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New experimental constraint on the 185W(n, γ ) 186W cross section
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In this work, we present new data on the 182,183,184W(γ , n) cross sections, utilizing a quasi-monochromatic
photon beam produced at the NewSUBARU synchrotron radiation facility. Further, we have extracted the nuclear
level density and γ -ray strength function of 186W from data on the 186W(α, α′γ ) 186W reaction measured at the
Oslo Cyclotron Laboratory. Combining previous measurements on the 186W(γ , n) cross section with our new
182,183,184W(γ , n) and (α, α′γ ) 186W data sets, we have deduced the 186W γ -ray strength function in the range
of 1 < Eγ < 6 MeV and 7 < Eγ < 14 MeV. Our data are used to extract the level density and γ -ray strength
functions needed as input to the nuclear-reaction code TALYS, providing an indirect, experimental constraint for
the 185W(n, γ ) 186W cross section and reaction rate. Compared to the recommended Maxwellian-averaged cross
section (MACS) in the KADoNiS-1.0 database, our results are on average lower for the relevant energy range
kBT ∈ [5, 100] keV, and we provide a smaller uncertainty for the MACS. The theoretical values of Bao et al.
[At. Data Nucl. Data Tables 76, 70 (2000)] and the cross section experimentally constrained on photoneutron
data of Sonnabend et al. [Astrophys. J. 583, 506 (2003)] are significantly higher than our result. The lower value
by Mohr et al. [Phys. Rev. C 69, 032801(R) (2004)] is in very good agreement with our deduced MACS. Our
new results provide an improved uncertainty estimate for the (n, γ ) 186W reaction rate, which is one important
ingredient in simulations for investigating the neutron density and the 186,187Os production in the s process.

DOI: 10.1103/PhysRevC.108.025804

I. INTRODUCTION

Neutron-capture reactions are known to be the main pro-
ducers of elements heavier than iron in our universe [1,2].

*a.c.larsen@fys.uio.no
†gry@xal.no

The rapid (r) and the slow (s) neutron-capture processes
are traditionally believed to account for almost 100% of the
solar-system heavy-element abundances [3,4]. The r process
takes place in an environment with an extremely high neutron
density typically larger than 1024 neutrons/cm3, which pro-
duces very neutron-rich nuclei within a short time window
(≈1 s). In contrast, the s process is, as the name implies,
a slow process; the neutron density is comparatively low
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FIG. 1. Schematic illustration of the nuclear chart in the W-Re-Os region. The black arrows indicate (n, γ ) reactions on stable or near-stable
isotopes, the blue dashed arrows show the possible (n, γ ) branch on the long-lived W, Re, and Os isotopes, while the pink arrows display the
β− decay branch.

(∼106–108 neutrons/cm3 in asymptotic giant branch stars [5])
and it can take from days to thousands of years between each
neutron-capture reaction. Consequently, the s-process “path”
in the nuclear chart remains close to the valley of stability,
as the β-decay rates are typically much faster than the (n, γ )
rates when an unstable nucleus is reached.

However, this is not true for some particular nuclei along
the s-process path. At the branch points [6] the β-decay rate is
comparable to the (n, γ ) rate, so that there is a non-negligible
possibility for the nucleus to either undergo β decay or cap-
ture another neutron. On the one hand, such branch points
could complicate the s-process nucleosynthesis calculation
significantly; on the other hand, they may provide valuable
information about the neutron density and/or temperature at
the astrophysical site for which the s process operates [7–9].

In this work, we focus on the branch-point nucleus 185W,
with a laboratory half-life of 75.1(3) d [10]. This nucleus is
of interest for the Re/Os cosmochronology first discussed by
Clayton [11]. The main idea behind the Re/Os cosmochronol-
ogy is the following: the matter from which the solar system
was formed, contained a given amount of 187Re and 187Os.
Further, 187Re is usually assigned a pure r-process origin,
while 187Os is produced only in the s process. As 187Re
has a very long half-life of 4.33(7) × 1010 y [12], Clay-
ton suggested to use the solar-system amount of 187Re and
187Os as a “clock”, which would display the time span for
which nucleosynthesis events produced various elements up
to the time of the formation of our solar system. Provided
that the 187Os amount stemming from the s process can be
reliably calculated, the extra amount of 187Os originates from
the 187Re decay. Thus, at least in principle, the abundances
of the parent/child pair 187Re/187Os can be used as a cos-
mochronometer, although not without complications [13–15].
As discussed in Refs. [7,14–16], the branchings at 185W and
186Re (see Fig. 1) could well have a non-negligible impact on

this cosmochronometer. Moreover, several authors [7–9,17]
have discussed the 185W and 186Re branchings as a “neutron
dosimeter” for the effective s-process neutron density; this
application again depends on the radiative neutron-capture
cross sections of 185W and 186Re. No direct measurement of
the neutron-capture cross section is possible on these target
nuclei, and only constraints on the electromagnetic decay of
the compound system have been obtained through photoneu-
tron experiments at relatively high photon energies [8,9].

Here, we present new photoneutron data on 182,183,184W
that complete the (γ , n) measurements on the W isotopes
(Sec. II). Moreover, in Sec. III, we present the 186W(α, α′γ )
data taken at the Oslo Cyclotron Laboratory, and the data
analysis with the resulting level density and γ strength func-
tion of 186W. Using our new data to constrain the input to
the nuclear reaction code TALYS-1.9 [18] we estimate the
185W(n, γ ) 186W Maxwellian-averaged cross section and re-
action rate, and compare to previous measurements and eval-
uations in Sec. IV B. Finally, we give a summary and outlook
in Sec. V.

II. THE (γ, n) EXPERIMENTS

A. Experimental details

The photoneutron measurements on 182,183,184W took place
at the NewSUBARU synchrotron radiation facility [19,20].
Figure 2 shows a schematic illustration of the γ -ray beam
line and experimental setup. Beams of γ rays were produced
through laser Compton scattering (LCS) of 1064 nm photons
in head-on collisions with relativistic electrons at the most-
efficient collision point P1. The γ beams were collimated
using the Pb collimators C1 and C2, each 10 cm long, with
3 mm and 2 mm apertures, respectively. The beam profile on
target nearly follows the geometrical aperture of the collima-
tor C2 with respect to the collision point P1, thus avoiding any
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FIG. 2. A schematic illustration of the experimental set up at NewSUBARU used in the (γ , n) cross-section measurements.

interaction between beam and other materials than the target.
Throughout the experiment, the laser was periodically on for
80 ms and off for 20 ms, in order to measure background
neutrons and γ rays. In this experiment, the beams produced
had an energy resolution ranging from 0.6 MeV to 0.9 MeV
[full width at half-maximum (FWHM)].

