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Structure effects of exotic nuclei in the A ≈ 30 mass region relevant for determining
abundance patterns in explosive nucleosynthesis
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Background: In the current understanding, the rapid neutron capture process in explosive scenarios primarily
produces heavy elements. Though the precise astronomical sites are under consideration, it has been proposed
that in explosive environments such as core-collapse supernovae, light and medium-mass neutron-rich nuclei
play a role in the r process.

Purpose: Proper nuclear physics inputs for neutron-rich exotic nuclei are essential in determining the final
abundances. The statistical Hauser-Feshbach model is not always reliable in the A ≈ 30 mass region, especially
for exotic nuclei. Therefore, inputs derived from models that account for the structure and reactions of exotic
nuclei are necessary, which could affect the abundance patterns considerably.

Method: We perform an abundance calculation in the deformed A ≈ 30 mass region for a network of neutron-
rich Na, Mg, and Al isotopes adopting constant temperatures, 3.4 GK and 0.62 GK, and corresponding densities
in a core-collapse supernova. We consider selected neutron capture and photodisintegration rates calculated with
the finite-range distorted wave Born approximation (FRDWBA) method, including deformation effects, and shell
model β decay rates, wherever possible, along with those from the JINA-REACLIB database. A comparison is
also made with rates from the TALYS estimates.

Results: We observe a significant difference in abundances calculated by incorporating FRDWBA inputs
along with the statistical inputs, compared with the results calculated using only the statistical model inputs,
especially at 0.62 GK. The abundance patterns suggest that neutron capture reactions are not dominant at 3.4
GK, while at 0.62 GK, (n, γ ) reactions mostly dominate, and more neutron-rich elements near the drip line are
produced.

Conclusion: Incorporating the exotic structure of nuclei involved in reaction networks is important, even
though the deformation effects may not have a major significance. At T9 = 0.62, 35Na and 36Mg prefer to undergo
β decay rather than capturing a neutron.

DOI: 10.1103/PhysRevC.108.025812

I. INTRODUCTION

The rapid neutron capture process (r process) is thought
to be responsible for the production of half of the heav-
ier elements and some of the lighter elements in nature
[1,2]. The astronomical sites for this process are still un-
der active consideration. The possible scenarios where the r
process may occur are some of the highly neutron-rich en-
vironments like neutron-star–neutron-star (NS-NS) mergers,
neutron-star–black-hole (NS-BH) mergers, and core-collapse
supernovae (CCSNe). The nucleosynthesis in the neutrino-
driven wind (NDW) in CCSNe has been widely studied in
the past decades [3,4]. The general scenario is that the seed
nuclei in NDW are produced during the early stage of expan-
sion when the α-capture reaction dominates. Later, when the
temperature and density become relatively lower, the charged
particle reactions slow down, and r-process nucleosynthesis

*r_barman@ph.iitr.ac.in
†shahariar.ph@sric.iitr.ac.in
‡rchatterjee@ph.iitr.ac.in

starts from the seed nuclei. But for a short dynamical
expansion timescale, the production of seed nuclei is reduced
which results in an enhancement in the neutron-to-seed ratio,
as reported in [4]. In this work, the authors use the NDW
model in a core-collapse supernova to study the r-process nu-
cleosynthesis. At a short expansion timescale, the temperature
and density fall rapidly, and the charged particle reactions do
not produce enough seed nuclei. This results in enhancing the
neutron-to-seed ratio, which may be sufficient to synthesize
heavier r-process elements. Therefore, the neutron-to-seed
ratio is an important parameter to determine the possibility
of the occurrence of r-process nucleosynthesis in NDW asso-
ciated with CCSNe. The high neutron-to-seed ratio can only
be achieved by high entropy, fast expansion, and low electron
fraction [5]. Recent studies indicate that NDW outflow may
not exhibit these conditions and are only capable of producing
weak r-process elements (up to A ≈ 125) [6,7]. It is generally
known that although many assumed conditions, like high en-
tropies, are not found in many current simulations of NDW
in CCSNe, they may be possible in other r-process scenarios
(Ref. [8], for example). A very recent study shows that a
secondary heating source within the NDW in a protoneutron
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star can change the hydrodynamic conditions which in turn,
can help in the production of main r-process elements [9].
This suggests that one still cannot completely eliminate the
possibility of NDW being one of the possible scenarios for
r-process nucleosynthesis.

It was found in Ref. [4] that the inclusion of lighter
neutron-rich nuclei in the full network can considerably
change the final abundance patterns. Therefore, to understand
the effect of these neutron-rich nuclei in producing the seed
nuclei for the main r process, it is essential to accurately
measure the (n, γ ) reaction rates associated with these nuclei.
However, direct experimental measurement is often difficult
due to very low capture cross sections. Thus, one must rely on
indirect methods with theoretical inputs to calculate the cross
sections and reaction rates [10,11]. Various indirect methods,
such as the asymptotic normalization constant (ANC) method
[12], Trojan horse (TH) method [13,14], and Coulomb dis-
sociation (CD) method [15,16] are some of the widely used
methods that are used to calculate the reaction cross sections
and rates of these nuclei. We are particularly interested in the
CD method as, in this case, on choosing proper kinematic
conditions, one can ensure a larger cross section that could
be measurable [17].

