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Equation of state of nuclear matter and neutron stars: Quark mean-field model
versus relativistic mean-field model
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The equation of state of neutron-rich nuclear matter is of interest to both nuclear physics and astrophysics.
We have demonstrated the consistency between laboratory and astrophysical nuclear matter in neutron stars
by considering low-density nuclear physics constraints (from 208Pb neutron-skin thickness) and high-density
astrophysical constraints (from neutron star global properties). We have used both quark-level and hadron-level
models, taking the quark mean-field (QMF) model and the relativistic mean-field (RMF) model as examples,
respectively. We have constrained the equation of states of neutron stars and some key nuclear matter parameters
within the Bayesian statistical approach, using the first multimessenger event GW170817/AT 2017gfo, as well
as the mass-radius simultaneous measurements of PSR J0030+0451 and PSR J0740+6620 from NICER, and
the neutron-skin thickness of 208Pb from both PREX-II measurement and ab initio calculations. Our results show
that, compared with the RMF model, the QMF model’s direct coupling of quarks with mesons and gluons leads
to the evolution of the in-medium nucleon mass with the quark mass correction. This feature enables the QMF
model a wider range of model applicability, as shown by a slow drop of the nucleon mass with density and a
large value at saturation that is jointly constrained by nuclear physics and astronomy.
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I. INTRODUCTION

The equation of state (EoS) of cold isospin asymmetric
nuclear matter has garnered considerable attention due to its
importance for nuclear physics and astrophysics. Because of
the complexity of the nonperturbative strong interaction, how-
ever, EoS is not able to be derived from its fundamental theory,
i.e., quantum chromodynamics (QCD). We have to resort to
establishing phenomenological nuclear many-body models by
keeping the principles of strong interaction and taking into
account experimental or empirical data. Among these models,
the relativistic mean-field (RMF) and the quark mean-field
(QMF) are two of the successful approaches for describing
both nuclei [1–7] and neutron stars (NSs) [8–12].

The RMF model was first proposed by Walecka [13] in
the scenario of nucleon-meson coupling, where the nucleons
and mesons are treated as pointlike particles, and the nucleon-
nucleon interaction is mediated by exchanging mesons. Since
the intrinsic properties of the nucleon and the phase state
of the nuclear many-body system are fundamentally nonper-
turbative QCD problems, the in-medium nuclear interaction
would unavoidably depend on the quark substructure and the
confinement mechanism.
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The first quark-level nuclear model was built by Guichon
[14] in the name of quark-meson coupling (QMC). In this
model, quarks are confined to a spherical bag and directly
coupled with the scalar σ meson, such that the effective quark
mass varies, subsequently affecting the nucleon mass. The
nucleon mass as a function of the scalar field is calculated
using the bag model, and the mean-field approximation, which
is identical to the RMF approach that is widely applied for
the nucleon-nucleon interaction. While the QMF model in-
herited most of the QMC approach, it differs in that it uses a
potential with a harmonic oscillator form to confine the quarks
inside the nucleon, instead of the bag model. Though QMC
and QMF models were previously distinguished based on
their confining mechanisms [1,2,15–18], recent developments
[4–7,19–25] have evolved both models to the same form.
However, in this paper, we use the name QMF and prefer it
for future reference.

In both RMF and QMF models, a number of parameters
denoting the coupling constants of the nucleon-meson (quark-
meson in QMF) or meson-meson are introduced and adjusted
to fit the experimental or empirical data. The fitted data repre-
sent the properties of nuclear matter around saturation density,
and thus the models usually give excellent descriptions of the
nuclear properties at subsaturation density and nuclei. How-
ever, due to the scarcity of experimental data at high density
and high isospin asymmetry, relying solely on nuclear data is
currently insufficient for accurate predictions on neutron star
matter. Consequently, enormous attention has been focused
on the observations of neutron stars, where the high-density,
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high-isospin-asymmetry regions of EoS plays an important
role.

One of the first breakthroughs was the precise measure-
ment of massive pulsars [26–28], whose masses are ≈2 M�
and require the EoS to be stiff enough to support neutron
stars with a mass larger than this value. Later in 2017,
the LIGO/Virgo collaborations detected the first gravita-
tional wave (GW) signal from a binary neutron star merger
GW170817 [29]. The tidal deformability of the neutron
stars, which measures their ability to be deformed by the
gravitational field of their companion, was imprinted into
the gravitational wave waveform [30–34]. Analysis of the
waveforms set an upper limit on tidal deformability and
constrained the neutron star radius and EoS [35,36]. The
observed electromagnetic counterpart of GW170817, i.e., the
kilonova AT2017gfo [37–54], is powered by the decay of
r-process nuclei and its properties are determined or corre-
lated to binary parameters, which rely on the EoS. Several
works have discussed the implications of AT2017gfo for the
EoS [55–61]. Recently, the NICER collaborations measured
the mass-radius of two pulsars, PSR J0030+0451 [62,63]
and PSR J0740+6620 [64,65]. These measurements have set
strong constraints on the EoS, as it is encoded into the neu-
tron star mass-radius relation. Furthermore, the radii and tidal
deformabilities of neutron stars are highly sensitive to the
symmetry energy slope (L0) at the nuclear saturation density,
which can be extracted from neutron-skin thickness [66–68].
Several studies have discussed the implications and correla-
tions between neutron star observations and L0 [69–80].

