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Supernova explosions are the most powerful neutrino sources. The neutrino emission is also the dominating
cooling mechanism for a proto–neutron star, whose interior is mainly composed of extremely dense and hot
nuclear matter. Neutrino transport is an essential part of the simulation of these phenomena, and modern codes are
able to implement inelastic neutrino scattering and also to some extent its angle distribution. We therefore study
the energy and angle dependence of neutrino scattering rates in proto–neutron star and supernova matter with
the full Skyrme random phase approximation (RPA) response functions. We confirm earlier findings obtained
in the Landau approximation that the RPA reduces neutrino scattering, but the detailed differential scattering
rates in hot and dense matter depend sensitively on the adopted interaction. The scattering angle distribution is
different for different interactions because it depends strongly on the neutron Fermi velocity. We also find that
many Skyrme interactions present an unphysical feature that the Fermi velocity of neutrons exceeds the speed of
light already at relatively low densities.
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I. INTRODUCTION

Neutrinos play a crucial role in astronomical and astro-
physical research. They are among the important parts in
multimessenger astronomy, and offer a unique opportunity to
explore the universe. The study of neutrino-matter interaction
in neutron stars and core-collapse supernovae is not only of
great significance in itself, but may also have an impact on
some other relevant research topics, such as binary neutron
star mergers.

As we all know, at the end of the evolution of a star with a
mass of the order of 8–30 solar masses (M�), a core-collapse
supernova occurs, leaving behind a neutron star [1]. Dur-
ing this collapse, the core reaches densities comparable with
nuclear saturation density (2.7 × 1014 g/cm3, corresponding
to ρ0 = 0.16 nucleons/fm3), but then the repulsion between
nucleons overcomes gravity and the infalling matter bounces
back [2,3]. A small sphere that has a typical mass of about
1–2 M� remains and forms eventually the neutron star, with
a radius of about 10 km [4], while the rest is ejected. Nev-
ertheless, the energy of this ejected matter represents only a
small fraction of the initial gravitational energy of the star,
while 99% of the energy is released in the form of neutri-
nos [5] which are produced during and after the collapse by
weak-interaction processes (mostly electron capture). These
neutrinos are also believed to play a crucial role in explaining
the explosion of the outer shells in the supernova, as Colgate
and White [6] and Arnett [7] first pointed out in 1966. When
the density increases to a few times 1011 g/cm3 [2], neutrinos
can be scattered frequently inside the star before they escape.
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It means that interactions between neutrinos and matter are
very important at these densities.

Hence, in the modeling of the supernova, neutrino absorp-
tion, emission, and scattering rates are essential ingredients. In
the 2000s, some researchers incorporated neutrino transport
into supernova simulations [8–10]. The importance of adopt-
ing a high-quality neutrino transport in supernova simulations
was recognized. For this reason, improving the treatment of
neutrino-matter interaction has been the aim of many recent
studies, e.g., using the virial approach [11,12], taking into
account relativistic kinematics [13,14], employing chiral ef-
fective field theory [15–17], highlighting the relevance of
muons [18–20] and of pions [21], and so on.

Neutrino transport is crucial not only for supernova sim-
ulations but also for the evolution of proto–neutron stars.
The initial internal temperature of a proto–neutron star is of
the order of 1011–1012 K (10–100 MeV) [22,23]. The den-
sity and temperature are so high that nuclei are completely
dissolved into uniform matter of neutrons, protons, and elec-
trons. Nevertheless, one cannot simply compute the neutrino
rates by multiplying the neutrino cross sections of free nucle-
ons with the density. The cross sections in the medium are
strongly modified because the nucleon-nucleon interactions
lead to strong correlations and collective effects [24]. For in-
stance, the divergence of the neutron absorption cross section
near the liquid-gas phase transition might help us to under-
stand the explosion of supernovae [25]. From a theoretical
point of view, the neutrino rates can be directly related to the
so-called response functions (or current-current correlation
functions), computed at the relevant density, asymmetry, and
temperature.

Already in earlier studies, neutrino responses were com-
puted by using the random phase approximation (RPA)

2469-9985/2023/108(2)/025813(16) 025813-1 ©2023 American Physical Society

https://orcid.org/0000-0001-5487-4537
https://orcid.org/0000-0002-3328-0091
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.108.025813&domain=pdf&date_stamp=2023-08-25
https://doi.org/10.1103/PhysRevC.108.025813


MINGYA DUAN AND MICHAEL URBAN PHYSICAL REVIEW C 108, 025813 (2023)

[26–28], which has been widely used to describe excitations
in finite and infinite nuclear systems since it was first in-
troduced to solve the collective oscillations of the electron
gas [29–31]. The RPA theory was described in detail in the
recent review [32]. Recently, the improved rates for charged
current interactions were incorporated into supernova simula-
tions [33] and the proto–neutron star evolution [34], computed
using various approximations, including RPA. However, for
the neutrino-nucleon scattering via the neutral current, the
inelastic scattering reactions were neglected in Ref. [33] and
nucleons were treated as an ideal gas in Ref. [34].

Indeed, neutrino-nucleon scattering is also an important
process in supernova simulations and the proto–neutron star
evolution. One should not ignore the interactions between
nucleons in order to get a high-quality neutrino transport. In
particular, neutrino scattering rates depend not only on the
initial and final neutrino energies but also on the scattering
angle. Until now, literature has mostly focused on the total
neutrino mean free path and has not insisted on the rela-
tionship between neutrino scattering rates and energy and
scattering angle. Besides, the RPA responses computed by
[26–28] are in the Landau approximation instead of the full
RPA. The neutrino scattering expressions given in [26,27]
are incomplete when the full RPA responses with spin-orbit
interaction are adopted.

A recent review [35] discusses the full RPA response func-
tions with Skyrme interactions. However, we think it is impor-
tant to cross-check independently the response functions ob-
tained there from quite complicated expressions. Furthermore,
our work extends Ref. [35] by showing the corresponding
neutrino mean-free path also for the case of asymmetric matter
and discussing the angle and energy distributions.

In this work, we first summarize in Sec. II the derivation of
the scattering rate and the computation of the RPA response
functions with Skyrme interactions for the most general case
of different longitudinal and transverse spin responses in
asymmetric nuclear matter in order to have a self-contained
presentation. In Sec. III we compare response functions at dif-
ferent levels of approximation. Then we study in Sec. IV the
relationship between neutrino scattering rates and scattering
angle. We encounter a more general problem of Skyrme in-
teractions in the application for neutron star research, namely
that the Fermi velocity exceeds the speed of light beyond some
density depending on the chosen interaction. Furthermore, we
will study the energy dependence of neutrino scattering rates
and the evolution of the average scattering angle with neutrino
energy. Finally, we summarize and conclude in Sec. V. For
completeness, the parameters of the used Skyrme interactions
and the expressions needed for the RPA are given in the
Appendix.

II. FORMALISM

A. Neutrino-nucleon scattering in hot nuclear matter

As mentioned above, the neutrino rates can be related to the
response functions. In this section, we derive the relation be-
tween the neutrino scattering rate and the nuclear density and
spin-density correlation functions using Fermi’s golden rule.

Throughout this paper, we use units with h̄ = c = kB = 1,
where h̄, c, and kB are the reduced Planck constant, the speed
of light, and the Boltzmann constant, respectively.

Neutrinos scatter off nucleons via the weak neutral current.
The interaction Lagrangian density is [36]

LI (x) = G√
2

lμ(x) jμ(x), (1)

(μ = 0, 1, 2, 3), where G is the Fermi weak interaction con-
stant (G ≈ 8.975 × 10−5 MeV fm3), lμ is the lepton weak
neutral current, and jμ is the weak current of the nucleons.
The lepton current has the form

lμ(x) = ˆ̄ψνγμ(1 − γ5)ψ̂ν, (2)

where ψ̂ν represents the neutrino field operator, and ˆ̄ψ =
ψ̂†γ 0. γμ are the usual γ matrices and γ 5 = iγ 0γ 1γ 2γ 3 = γ5

[37].
The neutrino field operator can be expressed as (we do not

write the antineutrino part)

ψ̂ν =
∑

p

√
mν

p0V
uL(p)e−ip·xbν (p), (3)

where V is the volume of the system, mν is the neutrino mass
(as in [37] we use the normalization with finite mν and take the
limit mν → 0 in the end), uL is the bispinor (uLuL = 1−γ5

2
/p+mν

2mν

with /p = γ α pα , the subscript L indicates that neutrinos are
left-handed), p = (p0, p) is the neutrino four-momentum with
p0 = Eν (p) = |p|, and bν is the neutrino annihilation operator.