The electrons were injected from a linear accelerator into
the NewSUBARU storage ring with an initial energy of
974 MeV, then subsequently decelerated to nominal energies
ranging from 608 MeV to 849 MeV, providing LCS γ -ray
beams of energies up to 13 MeV and down to the neutron
separation energies of the W isotopes (thus varied for each
individual case). The maximum γ -ray energy of the beams
was increased in steps of 0.25 MeV. The electron beam en-
ergy has been calibrated with the accuracy on the order of
10−5 [21]. The energy is reproduced in every injection of an
electron beam from a linear accelerator to the storage ring.
The reproducibility of the electron energy is assured in the
deceleration down to 0.5 GeV by an automated control of the
electron beam-optics parameters.

The energy profiles of the produced γ -ray beams were
measured with a 3.5 in. × 4.0 in. LaBr3(Ce) (LaBr3) detector.
The measured LaBr3 spectra were reproduced by a GEANT4
code [22–26] that incorporated the kinematics of the LCS
process, including the beam emittance and the interactions
between the LCS beam and the LaBr3 detector. In this way
we were routinely able to simulate the energy profile of the
incoming γ beams with the maximum energies accurately
determined by the calibrated electron beam energy by best
reproducing the LaBr3 spectra [27,28].

The W targets were made from isotopically enriched tung-
sten as metallic powder. The material was pressed together
and enclosed in an aluminium cylinder with a thin cap. The
targets had areal densities of 0.7421 g/cm2 (182W), 0.754
g/cm2 (183W), and 1.7925 g/cm2 (184W). Due to the presence
of the Al cap, we limited the γ -ray beam energy maximum
13 MeV to avoid getting contaminant neutrons from 27Al
(Sn = 13.056 MeV).

To measure the emitted neutrons, a high-efficiency 4π de-
tector was used, consisting of 20 3He proportional counters,
arranged in three concentric rings and embedded in a 36 ×
36 × 50 cm3 polyethylene neutron moderator [29]. The ring
ratio technique, originally developed by Berman and Fultz
[30], was used to determine the average energy of the neutrons

from the (γ , n) reactions. The efficiency of the neutron detec-
tor varies with the average neutron energy. The efficiency was
measured with a calibrated 252Cf source with the emission
rate of 2.27 × 104 s−1 with 2.2% uncertainty, and the energy
dependence was determined by Monte Carlo simulations [31].
The efficiency of the neutron detector was simulated using
isotropically distributed, monoenergetic neutrons. Once the
neutron detection efficiency for a given beam energy has been
determined, we were able to deduce the number of (γ , n)
reactions that took place during each run.

The LCS γ -ray flux was monitored by a 8 in. × 12 in.

NaI(Tl) (NaI) detector during neutron measurement runs with
100% detection efficiency for the beam energies used in this
experiment. The number of incoming γ rays per measurement
was determined using the pile-up and Poisson-fitting tech-
nique described in Refs. [32,33].

B. Analysis

The measured photoneutron cross section for an incoming
beam with maximum γ energy Emax is given by the convoluted
cross section

σ Emax
exp =

∫ Emax

Sn

DEmax (Eγ )σ (Eγ )dEγ = Nn

Nt Nγ ξεng
. (1)

Here, DEmax is the normalized energy distribution
(
∫ Emax

Sn
DEmax dEγ = 1) of the γ -ray beam obtained from

GEANT4 simulations. Examples of the simulated γ -beam
profiles, DEmax , are shown in Fig. 3. Furthermore, σ (Eγ ) is
the true photoneutron cross section as a function of energy.
The quantity Nn represents the number of neutrons detected,
Nt gives the number of target nuclei per unit area, Nγ is the
number of γ rays incident on target, εn represents the neutron
detection efficiency, and finally ξ = (1 − e−μt )/(μt ) gives a
correction factor for self-attenuation in the target. The factor
g represents the fraction of the γ flux above Sn.

We have determined the convoluted cross sections σ Emax
exp

given by Eq. (1) for γ beams with maximum energies in
the range Sn � Emax � 13 MeV. The convoluted cross sec-
tions σ Emax

exp are not connected to a specific Eγ , and we choose
to plot them as a function of Emax. The convoluted cross
sections of the three W isotopes, which are often called
monochromatic cross sections, are shown in Fig. 4. The error
bars in Fig. 4 represent the total uncertainty in the quantities
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FIG. 3. The simulated energy profiles for the γ beams used. The
distributions (integrated over all Eγ ) are normalized to unity.

comprising Eq. (1), and consists of ∼3.2% from the efficiency
determination of the neutron detector, ∼1% from the pile-up
method that gives the number of γ rays, and the statistical
uncertainty in the number of detected neutrons [33]. The sta-
tistical uncertainty ranges between ∼5.0% close to neutron
threshold and 4.4% for the highest maximum γ -ray beam
energies. The systematic error is dominated by the uncertainty
from the pile-up method and from the simulated efficiency of
the neutron detector. For the total uncertainty, we have added
these uncorrelated errors in quadrature.

By approximating the integral in Eq. (1) with a sum for
each γ -beam profile, we are able to express the unfolding
problem as a set of linear equations

σf = Dσ, (2)

where σf is the cross section folded with the beam profile D.
The indices i and j of the matrix element Di j correspond to

FIG. 4. Monochromatic cross sections of 182,183,184W. The error
bars contain statistical uncertainties from the number of detected
neutrons, the uncertainty in the efficiency of the neutron detector and
the uncertainly in the pile-up method used to determine the integrated
γ flux on target.

Emax and Eγ , respectively. The set of equations is given by

⎛
⎜⎜⎝

σ1

σ2
...

σN

⎞
⎟⎟⎠

f

=

⎛
⎜⎜⎝

D11 D12 · · · · · · D1M

D21 D22 · · · · · · D2M
...

...
...

...
...

DN1 DN2 · · · · · · DNM

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

σ1

σ2
...
...