In this paper, we undertake a systematic investigation
and comparison of the performance of the nucleon-meson
(RMF) and quark-meson (QMF) models. To achieve this,
we adopt the same functional form of the many-body La-
grangian and maintain the same saturation properties for both
models. Specifically, the coupling constants of quark-meson
or nucleon-meson interactions are obtained by fitting against
empirical data at the saturation density. Consequently, any dif-
ferences between the RMF and QMF models arise from their
respective treatments of confined quarks and nucleons. We
undertake extensive computations and comparisons of various
properties of nuclear matter, including the considered experi-
mental data on pressure and symmetry energy for both RMF
and QMF models. Additionally, we perform Bayesian infer-
ence for both models and compare their respective results. To
this end, we take into account several astrophysical and ex-
perimental observations as likelihood functions, including the
multimessenger event GW170817/AT2017gfo, NICER mass-
radius measurements of pulsars, PREX-II experiment for the
neutron-skin of 208Pb, and their predictions from ab initio
calculations. Using the Bayesian framework, we report and
discuss our findings on the most preferred maximum masses,
radii, and tidal deformabilities of 1.4 M� stars for both RMF
and QMF models. It should be noted that our analysis does
not take into account the possible non-nucleon degrees of
freedom that may exist in massive neutron stars, for example,
deconfined quarks, hyperons, and � isobars [81–89]. The ap-
pearance of these non-nucleon degrees of freedom can consid-
erably impact the EoS, softening it. However, the interactions
between quarks, as well as between hyperons and nucleons

are subject to large uncertainties. Including these additional
degrees of freedom in our analyses would complicate them
considerably. Therefore, we focus on nucleons in our analyses
and concentrate on the results pertaining to neutron stars.

II. THEORETICAL FRAMEWORK

In this section, we will introduce the widely used RMF
approach [90], which is based on an effective Lagrangian
incorporating meson fields to mediate strong interactions be-
tween hadrons or quarks. The latter approach is known as the
QMF model [1,2]. The QMF model self-consistently relates
the internal quark structure of a nucleon and hyperon to the
RMFs that arise in nuclear and hyperonic matter, respectively.
It has been employed extensively in calculations of both finite
(hyperon-)nuclei and infinite dense matter [2–12,81].

A. The RMF model

For describing nuclear matter, we consider the σ, ω, and ρ

mesons exchanging in the RMF Lagrangian

L = ψ (iγμ∂μ − M∗
N − gωN ωγ 0 − gρN ρτ3γ

0)ψ − 1
2 (∇σ )2

− 1
2 m2

σ σ 2 − 1
3 g2σ

3 − 1
4 g3σ

4 + 1
2 (∇ω)2 + 1

2 m2
ωω2

+ 1
2 g2

ωN
ω2
vg2

ρN
ρ2 + 1

2 (∇ρ)2 + 1
2 m2

ρρ
2, (1)

where M∗
N = MN − gσN σ is the effective nucleon mass, and

the nucleon mass in free space MN = 939 MeV is adopted.
In the nuclear medium, the nucleon mass drops from its cou-
pling to the in-medium-modified chiral condensate. The σ ,
ω, ρ, and ψ denote the σ , ω, ρ meson, and nucleon field
operators, respectively. mσ = 510 MeV, mω = 783 MeV, and
mρ = 770 MeV are the meson masses. The gσN , gωN , and
gρN are the nucleon-meson coupling constants for ω and ρ

mesons. There are six parameters (gσN , gωN , gρN , g2, g3,
v) in
the Lagrangian. The last parameter 
v , which represents the
coupling constant of ω-ρ coupling, is introduced to reduce the
symmetry energy slope (see, e.g., Refs. [9,11,91]). The EoS
for a neutron star is determined by these six parameters, which
may be obtained through the process of fitting empirical data
at saturation density.

The equation of motion for each meson could be obtained
after the variation of the Lagrangian and applying the mean-
field approximation:

m2
σ σ + g2σ

2 + g3σ
3 = gσN nS , (2)(

m2
ω + 
vg2

ωg2
ρρ

2
)
ω = gωN nB , (3)(

m2
ρ + 
vg2

ωg2
ρω

2
)
ρ = gρN n3, (4)

where

nS =
∑
i=n,p

1

π2

∫ pFi

0

M∗
N

EFi

p2
Fi

d pF, (5)

nB = np + nn =
∑
i=n,p

p3
Fi

3π2
, (6)

n3 = np − nn =
p3

Fp

3π2
− p3

Fn

3π2
(7)
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is the scalar density, vector (baryonic) density, and isovector
density, respectively. pFi and EFi =

√
M∗2

N + p2
Fi

denote the
Fermi momentum and Fermi energy, respectively. The number
density of proton and neutron are represented by np and nn,
respectively. Similarly, the equation of motion for the single
nucleon is yielded by varying ψ :

[�γ · �p + (MN + US) − γ 0(ε − UV)]ψ = 0, (8)

where US = M∗
N − MN and UV = gωN ω + gρN ρτ3 denote the

scalar and vector potentials of an in-medium nucleon, respec-
tively, and ε is the single nucleon energy.

These equations of motion will be solved with the β-
equilibrium and charge-neutrality conditions simultaneously
for the study of neutron stars. Once the meson fields are
known after solving Eqs. (2)–(4), the energy density and pres-
sure contributed from nucleons can be computed by

eN =
∑
i=n,p

ei
kin + 1

2
m2

σ σ 2 + 1

3
g2σ

3 + 1

4
g3σ

4

−1

2
m2

ωω2 − 1

2
m2

ρρ
2 − 1

2

v (gωN gρN ωρ)2

+gωN ω(nn + np) + gρN ρ(np − nn), (9)

pN =
∑
i=n,p

pi
kin − 1

2
m2

σ σ 2 − 1

3
g2σ

3 − 1

4
g3σ

4

+1

2
m2

ωω2 + 1

2
m2

ρρ
2 + 1

2

v (gωN gρN ωρ)2, (10)

where

ekin = 1

8π2

[
2p3

FEF + M∗2
N pFEF − M∗4

N ln

(
pF + EF

M∗
N

)]
,

(11)

pkin = 1

24π2

[(
2p3

F − 3M∗2
N pF

)
EF + 3M∗4

N ln

(
pF + EF

M∗
N

)]
(12)

are the kinetic contributions to the energy and pressure, re-
spectively.