The nucleon weak current is

jμ(x) =
∑

a=n,p

1

2
ˆ̄ψaγ

μ(CV,a − CA,aγ
5)ψ̂a, (4)

where ψ̂n,p are the neutron and proton field operators, and
CV,a and CA,a are the relevant neutral current vector and
axial-vector coupling constants. The values of these cou-
pling constants are CV,n = −1, CA,n = −1.23 for neutrons and
CV,p = 0.08, CA,p = 1.23 for protons [38].

The nucleon field operators are

ψ̂a =
∑

ps

cas(p)
1√
V

χse
−ip·x, (5)

where cas(p) is the annihilation operator of a nucleon of type
a and spin s. We treat the nucleons as nonrelativistic, i.e., χs is
a two-component Pauli spinor corresponding to the two large
components of the Dirac bispinor, and p0 = ma + p2

2ma
. Thus

jμ(x) can be written as [36]

jμ(x) ≈
∑

a=n,p

1

2
(CV,aψ̂

†
a ψ̂a,−CA,aψ̂

†
a σψ̂a)μ. (6)

The interaction Hamiltonian can be given by using

ĤI =
∫

d3x HI = −
∫

d3x LI . (7)

Then one inserts it into

Hf i = 〈p′
νλ

′|ĤI |pνλ〉 (8)
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to obtain Hf i, where pν , p′
ν , λ, and λ′ denote the initial and

final neutrino momenta and quantum numbers characterizing
the nuclear matter, respectively. According to Fermi’s golden
rule [39], the transition rate is given by

Rpν ,λ→p′
ν ,λ

′ = 2π |Hf i|2δ(ω − Eλ′λ), (9)

where ω = Eν − E ′
ν is the energy transfer (Eν and E ′

ν are the
initial and final neutrino energies), and Eλ′λ is the difference
between the final and the initial energy of the nuclear matter,
i.e., Eλ′λ = Eλ′ − Eλ. Taking a statistical average over initial
nucleon states and summing over final nucleon states, we
can calculate the neutrino-nucleon scattering rate using the
following expression:

Rpν→p′
ν
=

∑
λλ′

AλRpν ,λ→p′
ν ,λ

′ = G2π

2V

∑
aa′=n,p

{
(1 + cos θ )CV,aCV,a′S(S=0)

aa′ (q, ω)

+ [ p̂′
νi p̂ν j + p̂′

ν j p̂νi + (1 − cos θ )δi j + iεi jk ( p̂νk − p̂′
νk )]CA,aCA,a′S(S=1)

aa′,i j (q, ω)
}
, (10)

where Aλ = 1
Z e−Eλ/T (Z is the partition function), summation over repeated indices is implied (i, j, k = 1, . . . , 3), p̂ν and p̂′

ν are
unit vectors in direction of pν and p′

ν , respectively, q = pν − p′
ν is the momentum transfer, and θ is the scattering angle. The

dynamical structure factors are defined as

S(S=0)
aa′ (q, ω) = 1

V

∑
λλ′

Aλ

∫
V

d3x′e−iq·x′
∫

V
d3x eiq·x〈λ|ψ̂†

a′ (x′)ψ̂a′ (x′)|λ′〉〈λ′|ψ̂†
a (x)ψ̂a(x)|λ〉δ(ω − Eλ′λ), (11)

S(S=1)
aa′,i j (q, ω) = 1

V

∑
λλ′

Aλ

∫
V

d3x′e−iq·x′
∫

V
d3x eiq·x〈λ|ψ̂†

a′ (x′)σ jψ̂a′ (x′)|λ′〉〈λ′|ψ̂†
a (x)σiψ̂a(x)|λ〉δ(ω − Eλ′λ), (12)

with σ the Pauli matrices. Notice that they satisfy

S(S=0)
aa′ (q, ω) = S(S=0)

a′a (q, ω) and

S(S=1)
aa′,i j (q, ω) = S(S=1)

a′a, ji (q, ω), (13)

and that they are real as can be shown using time-reversal
symmetry. Hence, the εi jk term in Eq (10) does not contribute.

The volume V drops out when one computes

R =
∑

p′
ν

Rpν→p′
ν
=

∫
d3 p′

ν

V

(2π )3
Rpν→p′

ν
=

∫
d3 p′

ν

d3R

d3 p′
ν

.

(14)
The double differential scattering rate can be written as

d2R

d cos θ d p′
ν

= p′ 2
ν

V

(2π )2
Rpν→p′

ν
= G2

8π
p′ 2

ν

∑
aa′=n,p

{
(1 + cos θ )CV,aCV,a′S(S=0)

aa′ (q, ω)

+ [ p̂′
νi p̂ν j + p̂′

ν j p̂νi + (1 − cos θ )δi j]CA,aCA,a′S(S=1)
aa′,i j (q, ω)

}
. (15)

Using Eν = pν and E ′
ν = p′

ν , we can express the double dif-
ferential scattering rate in terms of the energy and momentum
transfers using the following relations:

d2R

dq dω
= q

pν p′
ν

d2R

d cos θ d p′
ν

= q

EνE ′
ν

d2R

d cos θ dE ′
ν

, (16)

E ′
ν = Eν − ω, cos θ = E2

ν + E ′ 2
ν − q2

2EνE ′
ν

. (17)

On the other hand, introducing the notation σ0 = 1, the
dynamical structure factors can be written in the following
form:

Saa′,i j (q, ω) = − 1

π

1

1 − e−ω/T
Im�R

aa′,i j (q, ω), (18)

(with i = j = 0 for S = 0 and i, j = 1, 2, 3 for S = 1),
where �R

aa′,i j (q, ω) is the Fourier transform of the retarded

correlation function, which is defined as

�R
aa′,i j (x, t ) = −iθ (t )

∑
λ

Aλ

× 〈λ|[ψ̂†
a′ (x, t )σ jψ̂a′ (x, t ), ψ̂†

a (0, 0)σiψ̂a(0, 0)]|λ〉.
(19)

Thus we can relate the neutrino scattering rate to the nuclear
density and spin-density correlation functions.

B. Skyrme RPA response functions in asymmetric
nuclear matter

The response functions depend on the nuclear interaction.
Here we will use Skyrme interactions, because the solution
of the full RPA is relatively easy in this case. Skyrme inter-
actions, which started with the original work of Skyrme [40],
are well-known and popular effective nucleon-nucleon inter-
actions. In the early stage, they were mostly used in nuclear
structure calculations [41–43]. They are easy to use because
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they are zero-range interactions. The Skyrme energy-density
functional is also widely used to describe nuclear matter. In
the literature [44], the generalized Skyrme energy density
functional is written as

εs =Cρ
0 ρ2 + Cρ

1 (ρn − ρp)2 + C�ρ
0 ρ�ρ

+ C�ρ
1 (ρn − ρp)�(ρn − ρp) + Cτ

0 (ρτ − j2)

+ Cτ
1 [(ρn − ρp)(τn − τp) − (jn − jp)2]

+ CsT
0 (s · T − J2)

+ CsT
1 [(sn − sp) · (Tn − Tp) − (Jn − Jp)2]

+ Cs
0s2 + Cs

1(sn − sp)2 + C�s
0 s · �s

+ C�s
1 (sn − sp) · �(sn − sp) + C∇s

0 (∇ · s)2

+ C∇s
1 [∇ · (sn − sp)]2 + C∇J

0 (ρ∇ · J + s · ∇ × j)

+ C∇J
1 (ρn − ρp)∇ · (Jn − Jp)

+ C∇J
1 (sn − sp) · ∇ × (jn − jp). (20)

Then the Skyrme energy functional is given by integration,

Es =
∫

d3r εs. (21)

In the following description, let us follow the notation in
Ref. [45]. The residual particle-hole (ph) interaction is derived
by computing

V0
21 = δ2Es

δρ2′2δρ11′
, (22)

with the shorthand notation

1 =
(

a1, p1 + q
2
, s1

)
, 1′ =

(
a1, p1 − q

2
, s′

1

)
, (23)

and analogously for 2 and 2′. ρ11′ = 〈c†
1′c1〉 denotes the den-

sity matrix. Using this procedure, we automatically include
direct and exchange terms of the ph interaction [46]. There
is a minor difference between the case of asymmetric nuclear
matter and that of pure neutron matter. The general form of
the ph interaction in asymmetric nuclear matter is

V0
21 = v0

1 (q) + v0
2 p2

1 + v0
28 p2

2 + v0
3p1 · p2

+ [
v0

4 (q) + v0
5

(
p2

1 + p2
2

) + v0
6p1 · p2

]
σ1 · σ2

+ v0
8 iq · (p1 − p2) × (σ1 + σ2). (24)

(The reason for the unusual numbering of the coefficient v0
28 is

that we want to keep the same labeling for the other terms as in
[45].) In general, v0

28 is no longer equal to v0
2 . Actually, v0

28 =
v0

2 is still true except that v0
28,np = v0

2,pn 
= v0
2,np = v0

28,pn for
some Skyrme interactions like BSk19, BSk20, and so on.