The statistical Hauser-Feshbach model is used for the
majority of the nuclear reaction calculations in astrophysi-
cal environments [18]. This model is particularly useful in
situations when the level density around the peak of pro-
jectile energy in the contributing energy window is high
enough to justify a statistical treatment. It is apparent in many
studies that the statistical model estimates for most of the
lighter neutron-rich nuclei with A ≈ 30 differ significantly
from the other theoretical calculations [19–21]. For exam-
ple, in Ref. [21], the authors have calculated the reaction
rates for 36Mg(n, γ ) 37Mg using the post-form finite-range
distorted wave Born approximation (FRDWBA) theory. They
have adopted the 36Mg(0+) ⊗ 2p3/2ν configuration and a
neutron separation energy, Sn = 0.35 MeV for the ground
state of 37Mg and compared the rates with the statisti-
cal Hauser-Feshbach model calculations. Another similar
study [20] has been carried out for 33Na(n, γ ) 34Na adopting
the 33Na(3/2+) ⊗ 2p3/2ν configuration and Sn = 0.17 MeV.
Both these reactions are very important in determining the
r-process path of the Na and Mg isotopes in explosive nu-
cleosynthesis, which can finally affect the final abundance
pattern. A large discrepancy between these rates in both stud-
ies has been observed, which questions the reliability of this
model for these neutron-rich nuclei. Therefore, a rigorous
study of (n, γ ) reactions of nuclei in this region is necessary
to predict astrophysical abundances better.

In this work, we consider a small reaction network of
neutron-rich isotopes of Na, Mg, and Al near the drip line
and perform the abundance calculation at two different tem-
peratures depicting two different nucleosynthesis scenarios
in a core-collapse supernova. We incorporate the radiative
neutron capture rates for the available nuclei calculated using
CD method under the framework of FRDWBA theory that
includes all the structure inputs of these exotic nuclei. A major
advantage of FRDWBA theory is that it is a full-order quan-
tum mechanical reaction theory and the breakup contributions

of the projectile cover the entire nonresonant continuum.
Thus, one does not have to deal with the multipole strength
distributions which is required in other theories [20,22,23].
The corresponding photodisintegration decay constants are
also calculated. The goal is to observe how much difference it
can make in the elemental abundances by including reaction
inputs calculated with the FRDWBA approach, wherever pos-
sible in the network, along with the inputs from the statistical
model, taken from the JINA-REACLIB database, when com-
pared with the result calculated using only statistical estimates
obtained from JINA-REACLIB database. The available ex-
perimental β-decay rates are taken from the JINA-REACLIB,
others are calculated using the shell model. The β-decay rates
are common for all sets of calculations done in this work. We
also make a comparison of the result with inputs calculated
from the TALYS code, to check the reliability of the statistical
model in the region of interest.

In Sec. II, we present a formalism of our work. Brief
descriptions using the CD method as an indirect approach
to calculate radiative capture and photodisintegration rates
and microscopic shell model calculations of β-decay rates
are presented as inputs to abundance calculations. In Sec. III,
we present our results and discussions, wherein the nuclear
physics inputs and the subsequent abundance calculations are
discussed. The summary and conclusions of our paper appear
in Sec. IV.

II. FORMALISM

A. Radiative capture reactions

A fully quantum mechanical post-form FRDWBA theory
with the inclusion of deformation effects [24,25] is used to
calculate elastic breakup cross sections (like the relative en-
ergy spectrum) and subsequently the astrophysical reaction
rates. The deformation is incorporated in this theory using the
axially symmetric quadrupole-deformed potential.

Consider that a projectile a with substructures b + c is
made to break up in the Coulomb field of a heavy target t .
The relative energy spectrum, dσ/dEbc, corresponding to the
process a + t −→ b + c + t is calculated using

dσ

dEbc
=

∫
d�bcd�at

(
2π

h̄vat

)
μatμbc pat pbc

h6

×
∑
	m

1

2	 + 1
|β	m|2, (1)

where vat is the velocity of the projectile with respect to
the target, �bc, �at are the solid angles, μbc, μat , pbc, and
pat are the reduced mass and momentum of b − c and a − t
systems, respectively. β	m is the reduced transition amplitude
[25] containing the ground state wave function, φ	m

a (r), of
the projectile a, with 	 and m as the relative orbital angular
momentum and its corresponding projection, respectively.

The quadrupole deformation parameter, β2 enters through
the short-ranged potential Vbc, the initial-state potential be-
tween the substructures b and c via [25,26]

Vbc(r) = V0 f (r) − β2RV0
df (r)

dr
Y 0

2 (r̂). (2)
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Here, V0 is the depth of the spherical Woods-Saxon potential
and f (r) = [1 + exp ( r−R

a0
)]−1 with R = r0A1/3, r0 and a0 be-

ing the radius and diffuseness parameters, respectively.
By evaluating the relative energy spectrum from Eq. (1),

one can calculate the photodisintegration cross section
using [15]

dσ

dEbc
= 1

Eγ

nπLσ
photo
πL , (3)

provided only a single multipolarity, π , with order L domi-
nates. nπL is the virtual photon number which fully depends
on the a − t system. The γ energy, Eγ , is related to the relative
energy, Ebc, by Eγ = Ebc + Sn, where Sn is the one-nucleon
separation energy of the (b + c) system. The photodisinte-
gration decay constant is then calculated using the following
relation [27]:

λγ = 8π

h3c2

∫ ∞

0

E2
γ

exp (Eγ /kT ) − 1
σ

photo
πL dEγ . (4)

The radiative capture cross section, σ rad
πL can be obtained

from the photodisintegration cross section using the principle
of detailed balance,

σ rad
πL = 2(2 ja + 1)

(2 jb + 1)(2 jc + 1)

k2
γ

k2
σ

photo
πL . (5)

ji’s are the spins of particle i, (i = a, b, c), and the wave
number in the (b + c) channel is given by k =

√
2μbcEbc/h̄2,

while the photon wave number is kγ = Eγ /h̄c.
Subsequently, the radiative capture rate (R) can be calcu-

lated by folding the capture cross section with the relative
velocity vbc of the b + c system, corresponding to the rela-
tive energy, Ebc, and averaging over the Maxwell Boltzmann
velocity distribution, where R = NA〈σ rad

πL vbc〉.

