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A paramount goal in nuclear physics is to unify ab initio treatments of bound and unbound states. The position-
space quantum Monte Carlo (QMC) methods have a long history of successful bound-state calculations in light
systems but have seen minimal implementation in unbound systems. Here, we introduce a numerical method to
improve the efficiency and accuracy of unbound-state calculations in QMC. As an initial application, we compute
scattering observables for the smallest system available to probe three-body forces, the neutron-triton system,
using variational Monte Carlo (VMC) wave functions. The method involves inferring long-range amplitudes
in the wave function from integrals over the short-range region where all the particles interact. This approach
using integral relations is well established in the literature; here, we develop it for the QMC framework. We
validate our approach with a consistency check between short-range spectroscopic overlap functions computed
from direct evaluation and from the integral relations; scattering amplitudes are long-range asymptotics of those
overlaps. Comparison against published benchmark calculations using the same potential demonstrates that when
applied to the current VMC wave functions, the integral method produces more accurate scattering observables
than direct evaluation from the same variational wave function. However, it still differs noticeably from the exact
results. Using additional interactions, we then present phase shifts and mixing parameters for the n + 3H system.
In particular, we present one of the first applications of the Norfolk family of local coordinate-space chiral
potentials in unbound systems of A > 2. The Norfolk results accurately describe s-wave scattering but predict
p-wave cross sections too large. Compared with previous QMC scattering calculations, the integral method
avoids difficulties associated with the precise computation of energy differences and with convergence outside
the interaction region, which is particularly severe in the variational calculation. Application of the integral
method here paves the way for its use in Green’s function Monte Carlo (GFMC) calculations. In GFMC, the wave
functions are more accurate, but the high-precision convergence of their tails is slow, and there are additional
difficulties in reading out amplitudes. The integral methods will address both of those remaining problems.

DOI: 10.1103/PhysRevC.108.034001

I. INTRODUCTION

A unified ab initio description of bound and unbound
nuclear systems is a longstanding objective of theoretical nu-
clear physics [1]. Because unbound wave functions are not
easily represented in a basis of manageable size, and desired
quantities are not easily reduced to eigenvalue or Rayleigh-
Ritz problems, even formulating useful methods beyond the
mass-4 system is difficult. As a result, far less progress has
been made on ab initio calculations of unbound than bound
states. As with other computational frameworks, the quantum
Monte Carlo (QMC) methods based on position-space sam-
pling [2] were developed mainly in a bound-state context,
so that the successes of the Green’s function Monte Carlo
(GFMC) method in nuclear systems so far have been almost
entirely in the modeling of bound states [3]; the method has
received only minimal adaptation for unbound systems, where
it has been applied twice to 5He [4,5]. In this paper, we present
and test the application of short-ranged integral relations that
reduce the difficulty and increase the accuracy of applying the
QMC methods to unbound systems. These integral relations
are closely related to the source-term technique of Refs. [6,7],
the ANC calculations of Refs. [8–12] and the scattering

calculations of Refs. [13–17], but with adaptation to the con-
text of QMC.

Here, we develop and present the improved technique
within the context of the four-nucleon (A = 4) system. In
recent decades, this system has served as a practical test-
ing ground for comparing the accuracy and consistency of
computational methods and constraining the three-nucleon
interaction. In Ref. [18], the 4He ground state was used to
benchmark GFMC and six other many-body methods, finding
agreement within 1% on the binding energy when the AV8′

potential [19] was used. A similar agreement was found in
studies that included phenomenological three-nucleon inter-
actions [3,20–22]. The four-body bound system is important
in determining the three-nucleon interaction through the bind-
ing energy of 4He [2,23–25].

Ab initio calculations of unbound four-nucleon systems
have matured significantly in the last decade and a half. In
Refs. [26,27] three ab initio computational methods were
benchmarked against scattering observables in the n/p + 3H
and n/p + 3He systems using realistic interactions and find-
ing good agreement between methods. The benchmarked
methods were the configuration-space Faddeev-Yakubovsky
equations [21,28–31], the Kohn variational principle in a

2469-9985/2023/108(3)/034001(17) 034001-1 ©2023 American Physical Society

https://orcid.org/0000-0002-0105-9704
https://orcid.org/0000-0002-0671-320X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.108.034001&domain=pdf&date_stamp=2023-09-07
https://doi.org/10.1103/PhysRevC.108.034001


ABRAHAM R. FLORES AND KENNETH M. NOLLETT PHYSICAL REVIEW C 108, 034001 (2023)

hyperspherical harmonics basis [14,15,17,32,33], and the
Alt-Grassberger-Sandhas equations solved in momentum
space [34–42]. The resonating group method (RGM) has also
been applied, mostly with effective interactions and restricted
bases [43–49]. In addition, the RGM has been merged with
the no-core shell model to compute scattering and reactions,
but the only application of this approach to A = 4 scattering
that we are aware of was very early in the development of the
method [50,51].

Another important recent development has been the ad-
vent of systematically organized phenomenological potentials
based on chiral effective field theory [25,52]. For some time,
these were all formulated in momentum space in ways that
made their use with QMC methods problematic [53,54]. This
has now changed with the development of chiral models suited
to position-space calculations [55–57]. The Norfolk fam-
ily of coordinate-space local chiral interactions [24,58] have
been applied successfully to binding energies, electroweak
transitions, and other properties of light nuclei, as well as
infinite nuclear matter [59–64]. However, there are extremely
limited results for nuclear scattering with the Norfolk interac-
tions [60,65]. The further development of QMC methods for
unbound systems will help to evaluate and improve the local
chiral potentials.

The few QMC calculations of nuclear scattering that have
been published are all based on representing continuum states
with particle-in-a-box states. In Ref. [66], variational Monte
Carlo (VMC) was applied to the p + 3H system with an
older interaction. In Ref. [67], a similar calculation was car-
ried out for n + 4He. In Refs. [4,5] GFMC was adapted to
compute phase shifts for n + 4He. Below we improve on
the formulation of the scattering problem for QMC methods,
and we test the new formulation on VMC solutions in the
A = 4, isospin-1 system. We find that it significantly im-
proves VMC calculations of scattering observables because
they come much closer to the results of more-exact methods
using the same potentials. However, the main benefit is in
developing this formulation to be usable as part of GFMC
calculations; GFMC uses VMC wave functions as starting
points and improves them by filtering out excited-state con-
tamination via imaginary-time evolution.

As in prior VMC and GFMC scattering calculations, we
proceed by setting up a particle-in-a-box problem with a
logarithmic-derivative boundary condition at the surface of a
spherical box. For single-channel scattering, a positive-energy
wave function in the box is the short-range part of a continuum
wave function at the same energy; the phase shift can be in-
ferred from the energy and the boundary condition in what we
call the “direct procedure.” Applying this approach to VMC
presents two related points of difficulty that are viewable as
a mismatch between the computed energy and the imposed
boundary condition. First, VMC, as presently organized, is
not as good at optimizing the outer part of the wave function
as it is the short-range region where all the nucleons interact.
Consequently, the influence of the boundary condition on the
computed energy is somewhat indirect and dependent on the
variational ansatz, limiting the accuracy of the solution. Sec-
ond, the accuracy of VMC energies decreases significantly as
one proceeds beyond the 0s shell, while low-energy scattering

is very sensitive to the placement of thresholds so that the
comparison of direct VMC scattering calculations with mea-
surements or with more exact calculations is generally rather
disappointing. In any case, the computational cost of the di-
rect approach consists entirely of the Monte Carlo integration
of energy expectation values, both during minimization with
respect to variational parameters and in a final high-statistics
calculation of the energy.

One path around these difficulties is a connection between
the well-computed short-range wave functions in VMC and
the outer part of the true solution in the form of the integral
relations discussed above. In the context of VMC, similar
integral relations have been applied to single-nucleon asymp-
totic normalization coefficients (ANCs), resonance widths,
and spectroscopic overlaps [11,12]. These “integral” calcula-
tions in VMC represent an alternative to the direct approach
that combines the short-range accuracy of the VMC ansatz
with additional information about the Hamiltonian. Since both
approaches can be used to compute spectroscopic overlaps,
accurate results from the direct method at short range can
validate the integral method and its implementation.

Computing curves of energy-dependent scattering observ-
ables in VMC by either the direct or the integral method
demands considerable human and machine effort. In princi-
ple, each energy and each partial wave requires variational
energy minimization of a distinct wave function, followed
in the integral method by a high-statistics Monte Carlo in-
tegration that includes operations on the wave function by
the potential operator. In the n + 3H system, there are eight
relevant angular-momentum channels at low energy, so the
scattering matrix at a given energy requires eight VMC wave
functions. Doing this at ten different energies for a single
Hamiltonian requires 80 wave functions, all with attendant
difficulties in guessing the correct boundary condition for the
desired energy and actually computing that energy accurately.
Repeating for multiple interactions (e.g., the various Norfolk
potentials) only increases the amount of work to be done.
However, previous ANC calculations by this method [11,12]
point the way to an approximation that is simpler to manage
while delivering similar accuracy: for each angular momen-
tum channel, a single wave function optimized to lie in the
middle of the interesting energy range can be used in in-
tegral relations that assume a range of scattering energies.
This procedure works because the integral relations are only
sensitive to the short-range wave function, which does not
change drastically with scattering energy over a range of a few
MeV above threshold (in the absence of resonances); we refer
to it as the fixed interior wave approximation (FIW). With
the need for only one or two wave functions per channel, this
approximation drastically reduces human and computer effort
compared with computing separate variational wave functions
at every desired energy and extracting scattering information
from them.