To obtain the RPA vertex V , we need to solve the Bethe-
Salpeter-like equation:

V21 = V0
21 −

∑
3

V0
23Gph(p3, q)V31, (25)

where
∑

3 = ∑
s3s′

3a3

∫
d3 p3/(2π )3. The particle-hole Green’s

function is defined as

Ga
ph(p, q, ω) =

na
p+ q

2
− na

p− q
2

ω − (
εa

p+ q
2
− εa

p− q
2

) + iη
, (26)

where na
p = 1/(e(εa

p−μa )/T + 1) denotes the finite-temperature

occupation number and εa
p = p2

2m∗
a
+ Ua the HF single-particle

energy, with μa the chemical potential, Ua the mean field, and
m∗

a the effective mass of nucleons of kind a.
The number of terms will increase compared to Ref. [45]

for two reasons. One is because the energy transfer ω is not
zero, and the other is because the number of independent
terms cannot be reduced as in the pure neutron matter case.
The RPA vertex is finally determined as

V21 = v1 + v2 p2
1 + v3p1 ·p2 + v4σ1 ·σ2 + v5σ1 ·σ2 p2

1

+ v6σ1 ·σ2p1 ·p2 + v7σ1 ·qσ2 ·q + v8iq·p1×σ1

+ v9iq·p1×σ2 + v10 p2
1 p2

2 + v11p1 ·qp2 ·q
+ v12σ1 ·σ2 p2

1 p2
2 + v13σ1 ·σ2p1 ·qp2 ·q

+ v14σ1 ·qσ2 ·qp2
1 + v15σ1 ·qσ2 ·qp2

1 p2
2

− v16iq·p2×σ2 p2
1 − v17iq·p2×σ1 p2

1

+ v18q·p1×σ1q·p2×σ2 + v19p1 ·q
+ v20p1 ·qp2

2 + v21σ1 ·σ2p1 ·q + v22σ1 ·σ2p1 ·qp2
2

+ v23σ1 ·qσ2 ·qp1 ·q + v24σ1 ·qσ2 ·qp1 ·qp2
2

+ v25σ1 ·qσ2 ·qp1 ·qp2 ·q − v26iq·p2×σ2p1 ·q
− v27iq·p2×σ1p1 ·q + v28 p2

2 + v29σ1 ·σ2 p2
2

− v30iq·p2×σ2 − v31iq·p2×σ1 + v32σ1 ·qσ2 ·qp2
2

+ v33iq·p1×σ1 p2
2 + v34iq·p1×σ2 p2

2 + v35p2 ·q
+ v36p2 ·qp2

1 + v37σ1 ·σ2p2 ·q + v38σ1 ·σ2p2 ·qp2
1

+ v39σ1 ·qσ2 ·qp2 ·q + v40σ1 ·qσ2 ·qp2 ·qp2
1

+ v41iq·p1×σ1p2 ·q + v42iq·p1×σ2p2 ·q. (27)

Following the steps explained in [45], we define the general-
ized Lindhard functions

�a
k (q, ω) = −2

∫
d3 p

(2π )3
pkGa

ph(p, q, ω), (28)

�a
2L(q, ω) = −2

∫
d3 p

(2π )3
p2 cos2 ϑ Ga

ph(p, q, ω), (29)

�a
2T (q, ω) = �a

2 − �a
2L

2
, (30)

where ϑ is the angle between p and q, to compute the coeffi-
cients vi. Besides, a useful relation can be shown:

−2
∫

d3 p

(2π )3
ppkGa

ph(p, q, ω) = q
m∗

aω

q2
�a

k (q, ω). (31)
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To obtain vi, we solve the following linear system of
equations:

∑
k

(
δik − Aik,nn −Aik,np

−Aik,pn δik − Aik,pp

)(
vk,nn vk,np

vk,pn vk,pp

)

=
(

v0
i,nn v0

i,np

v0
i,pn v0

i,pp

)
, (32)

where the matrix elements Aik,aa′ for the different aa′ combi-
nations have the same form, only the effective mass m∗, v0

i ,
and �i are different. The expressions for the v0

i,aa′ and Aik are
given in the Appendix.

The full RPA response functions in asymmetric nuclear
matter can be given after finishing the numerical computation
of the coefficients vi by using the definition

�RPA,aa′,i j = −
∑

1

σ1iG
a′
ph(p1, q)σ1 j

+
∑
1,2

σ2 jG
a
ph(p2, q)V21,aa′Ga′

ph(p1, q)σ1i, (33)

where as in Eq. (18) i = j = 0 for S = 0 and i, j = 1, 2, 3 for
S = 1. The density response functions (S = 0) are

�
(S=0)
RPA,aa′ = �a′

0 δaa′ + v1,aa′�a′
0 �a

0 + v2,aa′�a′
2 �a

0

+ m∗
a′m∗

aω
2

q2
v3,aa′�a′

0 �a
0 + v10,aa′�a′

2 �a
2

+ m∗
a′m∗

aω
2v11,aa′�a′

0 �a
0 + m∗

a′ωv19,aa′�a′
0 �a

0

+ m∗
a′ωv20,aa′�a′

0 �a
2 + v28,aa′�a′

0 �a
2

+ m∗
aωv35,aa′�a′

0 �a
0 + m∗

aωv36,aa′�a′
2 �a

0.

(34)

The transverse spin response functions (S = 1, M = ±1) are

�
(S=1,M=±1)
RPA,aa′ = 1

2

3∑
i j=1

�
(S=1)
RPA,aa′,i j

(
δi j − qiq j

q2

)

= �a′
0 δaa′ + v4,aa′�a′

0 �a
0 + v5,aa′�a′

2 �a
0

+ m∗
a′m∗

aω
2

q2
v6,aa′�a′

0 �a
0 + v12,aa′�a′

2 �a
2

+ m∗
a′m∗

aω
2v13,aa′�a′

0 �a
0 + m∗

a′ωv21,aa′�a′
0 �a

0

+ m∗
a′ωv22,aa′�a′

0 �a
2 + v29,aa′�a′

0 �a
2

+ m∗
aωv37,aa′�a′

0 �a
0 + m∗

aωv38,aa′�a′
2 �a

0.

(35)

And the longitudinal spin response functions (S = 1,

M = 0) are

�
(S=1,M=0)
RPA,aa′ =

3∑
i j=1

�
(S=1)
RPA,aa′,i j

qiq j

q2

= �
(S=1,M=±1)
RPA,aa′ + q2(v7,aa′�a′

0 �a
0

+ v14,aa′�a′
2 �a

0 + v15,aa′�a′
2 �a

2

+ m∗
a′ωv23,aa′�a′

0 �a
0 + m∗

a′ωv24,aa′�a′
0 �a

2

+ m∗
a′m∗

aω
2v25,aa′�a′

0 �a
0 + v32,aa′�a′

0 �a
2

+ m∗
aωv39,aa′�a′

0 �a
0 + m∗

aωv40,aa′�a′
2 �a

0

)
.

