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A set of hadronic equations of state derived from covariant density functional theory and constrained by
terrestrial experiments, and astrophysical observations, in particular by the NICER experiment inferences is
used to explore the universal relations among the global properties of compact stars containing heavy baryons
at high densities. We confirm the validity of universal I-Love-Q relations connecting the moment of inertia
(I ), the tidal deformability (�), and the spin-induced quadrupole moment (Q) for isolated nonrotating stars.
We further confirm the validity of the I-C-Q relations connecting the moment of inertia, compactness (C),
and quadrupole moment for uniformly and slowly rotating stars, and extend the validity of these relations
to maximally rotating sequences. We then investigate the relations between integral parameters of maximally
rotating and static compact stars. The universalities are shown to persist for equations of state and compositions
containing hyperons and � degrees of freedom. When heavy baryons are included, however, the radial profiles
of integrands in expressions of global properties exhibit “bumps”, which are not present in the case of nucleonic
stars in which case the profiles are smooth. We determine the coefficients entering the universal relations in the
case of hyperonic and �-resonance containing stars.
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I. INTRODUCTION

Compact stars (CSs) as the densest objects in the ob-
servable universe form natural astrophysical laboratories for
understanding the physics of matter at supranuclear densities
[1–13]. Astronomical observations of CSs impose constraints
on the behavior of the equation of state (EoS) of dense matter,
which is an important input for determining the macroscopic
properties of CSs, such as the mass, radius, moment of inertia,
etc. The groundbreaking detection of the first gravitational
wave (GW) signals from a binary neutron star merger event
GW170817 [14,15] has opened a new avenue for studying
the internal structure of CSs and the properties of dense
stellar matter [16–22]. The x-ray pulse profile modeling of
pulsars [23] combined with inferences from the NICER exper-
iment [24–27] led to measurements of CSs’ masses and radii.
The mass-radius ranges derived for the two-solar mass PSR
J0740+6620 are of great value for inferring the properties of
dense matter at sufficiently high densities [28–34].
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The integral parameters of CSs such as the mass, radius,
moment of inertia, quadrupole moment, etc., are controlled
by the microscopic EoS of dense matter. Nevertheless, var-
ious approximately universal relations connecting different
CS integral parameters have been established and intensively
studied in recent years [35–76]. Because these relations are
insensitive to the input EoS and are held to a high accuracy
(the typical deviations are at the level of several per cent), they
are called universal. The I-Love-Q relations, which connect
the moment of inertia I , tidal deformability �, and the spin-
induced quadrupole moment Q of CSs in slow rotation ap-
proximation were first discovered in Refs. [35,36]. These sorts
of relations among various integral parameters of CSs have
been studied under various conditions such as rapid rotations
[43,44,46,47,65,68,70], differential rotations [61,72,76,77],
finite temperatures [44,54,56,58,59,64,75], strong magnetic
fields [40,78], and within alternative theories of gravity
[48,50,71] (for a review, see Ref. [79]). The recent work
includes the study of universal relations between the members
of the I-Love-Q triple and compactness C (which refers to
the equatorial compactness of the star) for slowly rotating
CSs [38,39,80–82], and their extension to rapidly rotating
stars [43,47]. A different class of universalities can be es-
tablished between the parameters of static and rotating CSs.
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For example, the redshift and maximum mass [59,70,81].
Binary neutron stars merger simulations have also revealed
some relations between the properties of the dynamical ejecta
and the binary parameters, such as the mass ratio and tidal
deformability [67].

The purpose of this work is to test various universal rela-
tions for static and rotating CSs using EoSs which account
for the presence of heavy baryonic degrees of freedom in
ultradense matter. To date, only a handful of studies have
tested universal relations using such EoS. This was done for
hyperonic matter in Refs. [54–56,58,68,79] and in the case of
hyperonic �-admixed matter in Ref. [64]. For our purposes,
we utilize the EoSs which were previously derived within
covariant density functional (CDF) theory including hyper-
onic and �-admixed matter at high densities [22,83–87]. Our
EoSs are tuned to satisfy the astrophysical constraints, specifi-
cally the mass-radius ranges from NICER inferences [24–27],
tidal deformability constraints from the GW event GW170817
[14,15], and the symmetry energy constraints from neutron
skin thickness experiment PREX-II [88–91]. The onset of
heavy baryons significantly increases the complexity of the
EoS, as can be seen by examining the variability of the speed
of sound cs across the star and comparing it with the smooth
behavior observed for purely nucleonic EoS models [92,93].
It appears to be an important task to test available universal
relations in the case of matter with many particle thresholds
and a complex speed of sound behavior, given their signifi-
cant practical utility and importance. Testing and validating
the universal relations for EoS with heavy baryons expands
the class of models of the EoS of matter that can be used
in astrophysical scenarios which employ universal relations
as an integral part of inference of properties of CSs. Such
tests are also imperative in view of robust physical arguments
in favor of the onset of heavy baryons in dense matter in
CSs, as extensively discussed in the literature (for recent
arguments see Refs. [11–13] and references therein). Further-
more, the softening associated with heavy baryons is strongly
constrained by the observations of two-solar-mass pulsars (ad-
dressed in the context of the hyperon puzzle) which allows
us to have tight control over the uncertainties in the medium
properties of hyperons in nuclear matter. Note that limiting
the set of EoSs to those which satisfy the two-solar-mass con-
straint increases the accuracy to which the universal relations
hold [47].

The paper is organized as follows. In Sec. II we introduce
the EoS model collection that we employed in our analyses. In
Secs. III and IV, we present the universal relations for isolated
stars and the universal relation between the parameters of
static and rapidly rotating stars, respectively. Finally, a sum-
mary of our results is provided in Sec. V. Unless otherwise
noted, we use geometric units (where G = c = 1) throughout
this paper.

II. EOS FOR HADRONIC MATTER

In the present analysis, we adopt the relativistic
Hartree (RH) and Hartree-Fock (RHF) [94] descriptions for
dense stellar matter, and consider three types of matter
compositions:

(1) Purely nucleonic EoS models. We use two representa-
tive parametrizations of the nucleonic CDFs, specifically the
RHF PKO3 [96] and the RH DDME2 [97] parametrizations.
Both of these parametrizations are accurately calibrated by
the data on finite nuclei. The predicted maximum mass Mmax

and radius R1.4 of canonical-mass 1.4 M� stars are Mmax =
2.49 M�, R1.4 = 13.96 km for PKO3 [94] and Mmax =
2.48 M�, R1.4 = 13.22 km for DDME2 [94]. This class of
models is labeled as “N”. These nucleonic models produce
massive neutron stars, which guarantees that in the case of
moderate softening due to the onset of hyperons, the max-
imum masses of hyperonic stars reach a value of 2 M� as
required by the observations.