The remainder of this paper is organized as follows. In
Sec. II we describe the variational wave functions and their
adaptation to scattering states. In Sec. III we connect our wave
functions to the scattering formalism and establish notation. In
Sec. IV we describe how to extract scattering amplitudes and
spectroscopic overlaps from the wave function using both the
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“direct” and “integral” procedures. In Sec. V, we validate and
tune the integral method (including the FIW approximation)
by comparing direct and integral overlaps. In Sec. VI we
present scattering phase shifts and cross sections for multi-
ple nucleon-nucleon interactions, and compare results against
published benchmarks. In Sec. VII we summarize our findings
and briefly discuss their implications for the future. In the
Appendix we provide additional scattering formalism to avoid
ambiguity in the meanings of our results.

II. VARIATIONAL WAVE FUNCTIONS

A. Structure of bound states

In our calculations we use variational wave functions of
the form generally employed for nuclear VMC in bound sys-
tems [19,68,69] with minor modifications for scattering. Here,
we briefly describe the structure of the VMC wave functions,
emphasizing aspects that require modification for scattering.

The variational wave function |�V 〉 is constructed from
two- and three-body operator correlations acting on a Jastrow
wave function that contains only scalar correlations, assem-
bled to have definite quantum numbers of angular momentum
quantum and isospin as well as antisymmetry under particle
exchange [2]. The form of the variational ansatz used here
is [70]

|�V 〉 =
⎡⎣S

∏
i< j

⎛⎝1 + Ui j +
∑
k �=i, j

Ui jk

⎞⎠⎤⎦ |�J〉 , (1)

where the sums and products run over nucleon labels. The op-
erator correlations contain the same operators on spin, isospin,
and coordinates that appear in the six largest terms of the
nucleon-nucleon interaction. They have the forms

Ui j =
∑
p=2,6

⎡⎣∏
k �=i, j

f p
i jk (rik, r jk )

⎤⎦ up(ri j )O
p
i j, (2)

where the indexed operators are Op=1,6
i j = [1, σ i · σ j, Si j] ⊗

[1, τ i · τ j]. Here, σ i, τ i, and Si j are, respectively, spin, isospin,
and tensor operators, and ri j is the distance between nucle-
ons i and j. The spatial dependence up(ri j ) in each term is
computed from two-body Euler-Lagrange equations [71] that
contain both the nucleon-nucleon potential and variational pa-
rameters, while the correlations f p

i jk suppress spin-isospin pair
correlations when a third particle is nearby. The three-body
correlations Ui jk are constructed from operators appearing in
three-body terms of the potential. The operator S in Eq. (1)
symmetrizes over orderings of the operators (which do not
commute) so that |�V 〉 inherits the antisymmetry of the
Jastrow function.

For a given permutation of particle labels (i.e., before anti-
symmetrization), each particle in the Jastrow function |�J〉 is
assigned to the s or the p shell. The central pair correlations
depend on this assignment, so, for example, fss(ri j ) is applied
when particles i and j are both in the s-shell core described
below, while fsp(ri j ) is applied when one is in the the s and
one in the p shell. Then for a nucleus of A nucleons with a full
four-particle s shell and at least one p-shell particle (presented

to connect our work to notation in the prior literature),

|�J〉 = A
⎧⎨⎩ ∏

i< j<k�4

f sss
i jk

∏
t<u�4

f ss(rtu)

×
∏
i�4

∏
5� j�A

f sp(ri j )
∏

5�k<l�A

f pp(rkl )

×
∑
LS[n]

βLS[n] |�A(LS[n]JMT T3)P〉
⎫⎬⎭ . (3)

If there is only one p-shell particle, then f pp
i j = 1. The

function,

|�A (LS[n]JMT T3)P〉

=
∣∣∣∣∣∣�α (0000)1234

∏
5�i�A

φLS[n]
p (rαi)

×

⎡⎢⎣
⎡⎣ ∏

5� j�A

Ylml (r̂α j )

⎤⎦
LML

⊗
⎡⎣ ∏

5�k�A

χk

(
1

2
mi

)⎤⎦
SMS

⎤⎥⎦
JM

×
⎡⎣ ∏

5�l�A

νi

(
1

2
tz

)⎤⎦
T Tz

〉
, (4)

is a spin-isospin vector that depends on particle positions,
in which the first four nucleons are assigned to the s shell
(or “alpha core”). This core is constructed as a simple Slater
determinant of spins and isospins coupled to definite total
angular momentum and isospin quantum numbers denoted
by �α (J = 0, M = 0, T = 0, Tz = 0)1234, while the remain-
ing particles are assigned to p-shell orbitals. Spinors χi and
νi specify spin and isospin states of the p-shell particles, and
spherical harmonics Ylml describe their angular motion around
the center of mass of the core, from which they are separated
by vectors rαi. These are coupled to specified quantum num-
bers of total spin S, orbital angular momentum L, and net
angular momentum J (with projection M), as well as total
isospin T (with projection Tz), as indicated by square brackets.
Full specification in general also requires definite permutation
symmetry among p-shell orbitals, in the form of a Young
diagram label [n].

Each p-shell orbital φLS[n]
p (rαi ) depends on the magnitude

of rαi (which keeps the wave function translation-invariant),
and on the specified quantum numbers. Since pair corre-
lations appear elsewhere, the φLS[n]

p can be thought of as
accounting for interactions with the mean field of the nu-
cleus, as well as allowing antisymmetry when A > 4. The
fsp are constructed explicitly to describe close-in pair correla-
tions, so that fsp(r → ∞) = 1, and the exponential drop-off
of the wave function at large rαi for bound states is built
into φLS[n]

p . Each φLS[n]
p (rαi ) is accordingly computed from

a Woods-Saxon potential well with orbital angular momen-
tum l = 1 (for a p-shell nucleus) in a one-body Schrödinger
equation. The geometric parameters of the wells and their
separation energies are parameters to be varied in the VMC
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procedure, with the initial guess for separation energy given
by the appropriate breakup threshold for the nuclear system
at hand. Configurations having all of the quantum numbers L,
S, and [n] that can be consistent with the given J , T , and Tz

are, in general, present, so they are all included with weight
amplitudes βLS[n] in Eq. (3). Finally, the operator A denotes
an antisymmetric sum over every permutation P of particle
labels.

All of the correlations and orbitals are either explicit func-
tions of variational parameters or else solutions of differential
equations whose constants are treated as variational parame-
ters. The variational wave function is an approximate solution
of the Schrödinger equation

Ĥ� = E� (5)

with Hamiltonian operator Ĥ . Optimal values of all parame-
ters are found from a Rayleigh-Ritz variational principle by
minimizing the energy expectation value

EV = 〈�V | Ĥ |�V 〉
〈�V |�V 〉 . (6)

The integrals in Eq. (6) and other matrix elements are com-
puted by Monte Carlo integration, using �

†
V �V (a function

of particle coordinates) as weight function. We optimize pa-
rameters using an implementation of the nonlinear optimizing
algorithm COBYLA from the NLopt library [72]. After min-
imization, the result of VMC is a variational upper bound on
the energy expectation value and an optimized wave function
that can be used as an input to further calculations.

B. Adaptation to scattering states

This general framework is adaptable to unbound
states [4,66,67]. The eigenvalue nature of bound states
arises from the condition that their wave functions should be
square-integrable. This is enforced in VMC by exponential
decay at large distance in the fss correlations and in the
p-shell orbitals φLS[n]

p . Scattering formally involves wave
functions that extend to infinity and cannot be found by
energy minimization. However, we can adapt the VMC
procedure and wave function to scattering by confining the
wave function to a spherical box and imposing a boundary
condition at its edge. The boundary condition renders the
finite-domain kinetic energy operator Hermitian and the wave
function normalizable, so that VMC energy minimization
gives access to a unique ground state. Once this ground state
has been found, it may be matched smoothly onto asymptotic
scattering solutions outside the box and viewed as the portion
of a scattering wave function near the origin.

The most useful boundary condition for single-channel
scattering is a specified logarithmic derivative ζc of the wave
function at the box surface, defined by

n̂c · ∇rc (rc�) = ζcrc�, (7)

where the subscript c denotes a scattering channel specified
by a division of nucleons into two nuclei and by values of
J, MJ , L, and S. The gradient is evaluated in coordinates de-
fined by the vector rc separating the centers of mass of the
scattering nuclei, and n̂c is an outward normal unit vector at

the box surface, defined by rc = R0 for a box of radius R0.
For fixed R0, different choices of ζc give boxes with different
ground state energies, corresponding to scattering at different
energies.