(36)

For the sake of comparison with the literature, we give also
the expressions for the isoscalar (I = 0) and isovector (I = 1)
RPA response functions,

�
(SM;I=0)
RPA = �

(SM )
RPA,nn + 2�

(SM )
RPA,np + �

(SM )
RPA,pp (37)

and

�
(SM;I=1)
RPA = �

(SM )
RPA,nn − 2�

(SM )
RPA,np + �

(SM )
RPA,pp, (38)

respectively.
The lowest-order Landau approximation can be easily

computed when we set q = 0 and replace p2
1 and p2

2 by the
corresponding k2

F,a and k2
F,a′ , respectively, in the expressions

for the v0
i,aa′ . Only the coefficients v1,aa′ and v4,aa′ need to be

solved in that case.

III. RPA RESPONSE FUNCTIONS IN ASYMMETRIC
NUCLEAR MATTER AT FINITE TEMPERATURE

We now present and discuss the RPA response functions in
asymmetric nuclear matter at finite temperature. To check the
correctness of our RPA solution, we have reproduced some of
the zero-temperature results of [35], for pure neutron matter,
symmetric nuclear matter, and asymmetric nuclear matter.1

As an example for response functions at finite temperature,
we show in Fig. 1 the dynamical structure factors S(q, ω)
in different channels of asymmetric nuclear matter for the
parametrization SLy5 of the Skyrme interaction built by Cha-
banat et al. [48] (cf. Table I, which summarizes the parameters
of all interactions used in this paper). For comparison, the
Hartree-Fock (HF) response (i.e., �0) and the lowest-order
Landau approximation are also shown. We directly use the
proton fraction Yp instead of the isospin asymmetry factor
defined in Refs. [49,50] to specify the isospin asymmetry.
The pure neutron matter case corresponds to Yp = 0, and the
symmetric nuclear matter case corresponds to Yp = 0.5.

Figure 1 shows the results computed for a momentum
transfer q = 0.5 fm−1 at density ρ = 0.16 fm−3 and tem-
perature T = 10 MeV. The proton fraction is Yp = 0.2. In
the upper panel, results for channels S = 0 and HF response
are shown. Isoscalar (I = 0) and isovector (I = 1) responses
for full RPA have both a single-broad-peak structure. In the
Landau approximation, the isoscalar (I = 0) response has two
bumps that stem from the neutron and proton responses, simi-
larly to the HF response and in contrast to the full RPA. For the
isovector (I = 1) responses, the difference between full RPA
and the Landau approximation is quite big around ω = 40
MeV and the peak is shifted, but there are no additional
bumps.

1We checked the SLy5 results shown in Figs. 13 and 25 of [35].
In some cases, we found minor differences, but the authors of [35]
confirmed that our results were correct [47].
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FIG. 1. Isoscalar (I = 0) and isovector (I = 1) RPA response
functions for interaction SLy5 in asymmetric nuclear matter. ρ =
0.16 fm−3, Yp = 0.2, T = 10 MeV, q = 0.5 fm−1. Top: S = 0 and
HF response; bottom: S = 1 response.

In the lower panel, results for channels S = 1 are shown.
The difference between M = 0 and M = ±1 due to spin-
orbit interaction is small. The full RPA responses show two
bumps; the bump at high energy transfer is reminiscent of
the zero sound mode. The isoscalar (S = 1, I = 0) response
in Landau approximation is missing this enhancement. So
far, we do not see good agreement between full RPA and
the Landau approximation. Unfortunately there is also a big
difference between the peaks near ω = 55 MeV, although the
peak around ω = 20 MeV of the isovector response in the
Landau approximation agrees quite well with that of full RPA.

In short, the HF response and the lowest-order Landau
approximation fail to reproduce the full RPA. Hence, the full
RPA responses are required even though they are difficult to
get and take more time to compute.

Furthermore, we present response functions as required for
the neutrino scattering rates, i.e., for the different combina-
tions nn, np, and pp when the spin quantum numbers are
fixed. The results are shown in Fig. 2. The same interaction
(SLy5) and parameters are adopted as before. It is obvious that
there are different shapes and values between Snn and Spp since
the neutron and proton densities are not equal. As mentioned

FIG. 2. Dynamical structure factors Snn, Snp = Spn, and Spp (from
top to bottom) for interaction SLy5 in asymmetric nuclear matter.
The same parameters as in Fig. 1 are chosen.

in Eq. (13), Snp and Spn are the same for the corresponding
channels. As can be shown from Eqs. (11) and (12), Snn

and Spp are positive. However, Snp = Spn can be positive or
negative, although there are no negative values in the isoscalar
and isovector combinations of these four dynamical structure
factors (cf. Fig. 1). This implies that Snn + Spp � 2Snp(pn).

IV. NEUTRINO SCATTERING RATES

Neutrino-nucleon scattering is an essential part of neu-
trino transport in supernova simulations and proto–neutron
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star evolution. However, there are some problems in previous
studies as mentioned in the Introduction. Often the inelastic
scattering reactions were neglected as in Refs. [33,51], or
nucleons were treated as an ideal gas as in Ref. [34]. More-
over, the neutrino scattering expressions given in Ref. [27]
were obtained within the Landau approximation. Reference
[27] also reports an instability in Skyrme interaction SLy4 in
β equilibrated matter at 2ρ0. But in our examination, it turns
out that there is no instability because SLy4 was fitted without
J2 term [48] and ηJ (in the notation of [44]) should be 0, thus
avoiding the instability, as also pointed out in Ref. [52]. The
instability can be found in SLy5 which was fitted with the J2

term [48] (ηJ = 1). For this reason, we will in the rest of this
paper use SLy4 instead of SLy5.

We find that the relationship between neutrino scattering
rates and the scattering angle, the energy dependence of the
average scattering angle, and so on, have not yet been exten-
sively investigated in the literature. We now study neutrino
scattering rates of proto–neutron star and supernova matter
computed using various approximations. Especially, we will
compute the inelastic neutrino scattering rates using full RPA
response functions.

A. Angle dependence of neutrino scattering rates
in proto–neutron star and supernova matter

Let us start by obtaining the expression of the double-
differential neutrino scattering rate with RPA response
functions. According to Eq. (15), with the combination of
Eqs. (18), (34), (35), and (36), the double-differential neutrino
scattering rate can be written as

d2R

d cos θ dE ′
ν

= G2

8π
E ′ 2

ν

∑
aa′=n,p

{
(1 + cos θ )CV,aCV,a′S(S=0)

aa′

+ 2

[
EνE ′

νsin2θ

q2
+ 1 − cos θ

]

× CA,aCA,a′S(S=1,M=±1)
aa′

+
[

2(E ′
ν cos θ − Eν )(E ′

ν − Eν cos θ )

q2

+ 1 − cos θ

]
CA,aCA,a′S(S=1,M=0)

aa′

}
, (39)

where in the response functions ω = Eν − E ′
ν and q =√

E2
ν + E ′ 2

ν − 2EνE ′
ν cos θ . Equation (39) generalizes the ex-

pression given in Eq. (71) of Ref. [35] to the case of
asymmetric matter.2

Since neutrinos travel with the speed of light, we will in
practice present the scattering rate divided by c, which gives
the number of collisions per traveled distance, i.e., the inverse
of the mean-free path λ.

For the discussion of kinematic and RPA effects, the vari-
ables ω and q are more convenient than E ′

ν and θ . The

2There is a misprint in Eq. (71) of [35]: the factor E 2
ν on the right-

hand side should read E 2
ν′ (= E ′ 2

ν in our notation).

corresponding double-differential rate d2R
dq dω

can be computed
according to the relation presented in Eq. (16).