B. The QMF model

In the 1988 article, Guichon [14] developed a novel model
for nuclear matter to account for the changes of nucleon
properties in nuclear matter, specifically those related to the
European Muon Collaboration (EMC) effects. The model is
similar to the RMF model, but instead of coupling the scalar
and vector meson fields with the nucleons, they couple di-
rectly with the quarks. The model uses a potential model
[92] for the nucleon, and quarks are confined by a phe-
nomenological confinement potential, typically in the form
of a polynomial. A harmonic oscillator potential is generally
adopted, facilitating analytic solutions to the Dirac equation.
The Dirac equation of the confined quarks is written as[

γ 0
(
εq − gq

ωω − τ
q
3 gq

ρρ
)

−�γ · �p − (
mq − gq

σ σ
) − U (r)

]
ψq(�r) = 0, (13)

where the scalar-vector form of the Dirac structure is chosen
for the quark confinement potential. We adopt the constitute
quark mass as the value of mq, which is mq = 300 MeV.
ψq(�r) is the quark field, σ , ω, and ρ are again the classical
meson fields. gq

σ , gq
ω, and gq

ρ are the coupling constants of
σ, ω, and ρ mesons with quarks, respectively. τ

q
3 is the third

component of the isospin matrix. The U (r) represents the
harmonic oscillator potential, which has a form of

U (r) = 1
2 (1 + γ 0)(ar2 + V0). (14)

The potential constants a and V0 will be determined in the
following steps by reproducing the nucleon in-vacuum prop-
erties (mass and radius). Here, we have made the assumption
that constituent quarks move within a nonperturbative vac-
uum. However, it is possible that the confinement mechanism
generates a small region where quarks are most likely to be
present, forming a “bag” in which chiral symmetry is restored.
For a detailed discussion on how both the potential and bag
models can be used to describe the interaction of constituent
quarks in nucleons, please refer to Ref. [11].

This Dirac equation can be solved exactly and its ground
state solution for energy is

(ε′
q − m′

q)

√
λq

a
= 3, (15)

where λq = ε∗
q + m∗

q, ε′
q = ε∗

q − V0/2, m′
q = m∗

q + V0/2. The
effective single quark energy is given by ε∗

q = εq − gq
ωω −

τ
q
3 gq

ρρ and the effective quark mass by m∗
q = mq − δmq with

the quark mass reduction defined as δmq = gq
σ σ . It is worth

mentioning that, within the QMF model, the mass of the σ

meson (mσ = 510 MeV) is chosen [2] to reproduce the charge
radius of 40Ca to be around 3.45 fm. For both RMF and QMF
models, it determines the range of the attractive interaction,
such that decreasing mσ results in a reduction of gσN .

The solution for the wave function is

�(r, θ, φ) = 1

r

(
F (r)Y 0

1/2m(θ, φ)

iG(r)Y 1
1/2m(θ, φ)

)
, (16)

where

F (r) = N
(

r

r0

)
exp

( − r2
/

2r2
0

)
, (17)

G(r) = − N
λqr0

(
r

r0

)2

exp
( − r2

/
2r2

0

)
, (18)

r0 = (aλq)−1/4, N 2 = 8λq√
πr0

1

3 ε′
q + m′

q

. (19)

The radius of the nucleon in the ground state could be calcu-
lated with the wave function by

〈
r2

N

〉 = 11ε′
q + m′

q

(3ε′
q + m′

q)
(
ε′2

q − m′2
q

) . (20)

The energy obtained by solving Eq. (15), e.g., E0
N =∑

q ε∗
q , represents only the zeroth order and further corrections

are required to accurately represent the nucleon properties.
In the QMF model, corrections such as the center-of-mass
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correction, pionic correction, and gluonic correction are typi-
cally taken into account.

The center-of-mass correction is expressed as

εc.m. = 77ε′
q + 31m′

q

3(3ε′
q + m′

q)2r2
0

. (21)

This correction ensures that the three constituent quarks move
independently in the confining potential. The pion correction
arises due to the chiral symmetry of QCD theory, whereas
the gluon correction is a result of the short-range exchange
interaction between quarks. The pionic correction has the
form of

δMπ
N = −171

25
Iπ f 2

NNπ , (22)

where

Iπ = 1

πm2
π

∫ ∞

0
dk

k4u2(k)

k2 + m2
π

,

u(k) =
[

1 − 3

2

k2

λq(5ε′
q + 7m′

q)

]
exp

(
−1

4
r2

0k2

)
.

The constants mπ = 140 MeV and fπ = 93 MeV are the mass
of π meson and the phenomenological pion decay constant,
respectively. For gluonic correction, it reads as

(�EN )g = −αc

(
256

3
√

π

1

R3
uu

1

(3ε′
q + m′

q)2

)
, (23)

where

R2
uu = 6

ε′2
q − m′2

q

and αc = 0.58 is a constant.
Finally, the effective nucleon mass is yielded by combining

all the contributions of energy, and it is written as

M∗
N = E0

N − εc.m. + δMπ
N + (�EN )g. (24)

Note that in the quark-level model of QMF, unlike the hadron-
level model of RMF, the nucleon properties vary based on the
strength of the mean fields, and this variation is exclusively
expressed through M∗

N , which is associated with the σ mean
field. Meanwhile, the ω and ρ mean fields do not induce any
change in the nucleon properties.

Once the expressions of the nucleon mass and radius are
known, the potential parameters (a and V0) can be determined
by reproducing the nucleon mass and radius in free space, i.e.,
MN = 939 MeV and rN = 0.87 fm. Once these parameters are
obtained, the relation between the effective nucleon mass M∗

N
and the strength of the σ field can be determined.