(2) Hyperonic EoS models. We extend the two nucleonic
models mentioned above to the hyperonic sector by adjust-
ing the meson-hyperon coupling constants to reproduce the
empirical potentials of hyperons in nuclear matter. As a re-
sult, we are able to generate hyperonic stars with masses
around 2 M�. In particular, for the RH model, the vector
meson-hyperon couplings are fixed by the SU(6) spin-flavor
symmetric model, with the scalar σ -meson-hyperon couplings
defined by their ratios Rσ� = 0.6105, Rσ� = 0.4426, and
Rσ� = 0.3024 to the corresponding nucleonic couplings (see
Ref. [13] for a discussion). For the RHF model, the vector
meson-hyperon couplings are determined by the SU(3) flavor
symmetric model, to obtain more repulsion in the hyperonic
sector to counterbalance the softening due to the Fock terms
[94]. These two hyperonic EoS models are labeled as “NY ”.
Further EoS models that will be used below are based on
the RH model but have broken SU(6) quark symmetry in the
vector meson sector, as explained in Ref. [98]. This allows
us to have hyperonic models with maximum masses in the
range 2.1 � Mmax � 2.4 M�. This class of models is labeled
as “NY (a)–(e)”.

(3) Hypernuclear models with an � admixture. These mod-
els are the same as the two hyperonic models “NY ” above
but include in addition the quartet of spin-3/2 � resonances.
As no consensus has been reached yet on the magnitude
of the � potential in nuclear matter, we take three sug-
gested values for the depth of the � potential, V�(ρsat ) =
(1 ± 1/3)VN (ρsat ), where VN (ρsat ) is the nucleonic poten-
tial at saturation density. This class of models is labeled as
“NY �(a)–(c)”. The main difference caused by the inclusion
of �’s is the reduction of the star’s radius by up to 1–2 km at
central stellar densities slightly above the nuclear saturation
density [83].

Figure 1(a) shows the EoSs included in our collection. The
squared speed of sound, c2

s , obtained with these models is
shown in Fig. 1(b). It is seen that EoSs containing only nucle-
onic degrees of freedom have a c2

s that monotonically increase
with increasing baryon number density ρ (or energy density
ε). The appearances of hyperons and � particles change the
shape of the curves to non-monotonic forms which reflects
the nucleation of new degrees of freedom. The onset of heavy
baryons reduces the speed of sound abruptly. Interestingly, in
the case of an early appearance of � particles (at ρ ∼ 1.5ρsat),
the speed of sound drops to zero indicating a possible region
of instability associated with a liquid-gas type phase transition
[99].
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FIG. 1. EoSs for stellar matter featuring different compositions, i.e., nucleonic (N), hyperonic (NY ), and hyperon-� admixed (NY �) one
(a), and the associated speed of sound squared c2

s (b). The results are obtained using both the RHF and RH approaches. The positions for
canonical-mass and maximum-mass configurations are marked by squares and circles.

Figure 2 shows the mass-radius relations of static and
maximally rotating, hereafter referred also as Keplerian, CSs.
Additionally, the results include (a) the 68.3% credible inter-
val for the mass and radius estimates of PSR J0030+0451
[24,25] and PSR J0740+6620 [26,27] as well as (b) the
range of masses extracted for the secondary object in the
GW190814 event [95]. It is seen that the masses and radii
of static configurations based on our EoS collection cover
ranges of 2.0 � Mmax � 2.5 M� and 12 � R1.4 � 14 km, i.e.,
our EoSs predict models that are consistent with the current
astrophysical constraints.

Maximally rotating stars have masses approximately 20%
larger than their static counterparts because the centrifugal
force provides additional support against the gravitational pull
toward the center of the star. Their equatorial radii are about
40% larger than the radii of static stars. It is seen that the max-
imum values for mass and radius of Keplerian configurations
in our model collection cover the ranges 2.5 � Mmax � 3.0 M�
and 17 � R1.4 � 20 km.

III. UNIVERSAL RELATIONS FOR ISOLATED CSS

In this section, we investigate whether the universal re-
lations among integral quantities such as the mass, radius,
moment of inertia, and quadrupole moment maintain their
validity for static and rotating CSs with heavy baryons in their
centers, in particular, those possessing hyperon-� admixed
cores.

A. Static and slowly rotating CSs

The tidal deformability of static CS scales as � ∝ k2C−5,
according to Eq. (A4). The analytical form of the Love num-
ber k2 is complicated, but the numerical evaluations of k2

shown in Fig. 3 for C � 0.1 (which is equivalent to M �
1.0 M�) show that k2 scales approximately as C−1 and sat-
urates for C ≈ 0.1 [22,100]. Therefore, the scaling becomes
� ∝ C−6 or C ∝ ln � for masses in the interval 1.0 � M �
2.0 M�, which is the mass range of phenomenological inter-
est. The latter scaling behavior can be clearly observed in

FIG. 2. Mass-radius relations of CSs in the static and maximally rotating (Keplerian) limits for various EoS models. The masses and radii
for PSR J0030+0451 [24,25] and PSR J0740+6620 [26,27] (68.3% credible interval) are inferred from NICER data, and the mass range
extracted for the secondary of the GW190814 event [95] is shown as well.
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FIG. 3. The dimensionless tidal Love number k2 as a function of
compactness C for hadronic EoS. The squares, triangles, and circles
indicate configurations with M = 0.8, 1.4, and 2.0 M�, respectively.

Fig. 4, where the values of � are shown on a logarithmic
scale.

Building on the aforementioned scaling, one could hypoth-
esize a scaling formula like

C =
m∑

n=0

an (ln �)n, (1)

which was explored in Ref. [38] for m = 2. The author of that
paper used three EoS models (including a hybrid star model)
with a mass interval 1.2 � M � 2.0 M�, and found the relation
to be accurate up to 2%. Later, this hypothesis was confirmed
by Yagi et al. in Ref. [79] through the examination of a
comprehensive collection of 25 hadronic EoS models, which
included five hyperonic models, and found that the maximum
deviation is somewhat larger ∼6.5%. Recently, the same rela-
tion was tested for hot EoS appropriate for protoneutron stars
[64] and was found to hold with the same level of accuracy
for stars with fixed entropy per baryon and lepton fraction, i.e.,
fixed thermodynamic conditions. Below we will utilize Eq. (1)
truncated at m = 4, which is a polynomial degree employed in
other universal relations examined in this work as well.

Figure 4 shows C- ln � relation for our collection of EoS
in the case of static CSs according to Eq. (1) with m = 4. The
bottom panel presents the fractional difference between the
data and the fit. It is seen that the deviation is at the level
of a few percent. The best-fit coefficients are summarized
in Table I for m = 2 and m = 4. The coefficients for m = 2
obtained for our collection of EoSs are in agreement with
those found in Ref. [79].

We now turn to the universal relations associated with the
I-Love-Q relation for our collection of EoSs. Before showing

FIG. 4. The C-Love relations for static hadronic CSs. (Top) Uni-
versal relations for various EoS models together with their fitting
curves. (Bottom) Fractional errors between the fitting curve and
numerical results.

the results, let us note that for a uniform Newtonian star one
has [36]

� = 1
2C−5, Ī = 2

5C−2, Q̄ = 25
8 C−1, (2)

which translate into

Ī ∝ �2/5, Q̄ ∝ �1/5, Q̄ ∝ Ī1/2. (3)

Equations (2) and (3) provide useful guidance for choosing
the functional forms of universal relations for relativistic CSs.