σM

⎞
⎟⎟⎟⎟⎟⎠. (3)

Each row of D corresponds to a GEANT4 simulated γ beam
profile belonging to a specific measurement characterized by
Emax (see Fig. 3 for a visual representation of some of the
rows in the response matrix D). It is clear that D is highly
asymmetrical.

The number of γ -ray beam energies used to study the
cross section is much lower than the bin size (10 keV) of
the simulated beam profiles above Sn. As the system of linear
equations in Eq. (3) is underdetermined, the true σ vector
cannot be extracted by matrix inversion. In order to find σ ,
we utilize a folding iteration method. The main features of
this method are as follows [34]:

(1) As a starting point, we choose for the zeroth iteration,
a constant trial function σ 0. This initial vector is mul-
tiplied with D, and we get the zeroth folded vector
σ 0

f = Dσ 0.
(2) The next trial input function, σ 1, can be established by

adding the difference of the experimentally measured
spectrum, σexp, and the folded spectrum, σ 0

f , to σ 0.
In order to be able to add the folded and the input
vector together, we first perform a piecewise cubic
hermite interpolating polynomial (pchip) interpolation
on the folded vector so that the two vectors have equal
dimensions. Our new input vector is

σ 1 = σ 0 + (
σexp − σ 0

f

)
. (4)

(3) Steps (1) and (2) are iterated i times giving

σ i
f = Dσ i, (5)

σ i+1 = σ i + (
σexp − σ i

f

)
(6)

until convergence is achieved. This means that σ i+1
f ≈

σexp within the statistical errors. In order to quantita-
tively check convergence, we calculate the reduced χ2

of σ i+1
f and σexp after each iteration. Approximately

four iterations are usually enough for convergence,
which is defined when the reduced χ2 value ap-
proaches ≈1.

We stopped iterating when the χ2 became lower than unity.
In principle, the iteration could continue until the reduced χ2

approaches zero, but that results in large unrealistic fluctua-
tions in σ i due to overfitting to the measured points σexp.

We estimate the total uncertainty in the unfolded cross
sections by calculating an upper limit of the monochromatic
cross sections from Fig. 4 by adding and subtracting the errors
to the measured cross section values. These upper and lower
limits are then unfolded separately, resulting in the unfolded
cross sections shown in Fig. 5.

In Fig. 5, the unfolded cross sections for 182,183,184W are
evaluated at the maximum energies of the incoming γ beams.
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FIG. 5. Cross sections of 182,183,184W obtained after deconvolu-
tion. Also shown are cross sections of 182,184W from Goryachev et al.
[35].

The error bars represent the statistical errors and the system-
atic error due to the uncertainty in the absolute efficiency
calibration of the neutron detector. The results are compared
to data on 182,184W from Goryachev et al. [35], and the
agreement is overall quite reasonable although some local
discrepancies can be observed. These discrepancies are some-
times not within the given uncertainties, and could be due to
unknown systematic errors.

III. THE OSLO EXPERIMENT

A. Experimental details

The 186W(α, α′γ ) inelastic-scattering experiment was per-
formed at the Oslo Cyclotron Laboratory (OCL). A fully
ionized 30-MeV α beam was delivered by the MC-35 Scan-
ditronix cyclotron and directed to the 186W target. The radio
frequency was set to 23.76 MHz, giving a beam burst every
42.09 ns. The experiment was run for about 8 d with typical

beam intensities of 1.5–2.2 enA. The target was mounted on
a 24-µm carbon backing, and the target thickness was 0.31
mg/cm2 with enrichment >98% in 186W.

To detect the outgoing charged particles, we used the sili-
con ring (SiRi) [36] placed in backward angles with respect to
the beam direction. SiRi is a 
E -E telescope array consisting
of eight 1550-µm thick back (E ) detectors, each of which has
a 130-µm thick front (
E ) detector divided in eight strips. A
10.5-µm thick Al foil was placed in front of SiRi to reduce
the amount δ electrons from the target. SiRi covers about 6%
of 4π and the strips have an angular resolution of about 2◦,
where the center of the strip is at 126◦–140◦ (in steps of 2◦);
measured from the center of the front detector (at 133◦), the
distance of SiRi from the center of the target was 5 cm.

The 
E -E telescopes allow for separating different
charged-particle species. Figure 6 a shows the measured pro-
tons, deuterons, tritons, and α particles for a strip at 130◦. To
select the 186W(α, α′) events, a gate was set on the “banana”
corresponding to the α particles. To calibrate the SiRi front
and back detectors, we used range calculations for our setup
with the QKINZ code [37], see Fig. 6(b).

The resolution of the α particles was measured to be
330–360 keV FWHM for the peak of the elastically scattered
α particles. The relatively poor resolution is mainly due to
a rather elongated beam spot on the target (≈3–4 mm in
diameter in the vertical direction, and ≈1 mm in the horizontal
direction). The master-gate signal for the data acquisition sys-
tem was a logical signal of 2 µs generated when an E detector
gave a signal above threshold, which was set to ≈200 mV.

Using the CACTUS array [38], we measured γ rays in
coincidence with the inelastic scattered α particles. In the
configuration used for this experiment, CACTUS consisted
of 26 NaI(Tl) crystals of cylindrical shape (5 in. × 5 in.). All
crystals were collimated with lead collimators and had 2-mm
thick Cu shields in front to attenuate x rays. The NaI(Tl)
detectors were mounted on the spherical CACTUS frame,
so that the front end of each crystal was positioned 22 cm
from the center of the target. The efficiency of CACTUS [for

FIG. 6. (a) Particle-identification spectrum for one of the front strips at 130◦ with its corresponding back detector (
E -E banana plot);
(b) a zoom on the α-particle banana with the QKINZ calculations used for calibration (crosses).
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FIG. 7. Excitation-energy vs. γ -ray energy matrices of 186W. (a) Background-subtracted data; (b) unfolded γ -ray spectra; (c) first-
generation γ -ray spectra. The lines indicate the limits set for the further analysis.

26 NaI(Tl) detectors] is 14.1(2)% as measured with a 60Co
source, and with a resolution of ≈6.8% FWHM for Eγ =
1.33 MeV. Using analog electronics, we obtained a lower
threshold of about 350 keV for the NaI(Tl) detectors.