The wave function ansatz of Eqs. (1)–(4) is easily adapted
to describe scattering of a single nucleon by an s-shell nucleus
as in our n + 3H case. The s-shell nucleus is well-described
by a spin-isospin Slater determinant and correlations be-
tween its nucleons, just like the s-shell portion of Eqs. (1)
and (3) [73]. The scattered nucleon can be incorporated into
the wave function just like the p-shell particles in Eq. (4),
using the same routines in the VMC code but narrowing to
the case of only one “p-shell” particle, which could have
any value of L = l for its orbital motion around the nuclear
center of mass, not just l = 1. Then the coordinate rα j in
Eq. (4) is identical to the channel separation rc for scat-
tering. For scattering from a triton, the core contains only
three particles, coupled to J = 1/2, T = 1/2, Tz = −1/2 to
form �t ( 1

2
1
2

1
2 (− 1

2 ))123; the ss and sss correlations should in
principle be optimized for the triton ground state so that con-
figurations at the box surface truly match onto a triton cluster
outside the box. To produce a specific scattering channel with
good quantum numbers, the angular momentum coupling in
Eq. (4) has to be adapted to couple the scattered nucleon
to the J = 1/2 core. Fermionic exchange of the scattered
nucleon with a nucleon from the core enters through the
antisymmetrization in Eq. (3). A similar but more elaborate
approach has been used for scattering of composite nuclei and
for highly clusterized nuclei, when one of the clusters is an α

particle [74–76].
Since the sp pair correlations are constrained to go over to

the identity operator at large separation, placement of R0 at
large enough radius turns Eq. (7) into a boundary condition
on computation of φLS[n]

p from its Woods-Saxon well, so that
in principle

ζcrcφc(R0) = d (rcφc)

drc

∣∣∣∣
rc=R0

. (8)

However, in optimizing the wave function it is often possible
to lower EV by altering the cutoff parameter that enforces
fsp −→ 1 at large separations, as assumed in using Eq. (8)
as a boundary condition on the whole wave function. When
the cutoff radius becomes too large, the fsp correlations gain
a slope at R0 and alter ζc. To solve this problem we apply the
condition in Eq. (8) to the product [ fsp(rc)]nt φc(rc) instead of
just φc(rc) by itself, where nt is the number of nucleons in the
scattering nucleus (nt = 3 for n + 3H). This works because
high-probability configurations all have the distance from a
neutron at the box boundary to any nucleon inside the triton
(mean radius 1.7 fm, smaller than our 9-fm box) close to
rc. We found that the modified Eq. (8) enforces the desired
boundary condition in Eq. (7) on the wave function with good
precision. It also prevents the optimizer from pushing the
fsp cutoff to larger radius, removing a significant source of
difficulty in the variational search.

For coupled-channels problems there is a ζc for each chan-
nel, and also a βc amplitude (corresponding to the βLS[n] of
a bound state). The values of ζc determine the energy of the
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lowest state in the box, which we find by the usual energy
minimization.

III. WAVE FUNCTIONS OUTSIDE THE BOX

At the boundary, the wave function projection into a
specific channel matches onto a solution of the Coulomb
wave equation. This is a radial Schrödinger equation with a
Coulomb potential and positive energy, and in dimensionless
form it is

−d2ul

dρ2
+

(
l (l + 1)

ρ2
+ 2η

ρ

)
ul = ul . (9)

Here, ρ = kcrc, while the Sommerfeld parameter is given in
terms of the charges Z1e and Z2e and the reduced mass μ

by η = Z1Z2e2μ/(h̄2kc). The channel wave number is given
in terms of the channel energy Ec by k2

c = 2μEc/h̄2. Real-
valued independent solutions of Eq. (9) are the usual regular
Fl (η, ρ) and irregular Gl (η, ρ) Coulomb functions [77]. (For
neutron scattering η = 0, and these are equivalent to spherical
Bessel functions; we will retain the more-general notation of
the Coulomb functions.) Outside the interaction region, the
wave function may be written in terms of products of these
functions with products of wave functions for the individ-
ual colliding nuclei, coupled to specified angular momentum
quantum numbers. These products form the regular and irreg-
ular channel-cluster functions

Fc = �c
1⊗2

Flc (ηc, kcrc)

kcrc
(10)

and

Gc = �c
1⊗2

Glc (ηc, kcrc)

kcrc
. (11)

We define the channel product function of cluster wave
functions ψ1c and ψ2c with specified angular momentum in
channel c as

�c
1⊗2 = Ac

[
ψ

J1c
1c ⊗ [

ψ
J2c
2c ⊗ Ylc (r̂c)

]
jc

]
J . (12)

The operator Ac antisymmetrizes the function with respect to
partitions of nucleons into the two clusters of channel c, which
have wave functions ψ

J1c
1c and ψ

J2c
2c . The angular momentum

coupling in Eq. (12) organizes the spin and orbital angular
momenta (J2c and lc) of cluster 2 to total jc (corresponding
to “ j j coupling” when cluster 2 is a single nucleon as in
our case). This is then coupled to the angular momentum J1c

of cluster 1, which in our case is the triton. We follow this
coupling scheme in our calculations because of its long use
in the computation of spectroscopic factors and overlaps in
QMC [78–82]; afterward we transform results to the coupling
scheme customary for n + H scattering.

Of the standard scattering-matrix formulations, the one
written entirely in terms of standing waves is the K matrix,
where the long-range part of the wave function is written as

�(all rc → ∞) =
∑

c

(AcFc + BcGc) . (13)

The amplitudes Ac and Bc determine all scattering observ-
ables, so the task of theoretical calculations is to find relations

among them across all channels. In single-channel scattering
there is only one relation between amplitudes, expressible in
terms of the phase shift tan δ = B/A. When there are coupled
channels, the K matrix gives the set of Bc coefficients in terms
of the Ac coefficients.

While our many-body computation is entirely in terms of
the Ac and Bc parameters of the K-matrix formalism, several
aspects of scattering are more naturally expressed in the T -
or S-matrix formalism. In the Appendix we describe the rela-
tionships between the scattering matrices, their connections to
the computed amplitudes, and the conventions used for phase
shifts and mixing parameters in n + 3H scattering.

IV. DETERMINATION OF AMPLITUDES

A. The direct method

Applying Eqs. (13), (7), and (A6) at the boundary R0 (and
omitting the channel label c) one finds B/A = tan δ for single-
channel scattering. It then follows from Eqs. (7) and (13) that
B/A is equal to

tan δ =
k ∂

∂ρ
Fl (η, ρ) − ζFl (η, ρ)

ζGl (η, ρ) − k ∂
∂ρ

Gl (η, ρ)

∣∣∣∣∣
ρ=kR0

. (14)

Here, we have the phase shift as an explicit function of ζ

and of the channel energy (which enters through η and k),
with no need to compute A or B. Choosing a value of ζ ,
we compute the corresponding energy, subtract the threshold
energy to obtain the channel energy, and compute the phase
shift from Eq. (14). Repetition at several ζ values maps out δ

as a function of energy. When there are coupled channels, the
linear relation among amplitudes is more complicated than a
simple ratio, and one of Eqs. (A3), (A4), or (A5) has to be
inverted. In computing a wave function for that case, the ζc

values for all channels are inputs. Inversion of Eq. (A3) to ob-
tain K̂ requires two linearly independent solutions constructed
(using different sets of ζc) to have the same or nearly the same
energy.

The amplitudes Ac and Bc are effectively values of spec-
troscopic overlap functions at the box surface, defined by
projection of a state onto the cluster-product function of
Eq. (12). A spectroscopic overlap onto a scattering channel
is defined as

Rc(r) = 1

N
〈
�c

1⊗2

∣∣δ(r − rc)

r2
c

|�V 〉, (15)

where

N =
√〈

ψ
J1c
1c

∣∣ψJ1c
1c

〉〈�V |�V 〉 (16)

normalizes the wave functions (cluster 2 being only a neutron
spinor in our n +3 H case). In principle the cluster product
function is antisymmetrized with respect to nucleon exchange
between clusters, as in Eq. (12). However, the explicit an-
tisymmetry of |�V 〉 has the result that an antisymmetrized
|�c

1⊗2〉 gives the same Rc(r) as a single permutation, multi-
plied by the square root of the number of possible exchanges
(A for nucleon scattering); we therefore use a single permu-
tation and replace the Ac operator by

√
A. Finally, all of

our wave functions are explicitly translation-invariant, so no
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correction factor is needed to account for use of fixed-center
basis states.

For direct determination of the Ac and Bc we separate the
overlap at the box surface into Fl and Gl terms using its value
and derivative. As we show below, overlap functions near the
center of the box also provide important tests of the inte-
gral method, particularly since the routines for one-nucleon
removal overlaps have a long history of previous use [79,82].