The universal relations of �, Ī , and Q̄ can be explored
using the scheme suggested in Refs. [35,36],

ln y =
4∑

n=0

an (ln x)n, (4)

where the pairs (x, y) represent (�, Ī ), (�, Q̄), and (Q̄, Ī ).
Figure 5 shows these three combinations for CSs containing
heavy baryons together with the fits according to Eq. (4). The
bottom panels of this figure show the fractional differences
between the data and the fits. The moment of inertia and
the quadrupole moment were computed assuming the slow
rotation approximation up to second order. It is seen that the
absolute fractional differences of these relations are � 1% for
all three relations. The best-fit coefficients with Eq. (4) are

TABLE I. Estimated coefficients for the universal C-Love relation. The corresponding reduced χ -squared (χ2
red) values are shown in the

last column.

y x a0 a1 a2 a3 a4 χ 2
red

C � 3.63278 × 10−1 −3.84806 × 10−2 1.77351 × 10−3 −1.78329 × 10−4 1.03106 × 10−5 7.82102 × 10−6

3.63958 × 10−1 −3.74047 × 10−2 8.87636 × 10−4 8.22215 × 10−6
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FIG. 5. The Ī-Love-Q̄ relations for hadronic CSs within the slow-rotation approximation. (Top) Universal relations for various EoS models
together with their fitting curves. (Bottom) Fractional errors between the fitting curves and numerical results.

summarized in Table II, which are consistent with those found
in Ref. [79].

Because of the universality of the C- ln � relation and the
universality among Ī-�-Q̄, it can be postulated that the rela-
tions Ī-C and Q̄-C also exhibit universality. The Ī-C and Q̄-C
universal relations were investigated in Refs. [36,47,64,68,82]
by exploring their functional forms with the inverse compact-
ness C−1 serving as the independent variable. Below, we will
concentrate on this dependence, i.e.,

Ī =
m∑

n=0

an (C−1)n, Q̄ =
m∑

n=0

an (C−1)n (5)

with m = 4. For a large set of EoS the relation for Ī was found
to be universal, with relative deviations being on the order of
10%. Reference [64] considered also the universality of the
second relation in Eq. (5) for m = 3. These universal relations
(5) where extended to a set of finite-temperature hadronic EoS
models (including two hyperonic and one hyperon-� admixed
EoS models based on the DDME2 parametrization) in the case
of fixed entropy per baryon and fixed lepton fraction. The
universality holds with the same level of accuracy for both
cold and hot stars, provided the thermodynamic parameters
within the EoS are the same.

Figure 6 shows Ī and Q̄ as a function of C, and the
Ī-Q̄ relation for sequences computed using the slow-rotation
approximation (χ � 1), together with rapidly rotating se-
quences with fixed spin parameters χ (χ ≡ J/M2 with J being
the angular momentum of the star), and the maximally ro-
tating sequence. The subsequent subsections will discuss the
latter two categories of sequences. In panels (a) and (b), we
present for each Ī-C or Q̄-C relation two fitting curves, one
using Eq. (5) and one dropping the zeroth order term. In panel
(c), each relation is shown by a single curve given by Eq. (4).
Table III summarizes the coefficients for these universal re-
lations, along with the corresponding reduced χ -squared χ2

red
values (which are obtained by dividing the residual sum of
squares by the degrees of freedom). The fractional differences
are shown in the lower panels of Fig. 6 whereby those for
panels (a) and (b) are evaluated with respect to fits that use
Eq. (5). As can be seen in Fig. 6, the maximum fractional
differences are close to 7–8% for the Ī-C and Q̄-C relations,
which can be compared to the Ī-� and Q̄-� universal relations
where the deviations were mostly below 1%.

B. Rapidly rotating CSs

We next test the validity of the universal relations among
Ī , Q̄, and C for rapidly rotating CSs. Note that compactness

TABLE II. Estimated coefficients for the universal Ī-Love, Q̄-Love, and Ī-Q̄ relations obtained in the slow-rotation approximation. The
corresponding reduced χ -squared (χ2

red) values are shown in the last column.

y x a0 a1 a2 a3 a4 χ 2
red

Ī � 1.49834 × 100 5.83188 × 10−2 2.26613 × 10−2 −7.15384 × 10−4 8.60779 × 10−6 2.91090 × 10−6

Q̄ � 1.95655 × 10−1 9.02591 × 10−2 4.87888 × 10−2 −4.39624 × 10−3 1.30998 × 10−4 8.02989 × 10−6

Ī Q̄ 1.39803 × 100 5.35419 × 10−1 3.82137 × 10−2 1.81689 × 10−2 1.92556 × 10−4 1.30642 × 10−5
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TABLE III. Estimated coefficients for the universal Ī-C, Q̄-C, and Ī-Q̄ relations. The corresponding reduced χ -squared (χ2
red) values are

shown in the last column.

y x χ a0 a1 a2 a3 a4 χ 2
red

Ī C � 1 2.78328 × 100 −9.28412 × 10−1 6.01079 × 10−1 −3.26388 × 10−2 8.30545 × 10−4 6.51045 × 10−2

7.52174 × 10−1 2.49719 × 10−1 −2.52963 × 10−3 −7.00854 × 10−5 6.68638 × 10−2

0.2 2.40576 × 100 −6.98316 × 10−1 5.53941 × 10−1 −2.92220 × 10−2 7.29404 × 10−4 1.01976 × 10−1

7.15632 × 10−1 2.66210 × 10−1 −5.15035 × 10−3 2.40009 × 10−5 1.03497 × 10−1

0.4 2.28723 × 100 −6.25782 × 10−1 5.35113 × 10−1 −2.81811 × 10−2 6.89230 × 10−4 1.22620 × 10−1

7.09692 × 10−1 2.65274 × 10−1 −5.77664 × 10−3 3.78995 × 10−5 1.23993 × 10−1

0.6 2.03438 × 100 −4.04730 × 10−1 4.57441 × 10−1 −2.16860 × 10−2 4.36667 × 10−4 2.75660 × 10−1

7.52295 × 10−1 2.30435 × 10−1 −3.43435 × 10−3 −7.60088 × 10−5 2.76760 × 10−1

Kep. 1.59880 × 100 −6.12213 × 10−2 3.26296 × 10−1 −1.47631 × 10−2 2.97495 × 10−4 1.43312 × 10−1

7.53968 × 10−1 1.83664 × 10−1 −4.57602 × 10−3 4.39646 × 10−5 1.44235 × 10−1

Q̄ C � 1 1.09156 × 100 −1.19359 × 100 5.12662 × 10−1 −3.61313 × 10−2 9.18768 × 10−4 1.01870 × 10−2

−5.34487 × 10−1 3.74863 × 10−1 −2.43229 × 10−2 5.65554 × 10−4 1.04575 × 10−2

0.2 0.83661 × 100 −9.49862 × 10−1 4.42625 × 10−1 −3.01219 × 10−2 7.41153 × 10−4 1.43124 × 10−2

