Grasso, Phys. Lett. B 485, 115

(2000).

[34] U. Lombardo, P. Schuck, and W. Zuo, Phys. Rev. C 64,
021301(R) (2001).

[35] W. Guo, U. Lombardo, and P. Schuck, Phys. Rev. C 99, 014310
(2019).

[36] X. L. Shang and W. Zuo, Phys. Rev. C 88, 025806 (2013).
[37] X. L. Shang, P. Wang, W. Zuo, and P. Yin, J. Phys. G: Nucl.

Part. Phys. 42, 055105 (2015).
[38] L. Zhang, J. B. Wang, X. L. Shang, and Y. Gao, New J. Phys.

24, 103006 (2022).
[39] M. Baldo, I. Bombaci, and U. Lombardo, Phys. Lett. B 283, 8

(1992).
[40] C. Drischler, T. Krüger, K. Hebeler, and A. Schwenk, Phys.

Rev. C 95, 024302 (2017).
[41] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C

51, 38 (1995).
[42] L. Amundsen and E. Østgaard, Nucl. Phys. A 442, 163 (1985).
[43] M. Baldo, J. Cugnon, A. Lejeune, and U. Lombardo, Nucl.

Phys. A 536, 349 (1992).
[44] M. Baldo, U. Lombardo, and P. Schuck, Phys. Rev. C 52, 975

(1995).
[45] U. Lombardo, P. Nozieres, P. Schuck, H. J. Schulze, and A.

Sedrakian, Phys. Rev. C 64, 064314 (2001).
[46] V. G. J. Stoks, R. A. M. Klomp, M. C. M. Rentmeester, and J. J.

de Swart, Phys. Rev. C 48, 792 (1993).
[47] R. J. Furnstahl, N. Klco, D. R. Phillips, and S. Wesolowski,

Phys. Rev. C 92, 024005 (2015).
[48] J. A. Melendez, S. Wesolowski, and R. J. Furnstahl, Phys. Rev.

C 96, 024003 (2017).

034002-8

https://doi.org/10.1103/PhysRevC.103.054001
https://doi.org/10.1103/PhysRevC.106.064002
https://doi.org/10.1086/174025
https://doi.org/10.1103/PhysRevC.90.015803
https://doi.org/10.3847/1538-4357/ac2e94
https://doi.org/10.1142/S0218301305003375
https://doi.org/10.1103/PhysRevC.99.065804
https://doi.org/10.1016/j.nuclphysa.2011.12.001
https://doi.org/10.1103/PhysRevC.97.054325
https://doi.org/10.1103/PhysRevC.101.065801
https://doi.org/10.1103/PhysRevC.66.054304
https://doi.org/10.1016/S0370-2693(02)03007-1
https://doi.org/10.1016/S0370-2693(00)00684-5
https://doi.org/10.1103/PhysRevC.64.021301
https://doi.org/10.1103/PhysRevC.99.014310
https://doi.org/10.1103/PhysRevC.88.025806
https://doi.org/10.1088/0954-3899/42/5/055105
https://doi.org/10.1088/1367-2630/ac94b4
https://doi.org/10.1016/0370-2693(92)91416-7
https://doi.org/10.1103/PhysRevC.95.024302
https://doi.org/10.1103/PhysRevC.51.38
https://doi.org/10.1016/0375-9474(85)90140-X
https://doi.org/10.1016/0375-9474(92)90387-Y
https://doi.org/10.1103/PhysRevC.52.975
https://doi.org/10.1103/PhysRevC.64.064314
https://doi.org/10.1103/PhysRevC.48.792
https://doi.org/10.1103/PhysRevC.92.024005
https://doi.org/10.1103/PhysRevC.96.024003