B. β-decay constants from the nuclear shell model

The half-life is an important parameter that characterizes
the β decay of a nucleus. The partial half-life is related to
the transition probability T i→ f (also, equivalently the β-decay
constant λβ) between initial (|i〉) and final (| f 〉) states as [28]

t i→ f
1/2 = ln 2

T i→ f
= κ

fo
(
Bi→ f

F + Bi→ f
GT

) . (6)

Here, Bi→ f
F and Bi→ f

GT are the Fermi and Gamow-Teller
reduced transition probability between states |i〉 and | f 〉,
respectively, and the constant κ is defined as [28] κ =
2π3h̄7 ln 2/m5

ec4G2
F, where me is the electron mass, c is the

speed of light, and GF is the Fermi coupling constant. In the
calculation, we have used the experimentally measured value
of κ = 6147 s [28]. The Fermi phase-space integral f0 is
calculated with the expression [28,29]

f0 =
∫ E0

1
F0(Z f , ε)pε(E0 − ε)2dε, (7)

where F0 is the Fermi function, Z f is the number of pro-
tons of the daughter nucleus, Ee is the total energy of
the emitted electron. Other parameters are defined as [28]
ε = Ee/mec2, E0 = Ei − E f /mec2, p = √

ε2 − 1, where

FIG. 1. Reaction network for neutron-rich Na, Mg, and Al
isotopes.

Ei and E f are the energy of the initial and final nuclear
states, respectively. For β− decay, we can also write E0 =
(Qβ− + mec2)/mec2, where Qβ− is the energy released in the
decay.

The Fermi and Gamow-Teller reduced transition probabil-
ities are defined as [28]

Bi→ f
F = g2

V

2Ji + 1

(∣∣Mi→ f
F

∣∣2)
, Bi→ f

GT = g2
A

2Ji + 1

(∣∣Mi→ f
GT

∣∣2)
,

(8)

where gV = 1.0 and gA = 1.27 are the vector and bare
axial-vector coupling constants of the weak interaction, re-
spectively. The necessary Fermi Mi→ f

F and Gamow-Teller
Mi→ f

GT nuclear matrix elements (NMEs) are calculated using
the nuclear shell model [30]. In this approach, the many-body
system is described by the Hamiltonian, which can be written
in second quantization formalism in terms of single-particle
energies εi, two-body matrix elements V̂i jkl , and creation (â†

i )
and annihilation (âi) operators as [30]

Ĥ =
∑

i

εiâ
†
i âi + 1

4

∑
i jkl

V̂i jkl â
†
i â†

j âk âl . (9)

The input parameters εi and V̂i jkl are used to construct the
Hamiltonian of the many-body states, which are then diag-
onalized to obtain the eigenenergies and wave functions of
the nuclei. These wave functions are subsequently used to
calculate the one-body transition density (OBTD) which is
the matrix element of neutron annihilation and proton cre-
ation operators between the initial and final nucleus. Finally,
the Mi→ f

F and Mi→ f
GT are calculated using OBTD and single

particle matrix elements of the decaying neutron and the final
proton.

C. Nuclear network

The nuclear abundance is calculated considering a network
for neutron-rich Na, Mg, and Al isotopes as shown in Fig. 1.
For a nuclear species i, the abundance evolution is given by
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the following differential equation [27]:

dNi

dt
=

⎡
⎣∑

j,k

NjNk〈σv〉 j,k→i +
∑

l

λβ,l→iNl +
∑

m

λγ ,m→iNm

⎤
⎦

−
⎡
⎣∑

n

NnNi〈σv〉ni +
∑

o

λβ,i→oNi +
∑

p

λγ ,i→pNi

⎤
⎦.

(10)

Here, Ni is the number density of the species i, 〈σv〉 is the
reaction rate per particle pair for a particular reaction, and
λβ’s are the β-decay constants.1 The terms in the first bracket
of Eq. (10) represent all the processes producing the species
i, whereas the terms in the second bracket represent the pro-
cesses destroying the species i. In the first bracket, The first
term represents the sum over all the reactions producing the
species i via reactions between j and k; the second term rep-
resents the sum over all β decays of nuclei l leading to i; and
the third term represents sum over all the photodisintegration
reactions of nuclei m leading to nuclei i. Although λγ will be
called the photodisintegration decay ‘constant’, unlike λβ , it
will vary with temperature.

Similar arguments are applied to the terms in the second
bracket of Eq. (10). If a reaction between nonidentical par-
ticles ( j 	= k) creates two species i, then the first term in
the first bracket has to be multiplied by 2. If j and k are
identical and produce one species of i, it must be divided
by 2. Equation (10) holds for all other reactions, including
identical particles. However, for three-particle reactions, one
can refer to [31,32]. It is convenient to write Eq. (10) in terms
of nuclear abundance, Yi, instead of Ni, which is given by
Yi = Ni/ρNA, where ρ is the density of the stellar medium,
and NA is Avogadro’s number.