In the recent article [34], the results of the simulation of
proto–neutron star evolution with improved charged-current
neutrino-nucleon interactions are reported. The RG(SLy4)
EoS [53] constructed using Skyrme interaction SLy4 [48]
is employed in the simulation. The baryon density and the
corresponding proton fraction for different temperatures can
be found in Table 1 of [34]. We first compute the double-
differential neutrino scattering rates d2R

dq dω
for the Skyrme

interaction SLy4. We select temperature T = 15 MeV, baryon
number density ρb = 0.25 fm−3, and proton fraction Yp =
0.296 from [34]. The initial neutrino energy is fixed as Eν =
3T . The results computed using four approximations are
shown in Fig. 3. The red and steel-blue short-dashed lines
correspond to scattering angles θ = 0◦ and 180◦, respectively.
The red and blue long-dashed lines represent, respectively,
the maximum possible energy that can be transferred to neu-
trons and protons at zero temperature, i.e., ω = q2

2ma
+ qkF,a

ma

(a = n, p) in the first panel and q2

2m∗
a
+ qkF,a

m∗
a

in the other panels.
Obviously, the maximum scattering angle can be 180◦, but
the minimum scattering angle cannot be 0◦ except for elastic
scattering (ω = 0). There is no contribution from protons
when the combination of energy and momentum transfers
(q, ω) is located in the region between the two long-dashed
lines. There is also such a region below ω = 0. These two
regions are symmetric with respect to ω ↔ −ω: at ω > 0 the
neutrino excites the nuclear matter to some excited state, while
at ω < 0 it deexcites a thermally excited state. Because the
initial neutrino energy Eν is fixed, a larger energy transfer ω

corresponds to a smaller final neutrino energy E ′
ν . We can see

that scattering is not possible for too small E ′
ν . Besides, there

are some large scattering rates above the red dashed lines for
Landau approximation and RPA cases, which are produced
due to the zero sound mode.

Among the approximations shown in Fig. 3, the largest
scattering rates are reached for the case that nucleons are
treated as an ideal gas. This is consistent with the findings
of Ref. [27].

To complete this study, we also present the evolution
of neutrino scattering rates as functions of the cosine of
the angle. In addition to SLy4, we use another popular
Skyrme interaction in the field of astrophysics, BSk20 [54].
As examples, we compute the neutrino scattering rates at
T = 3.75 MeV, ρb = 0.196 fm−3, and Yp = 0.054 (also from
Ref. [34]) in addition to the combination T = 15 MeV, ρb =
0.25 fm−3, and Yp = 0.296 used already in Fig. 3. On the
one hand, T = 3.75 MeV and T = 15 MeV represent a low
temperature and an intermediate temperature, respectively. On
the other hand, according to Table 1 of [34], baryons consist of
only free neutrons and protons and no nuclei are present under
these conditions. To compare, we choose the same tempera-
ture, baryon number density, and proton fraction for BSk20
as for SLy4, although we do not know the exact combinations
that would be obtained if the interaction BSk20 was employed
in the simulation.

Figure 4 shows the evolution of neutrino scattering
rates as functions of the cosine of the angle for fixed
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FIG. 3. Double-differential neutrino scattering rates computed
using four approximations [from top to bottom: ideal gas, Hartree-
Fock (i.e., including the effective masses), Landau approximation,
and full RPA] at T = 15 MeV, ρb = 0.25 fm−3, and Yp = 0.296. The
initial neutrino energy is Eν = 3T . The Skyrme interaction SLy4 is
chosen.

initial and final neutrino energies, SLy4 interaction is cho-
sen. The upper and lower panels show the results for
temperature T = 3.75 MeV and T = 15 MeV, respec-
tively. The initial and final neutrino energies are fixed

FIG. 4. The neutrino scattering rates as a function of cos θ with
the initial neutrino energy Eν = 3T and the final neutrino energy
E ′

ν = Eν

2 ; the interaction SLy4 is chosen. Upper panel: T = 3.75
MeV, ρb = 0.196 fm−3, Yp = 0.054. Lower panel: T = 15 MeV,
ρb = 0.25 fm−3, Yp = 0.296.

to Eν = 3T and E ′
ν = Eν

2 . As we can see, the neutrino
scattering rates decrease with the decreasing scattering
angle (increasing cos θ ) when the nucleons are treated as an
ideal gas. The neutrino rates computed with the improved
approximations, such as the HF response, the lowest-order
Landau approximation, and the full RPA responses, have var-
ious evolution patterns. The minimum scattering angle of the
ideal gas case is larger than that computed with the other
approximations. That is because the effective mass reduces the
minimum scattering angle. For example, at zero temperature,
one has

ω � q2

2m∗
n

+ kF,nq

m∗
n

(40)

(except if there is zero sound), and from this one can show the
allowed values for cos θ for fixed Eν , E ′

ν (ω = Eν − E ′
ν):

cos θ � 1 − 1

2EνE ′
ν

[(√
k2

F,n + 2m∗
nω − kF,n

)2 − ω2
]
. (41)

025813-8



ENERGY AND ANGLE DEPENDENCE OF NEUTRINO … PHYSICAL REVIEW C 108, 025813 (2023)

FIG. 5. Similar to Fig. 4 for interaction BSk20.

For ω � k2
F,n

2m∗
n
, this reduces to

cos θ � 1 − ω2

2EνE ′
νv

2
F,n

(
1 − v2

F − m∗
nω

k2
F,n

+ · · ·
)

(42)

where vF,n = kF,n

m∗
n

denotes the Fermi velocity of the neutrons.
So, the maximum cos θ for the case that neutrons have a lower
effective mass is larger, giving a smaller scattering angle. The
rates computed with the lowest-order Landau approximation
are in qualitative agreement with those computed with the full
RPA responses. They have a sharp peak near the maximum
cos θ that originates from the S = 1 zero sound. The mini-
mum scattering angle in the upper figure (ρb = 0.196 fm−3) is
larger than that in the lower figure (ρb = 0.25 fm−3) for each
approximation because m∗

n decreases with increasing density.
Figure 5 is analogous to Fig. 4 but for interaction BSk20.

The neutrino scattering rates are decreasing with decreasing
scattering angle for ideal gas cases as well as HF compu-
tations. The other curves have a broad maximum near the
minimum scattering angle (maximum cos θ ). Surprisingly,
the results computed using the Landau approximation agree
very well with those computed using the full RPA responses.
Moreover, compared to Fig. 4, the minimum scattering angle
is larger than in the case of SLy4 for both two temperatures
because the neutron effective mass is larger with BSk20 than
with SLy4.

FIG. 6. Fermi velocity of neutrons as a function of the density
in neutron star matter under the condition of β equilibrium at zero
temperature.

The analysis above shows that the neutrino scattering rates
in proto–neutron star and supernova matter depend sensitively
on the adopted interaction and the selected approximations.
In particular, the minimum scattering angle (maximum cos θ )
differs for different interactions because it depends on the
Fermi velocity, which in turn depends on the effective mass.

B. Problem of the neutron Fermi velocity

As mentioned above, the minimum scattering angle is
related to the Fermi velocity. Therefore, we now study the
neutron Fermi velocity.

As an example, we take neutron star matter under the
condition of β equilibrium at zero temperature. The fractions
Yi can be obtained by combining the conditions of charge neu-
trality, ρp = ρe + ρμ, and chemical equilibrium, μn − μp =
μe = μμ, where ρe, ρμ, μe, and μμ are the electron and muon
densities and chemical potentials, respectively [55]. Once the
neutron and proton fractions are obtained as functions of
baryon number density, the corresponding neutron effective
mass and Fermi momentum can be given, and thus the Fermi
velocity.

Figure 6 shows the Fermi velocity of neutrons as a
function of the density for four Skyrme interactions, SLy4,
BSk19, BSk20, and BSk21 [48,54], which have been widely
applied to astrophysical research. The maximum central
densities of non-rotating neutron stars predicted by them
are 1.21 fm−3, 1.45 fm−3, 0.98 fm−3, and 0.97 fm−3,
respectively [56].

While one generally pays attention to the speed of sound,
requiring that it be less than the speed of light [54,55], Fig. 6
indicates that the Fermi velocity of neutrons in neutron star
matter exceeds the speed of light at a density below the max-
imum central density of the neutron star predicted by these
four Skyrme interactions. It means that these nonrelativistic
interactions should not be used at such high densities. In this
respect, the interaction BSk20 seems to be better than SLy4
if we need to choose one of them. As shown in Fig. 6, the
density where the neutron Fermi velocity exceeds the speed
of light is larger for BSk20 than for SLy4. Concerning BSk19,
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FIG. 7. Differential neutrino scattering rates as a function of the final neutrino energy E ′
ν with the fixed initial neutrino energy Eν = 3T for

interaction SLy4 (upper panels) and the corresponding evolution of the average cosine of the scattering angle (lower panels). The left panels
are at T = 3.75 MeV, ρb = 0.196 fm−3, Yp = 0.054, and the right panels are at T = 15 MeV, ρb = 0.25 fm−3, Yp = 0.296.

this density is even higher, but this interaction is too soft and
its maximum mass of a neutron star is too low.