The CACTUS detectors were calibrated in energy by gat-
ing on the protons in SiRi. As the target had a significant
contamination of carbon (from the backing) and oxygen, we
used peaks in the proton spectrum from the 12C(α, pγ ) 15N
and 16O(α, pγ ) 19F reactions to further identify γ rays for
calibration. In particular, we used the 5.269-MeV transition
from the 5/2+ first-excited level in 15N together with the
1.868-MeV transition from the 13/2+ level at Ex = 4.648
MeV in 19F. Then we crosschecked the obtained calibration
with the 1235-keV and 2583-keV lines of 19F, in addition to
the 511-keV γ ray from positron annihilation.

To obtain α-γ coincident events, we applied a gate on the
time-to-digital converter (TDC) spectra for the prompt peak,
and subtracting randomly correlated events. The start of the
TDCs is given by the master gate, and the stop signal is
generated from the NaI(Tl) detectors [each NaI(Tl) has an in-
dividual TDC], with a built-in delay from the Mesytec shapers
of ≈400 ns. The range of the TDCs was 1.2 µs. The gate on
the prompt peak was set to 
t = 0 ± 20 ns, while the gate for
the background subtraction was set to 
t = 135 ± 20 ns.

Using the reaction kinematics, we determined the initial
excitation energy of the residual nucleus from the de-
posited energy of the α particles in SiRi. Applying the time
gates for the γ rays, we obtained excitation-energy tagged,
background-subtracted γ -ray spectra as shown in Fig. 7(a).

The γ -ray spectra needed to be corrected for the CACTUS
detector response. For this purpose, we applied the iterative
unfolding method of Ref. [39] available in the Oslo-method
software package [40]. This method takes the raw γ -ray spec-
trum as a starting point for the unfolded (“true”) spectrum.
This trial spectrum is folded with the known detector re-
sponse, and then compared with the raw spectrum. By taking
the difference between the folded spectrum and the raw spec-
trum, a new, improved trial spectrum is made. This process

is repeated until the folded spectrum is approximately equal
to the raw spectrum, within the experimental uncertainties.
To preserve the experimental statistical fluctuations, and not
introduce artificial, spurious ones, the Compton subtraction
method is also applied. This takes advantage of the fact that
the Compton distribution is very smooth. For more details,
see Ref. [39]. The unfolded γ -ray spectra for each Ex bin are
shown in Fig. 7(b).

After unfolding, the first-generation γ rays were extracted
from the data by applying an iterative subtraction method
[41]. The first-generation γ rays are the ones that are emitted
first in the decay cascades, and their distribution represents
the branching ratios for the various γ transitions at a given
Ex bin. The principle behind the subtraction method is as
follows. For a given Ex bin, say, at Ex = 4 MeV, the unfolded
spectrum contains all the γ rays from all the possible decay
cascades originating from the levels populated in that Ex bin.
If we now consider the Ex bins below Ex = 4 MeV, they will
contain all the same γ rays as the Ex = 4 MeV bin, except
the first-generation γ s at Ex = 4 MeV. This is true if the Ex

bins have the same decay cascades whether the levels in the
bin were populated directly through the nuclear reaction, or if
they were populated from γ decay of above-lying levels. We
refer the reader to Ref. [42] for a more in-depth discussion
on the assumptions behind the first-generation method. The
first-generation γ spectra are displayed in Fig. 7(c).

B. Extraction of level density and γ-ray transmission coefficient

We now exploit the fact that the first-generation γ spectra
represent the (relative) branching ratios for a given initial
excitation-energy bin, and that we have many such branching
ratios available for a large Ex region. In the spirit of Fermi’s
golden rule [43,44], where the decay rate is proportional to
the level density at the final excitation energy and the reduced
transition probability for decay between a given initial and
final level, we use the following ansatz [45]:

P(Eγ , Ex ) ∝ ρ(Ex − Eγ ) · T (Eγ ), (7)
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where P(Eγ , Ex ) is the matrix of first-generation γ rays
[Fig. 7(c)], ρ(Ex − Eγ ) is the level density at the excitation
energy where the γ transition “lands”, and T (Eγ ) is the γ -ray
transmission coefficient. Note that T (Eγ ) is only a function
of Eγ , which means that the Brink-Axel hypothesis [46,47] is
invoked. Brink stated that

“...we assume that the energy dependence of the photo effect is
independent of the detailed structure of the initial state so that,
if it were possible to perform the photo effect on an excited
state, the cross section for absorption of a photon of energy E
would still have an energy dependence given by (15).”

where “(15)” is referring to the equation describing the giant
dipole resonance (GDR) with a Lorentzian function that only
depends on the γ -transition energy. Brink’s original formu-
lation (as well as Axel’s application of Brink’s hypothesis)
concerned only E1 transitions, and there is a wealth of recent
works in the literature discussing the validity and/or violation
of the hypothesis, see, e.g., Refs. [48–56].

A necessary condition for the Oslo method is that the
Brink hypothesis is at least approximately true for the specific
excitation-energy region used for extracting the level density
and γ -ray transmission coefficient. We have performed tests
of this assumption for the application in the Oslo method in
Ref. [42]. When the Brink hypothesis is applicable, we can
fit the data of the first-generation γ rays to obtain a reliable
estimate of the level density and the γ -ray transmission coef-
ficient through an iterative optimization using a least-squares
fit

χ2
red = 1

Nfree

Emax
x∑

Ei=Emin
x

Ei∑
Eγ =Emin

γ

[P(Eγ , Ei ) − Pth(Eγ , Ei )]2

[
P(Eγ , Ei )]2
. (8)

Here, P(Eγ , Ei ) is the experimental matrix of first-generation
γ rays where each row is normalized to unity,

Ei∑
Ei=Emin

γ

P(Eγ , Ei ) = 1, (9)

and 
P(Eγ , Ei ) is the uncertainties in the first-generation ma-
trix (including statistical errors and an estimate for systematic
uncertainties due to unfolding and the first-generation method,
see Ref. [45]). Moreover, Nfree is the number of degrees of
freedom and Pth(Eγ , Ei ) is the approximation for the theoreti-
cal first-generation matrix [45]:

Pth(Eγ , Ei ) = ρ(Ei − Eγ )T (Eγ )∑Ei

Eγ =Emin
γ

ρ(Ei − Eγ )T (Eγ )
. (10)

The number of degrees of freedom, Nfree, is given by Nfree =
Nch(P) − Nch(ρ) − Nch(T ). For the present data set, we have
used Emin

γ = 0.90 MeV, Emin
x = 4.0 MeV, and Emax

x = 7.2
MeV as shown in Fig. 7(c). Note that the neutron separation
energy Sn of 186W is 7.1920(12) MeV [57], and as we have
no way of discriminating against neutrons, the Oslo method is
usually limited to a maximum excitation energy (close to) Sn.
With bin size of 224 keV, and the limits applied as shown in
Fig. 7(c), we have the number of pixels in the first-generation
matrix Nch(P) = 330, while the number of elements in
the vectors of ρ and T is Nch(ρ) = Nch(T ) = 39, giving

Nfree = 252. It is important to note that the number of data
points in the first-generation matrix, Nch(P), is much big-
ger than the number of points to be estimated, which is
2 × 39 points; this is why the method usually converges very
well. When convergence is reached, the extracted ρ(Ex − Eγ )
and T (Eγ ) are the ones that best describe the experimental
P(Eγ , Ei ) matrix. For this case, we obtain χ2

red = 0.85 after
20 iterations.