B. The integral method

Alternatively, the surface amplitudes may be computed
from integrals over the part of the box interior where all of the
nucleons interact. We start in the K-matrix formalism, defined
by the standing wave in Eq. (13). Application of Green’s
theorem over a sphere of fixed cluster separation rc, together
with the Wronskian relation for the Coulomb functions at the
sphere’s surface, gives

2μkc

h̄2 (〈Fc| Ĥ − E |Gc〉 − 〈Gc| Ĥ − E |Fc〉) = 1, (17)

where H is the full many-body Hamiltonian and E is the
total energy. The Dirac bracket here, as elsewhere, denotes
full contraction of the spin-isospin vector at every point and
integration over all independent nucleon coordinates in the
center-of-mass frame. This expression is nonzero because
the Laplacian operator inside Ĥ is not Hermitian on a finite
region (without further specification of a boundary condi-
tion) [15,16].

If the sphere of constant rc is located where the limit in
Eq. (13) holds, we obtain from Eq. (17)

Ac = 2μkc

h̄2 (〈�| Ĥ − E |Gc〉 − 〈Gc| Ĥ − E |�〉) (18)

and

Bc = 2μkc

h̄2 (〈Fc| Ĥ − E |�〉 − 〈�| Ĥ − E |Fc〉). (19)

Applying the condition that (H − E )|�〉 = 0 to the surface
amplitudes of Eqs. (18) and (19) gives

Ac = 2μkc

h̄2 〈�| Ĥ − E |Gc〉 (20)

and

Bc = −2μkc

h̄2 〈�| Ĥ − E |Fc〉. (21)

The main difficulty in evaluating these expressions lies in
Eq. (20), where the divergence in Gl at rc = 0 gives rise to
a δ function in the ∇2Gl term of the integrand. We resolve
this difficulty using the regularization strategy described in
Refs. [15–17,27]. The essential property of Gl for application
of Eqs. (17)–(21) is that it satisfies a Wronskian relation with
Fl outside the interaction region. Any function satisfying that
relation at rc = R0 would work just as well, so we replace Gl

with a regularized function G̃l that has the properties

G̃c = f c
regGc, (22)

G̃c(rc → 0) = 0, (23)

G̃c(rc → R0) = Gc. (24)

One possible choice of the regularizer that satisfies these prop-
erties for all partial waves and eliminates the δ function is

f c
reg(γ , r) = (1 − e−γ r )2l+1, (25)

where γ is a parameter to be fixed. We tried a few different
regularizing functions, but this one produced the best evidence
of producing correct results when γ is chosen within a fa-
vorable range (as shown below). This specific regularizer has
been used in hyperspherical harmonics calculations in recent
years [15–17,60]. Here, we explore its application in the VMC
context.

Starting from Eq. (17) and replacing Gl with ˜̂Gl we find
similar results as before, with initially

2μkc

h̄2 (〈Fc| Ĥ − E |G̃c〉 − 〈G̃c|Ĥ − E |Fc〉) = 1. (26)

Picking up from there, Eq. (21) for Bc remains the same.
However, Ac of Eq. (20) becomes

Ac = 2μkc

h̄2 〈�| Ĥ − E |G̃c〉. (27)

Further simplification follows from a separation of the
Hamiltonian into three parts, Ĥ = Ĥrel + Ĥ1 + Ĥ2, suggested
by partitioning the nucleons of G̃l into clusters ψc1 and ψc2.
Parts Ĥ1 and Ĥ2 contain only the relative coordinates and
spinors inside ψc1 and ψc2, respectively. The third part Ĥrel

contains the kinetic energy of cluster relative motion and all
terms of the nucleon-nucleon potential acting between nucle-
ons that are not in the same cluster [12]. We denote this sum
of different-cluster potential terms in channel c as V̂ c

rel (which
depends on how nucleons are partitioned). We similarly di-
vide the energy into E = Ec + E1 + E2, where Ec is energy
relative to the threshold of channel c, while (Ĥ1 − E1)ψc1 = 0
and (Ĥ2 − E2)ψc2 = 0. For exact solutions, the Ĥ1 and Ĥ2

terms then cancel out of Eqs. (21) and (27). In addition, the
point-Coulomb potential V c

C ≡ Z1Z2/rc can be added to and
subtracted from H to take advantage of the appearance of that
term in Eq. (9) defining the Coulomb functions.

After that work and after applying the Laplacian operator
in Hrel to the function f c

reg(r) inside G̃l = f c
regGl , the integrals

of Eqs. (21) and (27) become

Bc = −2μ

h̄2

∫ ∞

0
�†(V̂ c

rel − V c
C
)Fc d3AR (28)

and

Ac =
∫ ∞

0
�†

{
2μ

h̄2

(
V̂ c

rel − V c
C
)G̃c − 2

d

drc

[
f c
reg(rc)

]
× ∂

∂ρc
[Glc (ηc, kcrc)]

�c
1⊗2

rc
− d2

dr2
c

[
f c
reg(rc)

]Gc

}
d3AR.

(29)

Integration in these expression takes place over the co-
ordinates of all nucleons, Ri with i = 1, . . . , A, in the
center-of-mass frame. Once those coordinates are given, the
value of rc depends on the partition of nucleons into ψc1

and ψc2, so that the cluster antisymmetrizer Ac in �† must
apply to everything to its right in these integrands. As with the
overlap calculation [see discussion below Eq. (15)], we avoid
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explicit antisymmetrization by choosing only one partition for
each Monte Carlo sample and multiplying the final result by
the square root of the number of permutations. The integral
relations for computing the surface amplitudes Ac and Bc

are then readily applied using wave functions �, ψ1c, and
ψ2c computed from VMC. We evaluate integrals over the
entire box interior at rc < 9 fm using Monte Carlo impor-
tance sampling with weight function �†�; the short range of
V̂ c

rel − V c
C ensures that the integrand is zero in the outer parts of

the box.
It is implicit in deriving the integral relations that �, ψ1c,

and ψ2c are exact eigenfunctions of their respective Hamil-
tonians. Our �V and ψ1c, on the other hand, are variational
approximations to those eigenfunctions. Previous experience
in using integral relations with VMC wave functions [11,12]
supports their use despite that apparent shortcoming, because
it produces results that compare well with experiment. Much
of the utility of the method in fact arises from the circumstance
that the interior part of �V , where the VMC ansatz is most
successful, is the only part that contributes to the integrals. We
attempted to estimate the size of the error due to deviations
from (H1 − E1)ψ1c = 0, but we found that the Monte Carlo
sampling variances on those deviation terms swamped their
actual size. Further progress on that question will presumably
require modification of the sampling; past experience has
essentially always been that proposed modifications are even
worse than the standard sampling (e.g., Ref. [75]), so we did
not pursue the question further.

As mentioned in Sec. I, Eqs. (29) and (28) may be viewed
as r → ∞ properties of the overlap of the wave function onto
channel c. A generalized version of Eq. (13) applicable at all
radii is

Rc(r) = 1

N r
{Āc(r)Flc (ηc, kcr) + B̄c(r)Glc (ηc, kcr)} (30)

with

Āc(r) ≡ 2μ

h̄2

∫
rc<r

�†
(
V̂ c

rel − V c
C
)Gc d3AR, (31)

B̄c(r) ≡ −2μ

h̄2

∫
rc<r

�†
(
V̂ c

rel − V c
C
)Fc d3AR, (32)

so that Āc(r → ∞) = Ac and B̄c(r → ∞) = Bc (cf. Eq. (34)
of Ref. [12]). Since Eq. (31) contains the same singularity that
motivates the regularizer, the same problem has to be avoided
here. We do that by computing the integral over all space using
the regularizer [Eq. (29)] and then subtracting the portion of
the unregularized integral located at larger radius,

Āc(r) = Ac − 2μ

h̄2

∫
rc>r

�†(V̂ c
rel − V c

C
)Gc d3AR. (33)

Equations (31) and (32) or their equivalents have been used
in the literature to compute cluster overlaps for Hartree-Fock
as well as VMC wave functions [7,12,83]. In Ref. [12] it was
found that for VMC wave functions Eq. (30) produces overlap
functions that agree well with Eq. (15) at rc � 5 fm, but that
diverge from the direct calculation at large radius by going
over to the correct asymptotic shapes for the specified Ec.
This result can be interpreted as providing an extension (in

a given channel) of the accurate short-range part of the VMC
ansatz into parts of the wave function that are more difficult
to compute accurately with VMC. Recall that the integrals in
Eqs. (20), (21), (31), and (32) are short-ranged because the
nucleon-nucleon pair and triplet interactions inside V̂ c

rel are
short-ranged, and (for charged-particle cases) V c

C removes the
monopole Coulomb interaction at large radius. For the present
calculations, agreement between Eqs. (15) and (30) at small r
is an important tool for code validation and interpretation of
results.

C. Implementation

Based on the above discussion, the procedure to compute
scattering observables from VMC via the integral method
begins by computing wave functions that minimize Eq. (6)
separately for a scattering state and for the individual colliding
nuclei. This establishes the channel energy Ec correspond-
ing to the imposed boundary conditions, and that Ec is used
with the corresponding wave functions to evaluate Eqs. (28)
and (29). Scattering observables are computed from the re-
sulting amplitudes. To obtain results at multiple energies, one
repeats this procedure for many different boundary conditions
that yield different Ec.