An obvious solution for this problem could be to employ,
at least at high densities, a relativistic theory. Another option
would be to use interactions that give a larger effective mass.
For instance, the so-called KIDS Skyrme-like functionals con-
sidered in Ref. [57] predict a neutron effective mass that is
even larger than the free nucleon mass, and we have checked
that both neutron and proton Fermi velocities stay well below
the speed of light at all relevant densities in this case.

C. Energy dependence of neutrino scattering rates
and average scattering angle evolution

Although there exists a problem with Skyrme interactions,
the unphysical feature is not present at the densities and tem-
peratures that we chose in Sec IV A. Now we continue to
study the energy dependence of neutrino scattering rates and
average scattering angle under these conditions.

First, we study the dependence on the final neutrino energy
of the neutrino scattering rates and of the corresponding av-
erage cosine of the scattering angle. In supernova simulation
codes, one sometimes expands the neutrino-nucleon scattering

kernel in the first two terms of a Legendre series [58]:

d2R

dE ′
ν d cos θ

= 1

2
R0(Eν, E ′

ν ) + 3

2
R1(Eν, E ′

ν ) cos θ, (43)

where Rl (Eν, E ′
ν ) (l = 0, 1) can be defined as

Rl (Eν, E ′
ν ) =

∫ 1

−1
d cos θ

d2R

dE ′
ν d cos θ

Pl (cos θ ), (44)

with the Legendre polynomials P0(cos θ ) = 1, P1(cos θ ) =
cos θ . Then the coefficients R0 and R1 of the Legendre series
are directly related to the differential neutrino scattering
rate and average cosine of the scattering angle through the
relations

dR

dE ′
ν

=
∫ 1

−1
d cos θ

d2R

dE ′
ν d cos θ

= R0(Eν, E ′
ν ) (45)

and

〈cos θ〉 = R1(Eν, E ′
ν )

R0(Eν, E ′
ν )

. (46)

The upper panels in Fig. 7 show the differential neutrino
scattering rates as functions of the final neutrino energy E ′

ν

with the fixed initial neutrino energy Eν = 3T for interaction
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FIG. 8. Similar to Fig. 7 for interaction BSk20.

SLy4 at the same conditions as in Fig. 4, i.e., T = 3.75 MeV
(left panel) and T = 15 MeV (right panel). The lower panels
are the corresponding average cosine of the scattering angle
〈cos θ〉. The red short-dashed lines represent E ′

ν = Eν . As
noted before, in a broad range of E ′

ν , the neutrino scattering
rates computed by treating the nucleons as an ideal gas are the
largest, followed by those computed using the HF response.
Those computed using the Landau approximation and the full
RPA are smaller, although there are sharp peaks in Fig. 4 of
Sec. IV A. In a broad range of E ′

ν , the scattering angles com-
puted by treating the nucleons as an ideal gas are larger (i.e.,
〈cos θ〉 is smaller) than those computed using the other three
approximations. The maximum differential neutrino scatter-
ing rates lie around E ′

ν = Eν . The minimum scattering angles
are also found around this point. The differential neutrino
scattering rates and average scattering angles computed using
the Landau approximation agree well with those computed
using the full RPA, only the scattering angles have minor
differences between these two approximations.

Figure 8 is similar to Fig. 7 but for interaction BSk20. The
〈cos θ〉 curves have a simpler structure compared to Fig. 7.
The curves computed using the Landau approximation agree
very well with those computed using the full RPA. In a broad
range of E ′

ν , we see the same qualitative behavior as in Fig. 7,

i.e., the rates and scattering angles are largest for the ideal gas
and get reduced with the inclusion of the effective mass (HF),
and even more in the RPA (both with Landau approximation
or full RPA).

The neutrino scattering rates and scattering angles depend
sensitively on the final neutrino energy. Neglecting the in-
elastic neutrino-nucleon scattering or treating the nucleons as
an ideal gas is a crude approximation. The results computed
using the Landau approximation and the full RPA show a good
agreement. This is because, unlike in Fig. 1, the momentum
transfer q in neutrino scattering is typically much smaller
than the Fermi momentum. Therefore, if calculations within
the full RPA are too slow, one should at least introduce the
Landau approximation in the study of supernova simulation
or proto–neutron star evolution.

So far, we have arbitrarily fixed the initial neutrino energy
to Eν = 3T . Let us now study the dependence of the differ-
ential neutrino scattering rates on the initial and final neutrino
energies. Figure 9 shows the differential neutrino scattering
rates computed using the Landau approximation at T = 15
MeV, ρb = 0.25 fm−3, and Yp = 0.296. The Skyrme interac-
tion BSk20 is chosen. The maximum value that the neutrino
scattering rate can reach increases with increasing initial
neutrino energy. Maybe this can explain the neutrino trap-
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FIG. 9. Differential neutrino scattering rates computed using the
Landau approximation at T = 15 MeV, ρb = 0.25 fm−3, and Yp =
0.296. The Skyrme interaction BSk20 is chosen.

ping during the supernova explosion. Those neutrinos with a
large initial energy scatter frequently from matter so that the
neutrino mean-free path is small. They cannot escape if the
neutrino mean-free path is smaller than the scale of the star.
Hence, they are trapped, leading to neutrino heating. We also
see that the allowed minimum and maximum values of the
final neutrino energy are different for different initial neutrino
energies.

As we can see, scattering is not possible for too small E ′
ν

(as already mentioned in Sec. IV A). To get some estimate,
we consider as in the discussion of Fig. 3 the kinemati-
cally allowed energies at T = 0. Neglecting the zero-sound
and finite-temperature contributions, E ′

ν,min is reached at the
crossing point of the red long-dashed and the steel-blue short-
dashed lines in Fig. 3, i.e., at cos θ = −1, or in other words,
at q = Eν + E ′

ν :

Eν − E ′
ν � kF,n(Eν + E ′

ν )

m∗
n

+ (Eν + E ′
ν )2

2m∗
n

. (47)

From this equation, the condition that E ′
ν satisfies can be

given as

E ′
ν �

√
(m∗

n + kF,n)2 + 4m∗
nEν − m∗

n − kF,n − Eν . (48)

For Eν � m∗
n , we get

E ′
ν �

[
1 − vF,n

1 + vF,n
− 2Eν

m∗
n

1

(1 + vF,n)3
+ · · ·

]
Eν . (49)

Although we made some approximations when deriving this
lower limit, we see in Fig. 9 that, at least at T = 15 MeV,
scattering to final neutrino energies below this limit (shown
as the red dotted line) is very unlikely and can probably be
neglected in simulations.

Besides, detailed balance implies the relationship

e−Eν/T dR(Eν, E ′
ν )

E ′2
ν dE ′

ν

= e−E ′
ν/T dR(E ′

ν, Eν )

E2
ν dEν

, (50)

which can be also shown from the general expressions given
in Sec. II A. From this equation, we can derive

dR(E ′
ν, Eν )

dEν

= dR(Eν, E ′
ν )

dE ′
ν

(
Eν

E ′
ν

)2

e(Eν−E ′
ν )/T . (51)

Therefore, to save time, it is enough to compute only the lower
half (E ′

ν � Eν) of the scattering kernel needed for simulations
of supernova explosion and proto–neutron star evolution, and
we can complete it via Eq. (51).

V. CONCLUSION

This work aims to study energy and angle dependence of
neutrino scattering rates in proto-neutron star and supernova
matter within Skyrme RPA response functions. We first sum-
marize the derivation of the scattering rate and develop the full
RPA response functions in asymmetric nuclear matter at finite
temperature generalizing the method proposed in Ref. [45] for
the static response in pure neutron matter, as an alternative
(but equivalent) to the formalism of Ref. [35]. After making
a comparison between the full RPA and the other response
functions, such as the HF response and the lowest-order Lan-
dau approximation, for Skyrme interaction SLy5, we conclude
that in general these simpler approximations cannot reproduce
the full RPA very well.