As a visual illustration of the fit, Fig. 8 shows some of
the experimental first-generation spectra together with the
spectra obtained for Pth. Overall, the agreement is quite good,
although we remark that the experimental errors are rather
large. Note that the fit is performed on all the first-generation
spectra (for 15 excitation-energy bins), and so the fit is still
well constrained.

Schiller et al. showed [45] that the χ2 minimization obtains
a unique solution for the relative variation of neighboring
points in the functions ρ and T ; however, an equally good
fit to the experimental P matrix is given by the transformation

ρ̃(Ei − Eγ ) = A exp[α(Ei − Eγ )] ρ(Ei − Eγ ), (11)

T̃ (Eγ ) = B exp(αEγ )T (Eγ ). (12)

Here, α is the common slope adjustment of ρ and T , while
A and B gives the absolute scaling of ρ and T , respectively.
These parameters must be determined from external data, as
described in the following sections.

C. Normalization of level density

To normalize the level density by determining the α and A
parameters, we make use of discrete levels [57] at low Ex and
data on s-wave neutron resonance spacings [58] at the neutron
separation energy Sn. The average s-wave neutron resonance
spacing D0 = 9.3(16) eV [58] represents the spacing of levels
with spin/parity Jπ = 1−, 2− as the target nucleus 185W has
Jπ

t = 3
2

−
in its ground state. To obtain the total level density

at Sn, we need to apply a model for the spin distribution, in
particular the spin cutoff parameter σJ (Ex ). Here, we use as a
starting point the model of von Egidy and Bucurescu [59,60]
employing the rigid-body moment of inertia. However, as
shown by Uhrenholt et al. [61], at excitation energies around
7–8 MeV for heavy nuclei, a full rigid-body moment of inertia
might not be reached yet: in Fig. 10 of Ref. [61], the effective
moment of inertia is ≈85% of the rigid-body moment of
inertia at Ex ≈ 8 MeV. We take this as the reference value
for which we will vary the spin cutoff parameter to obtain an
estimate for the systematic uncertainty connected to the spin
distribution, with the effective moment of inertia ranging from
70%−100% of the rigid-body moment of inertia:

σ 2
J (Sn) = η 0.0146A5/3 1 + √

1 + 4a(Sn − E1)

2a
, (13)

where η is the reduction factor set to 0.85(15), A is the mass
number of the nucleus (here, 186), a is the level-density
parameter, and E1 is an excitation-energy shift taken from
the global systematics of von Egidy and Bucurescu [59,60]
calculated with the ROBIN.C code in the Oslo-method software
package (see Table I). This gives us a range of values for the
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FIG. 8. Experimental first-generation spectra (black crosses) compared to the predicted ones using the extracted level density and
γ -transmission coefficient (blue line) for various excitation-energy bins (224-keV wide).

estimated ρ(Sn), which is then calculated as [42,45]

ρ(Sn) = 2σ 2
J

D0
[
(Jt + 1)e−(Jt +1)2/2σ 2

J + Jt e−J2
t /2σ 2

J

] , (14)

assuming an equal parity distribution for all spins at the neu-
tron separation energy. Uncertainties in the D0 value and the
spin cutoff parameter are propagated (for a derivation, see the
Appendix). All the applied parameters are given in Table I.

Moreover, due to the argument in the level density function
being Ei − Eγ , we get an upper limit for the extracted level
density given by Emax

x − Emin
γ . Therefore, we need to make an

extrapolation from our data points up to ρ(Sn). Here, we use
the constant-temperature (CT) model of Ericson [62]:

ρCT(Ex ) = 1

T
exp

Ex − E0

T
, (15)

where T denotes the nuclear “temperature” and E0 is a shift;
both parameters are usually obtained from fits to discrete
data and to neutron resonance spacings. The parameters used
for 186W are shown in Table I. From the Oslo-method soft-
ware, statistical uncertainties and an estimate of systematic
errors due to the unfolding procedure and the first-generation
method are calculated as described in Ref. [45]. We also
include systematic errors from the normalization procedure,

accounting for the uncertainty in the experimental D0 value
as well as the uncertainty in the moment of inertia and thus
the spin cutoff parameter as described above. We estimate the
uncertainty (approximately one standard deviation) including
all these factors as

δρ = ρrec

√(
δD0

D0

)2

+
(

δσJ

σJ

)2

+
(


ρrec

ρrec

)2

, (16)

where ρrec is the central value (“recommended” normal-
ization), and 
ρrec represents statistical uncertainties and
systematic errors from unfolding and the first-generation
method. The resulting normalized level density is shown in
Fig. 9.

D. Normalization of γ-ray strength

Having the normalized level density at hand, we proceed
to normalizing the γ -ray transmission coefficient T (Eγ ) by
determining the scaling parameter B in Eq. (12). Here, we
make use of the relation between the average, total radiative
width 〈�γ 0〉 deduced from s-wave neutron resonances, the

TABLE I. Parameters used for the normalization of the level density and γ -ray transmission coefficient. Note that the E0 parameter
is adjusted to make ρCT(Sn) match with ρ(Sn) = 26.5 × 105 MeV−1. The uncertainty in 〈�γ 0〉 from Mughabghab [58] is given as 5 meV;
however, this uncertainty seems too small based on the experimental errors in the radiative width for other W isotopes, and we have chosen a
more conservative uncertainty in line with the experimental errors of 182,183,184,186W.