Thus, Eq. (10) in terms of nuclear abundance Yi would be

dYi

dt
=

⎡
⎣∑

j,k

ρNAYjYk〈σv〉 j,k→i +
∑

l

λβ,l→iYl+
∑

m

λγ ,m→iYm

⎤
⎦

−
⎡
⎣∑

n

ρNAYnYi〈σv〉ni +
∑

o

λβ,i→oYi +
∑

p

λγ ,i→pYi

⎤
⎦.

(11)

In the next section, we will discuss a variety of nuclear physics
inputs to Eq. (11), before proceeding to calculate the time
evolution of abundance of all the nuclear species associated
with the network that we have considered in Fig. 1.

III. RESULTS AND DISCUSSIONS

A. Nuclear physics inputs

The primary aim is to solve the coupled differential equa-
tions for the chosen network consisting of neutron-rich Na,

1While λβ is constant, λβNi, defined as the ‘β-decay rate’, will not
be constant.

Mg, and Al isotopes at T9 = 3.4 and T9 = 0.62 adopting the
conditions considered in [4] and subsequently display the
abundance evolution with time. With this motivation, we focus
on the nuclear physics inputs associated with the neutron-rich
Na, Mg, and Al isotopes to investigate the changes in element-
wise abundances.

Following Refs. [20,21], and Eqs. (5), (3), the 33Na(n, γ )
34Na and 36Mg(n, γ ) 37Mg radiative capture, and 34Na(γ , n)
33Na and 37Mg(γ , n) 36Mg photodisintegration cross sections
are computed with the FRDWBA theory, for β2 = 0.0 (no
deformation) and β2 = 0.5 (with deformation). The (γ , n)
photodisintegration constants [Eq. (4)] are also calculated by
integrating from a lower limit, which is the one neutron sepa-
ration energy (0.17 MeV for 34Na and 0.35 MeV for 37Mg) till
the limit of convergence (≈6 MeV). The Maxwell-averaged
radiative capture rates and the photodisintegration constants
of the above reactions are shown in Fig. 2, as a function of
temperature (in the units of 109 GK). The FRDWBA results,
in light of the exotic nature of the nuclei involved, are shown
for β2 = 0.0 and β2 = 0.5, with the black solid and green
dashed line, respectively.

For the purpose of comparison, in Fig. 2, the other radia-
tive capture rates and photodisintegration constants shown in
red dotted and pink dash-dotted lines, and blue lines with
crosses are obtained from the JINA-REACLIB database and
the standard TALYS code (version 1.96), respectively. TALYS

uses the statistical model to calculate Maxwell-averaged re-
action rates at astrophysical temperatures treating the target
nuclei in the ground as well as in excited states. In our calcu-
lations, we used the Gogny-Hartree-Fock-Bogoliubov model
for level densities available in tabular format, the Brink-Axel
Lorentzian model for the γ -ray strength function [33,34], and
the Goriely HFB-Skyrme table for the theoretical mass model
[35], if the experimental mass is not available. Incidentally,
we did not see any perceptible change in the Q values for
the 33Na(n, γ ) 34Na or 36Mg(n, γ ) 37Mg, 0.17 MeV and 0.24
MeV, respectively, while choosing the mass model options as
HFB-Skyrme or the finite-range droplet model (FRDM). One
may refer to [36] for more information regarding the TALYS

inputs.
The Q values used in TALYS for the reactions shown in (a)

and (b) of Fig. 2 are 0.17 MeV and 0.24 MeV, respectively,
which are different from the Ref. [18] of JINA-REACLIB
versions (1.208 MeV and −0.32 MeV, respectively). The large
differences in Q values cause the rates to differ vastly from
each other. In fact, we observe a completely different trend
in reaction rates for the reaction 36Mg(n, γ ) 37Mg shown in
the pink dash-dotted line in panel (b) of Fig. 2, which arises
due to the use of negative Q value in this reaction. However,
the estimation of the same rates from Ref. [37], which is also
a part of the JINA-REACLIB compilation for this reaction,
shown by the red solid line, uses a Q value of 0.23 MeV, that
is near to that used in TALYS. This generates a pattern that is
similar to the TALYS result. Therefore, for the JINA-REACLIB
compilation, we take the 36Mg(n, γ ) 37Mg rate from Ref. [37],
while the rest of the rates are from the more recent [18].
One notes that while in the former case [37], the mass
model used is not apparent, in the latter [18], the FRDM is
used.
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FIG. 2. The reaction rates for (a) 33Na(n, γ ) 34Na, (b) 36Mg(n, γ ) 37Mg, (c) 34Na(γ , n) 33Na, and (d) 37Mg(γ , n) 36Mg. The black solid
lines represent the rates calculated using FRDWBA theory with no deformation (β2 = 0.0), the green dashed lines represent FRDWBA rates
including the deformation effect (β2 = 0.5), the pink dash-dotted lines are the rates taken from Ref. [18], and the Ref. [37] in (b) and (d) are
the rates taken from Ref. [37], as given in the JINA-REACLIB database. The blue lines with crosses are the rates calculated using TALYS.

It may be worth mentioning that the reaction rates from
the FRDWBA calculations are not becoming zero at low tem-
peratures but decreases as the temperature decreases, unlike
statistical model calculations. Even though quantum tunneling
may play a role in increased reaction rates at low tempera-
tures, it is not unusual to observe the neutron capture rates
decreasing at low temperatures in the classical picture, as
the thermal energy of neutrons is very low at this temper-
ature. In fact, as a function of energy, the neutron capture
cross section extracted from the fully quantal Coulomb dis-
sociation method was analyzed in Ref. [20], where it was
shown that these cross sections are pretty sensitive to the
neutron separation energies, and hence their structure. De-
pending on the kinematical conditions, one may even observe
a reversal in the trends of these cross sections as a function
of energy.