We then compute the double-differential neutrino scatter-
ing rates using the various approximations, including ideal gas
treatment of nucleons, HF response, the lowest-order Landau
approximation, and the full RPA response function, for two
popular Skyrme interactions, SLy4 and BSk20, at different
realistic conditions of temperature, density, and proton frac-
tion taken from the literature [34]. The results indicate that for
given temperature, baryon number density, and proton frac-
tion the neutrino scattering rates as functions of the scattering
angle depend on the adopted interaction and the selected
approximation. As observed in earlier studies [27], the HF
scattering rates which take into account the effective mass
are sizeably smaller than those obtained for the ideal gas, and
including the RPA effects reduces them further. Now, for the
typical momentum transfers that occur in neutrino scattering,
the Landau approximation turns out to agree well with the full
RPA calculations. The minimum scattering angle is different
for different interactions because it depends sensitively on the
Fermi velocity which in turn depends on the effective mass.

Therefore, we study in more detail the neutron Fermi ve-
locity. We find that in neutron star matter it exceeds the speed
of light at a density below the maximum central density of
the neutron star predicted by the Skyrme interactions. While
the causality of nonrelativistic equations of state is routinely
checked by verifying that the speed of sound is less than the
speed of light, the problem of the Fermi velocity has, to our
knowledge, not attracted much attention in the existing litera-
ture. To solve this problem, it may be preferable to employ a
relativistic theory at high densities, or to choose interactions
which do not have this problem because they predict a larger
neutron effective mass.

Present neutrino transport codes cannot deal with fine de-
tails of the angle dependence such as the peak due to the
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zero-sound mode and the minimum scattering angle. Instead,
only the rate and the corresponding average scattering an-
gle for neutrino scattering from one energy to another can
be included, as described in Ref. [34]. Therefore, we study
the neutrino scattering rates and average scattering angles as
functions of the initial and final neutrino energies for different
temperatures, densities, and adopted interactions. Not only the
rates but also the average scattering angles are systematically
reduced as one passes from the ideal gas to the HF approxima-
tion and finally to the RPA. This may have some consequences
for supernova simulations because both the reduced rates as
well as the reduced scattering angles decrease the momentum
and energy that the neutrinos could transfer to the nuclear
matter to revive the shock.

It would be interesting therefore to see what happens if the
full rates and average scattering angles are included in the neu-

trino transport part of the core collapse and proto–neutron star
simulation. This necessitates, however, that the results of our
quite complicated calculations are parametrized or tabulated
in a suitable way. This is left for future work. Furthermore,
there are obviously many other open problems, such as the
strong dependence on the chosen interaction, the mentioned
problems of nonrelativistic models at high density, and the
scattering of neutrinos in matter at subsaturation densities
which consists of a mixture of unbound nucleons and nuclei.
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APPENDIX: SKYRME PARAMETERS, GENERALIZED LINDHARD FUNCTIONS �i, COEFFICIENTS v0
i,aa′ ,

AND MATRIX Aik FOR THE RPA RESPONSE

The parameters of the Skyrme interactions used in this article are listed in Table I.
The generalized Lindhard functions �i in this work can be written using the βi functions of Ref. [35]:

�0 = 2β0, �2 = 2q2β2 + q2

2
β0 + 2q2β1,

�4 = 2q4β5 + q4β2 + 4q4β4 + q4β1 + 2q4β3 + q4

8
β0, �2L = 2q2β3 + q2

2
β0 + 2q2β1. (A1)

The expressions for the required coefficients v0
i,aa′ are

v0
1,nn = (

Cρ
0 ρ2

)′′ + (
Cρ

1

)′′
(ρn − ρp)2 + 4

(
Cρ

1

)′
(ρn − ρp) + 2Cρ

1 + (
Cτ

0 ρ
)′′

τ + (
Cτ

1

)′′
(ρn − ρp)(τn − τp)

+ 2
(
Cτ

1

)′
(τn − τp) − {

1
2

[(
Cτ

0 ρ
)′ + (

Cτ
1

)′
(ρn − ρp) + Cτ

1

] + 2
[(

C�ρ
0 ρ

)′ + (
C�ρ

1

)′
(ρn − ρp) + C�ρ

1

]}
q2,

v0
2,nn = (

Cτ
0 ρ

)′ + (
Cτ

1

)′
(ρn − ρp) + Cτ

1 , v0
28,nn = v0

2,nn, v0
3,nn = −2

(
Cτ

0 + Cτ
1

)
,

TABLE I. Parameters for Skyrme interactions SLy4, SLy5, BSk19, BSk20, and BSk21 [48,54].

SLy4 SLy5 BSk19 BSk20 BSk21

t0 (MeV fm3) −2488.91 −2484.88 −4115.21 −4056.04 −3961.39
t1 (MeV fm5) 486.82 483.13 403.072 438.219 396.131
t2 (MeV fm5) −546.39 −549.40 0 0 0
t3 (MeV fm3+3α) 13777.0 13763.0 23670.4 23256.6 22588.2
t4 (MeV fm5+3β ) 0 0 −60.0 −100.000 −100.000
t5 (MeV fm5+3γ ) 0 0 −90.0 −120.000 −150.000
x0 0.834 0.778 0.398848 0.569613 0.885231
x1 −0.344 −0.328 −0.137960 −0.392047 0.0648452
x2 −1.000 −1.000 0 0 0
x3 1.354 1.267 0.375201 0.614276 1.03928
x4 0 0 −6.0 −3.00000 2.00000
x5 0 0 −13.0 −11.0000 −11.0000
t2x2 (MeV fm5) 0 0 −1055.55 −1147.64 −1390.38
W0 (MeV fm5) 123.0 126.0 110.802 110.228 109.622
α 1/6 1/6 1/12 1/12 1/12
β 0 0 1/3 1/6 1/2
γ 0 0 1/12 1/12 1/12
ηJ 0 1 0 0 0
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v0
4,nn = 2

(
Cs

0 + Cs
1

) − [
1
2

(
CsT

0 + CsT
1

) + 2
(
C�s

0 + C�s
1

)]
q2, v0

5,nn = CsT
0 + CsT

1 , v0
6,nn = −2v0

5,nn,

v0
8,nn = C∇J

0 + C∇J
1 , v0

9,nn = v0
8,nn. (A2)

v0
1,pp = (

Cρ
0 ρ2

)′′ + (
Cρ

1

)′′
(ρn − ρp)2 − 4

(
Cρ

1

)′
(ρn − ρp) + 2Cρ

1 + (
Cτ

0 ρ
)′′

τ + (
Cτ

1

)′′
(ρn − ρp)(τn − τp)

− 2
(
Cτ

1

)′
(τn − τp) − {

1
2

[(
Cτ

0 ρ
)′ − (

Cτ
1

)′
(ρn − ρp) + Cτ

1

] + 2
[(

C�ρ
0 ρ

)′ − (
C�ρ

1

)′(
ρn − ρp

) + C�ρ
1

]}
q2,

v0
2,pp = (

Cτ
0 ρ

)′ − (
Cτ

1

)′(
ρn − ρp

) + Cτ
1 , v0

28,pp = v0
2,pp, v0

3,pp = v0
3,nn, v0

4,pp = v0
4,nn, v0

5,pp = v0
5,nn,

v0
6,pp = v0

6,nn, v0
8,pp = v0

8,nn, v0
9,pp = v0

9,nn. (A3)

v0
1,np = (

Cρ
0 ρ2

)′′ + (
Cρ

1

)′′
(ρn − ρp)2 − 2Cρ

1 + (
Cτ

0 ρ
)′′

τ + (
Cτ

1

)′′
(ρn − ρp)(τn − τp)

− {
1
2

[(
Cτ

0 ρ
)′ − Cτ

1

] + 2
[(

C�ρ
0 ρ

)′ − C�ρ
1

]}
q2, v0

2,np = (
Cτ

0 ρ
)′ − (

Cτ
1

)′
(ρn − ρp) − Cτ

1 ,

v0
28,np = (

Cτ
0 ρ

)′ + (
Cτ

1

)′
(ρn − ρp) − Cτ

1 , v0
3,np = −2

(
Cτ

0 − Cτ
1

)
,

v0
4,np = 2

(
Cs

0 − Cs
1

) − [
1
2

(
CsT

0 − CsT
1

) + 2
(
C�s

0 − C�s
1

)]
q2, v0

5,np = CsT
0 − CsT

1 , v0
6,np = −2v0

5,np,

v0
8,np = C∇J

0 − C∇J
1 , v0

9,np = v0
8,np. (A4)

v0
1,pn = v0

1,np, v0
2,pn = v0

28,np, v0
28,pn = v0

2,np, v0
3,pn = v0

3,np, v0
4,pn = v0

4,np, v0
5,pn = v0

5,np,

v0
6,pn = v0

6,np, v0
8,pn = v0

8,np, v0
9,pn = v0

9,np. (A5)