−4.58158 × 10−1 3.42566 × 10−1 −2.17509 × 10−2 4.95847 × 10−4 1.44944 × 10−2

0.4 1.17854 × 100 −9.62231 × 10−1 3.98228 × 10−1 −2.63341 × 10−2 6.39743 × 10−4 1.43084 × 10−2

−2.74102 × 10−1 2.59188 × 10−1 −1.47897 × 10−2 3.04132 × 10−4 1.46898 × 10−2

0.6 1.38135 × 100 −8.18944 × 10−1 3.03745 × 10−1 −1.83139 × 10−2 4.03007 × 10−4 2.60640 × 10−2

−3.33255 × 10−2 1.49608 × 10−1 −5.92101 × 10−3 5.49006 × 10−5 2.66705 × 10−2

Kep. 0.93212 × 100 −3.89707 × 10−1 1.70288 × 10−1 −8.73106 × 10−3 1.71199 × 10−4 1.51724 × 10−3

8.55566 × 10−2 8.71318 × 10−2 −2.79190 × 10−3 2.33887 × 10−5 1.88169 × 10−3

Ī Q̄ � 1 1.39803 × 100 5.35419 × 10−1 3.82137 × 10−2 1.81689 × 10−2 1.92556 × 10−4 1.30642 × 10−5

0.2 1.38034 × 100 5.85404 × 10−1 1.91033 × 10−2 2.26290 × 10−2 −3.53397 × 10−4 1.42634 × 10−5

0.4 1.35669 × 100 7.04071 × 10−1 −2.36864 × 10−2 3.28473 × 10−2 −1.86181 × 10−3 1.19826 × 10−5

0.6 1.31300 × 100 9.21151 × 10−1 −1.28186 × 10−1 6.18742 × 10−2 −5.65783 × 10−3 1.50910 × 10−5

Kep. 1.29830 × 100 1.02524 × 100 −1.75735 × 10−1 7.80475 × 10−2 −8.85528 × 10−3 1.78771 × 10−4

FIG. 6. The Ī-C-Q̄ relations for rotating hadronic CSs along sequences with constant spin parameter χ . (Top) Universal relations for
various EoS models together with the fitting curves. (Bottom) Fractional errors between the fitting curves and numerical results.
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FIG. 7. The mass-radius relations of CSs for different rotation
rates, namely static, rapidly rotating with constant spin parameters
of χ = 0.2, 0.4, and 0.6, as well as the maximum rotation rate
(Keplerian limit), using the RHF EoS of NY � (c).

in this case is defined using the equatorial radius. In this
case, the universal relations are commonly investigated for a
sequence of stars with constant values of certain parameters
characterizing the magnitude of rotation.

The universality of the Q̄-Ī relation holds for stellar se-
quences with fixed dimensionless spin parameter χ = J/M2

[41] and f̃ = R f , where f is the spin frequency [43], but
not for stars with constant spin frequency f [37]. The Q̄-Ī
relation was found for fixed χ and f̃ to be nearly independent
of the EoS with a relative error ∼1%, i.e., with an error
comparable to the slow-rotation case. In addition, Ref. [47]
found universality of Ī-C relation for rotating nucleonic CSs
for three values of the spin parameter. The universal relations
for hot and maximally fast rotating CSs were established in
Ref. [68].

Below we will show universal relations for sequences with
constant spin parameters of χ = 0.0, 0.2, 0.4, and 0.6, as
well as the Keplerian limit. The mass-radius relations of these
sequences are shown in Fig. 7 for our RHF EoS model with
NY � composition. It is observed that these relations are self-
similar for different values of the spin parameter χ .

Our results for Ī-C-Q̄ relations are presented in Fig. 6 for
the χ values quoted just above. As in the nonrotating case, the
Ī-C and Q̄-C relations are fitted with two different functions:
one is given by the full Eq. (5) and the other with a vanishing
zero-order term. The fractional differences are estimated for
the full expression. For the Q̄-Ī relation the fitting curves are
given by Eq. (4).

It is seen in Fig. 6 that the fractional differences are compa-
rable in magnitude for all values of the spin parameter and for
the static case. The Ī-C and Q̄-Ī relations for each sequence
are self-similar and tend to a single value in the extreme
“black hole” limit where Ī → 4 and Q̄ → 1 when C → 0.5.
Again, as in the static case, the Q̄-Ī relation holds to higher
accuracy for all sequences. The maximum absolute fractional
difference is between about 1–2%, which is comparable to that
for static stars.
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FIG. 8. The maximum spin parameter χmax as function of gravi-
tational mass M (a) and compactness C (b) for hadronic CSs.

CSs reach the limit of stability for uniform rotation at the
Keplerian limit, where the centrifugal and gravitational forces
at the equator of the star are balanced. Beyond this frequency,
mass is shed from the equator. A convenient parameter for
locating the Keplerian limit is the spin parameter χ [98,101].
In Fig. 8 we plot the maximum spin parameter χmax versus
gravitational mass and compactness for CSs constructed from
our collection of EoS. It is seen that χmax increases with mass
in the domain M < 1.0 M� and then (a) stays constant for
purely nucleonic EoS models; (b) it is reduced for models
which contain hyperons; (c) the reduction is more pronounced
for models that have in addition to hyperons a �-resonance
admixture in their cores. Thus, the χmax as a function of mass
M or compactness C can no longer be monotonic; this is more
prominent for the NY � models. The value of χmax(M ) or
χmax(C) is noteworthy in that all models fall within a narrow
range of 0.64–0.72, as indicated by the shaded region in
Fig. 8. The values of χmax derived for our EoS collection are
consistent with those found in Refs. [98,101–103].

Figure 6 also shows Ī-C-Q̄ relations for Keplerian se-
quences. In this case, the fractional difference for the Ī-Q̄
relation increases to 5%, because χmax = 0.68 ± 0.04 for
different EoS, i.e., it is not constant anymore but lies in the in-
dicated range. The fractional differences for the Ī-C and Q̄-C
relations remain comparable to those for static and constant
spin sequences. The fit coefficients in the universal relations
for our sequences with constant χ , including the Keplerain
sequences, are summarized in Table III. Also provided in this
table are the corresponding reduced χ -squared (χ2

red) values.
The universalities shown in Fig. 6 allow (in principle)

the determination of the radius of a pulsar, if the mass and
one of the quantities Ī and Q̄ are sufficiently well measured.
The mass in binaries containing a neutron star (pulsar) can be
measured by the relativistic Shapiro delay. Then, according
to the definitions of Ī or Q̄, the radius of the pulsar can be
derived. We note, however, that the Ī and Q̄ are largely degen-
erate for pulsars with a small value of spin or a large value of
compactness. This makes it very challenging to measure the
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FIG. 9. The normalized radial profiles [(ε/εc )/(r/R)4] and [ε(dε/d p)/(ε2
c /pc )] as a function of r/R for static (left panels) CSs with

compactness C = 0.17, 0.25, and Keplerian rotating (right panels) CSs with C = 0.17. The results are calculated with the RHF models for
various particle compositions. The positions of the crust-core transition (∼0.5 ρ0) and 1.0, 1.5 ρ0 are marked. In the top panels, the data are
shown on a linear scale, too.

radius of a pulsar from the moment of inertia I , or quadrupole
moment Q independently.