The dependence on Ec in Fc and Gc leads to an alter-
native approximation procedure that avoids repeated energy
minimizations. This approach builds on previous experience
imposing experimental separation energies (or resonance en-
ergies) on the integral relations in Refs. [11,12] even when
they differed from computed energies. If there are no sharp
resonances, the small-rc part of a scattering wave function
changes very little over an energy range of several MeV above
threshold; this is a consequence of Ec being small relative
to the potential strength and (at least in some cases) of an-
tisymmetry constraints on the wave function. Then we expect
that nearly all evolution of Ac and Bc amplitudes with energy
comes from the dependence of Fl and Gl inside Eqs. (28)
and (29) on the channel energy Ec.

Below, in addition to finding separate � at every Ec as
described above, we also carry out calculations with the fol-
lowing modified procedure: in each channel, we optimize a
single variational wave function with a boundary condition
that gives Ec close to 3.0 MeV. We then assume this wave
function to be approximately valid throughout the low-energy
region, and we apply the integral relations using Fl and Gl

computed from many values of Ec ranging from zero to sev-
eral MeV above threshold. This yields scattering observables
as functions of the assumed energy, which we compare with
benchmarked exact results using the same nucleon-nucleon
potential. We refer to this approach below as the “fixed in-
terior wave approximation” for reasons that are apparent on
examination of the corresponding overlap functions.

V. INTEGRAL METHOD VERIFICATION
AND REGULARIZER CHOICE

Comparing overlap functions computed using Eqs. (15)
and (30) tests our implementation of the integral relations and
identifies useful values of the regularization parameter γ . We
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FIG. 1. Overlap functions computed from a representative 3P0

wave function with the AV18 interaction. These have been com-
puted using the direct method Eq. (15) (short-dashed lines, with
“shot noise”), the integral method of Eq. (30) (dash-dotted lines),
and the fixed interior wave (FIW) approximation (solid, energies
distinguished by color or shading). All curves except the dotted
one are computed from the same wave function with VMC en-
ergy corresponding to En = 4.09 MeV; the dotted curve shows the
integral-method overlap (analogous to the dot-dashed curve) for a
separate wave function with VMC energy corresponding to En =
7.34 MeV (rescaled to account for differences in normalization that
arise from how the wave function fills the box). It is nearly identical
to the FIW result at 7.33 MeV using the 4.09 MeV wave function,
shown as a solid black line for visibility.

carry out this test by examining states in the n + 3H system
computed from the AV18 potential alone, with the boundary
conditions ζc chosen to give optimized variational energies EV

(c.m.) in the neighborhood of 3.0 MeV. At this energy there is
a broad resonant structure in the p-wave cross section.

The direct overlap calculation of Eq. (15) is carried out
in the VMC code as a single Monte Carlo integration over
all particle coordinates, in which the radial overlap integral
at each rtn is computed from the accumulated samples in a
spherical shell of finite (0.1 fm) thickness [82]; this accumu-
lation into shells is an implementation of the δ function in
Eq. (15). In the figures, each rtn is identified as the midpoint of
its shell. The integral-relation overlap of Eq. (30) is evaluated
in a similar procedure carried out at the same time. The value
of Ac is obtained from the regularized integral over all space
in Eq. (29), and contributions to the integrals in Eqs. (33)
and (32) at any rtn consist of all Monte Carlo samples at larger
radius. The optimized energy EV is used initially to specify kc

and ηc in these integral calculations.
In Fig. 1 we focus on results of these calculations for a rep-

resentative state in the 3P0 scattering channel. After choosing
the ζ boundary condition for this calculation, the center-
of-mass energy Etn was computed to be 3.07 MeV (En =
4.09 MeV). The dashed curve shows the direct overlap
[Eq. (15)], while the dash-dotted curve shows the integral-
method overlap [Eq. (30)]. Each of these curves is shown mul-
tiplied by rtn to remove a trivial source of radial dependence
and give functions similar to solutions of a radial Schrödinger
equation [e.g., Eq. (9)]. Since the direct overlap at each radius

is computed only from the Monte Carlo samples that fall
into a thin radial bin, the dashed curve displays “shot noise”
that is visible as small fluctuations with radius. The integral-
method curve, on the other hand, is smooth because at each
rtn it contains contributions from all samples with larger rtn;
there are many more samples involved and also many shared
samples contributing to any two neighboring points on the
curve.

The colored (online) or shaded curves in Fig. 1 demonstrate
application of the fixed interior wave (FIW) approximation to
overlap functions. For each of those curves, we take the single
optimized VMC wave function that produced the short-dashed
and dot-dashed curves, but we use a different input energy
for the integral relations. From the single variational wave
function, this method generates approximate overlap func-
tions over the entire low-energy spectrum from threshold to
En = 10 MeV. (No attempt has been made to rescale the wave
function to unit norm inside the box for the revised probability
densities implied by the new Rc.) Each of these curves is
consistent with the directly computed overlap at r < 5 fm.
(See below for dependence of this statement on the choice
of γ .) The dotted curve shows the integral-method overlap
(not FIW) for the higher-energy variational wave function that
gave En = 7.34 MeV; it is nearly identical to the solid black
curve, which was generated from the 4.09 MeV wave function
using 7.33 MeV in the FIW approximation. These results are
not unique to the 3P0 channel; Fig. 2 shows similar results for
other partial waves.

The many curves (often visible as shaded regions rather
than individual curves) in Fig. 1 illustrate a further point con-
cerning the use of fixed interior waves: it is a very efficient use
of both computer and human resources. Computed directly
from the definition, each of the 60 solid (shaded) lines in
Fig. 1 would require a separate wave function with a different
boundary condition and separate optimization. Instead, they
have been computed from the integral relations for Rc from a
single wave function. By skipping the separate optimization
and generation of a new Monte Carlo walk (which involves
recomputing wave functions) at every energy, the amount
of work has been greatly reduced, especially for coupled
channels.

Agreement between the methods at r < 5 fm is important
because this is the region where the VMC wave function is
most reliable. In that region, iterated pair correlations and anti-
symmetrization provide structure that is not dominated by one
or two elements of the variational ansatz, and it is where most
of the power of the VMC method arises. The r < 5 fm region
also typically contains the largest number of Monte Carlo
samples. We therefore expect the directly computed overlap
to be rather accurate there. In this region the integral method
should be unable to improve significantly on the directly com-
puted overlap, and we expect the two methods to agree there
if the integral method has been successfully implemented. In
Figs. 1 and 2 the integral (dash-dotted black line) and direct
(short-dashed) overlaps are in fact nearly identical between
0 fm and 5 fm.

The choice of regularizer for Gl affects both the efficiency
and the accuracy of scattering calculations [17]. We tried sev-
eral possible regularizing functions but found Eq. (25) to be by
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FIG. 2. Overlap functions computed with AV18 for various partial waves using the same methods and labels as Fig. 1. The qualitative
matching in the interior range is present for each channel between the direct and integral (dotted) overlaps.

far the most successful in reproducing overlap functions. All
of the results that we show are computed with that regularizer,
and it is also the one used in recent calculations with the
hyperspherical harmonics method [17]. The results shown are
computed with a specific value of the regularization parameter
γ , and we now describe how it was was chosen.

If γ is chosen too small, the regularizer has effects at
the box surface that violate assumptions behind Eqs. (29)
and (33). If it is chosen too small, the regularizer does not
adequately remove effects of the singularity in Eq. (20). In
Fig. 3 we vary γ over the range 0.01 to 2.0 fm−1 for overlap
calculations of a single 3P0 state, and we also show the direct-

FIG. 3. The effect of the regularization parameter γ on the over-
lap function rtnRc(rtn) for a 3P0 state at En = 4.09 MeV with AV18.
The dashed curve shows the result of calculation from the definition,
while the solid curves are the results of integral-method calcula-
tions with varying γ . Values of γ run from 0.01 to 2.0 fm−1 and
are indicated by color/grayscale. Values between roughly 0.4 and
1.4 fm−1 produce close agreement between methods in the region
where VMC is most accurate, and we choose 0.625 fm−1 for further
AV18 calculations.

method result. Color (online) or shading indicates the value
of γ , with the color/gray scale chosen to emphasize values
where the methods agree. We quantify agreement between the
two methods with a sum of square errors (SSE) statistic over
the r < 5 fm region. The SSE is given by

SSEc(γ ) ≡
nr∑

i=1

[
riR

D
c (ri) − riR

I
c(γ , ri )

]2
, (34)

where RD is the directly computed overlap of Eq. (15), RI is
the integral-method overlap of Eq. (30), and the sum extends
over the 0.1-fm-thick bins that define neutron-triton separa-
tions in the direct calculation. We continue to work with rRc

rather than Rc, because it reduces the weight in Eq. (34) of
poorly sampled low-volume shells near r = 0 and it reduces
the severity of the divergence of Gl near the origin of the
Eq. (33) integrand.