The expressions of the coefficients Ci in terms of the Skyrme parameters are given in Appendix A of [44]. But these expressions
cannot be applied for BSk19, BSk20, and BSk21 until the following substitutions are made [59]:

t1 → t1 + t4ρ
β, t1x1 → t1x1 + t4x4ρ

β, t2 → t2 + t5ρ
γ , t2x2 → t2x2 + t5x5ρ

γ . (A6)

The nonvanishing matrix elements Aik are given below. For brevity, the isospin indices are not written. To get Aik,aa′ , one has
to replace in the following expressions m∗ → m∗

a′ , v0
n → v0

n,aa′ , and �n → �a′
n :

A1,1 = v0
1�0 + v0

2�2, A1,28 = v0
1�2 + v0

2�4, A1,30 = 2v0
8q2�2T , A1,35 = m∗ω

(
v0

1�0 + v0
2�2

)
,

A2,2 = v0
1�0 + v0

2�2, A2,10 = v0
1�2 + v0

2�4, A2,16 = 2v0
8q2�2T , A2,36 = m∗ω

(
v0

1�0 + v0
2�2

)
,

A3,3 = v0
3�2T , A3,9 = v0

9q2�0, A3,34 = v0
9q2�2, A3,42 = m∗ωv0

9q2�0,

A4,4 = v0
4�0 + v0

5�2, A4,29 = v0
4�2 + v0

5�4, A4,31 = v0
9q2�2T , A4,37 = m∗ω

(
v0

4�0 + v0
5�2

)
,

A5,5 = v0
4�0 + v0

5�2, A5,12 = v0
4�2 + v0

5�4, A5,17 = v0
9q2�2T , A5,38 = m∗ω

(
v0

4�0 + v0
5�2

)
,

A6,6 = v0
6�2T , A7,7 = v0

4�0 + v0
5�2, A7,31 = −v0

9�2T , A7,32 = v0
4�2 + v0

5�4,

A7,39 = m∗ω
(
v0

4�0 + v0
5�2

)
, A8,6 = v0

8�2T , A8,8 = v0
1�0 + v0

2�2, A8,18 = 2v0
8q2�2T ,

A8,33 = v0
1�2 + v0

2�4, A8,41 = m∗ω
(
v0

1�0 + v0
2�2

)
, A9,3 = v0

9�2T , A9,9 = v0
4�0 + v0

5�2,

A9,34 = v0
4�2 + v0

5�4, A9,42 = m∗ω
(
v0

4�0 + v0
5�2

)
, A10,2 = v0

28�0, A10,10 = v0
28�2,

A10,36 = m∗ωv0
28�0, A11,3 = v0

3 (�2L − �2T )

q2
, A11,9 = −v0

9�0, A11,11 = v0
3�2L,

A11,19 = m∗ω
q2

v0
3�0, A11,20 = m∗ω

q2
v0

3�2, A11,34 = −v0
9�2, A11,42 = −m∗ωv0

9�0,

A12,5 = v0
5�0, A12,12 = v0

5�2, A12,38 = m∗ωv0
5�0, A13,6 = v0

6 (�2L − �2T )

q2
,

A13,13 = v0
6�2L, A13,21 = m∗ω

q2
v0

6�0, A13,22 = m∗ω
q2

v0
6�2, A14,14 = v0

4�0 + v0
5�2,

A14,15 = v0
4�2 + v0

5�4, A14,17 = −v0
9�2T , A14,40 = m∗ω

(
v0

4�0 + v0
5�2

)
, A15,14 = v0

5�0,

A15,15 = v0
5�2, A15,40 = m∗ωv0

5�0, A16,2 = v0
8�0, A16,10 = v0

8�2,

A16,16 = v0
6�2T , A16,36 = m∗ωv0

8�0, A17,5 = v0
9�0, A17,12 = v0

9�2,

A17,17 = v0
3�2T , A17,38 = m∗ωv0

9�0, A18,8 = v0
8�0, A18,18 = v0

6�2T ,
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A18,33 = v0
8�2, A18,41 = m∗ωv0

8�0, A19,3 = m∗ω
q2

(
v0

1�0 + v0
2�2

)
, A19,11 = m∗ω

(
v0

1�0 + v0
2�2

)
,

A19,19 = v0
1�0 + v0

2�2, A19,20 = v0
1�2 + v0

2�4, A19,26 = 2v0
8q2�2T , A20,3 = m∗ω

q2
v0

28�0,

A20,11 = m∗ωv0
28�0, A20,19 = v0

28�0, A20,20 = v0
28�2, A21,6 = m∗ω

q2

(
v0

4�0 + v0
5�2

)
,

A21,13 = m∗ω
(
v0

4�0 + v0
5�2

)
, A21,21 = v0

4�0 + v0
5�2, A21,22 = v0

4�2 + v0
5�4, A21,27 = v0

9q2�2T ,

A22,6 = m∗ω
q2

v0
5�0, A22,13 = m∗ωv0

5�0, A22,21 = v0
5�0, A22,22 = v0

5�2,

A23,23 = v0
4�0 + v0

5�2, A23,24 = v0
4�2 + v0

5�4, A23,25 = m∗ω
(
v0

4�0 + v0
5�2

)
, A23,27 = −v0

9�2T ,

A24,23 = v0
5�0, A24,24 = v0

5�2, A24,25 = m∗ωv0
5�0, A25,23 = m∗ω

q2
v0

6�0,

A25,24 = m∗ω
q2

v0
6�2, A25,25 = v0

6�2L, A26,3 = m∗ω
q2

v0
8�0, A26,11 = m∗ωv0

8�0,

A26,19 = v0
8�0, A26,20 = v0

8�2, A26,26 = v0
6�2T , A27,6 = m∗ω

q2
v0

9�0,

A27,13 = m∗ωv0
9�0, A27,21 = v0

9�0, A27,22 = v0
9�2, A27,27 = v0

3�2T ,

A28,1 = v0
28�0, A28,28 = v0

28�2, A28,35 = m∗ωv0
28�0, A29,4 = v0

5�0,

A29,29 = v0
5�2, A29,37 = m∗ωv0

5�0, A30,1 = v0
8�0, A30,28 = v0

8�2,

A30,30 = v0
6�2T , A30,35 = m∗ωv0

8�0, A31,4 = v0
9�0, A31,29 = v0

9�2,

A31,31 = v0
3�2T , A31,37 = m∗ωv0

9�0, A32,7 = v0
5�0, A32,32 = v0

5�2,

A32,39 = m∗ωv0
5�0, A33,8 = v0

28�0, A33,33 = v0
28�2, A33,41 = m∗ωv0

28�0,

A34,9 = v0
5�0, A34,34 = v0

5�2, A34,42 = m∗ωv0
5�0, A35,1 = m∗ω

q2
v0

3�0,

A35,28 = m∗ω
q2

v0
3�2, A35,35 = v0

3�2L, A36,2 = m∗ω
q2

v0
3�0, A36,10 = m∗ω

q2
v0

3�2,

A36,36 = v0
3�2L, A37,4 = m∗ω

q2
v0

6�0, A37,29 = m∗ω
q2

v0
6�2, A37,37 = v0

6�2L,

A38,5 = m∗ω
q2

v0
6�0, A38,12 = m∗ω

q2
v0

6�2, A38,38 = v0
6�2L, A39,7 = m∗ω

q2
v0

6�0,

A39,32 = m∗ω
q2

v0
6�2, A39,39 = v0

6�2L, A40,14 = m∗ω
q2

v0
6�0, A40,15 = m∗ω

q2
v0

6�2,

A40,40 = v0
6�2L, A41,8 = m∗ω

q2
v0

3�0, A41,33 = m∗ω
q2

v0
3�2, A41,41 = v0

3�2L,

A42,9 = m∗ω
q2

v0
6�0, A42,34 = m∗ω

q2
v0

6�2, A42,42 = v0
6�2L. (A7)
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