Similar features in neutron capture rates are also observed
in Refs. [19] and [38], where the authors experimentally
extract the photodisintegration and corresponding radia-
tive neutron capture rates using the Coulomb dissociation
method.

A comparison of reaction rates at two particular tempera-
tures obtained from the FRDWBA model (for β2 = 0.0 and
β2 = 0.5), the TALYS code, and JINA-REACLIB database is
shown in Tables I and II. All the particle-induced (n, γ ) and
(α, n) rates considered in this work are shown in Table I, and
the (γ , n) decay constants are shown in Table II. Furthermore,
the provenance of the JINA-REACLIB data, i.e., Refs. [18]
and [37], is shown by the superscript labels (a) and (b), respec-
tively. We use these rates for the calculation of the abundance
evolution of the nuclei at the temperatures of our interest.2

Table III shows the β-decay constants of the nuclei of our
interest obtained from JINA-REACLIB, wherever available,
and the shell model calculations for 36Na and 37Mg. We have
used the shell model code KSHELL [39] for the evaluation of

2Since we use positive separation energies in our FRDWBA and
TALYS calculations, we preferred the “older data” (positive Q value)
from Ref. [37] for the reaction 36Mg(n, γ ) 37Mg in our calculations
instead of the later ones (negative Q value) from Ref. [18], for the
sake of consistency.
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TABLE I. Comparison of the (n, γ ) and (α, n) rates obtained from the JINA-REACLIB database and TALYS code along with those
calculated from FRDWBA theory at T9 = 3.4 and T9 = 0.62.

Reaction rates (cm3mol−1s−1) at T9 = 3.4 Reaction rates (cm3mol−1s−1) at T9 = 0.62

Reaction FRDWBA (β2) TALYS REACLIB FRDWBA (β2) TALYS REACLIB

32Na(n, γ ) 33Na – 3.61 × 103 1.73 × 102a – 4.91 × 103 3.63 × 102a

33Na(n, γ ) 34Na 7.55 × 102 (0.0) 11.41 99.86a 83.16 (0.0) 1.32 131.31a

9.80 × 102 (0.5) – – 1.03 × 102 (0.5) – –
34Na(n, γ ) 35Na – 1.65 × 103 1.44 × 103a – 6.05 × 102 3.52 × 103a

35Na(n, γ ) 36Na – 11.32 0.204a – 0.15 2.14 × 10−10a

32Mg(n, γ ) 33Mg – 7.33 × 103 2.92 × 103a – 8.93 × 103 3.17 × 103a

33Mg(n, γ ) 34Mg – 1.23 × 104 5.92 × 103a – 2.67 × 104 8.17 × 103a

34Mg(n, γ ) 35Mg – 1.80 × 102 1.22 × 103b – 1.47 × 102 9.42 × 102b

35Mg(n, γ ) 36Mg – 8.47 × 103 2.36 × 103a – 5.95 × 103 3.62 × 103a

36Mg(n, γ ) 37Mg 1.99 × 103 (0.0) 55.81 60.34b 2.04 × 102 (0.0) 11.19 8.94b

2.92 × 103 (0.5) – – 2.84 × 102 (0.5) – –
34Al(n, γ ) 35Al – 2.76 × 104 3.46 × 104a – 4.38 × 104 9.35 × 104a

35Al(n, γ ) 36Al – 1.49 × 103 1.32 × 103a – 1.45 × 103 2.11 × 103a

36Al(n, γ ) 37Al – 1.67 × 104 1.41 × 104a – 2.92 × 104 2.80 × 104a

32Na(α, n) 35Al – 3.89 × 102 2.75 × 104a – 1.91 × 10−8 3.66 × 10−6a

33Na(α, n) 36Al – 64.57 2.76 × 104a – 2.24 × 10−9 3.11 × 10−6a

34Na(α, n) 37Al – 3.43 × 102 2.81 × 104a – 4.28 × 10−8 3.48 × 10−6a

aRef. [18]
bRef. [37]

36Na and 37Mg decay constants. First, the necessary many-
body wave functions of the initial and final nucleus were
obtained through shell model diagonalization. Then these
states were used to calculate the OBTD that appears in the
expression of Fermi and Gamow-Teller NMEs. The Fermi and
Gamow-Teller NMEs are essential to evaluate the β-decay
half-life and subsequently decay constant and rates. In this
case, shell model Hamiltonian SDPF-MU [40] was used as

input. The SDPF-MU is an important shell model Hamilto-
nian for SDPF model space, which is a combined shell of SD
and PF model space having the orbitals 1d5/2, 1d3/2, 2s1/2,
1 f7/2, 1 f5/2, 2p3/2, 2p1/2. The necessary nuclear states for the
β decay of 36Na and 37Mg were calculated with up to two h̄ω

excitations. For the β decay of 36Na, the calculated spin-parity
was 2− for the initial nucleus. For the final nucleus 36Mg, we
have considered all the allowed spin-parities for the Fermi

TABLE II. Comparison of the (γ , n) decay constants obtained from the JINA-REACLIB database and TALYS code along with those
calculated from FRDWBA theory at T9 = 3.4 and T9 = 0.62.