Sn D0 a E1 ρ(Sn) T E0 〈�γ 0〉 Ed

(MeV) Jπ
t (eV) σ 2

J (Sn) (MeV−1) (MeV) 105 (MeV−1) (MeV) (MeV) (meV) σ 2
d (MeV)

7.192 3/2− 9.3(16) 47(8) 19.38 0.28 26.5(64) 0.51(1) −0.0077 60+13
−9 7.3(13) 0.86(19)
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FIG. 9. Normalized level density of 186W. The discrete levels
[57] are binned with the same bin size as our data (224 keV/channel).
The dashed line shows the CT-model interpolation between our data
and ρ(Sn). The black error bars represent statistical uncertainties
from the experiment and systematic errors connected to the unfolding
procedure and the first-generation method. The blue band includes
also systematic errors from the normalization procedure (see text).

level density, and the transmission coefficient [42,63],

〈�γ 0〉 = BD0

4π

∫ Sn

Eγ =0
dEγT (Eγ )ρ(Sn − Eγ )

×
1∑

J=−1

[g(Sn − Eγ , Jt − 1/2 + J )

+ g(Sn − Eγ , Jt + 1/2 + J )], (17)

where g is the spin distribution [64,65]

g(Ex, J ) � 2J + 1

2σ 2
J

exp
[−(J + 1/2)2/2σ 2

J

]
. (18)

As we need the spin distribution for the excitation-energy
range Ex ∈ [0, Sn], we make use of the spin cutoff parameter
in the general form [66]

σ 2
J (Ex ) = σ 2

d + Ex − Ed

Sn − Ed

(
σ 2

J (Sn) − σ 2
d

)
, (19)

which is motivated also from microscopic calculations (e.g.,
shell-model calculations [67] and the work of Uhrenholt et al.
[61]). Here, σ 2

d represents the spin cutoff parameter at the low
excitation energy Ed , where the levels are still resolved and
with firm spin/parity assignments [57], see Table I.

We need to estimate the γ -ray transmission coefficient for
Eγ < Emin

γ , i.e., where we do not have experimental data,
in order to calculate the integral in Eq. (17). Therefore, we
extrapolate with a fit to the low-energy data points using the
functional form E3

γ exp(p1Eγ + p2), where p1 and p2 are free

FIG. 10. γ -ray transmission coefficient of 186W before normal-
ization. The arrows indicate the fit regions used for determining the
extrapolations (see text). The gray data points are not considered
further in the analysis due to very low statistics in the first-generation
matrix for these γ energies.

parameters.1 Moreover, the statistics is very low at high γ -ray
energies, and so we make use of an extrapolation here as well,
using a simple exponential, exp(p3Eγ + p4), where p3 and p4

are again free parameters. The fit regions and the extrapolation
functions are shown in Fig. 10. The data points in gray color
(Eγ > 6 MeV) are from a region in the first-generation ma-
trix with very low statistics [see Fig. 7(c)], and we therefore
choose to exclude those data points from the further analysis.

To obtain the γ -ray strength function, we use the fact that
γ decay at high excitation energies is largely dominated by
dipole transitions (see, e.g., Refs. [70–72]). As our experimen-
tal data in principle contain transitions of both electric and
magnetic character, we get the total dipole strength function
f (Eγ ) through

f (Eγ ) = T (Eγ )

2πE3
γ

. (20)

In accordance with the approach for the level density, we
estimate the uncertainty in the γ -ray strength function through

δ f = frec

√(
δD0

D0

)2

+
(

δσJ

σJ

)2

+
(

δ�γ 0

�γ 0

)2

+
(


 frec

frec

)2

,

(21)

where 
 frec is again the central value (“recommended” nor-
malization), and 
 frec represents statistical uncertainties and
systematic errors from unfolding and the first-generation
method. The resulting, normalized γ -ray strength function is
shown in Fig. 11.

1This functional form is motivated by shell-model calculations of
the low-energy γ strength, e.g., Refs. [68,69].
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FIG. 11. α-ray strength function of 186W. The black error bars
represent statistical uncertainties from the experiment and systematic
errors connected to the unfolding procedure and the first-generation
method. The blue band includes also systematic errors from the
normalization procedure (see text).

IV. RESULTS AND DISCUSSION

A. Comparison to other data and models

The level-density data are compared to various models
available in the TALYS-1.9 code [18], see Fig. 12. The models
are ldmodel 1, the composite formula of Gilbert and Cameron
[73]; ldmodel 2, the back-shifted Fermi gas model [74]; ld-
model 3, the generalized superfluid model [75]; ldmodel 4, cal-
culated within the Hartree-Fock-BCS approach [76]; ldmodel
5, the combinatorial-plus-Hartree-Fock-Bogoliubov approach
[77]; and ldmodel 6, the combinatorial model combined with a

FIG. 12. Comparison of the level-density data from this work
with models included in the TALYS code (see text).

temperature-dependent Hartree-Fock-Bogoliubov calculation
[78].

From a first look, none of the models seem to be in
good agreement with the data, and we remark that the TALYS

level densities have not been normalized to the D0 value
from Ref. [58]. In addition, we take notice of two important
issues: (i) the spin cutoff parameter we have used in our
normalization procedure might not be representative of the
corresponding spin distribution in the TALYS models; (ii) our
data can be re-normalized more coherently for each model
by adopting its energy-dependence to extrapolate between
the highest energy point and ρ(Sn), as was done, e.g., in
Ref. [79]. Nevertheless, it is clear that the overall shape of
our data points are significantly different from several of the
level-density models. We also remark that the slope of our
level-density data points is directly linked to the slope of
the γ -strength function as given in Eq. (12). If we were to
renormalize our level density to the TALYS models, this would
inevitably lead to a change in slope in the γ -strength function
as well.

We now compare our γ -strength data from the (γ , n) mea-
surements and the OCL experiment to external data found in
the literature, as shown in Fig. 13(a). We observe a good
agreement with the E1 strength extracted from primary γ

rays following neutron capture by Kopecky et al. [81], which
brings further support to the absolute normalization proce-
dure. Moreover, we compare our new photoneutron data to
several data sets found in the literature, where the photoneu-
tron cross section σγ n is converted into dipole strength using
the relation of Axel [82]

fγ n(Eγ ) = 1

3π2h̄2c2

σγ n(Eγ )

Eγ

, (22)

where σγ n is in units of mb, Eγ in MeV, and the factor
1/(3π2h̄2c2) = 8.674 × 10−8 mb−1 MeV−2. Overall, there is
good agreement between the various data sets for the W
isotopes.