In principle we could choose a different gamma for each
channel, but the SSE evaluation in Fig. 4 reveals a single
range that works well for many channels, and we see little
value in further fine-tuning for individual channels. For AV18
we find that γ = 0.625 fm−1 minimizes the SSE for all cases
examined, and it lies in a “stationary” range of weak γ de-
pendence. Repeating the analysis for the Norfolk NV2+3-Ia
interaction gives a slightly smaller best γ , with the station-
ary range centered on 0.52 fm−1. Computing phase shifts at
4 MeV, we find that varying γ through the range of stationary
SSE only changes phase shifts by 0.5 degree relative to the
optimal γ for both of these potentials.

VI. SCATTERING RESULTS

Having validated our method and its implementation using
overlap functions, we now turn to our main objective of com-
puting scattering observables. We carry out these calculations
using all three methods to determine asymptotic ampli-
tudes: direct computation of the overlap, application of the

034001-9



ABRAHAM R. FLORES AND KENNETH M. NOLLETT PHYSICAL REVIEW C 108, 034001 (2023)

FIG. 4. Comparison between direct and integral-method overlap
calculations for four states in different channels near En = 4 MeV
at varying γ . Agreement is quantified by the sum of square errors
at r < 5 fm defined in Eq. (34), SSE(γ ), applied separately to each
channel and to a sum over all four channels. Small SSE indicates
agreement between methods when γ is small enough to regularize
Gl effectively at the origin but large enough not to affect the box
surface. This occurs in the flat region between 0.5 and 1.0 fm−1.

integral method at the variational energy, and use of the in-
tegral method over a range of energies with a single fixed
interior wave in each channel. Since it is customary in the
recent literature on A = 4 systems to quote laboratory energy
rather than center-of-mass energy, we present most results in
terms of the neutron energy when the 3H target is stationary,

En = 4
3 Ec.m.. (35)

This expression neglects the small correction to the triton
mass arising from its binding energy and from the difference
of the proton from the neutron mass.

A. Single-channel cases

We begin by showing the single-channel, Jπ = 0+ and 0−,
phase shifts computed from the AV18 potential in Fig. 5 and
from the Norfolk-Ia interactions in Fig. 6. For comparison
with our calculations, we show results for the same poten-
tial using the hyperspherical harmonics method [26] as black
squares. These are well-benchmarked against other methods
and can be regarded as essentially exact; any accurate calcu-
lation from AV18 should match them closely. We also show
as a solid curve empirically derived phase shifts that were
computed by fitting the much more extensive p + 3H data
to a phenomenological R-matrix model and applying isospin
symmetry [84]. (The isospin-rotation procedure mainly in-
volves replacing Coulomb functions with spherical Bessel
functions and shifting the level energies by a phenomenolog-
ical difference of Coulomb interaction energies between the
two systems.)

The direct method of computing phase shifts from VMC
(circles in Fig. 5) reproduces qualitative features of the phase
shifts for both of these partial waves. However, the phase shift
at fixed energy comes out too low by typically 10◦ for s-wave
and 5◦ for p-wave states. The variational principle implies

FIG. 5. Single-channel phase shifts (in degrees) for n + 3H with
the AV18 potential, computed from VMC using the direct method
(blue circles), the integral method (cyan diamonds), and fixed interior
waves (red band). The width of the band indicates the Monte Carlo
sampling error. For comparison we show an empirical R-matrix
model (solid black curve labeled “LANL R-Matrix,” explained in
the text) [84] and essentially exact results from the hyperspherical
harmonic method [26] with the same potential (black squares). The
plus symbol indicates the VMC wave function chosen to provide the
fixed interior wave for computations of the red band.

that the computed energy is higher than the true energy for
any boundary condition ζ , so Eq. (14) in general gives curves
that can be viewed as being either too low in phase shift
or too high in energy [67]. Failure to match the exact result
reflects limitations of the variational ansatz (or else failure to
optimize it well). Up to now, the main option to improve on
the direct calculations from a VMC wave function has been to
use the VMC wave function as the starting point for a GFMC
calculation [4,5]; GFMC then finds the correct energy for the
given boundary condition more accurately before computation
of the phase shift.

The diamond shapes in Fig. 5 show results of applying the
integral relations in Eqs. (28) and (29) to VMC wave func-
tions and using the single-channel relation tan δc = Bc/Ac.
The energy assumed in the integral relations is equal to the
variational energy of each state. These results are in much
closer alignment with the exact results, but with some scatter
away from their trend for individual VMC results. The vari-
ation presumably reflects the quality of each wave function
optimization. The energy used in computing both the circles
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FIG. 6. Single-channel phase shifts (in degrees) for n + 3H in
the FIW approximation for multiple interactions, with and without
three-nucleon terms. The R-matrix curve and AV18 benchmark cal-
culation are as in Fig. 5. The Norfolk Ia interaction both with and
without the Ia∗ three-body terms shows somewhat larger attraction
than the AV18-based calculations (with and without Urbana IX three-
body terms) and the empirically derived phase shifts in the p waves.
Widths of the bands show Monte Carlo sampling errors.

and the diamonds is measured relative to a neutron and triton
at rest infinitely far apart. For this we take the difference of
computed VMC energies between the scattering state and our
best VMC triton wave function (rather than, e.g., the exact
triton energy for AV18).

Finally, in each partial wave we apply the FIW approxi-
mation by choosing one VMC solution (marked in the graphs
with a cross) and computing integral-relation phase shifts at
all energies from that single wave function. The result is
shown as the red curve with shaded band corresponding to
Monte Carlo statistical errors on the integrals. By its construc-
tion the red curve passes through the point with the cross on it,
which was chosen for its location in the middle of the energy
range of interest. Table I shows that the results are within
2.5◦ of exact phase shifts for AV18. Inspection of 3P0 phase
shifts in Fig. 5 suggests that better results might have been
obtained by choosing the wave function for FIW treatment
based on how well it matches exact results; even without exact
results for comparison, a wave function with outlying low
phase shifts relative to other VMC points could be avoided
as possibly poorly optimized. Nonetheless, deviation of the

p-wave phase shifts from the trend of both the R-matrix model
and the benchmark indicates that the FIW loses accuracy
when it proceeds too far above the energy of the wave function
used; this appears to happen around 6 MeV in the present
case.

These results establish the integral method and its variant
with fixed interior waves as useful ways to obtain approximate
phase shifts from VMC wave functions. The combination
of integral relations with VMC wave functions evidently
does not achieve the precision available with other computa-
tional frameworks in the n + 3H system. However, it greatly
improves both the quality and the efficiency of scattering cal-
culations possible using VMC, which might be more readily
applied to larger systems than the other solution methods.
More importantly, the close relationship between VMC and
GFMC should allow what we have developed here to be taken
over to GFMC. GFMC produces much more precise wave
functions than VMC but still suffers from subtle difficulties
in computing the outer parts of particle-in-a-box solutions at
high precision and in generating sufficiently exact energies
to compute observables near threshold with the scattering
formalism currently in use [4].

B. Coupled channels

Proceeding to other partial waves in Fig. 7, we show only
results with fixed interior waves, always generated from one
VMC wave function per channel near 4 MeV. The remaining
partial waves relevant at low energy come in three sets of
coupled channels, though the channel coupling is extremely
weak in the 1+ and 2− states (where it arises from the tensor
force); the coupling is somewhat stronger between the two
spin combinations in the p-wave states with Jπ = 1−. Phase
shifts and the largest mixing parameter from Fig. 7 are given
in Table I at the energies of published benchmark calcula-
tions [26]. Considering only AV18 for the moment, we find
good agreement with the benchmark for all of the phase shifts
except in the 1P1 channel, where the curve is qualitatively
different from both the benchmark and the empirically derived
curve. We obtain very similar results when we carry out the
calculation with other potentials, suggesting some systematic
problem with our calculations in this specific channel. After
extensive checking, we have been unable to find a coding
error, and we suggest tentatively that it may be a shortcoming
of the variational ansatz specific to this configuration. It will
be informative in the near future to see if the problem persists
in GFMC calculations that use the VMC solutions here as
starting points.

The 1+ mixing parameter is very small in both our AV18
calculation and the hyperspherical harmonics calculation,
smaller than 2.5◦. In that sense there is good agreement,
though the VMC results are about half the size of the hy-
perspherical result. For 1− states the VMC mixing parameter
comes out somewhat larger (roughly 14◦ instead of 10◦ over
the whole energy range) but they are of similar magnitude, and
one of channels here is the 1P1 channel where something has
apparently gone wrong in our VMC calculations as discussed
above.
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TABLE I. n + 3H phase shifts and mixing parameters computed using the FIW approximation for various interaction models. The
hyperspherical harmonics (HH) results are from Ref. [26].