Decay constant (s−1) at T9 = 3.4 Decay constant (s−1) at T9 = 0.62

Reaction FRDWBA (β2) TALYS REACLIB FRDWBA (β2) TALYS REACLIB

32Na(γ , n) 31Na – 1.34 × 1011 1.32 × 1011a – 6.72 × 10−2 1.14 × 10−6a

33Na(γ , n) 32Na – 2.45 × 1010 2.66 × 1011a – 1.11 × 10−10 7.76 × 105a

34Na(γ , n) 33Na 4.22 × 1013 (0.0) 3.76 × 1011 7.65 × 1011a 3.11 × 1010 (0.0) 5.97 × 107 7.33 × 102a

6.01 × 1013 (0.5) – – 3.87 × 1010 (0.5) – –
35Na(γ , n) 34Na – 1.07 × 1011 7.1 × 1010a – 1.17 × 10−7 4.65 × 10−3a

36Na(γ , n) 35Na – 3.47 × 1011 6.27 × 1011a – 8.15 × 107 1.33 × 109a

32Mg(γ , n) 31Mg – 4.33 × 107 2 × 107a – 0.0 7.95 × 10−32a

33Mg(γ , n) 32Mg – 6.83 × 1010 7.31 × 1010a – 5.37 × 10−6 1.04 × 10−4a

34Mg(γ , n) 33Mg – 5.45 × 108 1.97 × 108a – 0.0 1.80 × 10−25a

35Mg(γ , n) 34Mg – 3.47 × 1011 3.40 × 1011a – 1.11 × 105 3.68 × 108a

36Mg(γ , n) 35Mg – 1.3 × 1010 4.62 × 109a – 1.44 × 10−13 1.75 × 10−17a

37Mg(γ , n) 36Mg 1.96 × 1013 (0.0) 4.15 × 1011 4.38 × 1011a 3.11 × 1010 (0.0) 3.79 × 107 4.55 × 108a

2.87 × 1013 (0.5) – – 1.14 × 109 (0.5) – –
34Al(γ , n) 33Al – 4.65 × 1010 1.38 × 1011a – 4.17 × 10−8 1.29 × 10−6a

35Al(γ , n) 34Al – 8.08 × 107 5.31 × 107a – 0.0 1.1 × 10−28a

36Al(γ , n) 35Al – 1.25 × 1011 1.05 × 1011a – 2.69 × 10−3 1.5 × 10−4a

37Al(γ , n) 36Al – 1.58 × 109 6.2 × 108a – 1.47 × 10−20 6.96 × 10−22a

aRef. [18]
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TABLE III. The β-decay constants from the JINA-REACLIB database and shell model calculations.

Nuclei 32Na 33Na 34Na 35Na 36Na 34Mg 35Mg 36Mg 37Mg

β-decay constant (s−1) 35.71a 34.66a 44.11a 101.66a 52.46b 25.30a 4.06a 106.64a 2.09b

aData from JINA-REACLIB (experimental).
bShell model calculations.

and Gamow-Teller transition with excitation energy up to
15 MeV. For the decay of 37Mg, the calculated initial spin-
parity was 3/2+, and due to computational limitations, we
were only able to include one 5/2+ state for the final nu-
cleus, 37Al. For other isotopes of Na and Mg, we considered
the experimental β-decay constants from the JINA-REACLIB
database.

Finally, we construct four sets of nuclear physics inputs
based on the data in Tables I and II. The β-decay constants,
considered in Table III, are common for all the sets.

(i) set-I: Take available (n, γ ) and (γ , n) rates from
FRDWBA for β2 = 0.0, and the other (n, γ ), (γ , n)
and (α, n) rates from JINA-REACLIB.

(ii) set-II: Take available (n, γ ) and (γ , n) rates from
FRDWBA for β2 = 0.5, and the other (n, γ ), (γ , n),
and (α, n) rates from JINA-REACLIB.

(iii) set-III: All the (n, γ ), (γ , n), and (α, n) rates from
JINA-REACLIB.

(iv) set-IV: All the (n, γ ), (γ , n) and (α, n) rates from
TALYS calculations.

Having fixed the nuclear physics inputs, let us now turn
our attention to the network calculation and the study of the
elemental abundances.

B. The abundance calculation

The astrophysical abundances have been calculated by
solving the coupled differential equations [Eq. (11)] for the
reaction network shown in Fig. 1. The hydrodynamic condi-
tions for the chosen NDW model, given in [4], was originally
adapted from [41]. The electron fraction, specific entropy,
and dynamic expansion timescale were taken to be 0.42, 140
kB/baryon and 5.1 ms, respectively. The initial abundances
are adapted from Fig. 4(a), Fig. 5(a), and Fig. 7 of Ref. [4]
and are shown in Table IV of the Appendix.

We discuss two cases with different temperature conditions
during the expansion and evolve our network with time con-
sidering constant matter densities at that instant of time. This
is definitely not the ideal case to neglect the hydrodynamic
conditions, but, for simplicity, we can assume them to be
constant since we note that the evolution of our network lasts
for a very short period of time, as will be evident for the two
cases considered below.

1. Case (a): T9 = 3.4

T9 = 3.4 corresponds to the time when α − capture dom-
inates. Following Fig. 2 of Ref. [4], the matter density (ρ)
corresponding to this temperature is 8.0 × 104 g/cm3, which
is assumed to be constant throughout the network evolution.
The inputs [4] for the neutron, α and proton abundances

(Yn, Yα and Yp) are taken to be 0.19, 0.196, and 0.0296,
respectively.

Figure 3 shows the variation of abundances of Na, Mg, and
Al isotopes with time from the instant when the temperature
reaches 3.4 GK. The black solid line and the green dashed line
show the results with inputs from the considered FRDWBA
rates for β2 = 0.0 and β2 = 0.5 in set-I and set-II, respec-
tively. The red dotted and blue dash-dotted lines correspond to
abundances calculated with all JINA-REACLIB (set-III) and
TALYS (set-IV) inputs.