In Fig. 13(a), we also compare the data with available
models in TALYS: strength 1, the generalized Lorentzian
[70]; strength 2, the standard Lorentzian (Brink-Axel model)
[46,47]; strength 3, the quasiparticle random phase approx-
imation (QRPA) on top of a Hartree-Fock-plus-Bardeen-
Cooper-Shrieffer (HF-BCS) calculation [83]; strength 4, the
QRPA on top of a Hartree-Fock-Bogoliubov (HFB) calcula-
tions [84]; strength 5, the hybrid model [85] with parameters
from global systematics [18]; strength 6, QRPA as in Ref. [84]
but on top of a temperature-dependent HFB calculation [78];
and finally strength 7, a relativistic mean-field calculation plus
a continuum QRPA calculation [86]. Out of these models,
strength 4 and strength 6 match reasonably well the present
Oslo data, but not the (γ , n) data. In general, the models are
deviating significantly from each other and from either the
Oslo data or the (γ , n) data.

To obtain a model description that can reproduce our data
reasonably well over the entire energy range, we take a prag-
matic approach and exploit phenomenological models for the
dipole strength. For the main part of the E1 strength which is
dominated by the giant dipole resonance (GDR), we apply the
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FIG. 13. (a) Comparison of γ -strength data from this work with data from the literature (Berman et al. [80], Mohr et al. [9], and Kopecky
et al. [81]), and to models included in the TALYS code (see text); (b) fit to the γ -ray strength function data of 186W and the 184W data of Kopecky
et al. [81]) (see text).

hybrid model of Goriely [85]:

f Hyb
E1 (Eγ , Tf ) = 1

3π2h̄2c2

Eγ σr�r�(Eγ , Tf )(
E2

γ − E2
r

)2 + E2
γ �r�(Eγ , Tf )

,

(23)

where σr is the peak cross section, Er the centroid, and �r

the width of the GDR. Further, the γ -energy and temperature
dependent width �(Eγ , Tf ) is given by

�(Eγ , Tf ) = 0.7 · �r

E2
γ + 4π2T 2

f

Eγ Er
. (24)

The temperature of the final levels, Tf , is here considered as
a constant, in line with the Brink-Axel hypothesis. We also
include extra E1 strength [labeled “E1 pygmy” in Fig. 13(b)]
to make a smooth connection between our data and the
(γ , n) data. Finally, we also add a magnetic-dipole component
[marked “M1 spin-flip” in Fig. 13(b)]. For both the E1 pygmy
and the M1 spin-flip contributions, we apply a resonance-like
form using a standard Lorentzian

fPyg,M1(Eγ ) = 1

3π2h̄2c2

σPyg,M1�
2
Pyg,M1Eγ(

E2
γ − E2

Pyg,M1

)2 + �2
Pyg,M1E2

γ

,

(25)

where σPyg,M1, �Pyg,M1, and EPyg,M1 are the peak cross section,
width, and centroid for the pygmy (Pyg) and the spin-flip (M1)
resonance, respectively. The total fit function is then given by

ftot (Eγ ) = f Hyb
E1 (Eγ , Tf = const.) + fPyg(Eγ ) + fM1(Eγ ).

(26)

For the fit, we first constrain the hybrid component by
fitting only the hybrid model to the GDR data (Mohr et al.
[9] and Berman et al. [80]) in the range Eγ = 7.7–14.5 MeV.
We choose to fix the Tf parameter to the one used for the
extrapolation of the level density (see Sec. III C) to ease the

fit, as Tf is largely determined from the γ -strength function
below neutron threshold. From this fit, we determine the GDR
parameters σr , Er , and �r , to be used as start values for
the next fit including the data for γ energies below neutron
threshold as well.

For the spin-flip part, we use a fixed centroid EM1 taken
from systematics [66], and a fixed width of �M1 of 2.5 MeV.
The peak cross section σM1 is then found from a fit to the
M1 data of 184W from Kopecky et al. [81]. Then we make a
fit using the full energy range Eγ = 1.0–14.5 MeV, with only
the spin-flip parameters fixed, and with the first fit of the GDR
data as starting values. In the fit, we include the present OCL
data of 186W, the E1 data from Kopecky et al. [81] on 184W,
and the GDR data from Mohr et al. [9] and Berman et al. [80].
The resulting fit is shown in Fig. 13(b), and the parameters are
listed in Table II. As this model fit will be used to calculate
the (n, γ ) cross section and reactivity in the following section,
we repeat the fit for all the different normalizations (varying
D0, �γ 0, σJ and taking into account 
 f ). All fits are per-
formed within the ROOT software tool [87] using the Minuit
package.

The resulting fit function gives a reasonable description of
the strength function data, although we note a potential issue
in that the region between Eγ = 6–8 MeV contains practically
no data points for 186W. Moreover, the 184W data points from
primary transitions following neutron capture typically have
large fluctuations. Hence, it is very difficult to assess the actual
parameters for the E1 pygmy, and the deduced parameters
given in Table II should be used with caution.

We also remark that the data points at the lowest γ ener-
gies, Eγ < 1.5 MeV, might indicate some low-energy increase
in the γ -strength function, as first observed in iron isotopes
[88]. However, in contrast to clear cases like 56Fe [71,72,88],
it is hard to conclude here as there are only a few data points
that might show an increasing trend. We therefore choose not
to include an extra “up-bend” component in the fit.
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TABLE II. Parameters found from the model fits of ftot to the γ -strength data (see text). The uncertainties given are from the fit only. Note
that EM1 and �M1 are fixed.

Er �r σr EPyg �Pyg σPyg Tf EM1 �M1 σM1

Norm. (MeV) (MeV) (mb) (MeV) (MeV) (mb) (MeV) (MeV) (MeV) (mb)

Rec. 12.9(1) 4.1(1) 382(2) 6.3(1) 2.6(2) 7.2(3) 0.43(3) 7.2 2.5 4.4(4)

B. Maxwellian-averaged cross section and reaction rate

Using our level-density data and γ -strength function
data, we now calculate the Maxwellian-averaged cross sec-
tion (MACS) with the TALYS code, which is based on the
statistical model of Wolfenstein [89] and Hauser and Fesh-
bach [90]. The resulting MACS is shown in Fig. 14, where we
also show the TALYS MACS with default inputs (strength 1,
ldmodel 1, a global optical-model potential, and no up-bend),
and the variation of the MACS as the different level-density
and γ -strength models are used. We have tested using the
semimicroscopic optical-model potential of Bauge et al. [91]
for comparison with the one of Koning and Delaroche [92].
As seen from Fig. 14 (dashed line versus dashed-dotted line),
there is only a minor difference between the two for neutron
energies around kBT = 30 keV, and overall the semimi-
croscopic potential gives a lower MACS. Nevertheless, the
presented uncertainty band on our experimentally constrained
MACS includes the variation between the two different optical
models in the lower uncertainty, in addition to uncertainties
from D0, �γ 0, and σJ .