The QMF Lagrangian and the equations of motion of the
many-body system have the same form as Eqs. (1)–(4) if we
convert gq

ω and gq
ρ to gωN and gρN using the quark counting

rule, i.e., gωN = 3gq
ω and gρN = gq

ρ , and define gσN in the QMF
model as gσN = −∂M∗

N/∂σ . Using this Lagrangian, the energy
density and pressure can be obtained, and their expressions are
identical to Eqs. (9)–(10).

TABLE I. Saturation properties uniformly chosen in the empiri-
cal ranges and used in this study for the fitting of RMF/QMF meson
coupling parameters and the Bayesian inference of the (binary) neu-
tron star observations: The saturation density n0 (in fm−3) and the
corresponding values at saturation point for the binding energy E/A
(in MeV), the incompressibility K0 (in MeV), the symmetry energy
J0 (in MeV), the symmetry energy slope L0 (in MeV), and the ratio
between the effective mass and free nucleon mass M∗

N/MN .

n0 E/A K0 J0 L0 M∗
N/MN

[fm−3] [MeV] [MeV] [MeV] [MeV] /

0.16 −16 U(220,340) U(28,45) U(20,150) U(0.55,0.80)

C. The coupling constants

It should be noted that the values of the coupling con-
stants in the Lagrangian are not predetermined and must be
obtained by fitting experimental data of symmetric nuclear
matter at saturation density. Table I contains six quantities and
their prior distributions that will be utilized in the Bayesian
inference process. The saturation density n0 and energy per
nucleon E/A are constants, whereas the incompressibility K0,
symmetry energy J0, symmetry energy slope L0, and the ratio
between the effective mass and free nucleon mass M∗

N/MN

have uniform prior distributions with reasonably wide ranges
that are presented in the table.

The energy density and pressure at saturation den-
sity are given by Eqs. (9)–(10), and are determined as
147.68 MeV/fm3 and 0 from the Table I. Furthermore, we
can derive the expressions for the symmetry energy J0, com-
pressibility K0, and symmetry energy slope L0 of symmetric
nuclear matter at saturation density, which are presented
below:

J0 = p2
F

6EF
+ g2

ρN

2
[
m2

ρ + 
v (gωN gρN ω)2
] (np + nn), (25)

K0 = 3p2
F

EF
+ 3M∗

N pF

EF

dM∗
N

d pF
+ 9g2

ωN

m2
ω

n0, (26)

L0 = 3J0 + 1

2

(
3π2

2
n0

)2/3 1

EF

(
g2

ωN

m2
ω

n0

EF
− K0

9EF
− 1

3

)

−
(

3g2
ρ

m2
ρ + 
v (gωN gρN ω)2

)2
g3

ωN

vωn2

0

m2
ω

. (27)

Note that the expressions are simplified for symmetric nuclear
matter by vanishing isovector meson field ρ.

Once the values of the six quantities presented in Table I
are fixed, the six parameters, namely, gσN , gωN , gρN (or gq

σ , gq
ω,

gq
ρ for QMF), g2, g3, and 
v , will be uniquely determined.

In the following paragraphs, we outline our strategy for de-
termining these parameters when the saturation properties are
known.

We sum up the energy density and pressure expressions
(9)–(10) to yield a simplified expression:

eN + pN = eN =
∑
i=n,p

ei
kin +

∑
i=n,p

pi
kin + gωωn0. (28)
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The left-hand side is known from E/A and n0, and the kinetic
terms only depend on Fermi momentum pF and effective
mass. Combine this equation with the ω equation of motion,
we can express ω and gω in terms of the known quantities as
follows:

ω =
√

(E/A + MN )n0 − ∑
i(ekin + pkin )

m2
ω

, (29)

gωN = m2
ωω

n0
. (30)

The expressions for 
v and gρ (where ρ vanishes for symmet-
ric nuclear matter) can also be obtained in the same manner by
combining Eqs. (25) and (27):


v = − m2
ωα

3β2g3
ωN

ωn2
0

, (31)

gρN =
√

m2
ρ

β−1 − 
v (gωN ω)2
, (32)

where α and β are written as

α = L0 − 3J0 − 1

2

(
3π2

2
n0

)2/3 1

EF

×
(

g2
ωN

m2
ω

n0

EF
− K0

9EF
− 1

3

)
, (33)

β = 2J0

n0
− p2

F

3EFn0
. (34)

The determination of the last three parameters relies on
Eqs. (10), (2), and the derivative of Eq. (2) with respect to
σ . In the QMF model, the effective nucleon mass M∗

N is a
function of the effective quark mass m∗

q , which solely depends
on gq

σ σ . Thus, M∗
N can be treated as a function of δmq = gq

σ σ .
On the other hand, in the RMF model, M∗

N is a linear function
of δm = −gσN σ . The value of δmq or δm is known once the
effective nucleon mass is determined in both cases.

Equations (10), (2), and the derivative of Eq. (2) are linear
with respect to the variables m2

σ σ 2, g2σ
3, and m3σ

4. Solving
them is a straightforward process, and the solution is written
as

σ =
√

C − 6B + 12A

m2
σ

, (35)

g2 = −3C + 15B − 24A

σ 3
, (36)

g3 = 2C − 8B + 12A

σ 4
, (37)

where we have introduced three parameters A, B, and C to
simplify the expressions, and they are written as

A =
∑
i=n,p

pi
kin + 1

2
m2

ωω2, (38)

B = −δmq
dM∗

N

d (δmq)
ns, (39)

C = −(δmq)2

[
d2M∗

N

d (δmq)2
ns +

(
dM∗

N

d (δmq)

)2

n′
s

+ dM∗
N

d (δmq)

d pF

d (δmq)
ñ′

s

]
. (40)

The n′
s and ñ′

s denote the derivatives of ns respect to M∗
N and

pF, respectively,

n′
s = 1

π2

(
pFEF + 2

pF

EF
M∗2

N − 3M∗2
N ln

∣∣∣∣ pF + EF

M∗
N

∣∣∣∣
)

, (41)

ñ′
s = 2

π2

M∗
N p2

F

EF
. (42)

In the case of the RMF model, δmq in Eqs. (39)–(40) is
substituted by δm, and the expressions of A, B, and C can be
further simplified by taking into account that dM∗

N/d (δm) = 1
and d2M∗

N/d (δm)2 = 0. The last parameters, gσN in RMF or
gq

σ in QMF, can easily be obtained as −δm/σ or −δmq/σ ,
respectively.