1S0
3P0

3S1
3D1

3P2
1P1

3P1 ε1−

1.0 MeV
HH AV18 −38.44 4.26 −33.57 −0.09 8.82 5.87 9.44 9.19
AV18 −36.3(5) 2.9(1) −32.1(3) −0.03(2) 7.0(3) 2.8(2) 6.8(3) 13.7(19)
AV18+UIX −36.2(8) 2.8(1) −31.1(2) −0.03(3) 7.1(4) 2.3(2) 6.5(3) 11.8(17)
NV2-Ia −36.40(9) 4.34(5) −31.71(6) −0.04(2) 10.6(1) 3.24(4) 10.4(1) 7.6(4)
NV2+3-Ia∗ −35.12(9) 4.57(6) −30.58(7) −0.04(1) 12.2(2) 3.08(5) 13.7(2) 7.3(5)
2.0 MeV
HH AV18 −52.41 10.82 −46.04 −0.37 23.21 13.00 23.39 9.19
AV18 −50.3(7) 8.3(3) −44.7(4) −0.16(2) 21.3(10) 7.95(51) 20.0(8) 13.8(20)
AV18+UIX −50.3(11) 8.2(3) −43.3(3) −0.17(4) 21.9(12) 6.4(7) 19.0(8) 11.9(18)
NV2-Ia −50.5(1) 12.1(1) −43.92(8) −0.22(2) 30.8(3) 8.86(11) 28.9(3) 7.6(4)
NV2+3-Ia∗ −48.7(1) 12.8(2) −42.3(1) −0.20(1) 38.1(5) 8.35(12) 33.3(5) 7.2(5)
3.5 MeV
HH AV18 −66.14 20.61 −58.53 −0.95 42.22 20.68 39.63 9.48
AV18 −65.3(9) 18.1(7) −58.3(5) −0.57(2) 43.6(17) 16.9(9) 39.6(13) 13.9(17)
AV18+UIX −65.4(14) 18.1(7) −56.5(5) −0.59(4) 44.8(19) 13.7(12) 38.0(14) 12.2(16)
NV2-Ia −65.8(2) 24.1(3) −57.3(1) −0.75(2) 52.1(3) 17.5(2) 48.1(4) 7.6(4)
NV2+3-Ia∗ −63.7(2) 25.2(3) −55.0(1) −0.69(1) 58.6(4) 16.5(2) 52.3(5) 7.2(4)
6.0 MeV
HH AV18 −81.05 32.61 −72.40 −1.87 57.94 26.55 51.27 10.57
AV18 −83.2(11) 32.3(11) −75.2(7) −1.73(1) 60.1(13) 29.0(12) 54.4(11) 14.4(13)
AV18+UIX −83.7(17) 32.4(11) −73.1(6) −1.77(2) 61.3(15) 24.3(17) 53.0(12) 12.7(11)
NV2-Ia −85.1(2) 37.5(3) −74.5(2) −2.11(2) 62.1(2) 27.9(2) 57.3(3) 7.8(3)
NV2+3-Ia∗ −82.9(3) 39.1(3) −71.4(2) −1.96(2) 66.0(3) 26.5(4) 60.2(3) 7.3(3)

FIG. 7. Phase shifts and mixing parameters (in degrees) for n + 3H in the FIW approximation with the same interactions as Fig. 6. The
R-matrix curve and AV18 benchmark calculation are as in Figs. 5 and 6. The AV18 phase shifts are within 2.5◦ of the benchmark, except for
an apparent difficulty shared by calculations with all potentials in the 1P1 channel. Widths of the bands show Monte Carlo sampling errors.
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FIG. 8. n + 3H total cross section (in barns) as a function of neutron energy for various interactions. The left panel shows results for AV18
with and without the Urbana IX or Urbana X three-body terms. The right panel shows the Norfolk Ia potential with and without the Ia or
Ia∗ three-body terms; error bars show Monte Carlo statistical uncertainties. Other symbols are as in Fig. 5 except that the LANL total cross
section is from Ref. [92]. In general, the Norfolk Ia interactions give somewhat too-pronounced resonance structures in p waves, while s-wave
scattering correlates mainly with triton binding energy regardless of potential.

C. Three-nucleon and chiral potentials

We also carried out calculations that combine the AV18
two-body potential with the Urbana IX (UIX) three-nucleon
interaction [2,23], and that use the Norfolk family of local
chiral potentials [24,59]. Results for AV18+UIX and for the
NV1a and NV2+3-Ia∗ potentials are shown alongside the
AV18-only results in Figs. 6 and 7 and in Table I. These two
Norfolk potentials differ in their inclusion or not of three-
nucleon terms and in what data were used in fitting them;
NV2-Ia consists only of two-body terms, while NV2+3-
Ia∗ includes a three-body interaction. It is evident from the
phase shift graphs that while results in other channels are
very similar between potentials, the Norfolk interactions pro-
vide somewhat larger attraction in the p-wave channels than
appears to be supported by the isospin-symmetry-based R-
matrix curve. No strong qualitative dependence on three-body
terms is evident in the cases shown, though there is some
difference. Qualitative agreement of all calculations in the
s-wave channels is not surprising, since s-wave scattering in
this and many light systems has the character of scattering
from a hard sphere, due to antisymmetry constraints on the
wave function [4,85].

We show total cross sections for these interactions and for
two others in Fig. 8. In the left panel, we show results for
AV18 alone and for AV18+UIX; we also show results for
AV18 with the Urbana X three-nucleon interaction, which has
a very similar structure to Urbana IX but has been tuned to
produce binding energies closer to those of the more com-
putationally expensive Illinois-7 interaction [86]. Although
AV18+UIX produces very similar results to AV18 alone
here, it is evident that a different choice of three-nucleon
interaction can have a noticeable effect on the p-wave peak
around 3 MeV. The right panel shows total cross sections for
NV2+3-Ia∗ and for NV2+3-Ia, which have three-body terms
tuned to match differing input data. Here, the choice of three-
body interaction also has a significant effect on the resonance
structure in the p-waves. In general, AV18 and AV18+UIX
underpredict the strength and width of the resonance feature
while all of the Norfolk interactions (not just those shown
here) overpredict them.

We summarize our s-wave calculations for a large col-
lection of potentials by presenting total cross sections σt

for thermal neutrons and coherent scattering lengths ac in
Table II. These are computed from the singlet and triplet

TABLE II. n + 3H thermal-neutron cross section σt (in barns),
coherent scattering length ac (in fm), and 3H binding energy (in
MeV) computed in VMC with various interactions. The VMC re-
sults are computed in FIW approximation at Ec.m. = 0.025 eV using
wave functions of variational energy En ≈ 4 MeV. For comparison
we show values from the essentially exact hyperspherical harmonic
(HH) method for AV18 and AV18+UIX, for the Coulomb-corrected
R matrix, and from experiment. The VMC binding energies here are
not the true binding energies for each given interaction, but instead
are our best-optimized VMC wave binding energies, which establish
the threshold energy for present purposes.

Interaction σt ac B3

AV18 1.632(12) 3.598(27) 7.484(2)
AV18+UIX 1.558(13) 3.513(29) 8.277(2)
AV18+UX 1.543(15) 3.496(32) 8.254(6)
NV2-Ia 1.648(3) 3.615(6) 7.602(9)
NV2-Ib 1.656(3) 3.622(7) 7.339(9)
NV2-IIa 1.614(4) 3.579(9) 7.715(5)
NV2-IIb 1.734(68) 3.71(15) 7.646(14)
NV2+3-Ia 1.579(5) 3.535(10) 8.179(9)
NV2+3-Ib 1.558(4) 3.515(8) 8.170(15)
NV2+3-IIa 1.539(3) 3.494(6) 8.193(10)
NV2+3-IIb 1.566(8) 3.522(18) 8.236(14)
NV2+3-Ia∗ 1.536(3) 3.490(7) 8.205(8)
NV2+3-Ib∗ 1.580(5) 3.538(11) 8.161(14)
NV2+3-IIa∗ 1.544(5) 3.498(10) 8.218(17)
NV2+3-IIb∗ 1.557(5) 3.513(10) 8.212(22)
HH [17,60]
AV18 1.85 3.83 7.624
AV18+UIX 1.73 3.71 8.479
R matrix [84] – 3.607(17) –
Expt. 1.70(3) [87] 3.82(7) [88] 8.475 [90]

3.59(2) [89]
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s-wave phase shifts via

σt = π

k2
(sin2 δ0 + 3 sin2 δ1) (36)

and

ac = 1

4k
(sin δ0 + 3 sin δ1), (37)

applying integral relations with Ec.m. = 0.025 eV to the usual
fixed interior wave in each channel with variational energy
En � 4 MeV. We found no significant evolution of σt (E ) be-
low 10 eV. As indicated in Table II, the total cross section has
been measured to below 50 keV and extrapolated to thermal
energies yielding a result of σt = 1.70 ± 0.03 b [87]. The two
most recent measurements of the experimental coherent scat-
tering length [88,89] were carried out by the same group, with
a more advanced setup for the second measurement. A third
empirically derived coherent scattering length comes from
essentially the same Coulomb-corrected R-matrix calculation
shown in our graphs [84].

Overall, the results in Table II depend only weakly on po-
tential. It is known that the triton binding energy B3 in a given
model correlates with the s-wave phase shifts, analogously to
the “Phillips line” that correlates B3 with the neutron-deuteron
scattering length when potentials are varied [91]. The VMC
results in Table II support a reliable negative-slope correlation
between B3 and ac, with B3 taken not as the exact value for
the potential but as our best-optimized variational result. The
hyperspherical harmonics results for AV18 with and without
Urbana IX suggest a correlation that has the same slope but
is offset by about 0.2 fm in scattering length, presumably re-
flecting the same difference in precision between VMC/FIW
and exact results seen above. Considering the offset from the
hyperspherical harmonics calculations, it would appear that in
general values for a given potential can be estimated by adding
about 0.2 fm to ac or 0.2 b to σt computed from VMC/FIW.
Essentially all of the differences among the Norfolk potentials
in Table II are attributable to the correlation between the
VMC-optimized (not exact) B3 and ac.