C. Radial profiles of CSs

Several hypotheses for the origin of universalities were
put forward early on in Refs. [35,36], but their physics re-
mains a matter of debate. It has been pointed out that the
contribution of the outer stellar layer, where the physics is
mostly settled, may render the integral parameters insensi-
tive to the details of the CS’s physics at higher densities.
It has also been pointed out that universalities could be
reminiscent of the no-hair theorems for black holes. For mod-
els with compactness approaching the black-hole limit, the
details of the internal structure may become unimportant.
We will discuss these points below using our collection of
EoSs.

To gain insight into the origin of universalities it is useful to
investigate the radial dependence of quantities of interest. In
Fig. 9, we present the (normalized) radial profiles [εr4/εcR4]
and [ε(dε/d p)/(ε2

c/pc)] for static (left panels) CSs with com-
pactnesses C = 0.17, 0.25, as well as Keplerian rotating (right
panels) CSs with compactness C = 0.17. Here, εc and pc are
the central energy density and the corresponding pressure,
respectively, and R is the equatorial radius. These results were
obtained using RHF EoS with various N , NY , and NY � com-
positions. The sudden changes in the slope of each the curve

are associated with the crust-core transition and the onsets of
various species of heavy baryons. For static configurations,
the plotted quantity [εr4] appears in the integrands of the
moment of inertia and quadrupole moment in the Newtonian
limit, whereas the quantity [ε(dε/d p) = εc2

s ] appears in the
integrand of tidal deformability [36].

The top panels of Fig. 9 show the quantity [εr4], which is
relevant for I and Q. It is seen in Fig. 9(a), where C = 0.17,
that the profiles of this quantity are the same for r/R < 0.6
and r/R > 0.9. Noticeable differences appear within the range
0.6 � r/R � 0.9 with the maxima of the curves differing by
up to 30%. This range corresponds to the low-density regions
around the nuclear saturation density, which dominantly con-
tributes to I and Q. For more compact stars with C = 0.25,
shown in Fig. 9(c), noticeable deviations appear already for
r/R � 0.5, with variations of up to 50% at the maxima located
at r/R ≈ 0.8. The profiles of Keplerian models with C =
0.17, shown in panel (e), can now be compared to those of the
static CSs with the same compactness. This comparison shows
the same qualitative behavior but with lower values of the
maxima.

The bottom panels of Fig. 9 show the profile of [ε(dε/d p)]
relevant for tidal deformability. It is seen that for the case
C = 0.17, shown in Fig. 9(b), peaks appear close to the crust-
core transition and within the range 0.6 � r/R � 0.8 due to
the onset of heavy baryons. The radial profiles of more com-
pact stars with C = 0.25, shown in Fig. 9(d), have a similar
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FIG. 10. The normalized radial density profiles [ε/εc] as a function of r/R for static (left panels) CSs with compactness C = 0.17, 0.25,
and Keplerian rotating (right panels) stars with C = 0.17. The profiles of a quadratic model for ε/εc (see text) are shown as well.

structure to the previous case, with substantial (quantitatively
similar) deviations between different EoSs in the range 0.6 �
r/R � 0.9.

Our results above provide no evidence that the Ī-C-Q̄
universality results from the independence of the profiles of
the integrands of these global quantities for our collection of
EoSs in the outer core and the crust. In fact, while the EoSs
in the low density range ρ/ρ0 � 1.5 are similar, the profiles
of relevant quantities as a function of normalized radius, as
illustrated in Fig. 9, are closely matched only in the innermost
core regions and the outermost crustal regions. Consider now
the interval 0.5 � r/R � 0.9, where deviations are observed.
We note that the functional behavior (increase or decrease) of
[εr4] with r/R is similar to that of the quantity [ε(dε/d p)].
This “correlation” is best seen for C = 0.25. Therefore, one
may conclude that the high level of universality of Ī-�-Q̄
relations is mainly attributed to the “correlation” between
the underlying profiles of Ī (Q̄)-C and �̄-C, which leads to
a cancellation when combined.

Among the various suggestions proposed to explain the
origin of universality, Ref. [42] put forward the idea that the
assumption of self-similarity of isodensity contours in real-
istic CSs, which can be approximated by elliptical contours,
plays a crucial role in the universality of I-Love-Q relations.
Furthermore, in Ref. [104] numerical evidence was presented
that demonstrated that the universality, which holds in the
incompressible limit and implies self-similar isodensity sur-
faces, is retained for modern realistic EoSs. These EoSs are
known to be stiff and, thus, have also self-similar isodensity
surfaces. Another hypothesis proposed in Ref. [62] suggests
that the universal relations arise from the fact that the energy
density of a realistic CS can be approximated as a quadratic
function of the normalized radius, given by ε(r/R) = εc[1 −
(r/R)2], where εc is the central stellar energy density.

In Fig. 10, we present the radial profiles of energy density
[ε/εc], together with the ones from the quadratic model. This
allows one to account for the difference between the realistic
CS profile and that of the quadratic model. It is seen that the
density profiles of less compact static stars, C = 0.17, can
be approximated with an accuracy of up to 30% (except for

the crust region) with the quadratic model, whereas for more
compact static stars, e.g., for C = 0.25, or for rapidly rotating
stars, the profiles deviated strongly from a quadratic one.

In closing, it is worth noting that the integrand of the mass
M, which is given in terms of [εr2], varies with r/R like
the normalized energy density shown in the top panels of
Fig. 9. Because mass enters the definitions of the dimension-
less quantities Ī and Q̄, the similarity in the variations of the
integrands of these quantities may partially cancel each other
out.

In conclusion, it appears that the universal relations dis-
cussed above do not depend on specific details of the EoS but
rather result from an overall self-similar behavior of the inte-
grands of global quantities. The radial profiles of integrands
of quantities observed in purely nucleonic EoS models do
not exhibit self-similarity in the presence of heavy baryons,
as revealed by our results. Given that these relations hold for
EoSs that include heavy baryons, it is evident that the mere
similarity of the radial profiles is not sufficient to guarantee
universality.

IV. UNIVERSAL RELATIONS BETWEEN THE KEPLERIAN
SEQUENCE AND ITS NONROTATING COUNTERPART

In this section, we turn our attention to a particular class
of universal relations, which are related to the integral pa-
rameters of static and maximally (Keplerian) rotating stars.
Phenomenologically, it is relevant to study stellar sequences
with constant baryonic mass MB. Evolutionary sequences that
lie between the limiting cases of static stars with mass and ra-
dius MS and RS, and Keplerian stars with mass and equatorial
radius MK and RK, are often employed to simulate the spin-
down or spin-up of stars under external torques. These torques
can be generated by electromagnetic and gravitational radia-
tion (resulting in spin-down), or accretion (resulting in spin-
up). A typical case is that of a CS that is born in a supernova
and spins down primarily due to the emission of magnetic-
dipole radiation and a wind of electron-positron pairs, along
the evolutionary sequence of constant baryonic mass.
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FIG. 11. Schematic plot showing constant baryonic mass se-
quences calculated with the RHF EoS of NY � (c). The supramassive
class of stars is sustained by uniform rotation and lacks a static
counterpart.