D. Neutron stars

Once the coupling constants are known from the saturation
properties of symmetric nuclear matter, one can calculate the
energy and pressure using Eqs. (9)–(10) for any baryonic
number density n and neutron fraction. However, in a neu-
tron star, the contributions from leptons cannot be neglected.
Therefore, the fractions of leptons must also be consid-
ered. These fractions are determined by the β-equilibrium
condition,

μn = μp + μe, (43)

and the charge-neutrality condition,

np = ne + nμ, (44)

where μn,p,e denote the chemical potentials of the correspond-
ing components and e and μ denote electrons and muons,
respectively. The electromagnetic interaction in neutron stars
can be neglected because of the local charge neutrality. There-
fore the leptons can be treated as the ideal gas and their
contributions to the energy and pressure read as

ei = 1

8π2

[
2p3

Fi
eFi + m2

i pFi eFi − m4
i ln

(
pFi + eFi

mi

)]
, (45)

pi = 1

24π2

[(
2p3

Fi
− 3m2

i pFi

)
eFi +3m4

i ln

(
pFi + eFi

mi

)]
. (46)

In conclusion, the total energy density and pressure of the
neutron star can be obtained through the addition of the energy
and pressure contributions of both nucleons and leptons:

e = eN + ee + eμ, (47)
p = pN + pe + pμ. (48)

The previously mentioned calculations using RMF or QMF
provide the EoS specific to the neutron star core. However, to
fully describe the properties of neutron stars, the EoS of the
crust must also be taken into account. Unfortunately, the crust
EoS cannot be obtained through aforementioned methods.
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Therefore, we utilize the BPS + NV EoS [93,94] for the crust
and combine it with our previously obtained core EoSs.

After obtaining the EoSs, the next step is to solve the TOV
equation, given by

dm

dr
= 4πr2e, (49)

d p

dr
= −(e + p)

m + 4πr3 p

r(r − 2m)
, (50)

dν

dr
= − 2

e + p

d p

dr
. (51)

Note that the equations are expressed in natural units with
C = G = 1. These units are also applied in the subsequent
equations of tidal deformability. This allows for the computa-
tion of the mass-radius relationship for neutron stars based on
the corresponding EoS. To solve the TOV equation, boundary
conditions are specified at the surface of the star as m(R) = M,
p(R) = 0, ν(R) = ln(1 − 2M/R), where M and R represent
the mass and radius of the star, respectively.

We will conclude the section by describing the tidal de-
formability of neutron stars, which is a crucial quantity for
probing the EoS through the emission of gravitational waves.

The concept of tidal deformability pertains to a star’s
susceptibility to deformation owing to its companion’s tidal
force. It is quantified as the ratio of the induced multipole
moment of the star to the inducing tidal field from its com-
panion. The tidal field, being significantly smaller than the
gravitational field of the star itself, can be treated as a pertur-
bation. The main equation of the perturbed equation is written
as [31,95]

d2H0

dr2
+

[
2

r
+ 2m

r2
eλ + 4πr(p − e)eλ

]
dH0

dr

+
[

4πeλ

(
4e + 8p + (p + e)

(
1 + 1

c2
s

))

− 6eλ

r2
−

(
dν

dr

)2]
H0 = 0, (52)

where H0, ν, and λ are metric functions and λ = − ln(1 −
2m/r). This equation is solved with the TOV equation, from
the center of the star to its surface, while imposing the interior
boundary condition H0(r) → αt r2 as r approaches 0, where αt

is a constant. On the surface of the star, the exterior boundary
is

H int
0 (R) = H ext

0 (R), (53)(
H int

0

)′
(R) = (

H ext
0

)′
(R), (54)

where the exterior solution of H0 reads as

H ext
0 = c1Q2

2(z) + c2P2
2 (z). (55)

The Q2
2 and P2

2 are the associated Legendre functions of the
first and second kind, and z = r/M − 1. In practice, the so-
lution process for Eqs. (49)–(52) involves initially setting an
arbitrary value for αt as the interior boundary. Following this
step, we match the exterior solution H ext

0 at the surface of the
star to obtain c1 and c2. Finally, the Love number and tidal

deformability are calculated as follows:

k2 = 4

15

c1

c2

(
M

R

)5

, (56)


T := 2

3
k2

(
M

R

)−5

. (57)

It is worth noting that the Love number k2 is solely dependent
on the ratio c1/c2, and that different choices of αt will yield
the same value for this ratio, thus resulting in the correct tidal
deformability value.

E. The Bayesian analysis

When considering a model hypothesis with a set of param-
eters denoted by θ and some associated data d , the posterior
probability can be obtained using Bayes’ theorem given by

p(θ|d ) = L(d|θ)p(θ)∫ L(d|θ)p(θ)dθ
, (58)

where L(d|θ) represents the likelihood of observing the data d
with a given set of parameters θ, and p(θ) represents the prior
distribution of these parameters. The denominator of Eq. (58)
is the probability of the data given all possible parameter
values and acts as a normalization factor.