In Fig. 14, we compare our result with the KADoNiS
database [93], and find agreement within the error bars, al-
though the KADoNiS values are overall larger than our central
values. We remark that the KADoNiS values are from a

FIG. 14. Maxwellian-averaged cross section for the 185W(n, γ )
reaction. The shaded band indicates the present data-constrained
MACS. The thick, azure dashed-dotted line shows the TALYS result
using default input, the thin, azure dashed lines show the TALYS

MACS when varying the level-density models, and the thin, cyan
lines show the variation due to different γ -strength models. The
dotted line shows the deviation from the default when using the
optical-model potential of Bauge et al. [91].

weighted average of MACS constrained by photonuclear data
above Sn, while our results include information on both the
level density as well as the γ -strength function below Sn.
We have multiplied the KADoNiS MACS values with their
corresponding stellar enhancement factor (SEF) as given in
Ref. [93] for 185W(n, γ ). Furthermore, our estimated uncer-
tainty band is smaller than the KADoNiS uncertainties, Our
result at kBT = 30 keV, 508+76

−106 mb, agrees well within error
bars with the MACS from Mohr et al. [9], 553(60) mb. On
the other hand, the evaluation of Bao et al. [94] of 703(113)
mb, and the measurement of Sonnabend et al. [8], 687(110)
mb, are both larger than our estimate, although still within
the estimated uncertainties. We note that none of these values
are directly measured, as Bao et al. gives a purely theoretical
prediction, while the MACS value from Sonnabend et al. is
constrained on (γ , n) data above Sn. In comparison with the
TALYS estimates using the default input as well as the resulting
MACS when varying the level-density and γ -strength models,
our deduced MACS is in between the extremes.

In Fig. 15, we show the corresponding reaction rate (stellar
reactivity) deduced from our data compared to the KADoNiS
rate, the TALYS default and the variations using different model
inputs. Again we find that the KADoNiS values are overall
higher than our estimated rate, in particular for temperatures
below 0.3 GK.

To address possible implications for the s process and the
Re/Os cosmochronometer in a reliable way, the branch points
at 186Re and 191Os should also be considered in realistic stellar

FIG. 15. Reaction rate for the 185W(n, γ ) reaction. The shaded
band indicates the present data-constrained result. See also the cap-
tion of Fig. 14.
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models for thermally pulsing asymptotic giant branch (AGB)
stars. The 191Os MACS has been estimated by a similar proce-
dure as in this work by Kullmann et al. [95]. The 186Re MACS
remains to be experimentally constrained in the same way;
the 186W(α, dγ ) 187Re data from this same experiment is cur-
rently being analyzed. With this experimentally constrained
MACS also at hand, we intend to perform a consistent study
of the s process in this mass region.

V. SUMMARY AND OUTLOOK

In this work, we have performed photoneutron cross
section measurements on the 182,183,184W isotopes. This com-
pletes the photoneutron measurements on the stable W
isotopic chain. Furthermore, we have presented data on the
186W(α, α′γ ) reaction, and used the extracted level density
and γ -ray strength function to provide an experimentally
constrained (n, γ ) cross section for the branch-point nucleus
185W.

In comparison with other data and the recommended
MACS from the KADoNiS data base, we find that our es-
timated MACS and reaction rate are lower than most of the
other available values, except for the result of Mohr et al.
Our reaction rate could possibly impact the s process in this
mass region, in particular the deduced neutron density and the
calculation of the 186Os abundance. When the 186Re MACS
also becomes available, we intend to perform a systematic
study of the s-process conditions in the W-Re-Os region in
the near future.

The extracted level density and γ -ray strength function
data, as well as the calculated cross section and rate are
available in the Supplemental Material [96].
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APPENDIX: UNCERTAINTY IN ρ(Sn)

To estimate the total level density at the neutron separation
energy using Eq. (14), we propagate errors from the D0 value
and the spin cutoff parameter σJ (Sn) assuming that they are
independent variables, which is a justified assumption. Thus,
we get that(

δρ(Sn)

ρ(Sn)

)2

=
(

δD0

D0

)2

+
(

δξ (σJ (Sn))

ξ (σJ (Sn))

)2

, (A1)

where ξ represents the function containing the dependency on
the spin cutoff parameter σJ at the neutron separation energy
Sn:

ξ (σJ ) = 2σ 2
J

Jt e−J2
t /2σ 2

J + (Jt + 1)e−(Jt +1)2/2σ 2
J

. (A2)

Now we take the derivative of ξ with respect to σJ and obtain

δξ

δσJ
= 4σJ

(
Jt e−J2

t /2σ 2
J + (Jt + 1)e−(Jt +1)2/2σ 2

J
) − 2

σJ

(
J3

t e−J2
t /2σ 2

J + (Jt + 1)3e−(Jt +1)2/2σ 2
J
)

[
Jt e−J2

t /2σ 2
J + (Jt + 1)e−(Jt +1)2/2σ 2

J

]2
.

(A3)

For convenience, we now define the auxiliary functions

z1 ≡ J3
t e−J2

t /2σ 2
J + (Jt + 1)3e−(Jt +1)2/2σ 2

J ,

z2 ≡ Jt e
−J2

t /2σ 2
J + (Jt + 1)e−(Jt +1)2/2σ 2

J .

Using these and dividing Eq. (A3) by the function ξ (σJ ), we get

δξ

ξδσJ
= 2

σJ
− z1

σ 3
J z2

= 2

σJ

(
1 − 1

2σ 2
J

z1

z2

)
. (A4)

Finally, we obtain (
δξ

ξ

)2

=
(

2δσJ

σJ

)2(
1 − 1

2σ 2
J

z1

z2

)2

. (A5)

This is what is implemented in the code D2RHO in the Oslo software package [40].
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