To illustrate this, Fig. 11 shows sequences of constant bary-
onic mass (MB) calculated using the RHF EoS of NY �(c).
It is seen that these sequences represent almost horizontal
lines connecting the Keplerian limiting configuration with the
nonrotating one. Note that the true physical stability may not
terminate at the Keplerian limit as various instabilities may set
in at smaller rotation rates [105,106]. The sequences shown
can be classified into two categories—one that does have a
nonrotating stable limit and those with larger masses which
do not. The first category includes stars with a static config-
uration mass equal to or less than the maximum mass. The
second category comprises stars that do not have a nonrotating
member and are known as supramassive CSs. In this category,
all the stars are unstable and terminate in a black hole beyond
the maximum star limit for any fixed rotation rate.

A. Relating mass, radius, and compactness of static
and Keplerian sequences

Figure 12 depicts the mass, radius, and compactness of Ke-
plerian CSs vs the same quantities for their static counterparts
for a fixed baryonic mass of the star MB value for our EoS
collection. In practice, we find for any MS the corresponding
value of MB and then find the Keplerian configuration with the
same value of baryonic mass.

The figure is composed of three panels that correspond to
the (a) mass, (b) radius, and (c) compactness. These results
are then fitted by the following polynomial ansatz:

y =
m∑

n=1

an xn, m = 1, 3. (6)

The relation between MK and MS showed almost linear be-
havior with deviations of at most a few percent. The relation
RK-RS has a significantly more complicated shape and the fits
with polynomials provide an accuracy of only the order of
10%. Per definition, the CK-CS relation has a similar accuracy.
It shows a quasilinear behavior for small CS (large RS) values
but strong deviations from the linear form in the opposite
limit of large CS (small RS) values. Table IV summarizes
the fit coefficients for the above relations, together with the
corresponding values of χ2

red.

B. Relating Keplerian frequency to static mass and radius

We now study the relation between the Keplerian fre-
quency fK of a CS and the gravitational mass and radius of
the associated static star with same baryonic mass MB. In the
rigid-body Newtonian limit, the Keplerian frequency takes a
very simple form, which originates from the balance between
gravitational and centrifugal forces at the object’s equator. The
Keplerian frequency of a Newtonian sphere with mass M and

FIG. 12. The relations between mass, radius, and compactness of Keplerian CSs and their static counterparts which have the same baryonic
mass MB, i.e., the sequences are generated by varying MB. (Top) Data for various EoS models together with the fitting curves. The result for
a single EoS model fitted with a third-order polynomial is illustrated in the inset. (Bottom) Fractional errors between the fitting curves and
numerical results.
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TABLE IV. Estimated coefficients of the relations between the masses, radii, and compactness of Keplerian CSs and their static counter-
parts, for constant baryonic mass sequences. The corresponding reduced χ -squared (χ2

red) values are given in the last column.

y x a1 a2 a3 χ 2
red

MK MS 1.02816 × 100 2.35621 × 10−4

9.97523 × 10−1 6.52004 × 10−3 4.79654 × 10−3 7.19416 × 10−6

RK RS 1.44171 × 100 2.82323 × 10−1

3.61768 × 100 −3.12820 × 10−1 1.11383 × 10−2 2.20765 × 10−1

CK CS 7.07964 × 10−1 1.98714 × 10−5

6.80281 × 10−1 4.18057 × 10−1 −1.25613 × 100 1.84240 × 10−5

radius R is given by [81]

f (N)
K = 1

2π

√
GM

R3
= 1.8335

(
M

M�

)1/2(10 km

R

)3/2

kHz. (7)

Considering deformation and the dragging of local inertial
frames within the general theory of relativity [107], the Ke-
plerian frequency exhibits a complicated dependence on the
global structure of a CS. To obtain the Keplerian frequency
for a given EoS, it is generally necessary to calculate the
equilibrium configurations within a self-consistent numerical
framework, as discussed in the Appendix. Formula (7) is uti-
lized to evaluate the general relativistic Keplerian frequency
with the formula

fK = a

(
Mτ

M�

)1/2(10 km

Rτ

)3/2

kHz = a Cτ kHz, (8)

where

Cτ =
(

Mτ

M�

)1/2(10 km

Rτ

)3/2

, (9)

and τ denotes the configuration type, where τ = S for static
configurations and τ = K for Keplerian ones.

In Fig. 13, we show the Keplerian frequency fK plot-
ted against the corresponding parameters of static stars,
namely (MS/M�)1/2(10 km/RS)3/2 for constant baryonic
mass sequences in panel (a), and against themselves,
(MK/M�)1/2(10 km/RK )3/2, in panel (b). We perform linear
fits and third-order extensions for each correlation according
to

fK =
m∑

n=1

an (Cτ )n, m = 1, 3. (10)

Based on Fig. 13, it is apparent that a linear correlation is
inadequate to fully capture the data, suggesting that a more
complex or higher-order formula is necessary. In fact, as
shown in the inset of Fig. 13, a third-order polynomial could
well describe fK for constant baryonic mass sequences, com-
puted for a given EoS. We thus perform for each relation a
third-order polynomial fit.

As depicted in Fig. 13, fitting the data with a third-order
polynomial provides an accuracy of 5% in assessing the

FIG. 13. (a) The Keplerian frequencies of CSs as a function of CS [see Eq. (9)]. The Keplerian frequency and static mass and radius values
are related by assuming that the static and Keplerian CS have the same fixed baryonic mass, i.e., the sequences are generated by varying MB.
(b) Same as in (a), but as a function of CK along the Keplerian sequence. (Top) Data from various EoS models and fitting curves as shown. The
inset shows the result for a single EoS model using a third-order fitting polynomial. (Bottom) Fractional errors between the fitting curves and
numerical results.
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TABLE V. Estimated coefficients of the relations that involve the masses, radii, and frequencies of static and maximally (Keplerian) rotating
CSs, for constant baryonic mass sequences. The corresponding reduced χ -squared (χ2

red) values are given in the last column.

y x a1 a2 a3 χ 2
red

fK CS 1.05183 × 100 2.55674 × 10−3

7.95060 × 10−1 8.34800 × 10−1 −5.77261 × 10−1 1.30980 × 10−3

fK CK 1.81576 × 100 1.56677 × 10−4

1.91746 × 100 −1.19466 × 10−1 −3.83918 × 10−2 9.29333 × 10−6

Keplerian frequency of a CS using its static counterpart for
constant baryonic mass sequences up to 0.9 MS

max, where MS
max

is the maximum mass of the nonrotating (static) configuration.
Finally, the accuracy reaches 1% if one writes the Keplerian
frequency of the star in terms of its mass and radius. The
coefficients for each fitting curve are summarized in Table V.