In this paper, we employed the PYTHON package BILBY

[96,97] and the nested sampler PYMULTINEST [98] to conduct
the Bayesian inference and generate posterior samples. The
present analysis considers a total likelihood composed of four
parts, given by

L(d|θ) = LAT2017gfo × LGW170817 × LNICERLskin, (59)

where LAT2017gfo, LGW170817, LNICER, and Lskin represent
the likelihood of observing the kilonova light curves of
AT2017gfo, the gravitational wave event GW170817, the
NICER’s measurement of mass and radius of two pulsars,
and the neutron-skin data, respectively. The neutron-skin data
includes both the PREX-II experiments [66] and the ab initio
predictions [67].

(i) The light curve of AT2017gfo was obtained using
a radiation transfer model that incorporates various
input parameters of the binary neutron star merger
ejecta. For more details on this model and the cor-
responding likelihood for AT2017gfo, please refer to
our previous work [61].

(ii) The GW170817 likelihood was computed by imple-
menting a high-precision interpolation that developed
in Ref. [99], which is encapsulated in the PYTHON

package TOAST [100], and the likelihood function is
given by

LGW170817 = F (
1,
2,M, q), (60)

where M and q denote the chirp mass and mass ratio,
and 
1 and 
2 denote the tidal deformabilities of
the individual stars. F (·) is the interpolation function.
This interpolation table is obtained by fitting the strain
data using the gravitational wave waveform from the
component masses and their corresponding tidal de-
formabilities.
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(iii) The NICER Collaboration has measured the mass
and radius of two pulsars, namely, PSR J0030+0451
[62,63] and PSR J0740+6620 [64,65]. To generate
the likelihoods for these pulsars in our analy-
sis, we use the ST+PST model samples for PSR
J0030+0451 [101] and the NICER x XMM samples
for PSR J0740+6620 [102]. We employ the kernel
density estimation (KDE) method to generate the
posterior distributions, which are treated as the like-
lihoods in our analysis.

(iv) The PREX-II experimental data have provided the
value of neutron-skin �rnp of 208Pb as 0.283 ± 0.071
fm [66], which can be used to obtain the value of
L0 = 106 ± 37 MeV through the known correlation
between �rnp

208Pb and L0. We incorporate this con-
straint on L0 in our analysis by treating the likelihood
of PREX-II as

LPREX−II = 1√
2πσL0

exp

[
− (L0 − Lc

0)2

2σ 2
L

]
, (61)

where Lc
0 = 106 MeV and σL = 37 MeV denote the

mean and deviation, respectively. Furthermore, ab ini-
tio calculations [67] have predicted �rnp for 208Pb and
yielded the posterior distributions of both neutron-
skin and saturation properties based on J0, K0, and
L0. We incorporate these distributions in our analysis
by treating the likelihood as a multivariate Gaussian
function:

LEFT = 1√
(2π )k|�|

exp

[
− (x− μ)T�−1(x− μ)

2

]
,

(62)

where x represents the vector of [J0 L0 K0], and the
means and covariance matrix are given in the Sup-
plemental Material of Ref. [67]. We combine these
results for neutron-skin and obtain the likelihood of
skin data as

Lskin = LPREX−II × LEFT. (63)

It is noteworthy that we merely included the data of
the PREX-II experiment and ab initio calculations in

our analyses, despite the availability of other experi-
mental data [68] and analyses [75,103]. The PREX-II
experiment inferred a large value for the symmetry
energy slope, representing an extreme case. In con-
trast, the ab initio calculations are consistent with
the results obtained from other analyses. We believe
that incorporating neutron skin data from PREX-II
and ab initio calculations adequately encompasses the
diverse range of results obtained from neutron skin
analyses.

III. RESULTS AND DISCUSSION

A. Nuclear matter EoS: RMF vs. QMF

In this section, we analyze and compare the performances
of the RMF and QMF models in describing nuclear matter. It
should be noted that the primary difference between these two
models is the effective nucleon mass M∗

N . We will review their
respective formulations and provide a contrast between them
in the following paragraphs:

M∗
N = MN − gσN σ (RMF), (64)

M∗
N = E0

N − εc.m. + δMπ
N + (�EN )g (QMF). (65)

In Fig. 1, we present the scalar (vector) potential of the
single nucleon, the effective mass ratio and the nucleon-σ
coupling constants gσN of symmetric nuclear matter, for both
the RMF and QMF models, shown as functions of nucleon
number density. Note that the formulations for calculating
gωN , ω, gρN , and ρ in the parameter fitting procedure, as out-
lined in Eqs. (29) through (32), are identical for both models.
As a result, the coupling constants gωN and gρN , along with
the equations of motion for the corresponding mesons, given
by Eqs. (3) and (4), remain the same for any specific density,
provided the saturation properties are fixed. Meanwhile, we
recall the expressions for the scalar and vector potentials:

US = M∗
N − MN , (66)

UV = gωN ω + gρN ρτ3. (67)

FIG. 1. Scalar (vector) potential US (UV) (left), effective mass M∗
N (middle), and nucleon-σ coupling constants (right) as functions of

nucleon number density, for the representative case of K0 = 240 MeV, J0 = 31 MeV, M∗
N/MN = 0.77 in symmetric nuclear matter. The

calculations are done for both RMF (solid lines) and QMF (dash lines) models. The left panel shows only one line for UV as its results from
RMF and QMF models are identical.
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It is worth noting that UV depends solely on the ω and ρ

couplings, while US only depends on the nucleon effective
mass. As a result, the vector potentials are identical for both
models in the left panel. Differences between the two mod-
els in the scalar potential US and the effective mass MN of
the single nucleon (in the middle panel) are negligible for
densities below 0.25 fm−3 (or ≈1.5n0), for that the same
MN values at saturation density are fitted. However, as the
density increases, the RMF and QMF results begin to diverge,
with the QMF predictions exhibiting larger values. Notably,
the QMF curves for the scalar potential and effective mass
become increasingly flat when the density exceeds 0.6 fm−3