The evolution starts from a time when the neutron-rich Na
and Mg isotopic abundances are very low compared to the
Al abundances in the network. Compared with the β decay
and neutron capture rates, the (α, n) charged particle rate
dominates at this temperature and the isotopes 32Na, 33Na, and
34Na are mostly used up in the production of the correspond-
ing Al isotopes. The (n, γ ) reactions are not very effective at
this temperature. The evolution timescale at this temperature
is also small, indicating that these elements burn out quickly
at this temperature.

The abundance pattern for set-I and set-II data overlaps,
which implies that there may not be any overt effect of de-
formation on the abundance pattern of nuclei for the network
considered. We also notice a difference in abundances be-
tween set-I/set-II data and set-III data for some Na and Mg
isotopes that are associated with the reactions for which the
FRDWBA rates are included. There is also a quite significant
difference in abundance calculated with set-IV inputs. Set-IV
results indicate that Na isotopes should decay at a slower rate
compared to the other sets at larger evolution times.

2. Case (b): T9 = 0.62

T9 = 0.62 corresponds to just before r-process freeze-out
when the light neutron-rich nuclei contribute significantly
to the production of seed nuclei, as reported in [4]. The
matter density (ρ) corresponding to this temperature is
5.4 × 102 g/cm3. The neutron, α and proton abundances (Yn,
Yα , and Yp) are taken to be 0.017, 0.203, and 5.86 × 10−9,
respectively. All these inputs are adopted from Ref. [4]. As
a matter of fact, the assumption of constant hydrodynamic
conditions would be more appropriate for this scenario than
Case (a), where the temperature and density may vary more.

Figure 4 shows the elemental abundance, at this tempera-
ture, for the neutron-rich Na-Mg-Al network considered with
the four sets of nuclear physics inputs. The solid, dashed,
and dotted lines represent the same sets, as mentioned in
Case (a) and Fig. 3 earlier. The abundance pattern for set-I
and set-II data overlaps, similar to the previous case, thereby
reconfirming the insensitivity of the deformation parame-
ter, even at this temperature. The difference in abundances
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FIG. 3. Abundance (Yi) evolution of neutron-rich Na, Mg, and Al isotopes at T9 = 3.4 and ρ = 8 × 104 g/cm3. The figure sublabels
indicate the corresponding isotope. The black solid line and green dashed lines represent Yi calculated using set-I and set-II data, the red dotted
line represents Yi calculated using the set-III data, and the blue dash-dotted line represents Yi calculated using set-IV data. The description of
different sets is given in the text.

between set-I/set-II data and set-III data is observed for some
of the Na and Mg isotopes. The difference is more prominent
compared to the previous case. The patterns for set-IV data
also differ very much compared to the other sets. The (α, n)
reactions do not contribute much to the abundance evolution
at this temperature. In most cases, either the neutron capture
and the photodisintegration reactions balance each other, or
the neutron capture reactions dominate. During the freeze-
out, at 0.62 GK, the neutron-rich Na and Mg isotopes are
more abundant, and their evolutions are driven mainly by
(n, γ ) and β decays. The abundances drop after a certain time
of their evolution (around 0.2 s) for all the nuclei, except
37Al, whose abundance starts accumulating at a value around
5 × 10−5.

We also plot the relevant production and decay rates of
the nuclei 35Na and 36Mg in Fig. 5. We observe very small
35Na(n, γ ) 36Na and 36Na(γ , n) 35Na rates for set-I, set-III,
and set-IV data, that balances each other, as shown in panels
(a), (b), and (c) of Fig. 5. Therefore, 35Na must wait for its
β decay before capturing a neutron which will cause less
production of 36Na, as apparent in Fig. 4. Although 36Na is
also produced from the β decay of 36Mg, it does not add much
to the production of 36Na. Similarly, the 36Mg(n, γ ) 37Mg
and 37Mg(γ , n) 36Mg also attain equilibrium for all sets as
shown in panels (d), (e), and (f) of Fig. 5, which indicates that
36Mg will also wait for its β decay before further capturing
a neutron. The constancy of the abundance patterns for 35Na
and 36Mg, noted in Fig. 4, is also consistent with their β-decay
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FIG. 4. Abundance (Yi) evolution for Na-Mg-Al network at T9 = 0.62 and ρ = 5.4 × 102 g/cm3. The figure sublabels indicate the
corresponding isotope. The legend has the same meaning as described in Fig. 3.

half-lives of 6.81 ms and 6.49 ms, respectively, estimated
from Table III. This will hinder the abundance flow toward
more neutron-rich elements, as also apparent in Fig. 4. The
relatively low abundances for 36Na and 37Mg suggest that
35Na and 36Mg would most probably follow the β-decay path
at this temperature, rather than capturing neutrons and pushing
the abundance towards the drip-line.

We have checked the evolution of neutron and proton abun-
dances in our network. At 3.4 GK, both the neutron and proton
abundances are comparatively higher than the abundances of
the nuclei in the network. Therefore, even though neutrons
are being consumed, both Yn and Yp will change very slowly
in magnitude. Similarly, the initial neutron abundance is also
very high at 0.62 GK compared to the isotopic abundances of
the elements, and therefore, the neutron fraction will be nearly
constant over the network evolution timescale. However, the

proton abundance, initially very small at 0.62 GK, will sharply
increase with time.

IV. SUMMARY AND CONCLUSIONS

It is now well known that light and medium mass
neutron-rich nuclei play an important role in explosive nu-
cleosynthesis. While it has been established in core-collapse
supernovae, it ought to be valid for other astronomical sites
supporting the r process, like neutron star mergers.