C. Relations between gross properties of maximum-mass static
and Keplerian configurations

As a follow-up to the previous subsection, we next will
examine the relationship between gross properties (gravita-
tional and baryonic mass, radius, and compactness) of the
maximum-mass static and Keplerian configurations. Since for
each EoS model, we have one datapoint relating these quan-
tities to the static and maximally rotating configurations, it is
necessary to incorporate additional EoS models to quantify
and validate the universal relations. Thus, we consider: (i)
Nucleonic CDF models proposed in Ref. [93], which are
characterized by two nuclear matter parameters: the skew-
ness Qsat and the slope of the symmetry energy Lsym. These
models cover 2.0 � Mmax � 2.5 M� and 12 � R1.4 � 14.5 km.
(ii) Hyperonic CDF models proposed in Ref. [98], which are
constructed by varying the values of parameters Lsym and
Qsat in the nucleonic sector and the couplings of hyperons

in the SU(3) symmetric model. These models predict 2.0 �
Mmax � 2.5 M� and 12.5 � R1.4 � 14.5 km. (iii) �-admixed
hyperonic CDF models for the EoS proposed in Ref. [93],
which are constructed by varying the values of Lsym and Qsat

in the nucleonic sector and varying the strength of the �

potential, while setting the couplings of hyperons according
to the SU(6) symmetric model. The latter models lead to
2.0 � Mmax � 2.2 M� and 12 � R1.4 � 13.5 km.

The correlations between the gross properties (bary-
onic and gravitational masses, radius, and compactness) of
maximum-mass static and Keplerian configurations for each
EoS model in our collection are shown in Fig. 14. We perform
for each correlation a linear fit,

y = a x, (11)

where the values of x and y correspond to quantities in the
static and maximally rotating configurations, respectively, and
are used to determine the linear fit for each correlation. The
coefficient and its standard error related to each fit (a lin-
ear regression without an intercept term) can be found in
Table VI. The uncertainty bounds that correspond to the stan-
dard deviation of the data from this regression coefficient are
also estimated.

FIG. 14. The correlations between the gravitational (a) and baryonic (d) masses, radii (b), and compactness (c) of maximum-mass
Keplerian and static stellar configurations. (Top) For each quantity the correlation for any EoS considered is represented by a dot and is
approximated by a fitting line. The bands depict the 68.3% prediction intervals of the linear regressions. (Bottom) Fractional differences
between the numerical results and the fitting lines.
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TABLE VI. The values of the coefficient a for the linear relation
between the parameters (maximum mass, radius, and compactness)
of maximally rotating (Keplerian) and static stars. The values quoted
in the parentheses refer to the standard error of this coefficient.
The upper and lower bounds (error bars) quoted correspond to the
standard deviation of the data from this regression coefficient.

y x a χ 2
red

MK
max MS

max 1.20815 (0.00147) ± 0.01560 1.15397 × 10−3

RK
max RS

max 1.35578 (0.00225) ± 0.02305 7.62623 × 10−2

CK
max CS

max 0.89251 (0.00164) ± 0.01728 2.25251 × 10−5

MK;b
max MS;b

max 1.19522 (0.00161) ± 0.01725 1.91463 × 10−3

In this scenario, as shown in Fig. 14, the linear fit between
masses (MS

max, MK
max) leads to a nearly perfect agreement

which holds better than 3%. The deviations are by a factor of 2
larger for radii (RS

max, RK
max) and compactnesses (CS

max, CK
max).

In addition, it is worth noting that in Fig. 14(b), the data
calculated from purely nucleonic EoS models show an almost
linear behavior, whereas those from heavy-baryons admixed
EoS models are distributed somewhat randomly.

We also show in Fig. 14(d) the relationship between bary-
onic masses, where again, we observe an almost linear relation
between static and Keplerian stars. This suggests the existence
of a relation between the gravitational mass and baryonic mass
for CSs in both static and Keplerian configurations.

Finally, we examine the relationships between the Ke-
plerian frequency and the gross properties of both static
and maximally rotating CSs, including the maximum grav-
itational mass, baryonic mass, and corresponding radius
[65,73,81,107]. As in Eq. (8), we use the formula

fK = a Cτ
max kHz, (12)

TABLE VII. The values of the coefficient a for the Keplerian
frequency of maximally rotating stars in terms of their masses and
radii, as well as those of the maximum-mass static stars. The values
quoted in the parentheses refer to the standard error of this coeffi-
cient. The upper and lower bounds (error bars) quoted correspond to
the standard deviation of the data from this regression coefficient.

y x a χ 2
red

fK CS;g
max 1.25106 (0.00250) ± 0.02638 9.16179 × 10−4

fK CS;b
max 1.15339 (0.00190) ± 0.02010 6.22013 × 10−4

fK CK;g
max 1.79396 (0.00078) ± 0.00824 4.33169 × 10−5

fK CK;b
max 1.66183 (0.00154) ± 0.01632 1.96817 × 10−4

where

Cτ
max =

(
Mτ

max

M�

)1/2(10 km

Rτ
max

)3/2

. (13)

The symbol τ is used to indicate the form of the configuration,
where τ can take on the values S; g and S; b for static config-
urations with gravitational and baryonic masses, respectively,
and K; g and K; b for Keplerian configurations.

Our results are presented in Fig. 15. The maximum rotation
frequency is an increasing function of the softness of an EoS,
while the maximum mass decreases. Consequently, the data
predicted by EoSs featuring heavy baryons are located mainly
at the bottom-left part of each figure. As expected, we find a
strong correlation between the Keplerian frequency fK and the
mass-radius combination CK

max of the rotating configuration
defined in Eq. (13); this correlation holds an accuracy better
than 2%. The mass-radius combination CS

max of a static con-
figuration could still be used to assess the Keplerian frequency
fK with an accuracy up to 6%. The coefficients for each fitting
are summarized in Table VII.
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FIG. 15. The correlation between the Keplerian frequency of maximally rotating CS and Cτ
max, see Eq. (13), where (a) and (b) use

gravitational static and Keplerian masses respectively, whereas (c) and (d) their baryonic counterparts instead. (Top) For each quantity the
correlation for any EoS considered is represented by a dot and is approximated by a fitting line. The bands depict the 68.3% prediction
intervals of the linear regressions. (Bottom) Fractional differences between the numerical results and fitting lines.
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V. CONCLUSIONS

In this work, we investigated universal relations for CSs
containing heavy baryons. We constructed EoS models of
dense matter with hyperons and � resonances within the
covariant density functional theory. To construct these mod-
els, the couplings in the nucleonic sector were calibrated
by nuclear phenomenology. The couplings of heavy baryons
in the scalar-meson sector were determined by fitting their
potentials at symmetric nuclear matter. The vector meson
couplings were determined using the spin-flavor symmetries
of the quark model and its breaking. The resulting EoS models
are constructed to be consistent with available constraints
from nuclear physics experiments and observations of CSs,
specifically, radii and masses inferred by the modeling of
the NICER observations. The models predict maximum-mass
stars and corresponding radius values that are within the
ranges of 2.0 � Mmax � 2.5M� and 11.5 � R1.4 � 14.5 km.