(or ≈3.7n0).
As seen in Eq. (64), the effective mass in the RMF model

is a linear function of the scalar meson field σ , while in
the QMF model, its dependency is more complicated. Due
to this nonlinear behavior, the nucleon-σ coupling constant
gσN varies with the σ field in the QMF model, in contrast
to being a constant in the RMF model. Within the QMF
model, the parameter gσN decreases as the density increases,
eventually approaching zero in the high-density region. This
trend is in agreement with the observed flatness of the ef-
fective mass curve after 0.6 fm−3 in the middle panel. The
density dependence of gσN arises from the fact that the ef-
fective nucleon mass M∗

N is not solely determined by the
background scalar field, or more specifically, the chiral con-
densate, but also takes into account other contributions such
as the pion cloud and quark mass [refer to Eq. (24)]. As
we will show below, the results obtained for nuclear matter
are highly dependent on the behavior of M∗

N (n) [or equiva-
lently gσN (n)]. Therefore, the effects of nucleon substructure,
which are highly dependent on the confinement mechanism,
play a crucial role. Interested readers may consult Ref. [10]
for further comparisons of the resulting nucleon and nu-
clear matter properties obtained from different realizations of
confinement.

We display the pressure and symmetry energy in Fig. 2
in the upper and lower panels, respectively. Several experi-
mental constraints from the heavy-ion collision and nuclear
structure studies are included for comparison. Both models
produce reasonable pressure-density relations for symmetric
nuclear matter with their lines in the upper panel pass-
ing through the shaded region and being consistent with
experimental constraints. However, in the high-density re-
gion, QMF predicts larger pressures than the RMF model
due to its larger effective mass and kinetic term for pres-
sure. In the lower panel, the ASY-EOS constraint does not
overlap with the lines representing our model predictions
in the suprasaturation density. In contrast to the pressure,
the RMF model predicts larger symmetry energy than QMF
in the high-density region, as evident from the formulation
of symmetry energy [Eq. (25)], where the difference be-
tween the two models is the value of the Fermi energy EF

in the first term. The RMF model yields a smaller effec-
tive mass and thus a larger first term than the QMF model.
We collect in Table II the coupling constants corresponding
to the representative EoS cases presented in both Figs. 1
and 2.

FIG. 2. Pressure (upper) and symmetry energy (lower) as func-
tions of density for both the RMF (blue) and QMF (red) models for
fixed K0 (= 240 MeV), J0 (= 31 MeV), M∗

N/MN (= 0.77), and three
different values of L0 (= 40, 60, 80 MeV), along with experimental
constraints. The orange and grey shaded areas in the upper panel
represent the flow [104] and kaon production [105] analyses, respec-
tively, of the heavy-ion experimental data. Meanwhile, in the lower
panel, various experimental regions from heavy-ion experiments are
included, including the π−/π+ ratio [106] (lime), the ASY-EOS data
with a consistent value of J0 [107] (green), and the isospin diffusion
data [108] (grey). The orange contour indicates the results of the
isobaric analog states (IAS) [109].

B. Bayesian inference of the EoSs from nuclear measurements
and astrophysical observations: RMF vs. QMF

In this section, we compare the statistical performance
of the RMF and QMF models using available data
from gravitational wave and kilonova observation
GW170817/AT2017gfo, NICER mass-radius measurements
of two pulsars PSR J0030+0451 and PSR J0740+6620,
PREX-II measurements of 208Pb neutron-skin, and
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TABLE II. Coupling constants in the Lagrangian [Eq. (1)] for
the RMF and QMF results presented in Figs. 1 and 2, namely from
reproducing the saturation properties of K0 = 240 MeV, J0 = 31
MeV, M∗

N/MN = 0.77, and three values of L0 = 40, 60, 80 MeV.

RMF
L0 [MeV] 40 60 80
gσN 8.07014
gωN 8.75245
gρN 5.41294 4.58306 4.04596
g2 [fm−1] 20.41105
g3 −15.25089

v 0.76937 0.43067 0.09197

QMF
L0 [MeV] 40 60 80
gq

σ 3.86208
gq

ω 8.75245
gq

ρ 5.41294 4.58306 4.04596
g2 [fm−1] −14.62174
g3 −66.36244

v 0.76937 0.43067 0.09197

ab initio calculations for several saturation quantities.
We employ a Bayesian inference to evaluate the performance
of both models, using the aforementioned data to calculate
the likelihood. The crucial input parameters are the nuclear
properties at saturation density, namely, the symmetry energy
J0, incompressibility K0, symmetry energy slope L0, and
nucleon effective mass M∗

N .
In Fig. 3, we present the posteriors of our analyses, with

the shaded regions and dashed lines representing the 90%
confidence interval of the posterior distributions, and the dash-
dotted and dotted lines representing the median values. The
RMF and QMF models are represented by red and blue re-
gions or lines, respectively. The posteriors denoted by the
shaded regions have taken into account both the observational
data (GW170817/AT2017gfo + NICER) and neutron-skin
data (PREX-II + EFT), while those denoted by dashed lines
merely considered the observational data in their likelihoods.
We note that the RMF and QMF models show consistent
results in mass-radius relations for both cases, with and with-
out neutron-skin data. Such consistency is also displayed in
Table III, where we list the median value and 90% confidence
interval for the maximum mass, radius, and tidal deformabil-
ity of 1.4 M� neutron star. We also note that the analyses with
neutron-skin data favor larger radii and tidal deformability of
neutron stars. The results including neutron-skin data give a
radius of ≈11.9 km and a tidal deformability of ≈330 for a
1.4 M� neutron star, while the value from analyses without
neutron-skin data is ≈11.6 km and ≈300. This difference is
mainly contributed by the large value of the symmetry energy
slope L0 (as seen in Fig. 4), which is positively correlated with
the radii and tidal deformabilities of neutron stars [10].