VII. CONCLUSION

We have explored the application of integral relations to
calculations of phase shifts and scattering observables in a
quantum Monte Carlo context. This approach replaces opera-
tions on the most poorly computed parts of a quantum Monte
Carlo wave function with integrals over the well-computed in-
teraction region of the wave function. Although we expect the
utility of the integral relations to be mainly in heavier systems
and in Green’s function Monte Carlo calculations, we have
developed the method by applying it to neutron-triton scatter-
ing using variational Monte Carlo wave functions. This allows
us to compare our results against well-benchmarked and es-
sentially exact results from the recent literature for the same
nucleon-nucleon interaction. It also minimizes turnaround
time for computation in this exploratory work and allows
better opportunity to distinguish wave function problems from
integral-relation problems in code development than if we had
jumped directly to GFMC.

As an important test of the method, we began with an
examination of the spectroscopic overlaps of full four-body
wave functions onto n + 3H configurations. This examination
revealed that the effect of the integral relations can be viewed
largely as identifying the correct outer parts of the wave
function for consistency with the more accurately computed
interior parts of the wave function; accurate calculation of
the outer regions is known to be difficult for both VMC and
GFMC (for different reasons in each case and not as badly
for GFMC). The results of overlap calculations also indicated
the feasibility of using a single variational wave function
for calculation of overlaps and scattering observables over a
whole range of energies. This works because the short-range
part of the wave function is insensitive to changes in the total
energy that are small relative to the potential energy. We call
this approach the fixed interior wave or FIW approximation.

Having tested the integral relations through their applica-
tion to overlaps, we then applied them to the computation of
phase shifts for the AV18 nucleon-nucleon interaction. Here,
they give corrected surface amplitudes of particle-in-a-box
wave functions, and those amplitudes are used to infer phase
shifts and channel-mixing parameters. The results represent a
considerable improvement over naive examination of the box
surface, especially for scattering states with coupled channels,
where a matrix inversion is needed to compute observables.
Moreover, we found that the fixed interior wave approxima-
tion allows calculation of phase shifts within a couple of
degrees of exact values for the AV18 potential, except in the
case of singlet p waves. For that case, we see what appears
to be a similar shortcoming in all of the potentials that we
used, so we conjecture either a fundamental shortcoming of
our variational ansatz or possibly a coding error that escaped
extensive testing.

We then presented calculations that combine the Urbana
IX or Urbana X three-body interaction with AV18, as well as
calculations with several variants of the Norfolk local chiral
interactions. These represent some of the first calculations of
nucleon-nucleus scattering with the Norfolk interactions. We
found them to have generally stronger resonance features in
p-wave scattering than AV18; their neutron scattering lengths
correlate strongly with the (VMC-computed) triton binding
energy and otherwise seem consistent with the AV18 and
AV18+UIX/X results.

As mentioned above, the present work is intended as a step
in technique development, not the final destination. In combi-
nation with VMC, the integral method produces considerably
more precise phase shifts than previously seemed possible
with the standard nuclear VMC ansatz, and for substantially
less investment of resources into optimizing multiple wave
functions. This makes VMC immediately more useful for
approximate calculations of nucleon-nucleus scattering in the
A � 10 range, and there is no reason why it could not also
be applied to alpha-nucleus scattering in at least cases (like
the 7Be and 7Li systems) where alpha clustering is already a
prominent part of the variational ansatz. The integral method
also removes what appeared to be a serious obstacle in deter-
mining surface amplitudes well enough for coupled-channel
calculations to be at all worthwhile using VMC. None of
this is surprising, since the integral relations have provided
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a crucial tool in hyperspherical harmonics calculations for
about a decade [15–17,60], but development specific to the
quantum Monte Carlo context was needed, and the amount of
benefit to be gained from application to VMC wave functions
in particular was unknown.

We expect the main payoff of this work to lie in its fu-
ture application to GFMC wave functions. The outer parts of
diffuse wave functions, including the particle-in-a-box wave
functions used for scattering, converge slowly in GFMC.
Even though the results are considerably more accurate than
VMC, substantial attention to these issues has been needed
to obtain results of acceptable precision in past scattering
calculations [4] as well as some bound-state calculations [93].
Since the GFMC wave functions are more accurate than VMC
wave functions (even in their outer regions), the amount by
which the surface amplitudes have to be “corrected” by the
integral relations will be considerably smaller. It is our hope
that the integral relations will enable high-quality GFMC
scattering results with considerably reduced human effort,
and make treatment of coupled-channels problems feasible.
At least for nucleon-nucleus scattering, implementation of
integral relations in GFMC will be closely related to work
already done on spectroscopic overlaps [82], and it will use
the same computer routines developed here.
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APPENDIX: SCATTERING MATRICES
AND PARAMETERS

In two-cluster scattering there are three common repre-
sentations of the asymptotic wave function. In these, wave
function amplitudes at infinity are related to each other by the
T , S, or K matrix, depending on whether the wave function is
represented by plane, spherical, and/or standing waves. Each
formalism provides a natural way to view some part of our
calculations.

In the K-matrix formalism that we use for many-body
calculations the wave function at large distance is written as
in Eq. (13). Alternatively, the same function can be written
in terms of incoming plane-wave components and outgoing
spherical waves H+

c = Gc + iFc to obtain the T -matrix for-
malism, where schematically

�(all rc → ∞) =
∑

c

(AcFc + BcH+
c ) (A1)

and the surface amplitudes are Ac, Bc. Finally, the S-matrix
formalism is written in terms of incoming and outgoing spher-

ical waves H±
c (with H±

c = Gc ± iFc) so that

�(all rc → ∞) =
∑

c

(αcH−
c + βcH+

c ); (A2)

in this case the amplitudes are αc and βc.
All of these formulations are equivalent and can be inter-

converted. When each set of amplitudes is written as a vector,
the relation between them is a matrix that predicts scattering
outcomes by relating incoming to outgoing amplitudes:

B = K̂A, (A3)

B = T̂ A , (A4)

β = Ŝα. (A5)

Regardless of the form chosen, the amplitude vectors in
Eqs. (A3)–(A5) can, in principle, be read out of any wave
function solution and the scattering matrices found by invert-
ing these equations; for Nc coupled channels, the inversion
requires Nc linearly independent solutions.

Because particle number is conserved, single-channel scat-
tering satisfies the constraint |α| = |β| and allows scattering
matrices (actually scalars in this case) to be written in terms
of a phase shift δ. Then K = tan δ, T = eiδ sin δ, and S =
e2iδ . In coupled-channel scattering each matrix has dimension
Nc × Nc.

In the n + 3H system each scattering matrix is block-
diagonal and splits into 1 × 1 and 2 × 2 blocks with definite
parity π and total angular momentum J . For comparability
with the literature, we report results in terms of channels
defined by orbital quantum number L and by coupling neutron
and triton spins to total spin quantum number S [instead of the
lc and jc of Eq. (12)]. In this basis, the 2 × 2 coupled pairs of
channels either have L = J ± 1 or else have S = 0, 1 together
with L = J . For these cases, we write the 2 × 2 S-matrix block
in the Blatt-Biedenharn or eigenphase representation [94] as

Ŝ = ÔT

(
e2iδ− 0

0 e2iδ+

)
Ô, (A6)

where

Ô =
(

cos εJπ sin εJπ

− sin εJπ cos εJπ

)
. (A7)

In the absence of channel mixing, Ô is the identity matrix
and the δ± are the phase shifts associated with the L channels
L = J ± 1 (when L �= J) or with the spin channels S = 0, 1
(when L = J > 0). Each 2 × 2 block has a mixing parameter
εJπ that specifies the degree of channel mixing. Since the δ±
are defined by eigenvalues of Ŝ, they are independent of the
angular momentum coupling scheme; εJπ is not. Converting
the amplitudes of Eqs. (13)–(A2) from the j j coupling of
Eq. (12) to the customary LSJ scheme for scattering is a
straightforward exercise in Racah coefficients.

Because any pair of linearly independent solutions to
Eq. (9) can be used to describe the asymptotic region in a
given channel, it is straightforward to write the various scat-
tering matrices in terms of each other [95] as follows:

T̂ = 1

2i
(Ŝ − Î ), (A8)
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K̂ = i(Î − Ŝ)(Î + Ŝ)−1, (A9)

where Î is the identity matrix. We use all three of these. We
apply the integral method to find the A and B amplitudes of the
K-matrix formalism so that the work is formulated in terms of

Fl and Gl . Our phase shifts and mixing parameters are defined
in the S-matrix formalism using Eq. (A6). Scattering experi-
ments involve incoming plane waves, so that the T matrix is
the natural framework to compute differential cross sections.
We convert our initially K-matrix results to the other forms as
needed.
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