We first studied the measurable global properties of CSs
including mass, radius, tidal deformability, moment of inertia,
and quadrupole moment for isolated stars. We have demon-
strated that the inclusion of heavy baryons in CSs does not
affect the universal properties of the Ī-�-Q̄ relations for static
configurations (within the slow-rotation approximation) or the
Ī-C-Q̄ relations for constant spin sequences, as we move from
static to rapidly rotating configurations. The former relations
are found to be accurate up to 1%, while the latter ones have
a larger relative error of the order of 8% (except for the Ī-Q̄
pair). We further argue that the Ī-C-Q̄ relation may hold for
maximally rotating (Keplerian) configurations since the max-
imum spin parameter χmax = 0.68 ± 0.04 remains constant
within 6% for stars within the mass range of interest. The
radial dependence of the integrands entering the calculations
of mass, the moment of inertia, quadrupole moment, and tidal
deformability in the Newtonian limit were examined. It was
shown that the presence of heavy baryons breaks the similarity
of the radial profiles, rendering the physical origin of these
relations more complex.

We next investigated the correlations between the prop-
erties of maximally rotating (Keplerian) stars and their
nonrotating counterparts for sequences with the same bary-
onic mass. It was found that for sequences with constant
baryonic mass, a remarkably tight correlation exists between
their masses, with an accuracy of better than 0.5%. The
Keplerian frequency of a maximally rotating star can be esti-
mated with an accuracy of approximately 10% and 2% using
the mass and radius of both the static and rotating stellar
configurations, respectively. Correlations between the global
properties of static and rotating maximum-mass configura-
tions were also studied. We found that the presence of a
significant number of heavy baryons results in slight varia-
tions in these relations compared to those obtained for CSs
composed solely of nucleonic matter.

In conclusion, this work presents a study on the universal
relations for CSs that contain heavy baryons. Our derived
relations are updated versions of those already present in the
literature as applied to EoS collection with a focus on heavy
baryon degrees of freedom. The obtained relations can be used
to make EoS-insensitive estimates of CS properties using, for

example, the GW data. Future astronomical observations in
combination with these relations can be used to improve and
expand our understanding of the EoS of dense matter.
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APPENDIX: EQUILIBRIUM MODELS FOR CSS

In this Appendix, we briefly specify the relevant equa-
tions and methods that are used to compute the various
integral parameters of static and rotating stars within the gen-
eral theory of relativity. The stellar matter is assumed to be a
perfect fluid whose energy-momentum tensor can be written
as

Tμν = (ε + P)uμuν + Pgμν, (A1)

where ε and P are the energy density and pressure of matter,
respectively. The quantity uμ represents the four-velocity of
the matter and gμν is the metric tensor.

1. Static models

In the case of static stars, the metric is spherical symmetri-
cal and is given by

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2θ dϕ2), (A2)

where ν(r) and λ(r) are metric functions which depend on the
radial coordinate r.

The static solutions of Einstein’s equations are given by the
Tolman-Oppenheimer-Volkoff (TOV) equations [108,109]

dm(r)

dr
= 4πr2ε, (A3a)

dP(r)

dr
= − (ε + P)(m + 4πr3P)

r2
(
1 − 2m

r

) , (A3b)

where m(r) is the mass enclosed in a mass shell at distance
r from the center of the star. Equations (A3a) and (A3b) are
numerically integrated over the radial coordinate r from r = 0
to r = R, where radius R is the radial distance at which the
pressure P becomes zero.

The tidal deformability, λ, determines how easily an object
can be deformed due to an external tidal field [110,111]. It
is given via the dimensionless tidal Love number k2 and the
star’s radius, R, as λ = 2/3k2R5, where

k2 = 8
5C5(1 − 2C)2[2 + 2C(yR − 1) − yR]

× {6C[2 − yR + C(5yR − 8)]
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+ 4C3[13 − 11yR + C(3yR − 2) + 2C2(1 + yR)]

+ 3(1 − 2C)2[2 − yR + 2C(yR − 1)] ln(1 − 2C)}−1.

(A4)

The quantity C = M/R is the dimensionless compactness of
the star, and yR = y(R) is extracted from the solution of

dy(r)

dr
= −1

r
y2 − 1

r
F1y − rF2, (A5)

where

F1 = 1 − 4πr2(ε − P)(
1 − 2m

r

) , (A6a)

F2 = 4π(
1 − 2m

r

)(
5ε + 9P + ε + P

c2
s

− 6

4πr2

)

− 4

[
(m + 4πr3P)

r2
(
1 − 2m

r

)
]2

. (A6b)

Here, c2
s = dP/dε represents the square of the speed of sound.

Equation (A5) has to be integrated simultaneously with the
TOV Eqs. (A3a) and (A3b) with a boundary value y(0) = 2.
It is more convenient to work with the dimensionless �,
which is related to the Love number k2 and the compactness
parameter through

� = 2
3 k2 C−5. (A7)

A sequence of stars, each with its mass, radius, tidal deforma-
bility, etc., can be generated by varying the central density εc

or pressure Pc.

2. Rotating models

Highly accurate numerical methods for computing the
properties of rotating stars have been developed [102,112–
115]. Equilibrium configurations of rotating stars can be

computed using the publicly available RNS [113,116] and
LORENE/ROTSTAR [114,117] codes.

We employed the RNS code [118] to obtain the results for
rotating stars reported below. It solves the Einstein field equa-
tions for an axisymmetric and stationary space-time described
by the metric

ds2 = − eγ+ρdt2 + e2α (dr2 + r2dθ2)

+ eγ−ρr2 sin2θ (dφ − ωdt )2, (A8)

where γ , ρ, α, and ω are metric potentials that depend on the
radial coordinates r and the polar angle θ .

Using the RNS code, we computed the mass, radius, mo-
ment of inertia, and quadrupole moment of rotating star for a
specified central density. Our results take into account the cor-
rection for the quadrupole moment Q given in Refs. [42,119].

Dimensionless quantities for the moment of inertia and the
quadrupole moment can be defined as follows:

Ī = I

M3
and Q̄ = − Q

M3χ2
, (A9)

where M is the gravitational mass, χ = J/M2 represents the
dimensionless spin parameter, and J is the angular momen-
tum. The oblate shape of a rotating CS is approximately
universal and can be described by a function of the equatorial
compactness Ceq = M/Req (where Req is the radius of the star
measured at the equator) and the angular velocity [120]. In this
work, we will use C to refer to the equatorial compactness of
rotating stars.

Finally, for completeness, we quote the equation for the
general relativistic Keplerian frequency fK for a test particle
moving along the orbit with semimajor axis aK around a body
with mass M,

fK =
(

GM

a3
K

)1/2[
1 −

(
3GM

c2aK

)
(1 − ε2)

]
, (A10)

where ε is the eccentricity of the orbit. It reduces to Eq. (8)
by considering a test particle moving along the equatorial
circumference of the Keplerian star of mass MK.
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