We presented the posterior distributions of these satura-
tion properties in Fig. 4 and their most probable intervals in
Table III, following the same conventions as Fig. 3. As noted
in Fig. 4, neutron-skin data favor a larger value of L0. Con-
versely, the observational data impose a weak constraint on

FIG. 3. Posteriors of the neutron star EoS and mass-radius rela-
tion for both the RMF (blue) and QMF (red) models. In all cases, the
likelihood is based on observational data (GW170817/AT2017gfo
+ NICER). The shaded regions and dashed lines represent the 90%
confidence interval for the analyses with and without neutron-skin
data (PREX-II + EFT), respectively. The dash-dotted and dotted
lines indicate the median results for each analysis.

the symmetry energy J0, which exhibits a large uncertainty for
both models that do not consider neutron-skin data. However,
the analyses incorporating neutron-skin data yield a smaller
uncertainty and a value of J0 (≈31 MeV) that agrees with
other experimental measurements, see e.g., Refs. [108–111].
The difference between RMF and QMF models is manifested
in the distributions of K0 and M∗

N/MN . Since QMF favors
a larger value of effective mass [9–11], the anticorrelation
between effective mass and the maximum mass of a star [112]
necessitates that the QMF model increases the value of K0,
such that its EoS can be sufficiently stiff to support a mas-
sive neutron star with the maximum mass of approximately
2 M�.
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TABLE III. Most probable intervals of various properties for nuclear matter (90% confidence interval) within the RMF and QMF
framework, constrained by two different analyses with or without the skin data (from both the PREX-II experiments and the ab initio
predictions).

Parameters GW170817/AT2017gfo + NICER GW170817/AT2017gfo + NICER + neutron-skin

J0/MeV RMF 40.315+4.163
−7.253 30.867+1.758

−1.059

QMF 39.919+4.454
−8.132 30.842+1.851

−1.025

K0/MeV RMF 233.501+33.648
−12.040 230.860+25.270

−9.601

QMF 246.219+29.475
−15.390 238.606+22.002

−12.161

L0/MeV RMF 36.901+22.028
−14.368 57.015+9.184

−13.372

QMF 36.723+24.303
−14.595 56.453+10.634

−13.225

M∗
N/MN RMF 0.755+0.028

−0.022 0.763+0.023
−0.019

QMF 0.781+0.015
−0.015 0.786+0.012

−0.012

MTOV ( M�) RMF 2.014+0.084
−0.099 1.990+0.074

−0.082

QMF 2.011+0.074
−0.076 1.989+0.064

−0.061

R1.4 (km) RMF 11.618+0.217
−0.239 11.936+0.167

−0.209

QMF 11.695+0.225
−0.250 11.974+0.155

−0.233


1.4 RMF 292.187+29.647
−37.133 323.711+26.277

−35.490

QMF 306.259+30.381
−41.607 332.145+26.443

−43.056

IV. CONCLUSIONS

Both RMF and QMF models have been successful in de-
scribing the properties of nuclear matter, finite nuclei, and
neutron stars. In the RMF model, effective nucleon-nucleon
interactions are mediated by various mesons (such as σ , ω,
and ρ), and nucleon-meson couplings are adjusted to repro-
duce experimental or empirical data. Accordingly, the QMF
model inherits most of the RMF’s framework. However, a
unique feature of the QMF model is the introduction of an ad-
ditional procedure to calculate nucleon properties (such as the
mass and radius of a nucleon) in the medium. Consequently,
the QMF model is capable of self-consistently producing both
nucleon properties and nucleon-meson couplings from the
quark confinement and quark-meson couplings. By consid-
ering the similarities and differences between the RMF and
QMF models, we systematically compare these models and
discuss their capabilities for describing nuclear matter, neu-
tron stars, and Bayesian inference, while taking into account
various experimental and observational data.

We undertook a theoretical comparison of the formulation
of RMF and QMF with particular emphasis on their effective
mass expressions. This is a crucial difference in the nucleon-
nucleon interaction between these two models. In RMF, the
effective mass linearly depends on the scalar meson field σ ,
whereas in QMF, it also depends on the confinement and
nucleon properties, and has a nontrivial relationship with σ as
well. To perform a self-consistent comparison of the models’
descriptions of symmetric nuclear matter, we first ensured
that both models reproduced the same results at the saturation
density of symmetric nuclear matter, i.e., n0, E/A, K0, J0, L0,
and M∗

N/MN . To accomplish this, we adjusted the coupling
constants and expressed them in terms of these quantities at
the saturation density. Both models were able to satisfy the
constraints from experimental data. However, the models pre-
dict different pressure and symmetry energy beyond 0.4 fm−3

(or ≈2.5n0) due to their different effective mass formulations.
We also conducted a Bayesian inference analysis to com-

pare the statistical performance of both the RMF and QMF

FIG. 4. Posterior probability distribution functions of the quantities at saturation density for each analysis (see details in Sec. II E). The
RMF and QMF models are denoted by the blue and red lines, respectively, while solid and dashed lines denote the analyses conducted with
and without neutron-skin data.
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models. In this analysis, we set the saturation properties
as the parameters, and their posterior distributions were in-
ferred by considering the GW170817/AT2017gfo, NICER,
and neutron-skin data. Both models showed similar poste-
rior distributions of the EoS and the mass-radius relation
of neutron stars. However, the posteriors of K0 and M∗

N
exhibited model dependence. The QMF model favored a
larger M∗

N and accordingly increased the value of K0 to
satisfy astrophysical constraints that result from the anti-
correlation between M∗

N and the stiffness of the EoS. On
the other hand, we also compared the results with and
without the data of neutron-skin. The comparison showed
that the astrophysical data preferred a smaller L0 than the

neutron-skin data, which led to smaller radii of neutron
stars.
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