Exotic neutron-rich nuclei, especially those away from the
valley of stability, have structures that are quite different from
those of their stable counterparts. Some of them can have a
halo structure and can also be deformed. Naturally, one would
expect that incorporating the proper structure and reactions of
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FIG. 5. The production and decay rate comparisons of 35Na (left panel) and 36Mg (right panel).

these nuclei would affect estimates of elemental abundances
in various nucleosynthesis scenarios.

In most abundance calculations one is compelled to use
statistical model estimates of nuclear reaction rates, especially
in regions where there is scant data. However, the statistical
treatment of the continua, especially for exotic nuclei may not
always be justified.

In this work, we consider a network of neutron-rich Na-
Mg-Al isotopes in the mass range of A ≈ 30 and study their
evolution with different sets of nuclear physics inputs. We
have estimated neutron capture cross sections and photodis-
integration constants for selected Na and Mg isotopes via
the FRDWBA formalism, without and with deformation ef-
fects, and also estimated β-decay rates from the microscopic
shell model. The rest of the rates are incorporated from the
JINA-REACLIB database. We then calculate the element-
wise abundance at two different temperatures portraying two
different scenarios in a core-collapse supernova explosion
with these inputs. In a sense, this reflects the effect of account-
ing for the exotic structures via the FRDWBA rates.

We have compared the results with those calculated using
purely statistical model inputs from TALYS and the JINA-
REACLIB database. We see vast differences in some of the

isotopic abundances at both temperatures. The theoretical
models used in TALYS calculations differ from those used in
rate calculations given in the JINA-REACLIB database. The
observed discrepancies in pure statistical calculations could
be due to the uncertainties associated with these theoretical
models, different Q values of the reactions, etc. It is to be
noted that for the case of 34Na, the neutron separation en-
ergies were the same for FRDWBA and TALYS (0.17 MeV)
while that extracted for JINA-REACLIB was larger (1.208
MeV). For 37Mg it was similar for TALYS (0.24 MeV) and
JINA-REACLIB (0.23 MeV), and was a bit higher for FRD-
WBA (0.35 MeV). Significant changes are also observed for
FRDWBA-implemented (set-I/set-II) results in some of the
isotopes at both temperatures. It is observed that the effect
of deformation tends to increase the reaction rates by a small
margin. However, no significant change is observed in the
abundance patterns.

At 3.4 GK, the α-induced reactions dominate, and less pro-
duction of neutron-rich isotopes via neutron capture reaction
is observed. However, at T9 = 0.62, mostly the neutron-
induced reactions dominate thereby directing the abundance
flow towards more neutron-rich nuclei. In our case, the mass
fractions of the elements may not necessarily add up to 1,
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TABLE IV. The initial abundances considered for our network
as inputs to Eq. (11). They are adapted from Fig. 4(a), Fig. 5(a), and
Fig. 7 of Ref. [4].

(Yi )t=0

Nuclei T9 = 3.4 T9 = 0.62

32Na 3.09 × 10−28 2.16 × 10−7

33Na 3.09 × 10−28 2.16 × 10−7

34Na 3.09 × 10−28 1.94 × 10−6

35Na 3.09 × 10−28 1 × 10−5

36Na 0.0 0.0
32Mg 3.31 × 10−28 1 × 10−10

33Mg 3.09 × 10−28 1 × 10−10

34Mg 3.09 × 10−28 2.16 × 10−7

35Mg 3.09 × 10−28 1.93 × 10−6

36Mg 3.09 × 10−28 3.6 × 10−5

37Mg 3.09 × 10−28 1 × 10−10

34Al 7.73 × 10−7 1 × 10−20

35Al 1.32 × 10−7 1 × 10−10

36Al 1.39 × 10−8 2.16 × 10−7

37Al 1 × 10−11 1.94 × 10−6

n 0.1856 0.0176
α 0.1958 0.2038
p 0.0295 5.86 × 10−9

as we have considered only a limited number of nuclei in
our network. However, the sum of the initial mass fractions
considered at both temperatures comes out to be the same as
the sum of the final mass fractions, which validates that our
calculations are consistent.

Our calculations also suggest that at T9 = 0.62, as the
(n, γ ) � (γ , n) equilibrium is established, the nuclei 35Na
and 36Mg would decay only via 35Na(β−ν̄) 35Mg and

36Mg(β−ν̄) 36Al and the network will prefer to follow the
path of the next isotopic chain rather than producing more
neutron-rich elements in their respective chains.

Finally, let us remark that although we had taken a limited
network, one must look into the full network calculations to
describe the complete picture. In our calculations, we are more
concerned about observing the sensitivity of the results by
including the reaction inputs, which account for the exotic na-
ture of the neutron-rich nuclei involved, by setting simple yet
realistic conditions. It would be further interesting to perform
a more systematic study of these effects in nucleosynthesis
calculations for NS-NS and NS-BH mergers [42] with the full
network.
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APPENDIX: INITIAL ABUNDANCE INPUTS IN SEC. III B

For a nucleus with atomic mass Ai, we can define a quantity
called mass fraction which is given as Xi = AiYi, representing
the fraction of mass bound in species i. Based on the abun-
dances given in Table IV, the sum of the initial mass fractions
(
∑

i AiYi), at T9 = 3.4, is 0.998, while that at T9 = 0.62, turns
out to be 0.83. We have verified that the sum of the final mass
fractions calculated at the end of our network evolution at both
temperatures remains the same. This is not very surprising, as
we have used a limited network.
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