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Poincaré covariant cascade method for high-energy nuclear collisions
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We present a Poincaré covariant cascade algorithm based on the constrained Hamiltonian dynamics in an
8N-dimensional phase space to simulate the Boltzmann-type two-body collision term. We compare this covariant
cascade algorithm with traditional 6N-dimensional phase-space cascade algorithms. To validate the covariant
cascade algorithm, we perform box calculations. We examine the frame dependence of the algorithm in a one-
dimensionally expanding system as well as the compression stages of colliding two nuclei. We confirm that
our covariant cascade method is reliable to simulate high-energy nuclear collisions. Furthermore, we present
Lorentz-covariant equations of motion for the N-body system interacting via potentials, which can be efficiently
solved numerically.

DOI: 10.1103/PhysRevC.108.024910

I. INTRODUCTION

High-energy heavy-ion collisions offer a unique opportu-
nity to study hot and dense nuclear matter [1,2]. To extract
equilibrium properties of nuclear matter, such as equations of
state, it is necessary to describe the dynamics of finite
and nonequilibrium systems using a theoretical transport ap-
proach. Transport models have been widely used in the past
few decades to understand collision dynamics and experimen-
tal data in high-energy heavy-ion collisions. These models
include parton cascade models [3–7], Boltzmann-Uhlenbeck-
Uehling (BUU) models [8], and quantum molecular dynamics
(QMD) approaches [9], as well as their relativistic extensions
[10–12]. Extensive comparisons of various transport models
can be found in Refs. [13–17].

One of the main ingredients of nonequilibrium microscopic
transport approaches is a Boltzmann-type collision term,
which is often simulated by the so-called cascade method;
e.g., a scattering happens when the closest distance between
two particles is less than the interaction range given by the
cross section d = √

σ/π , where σ is the total cross sec-
tion. However, this geometrical interpretation of cross section
often leads to a violation of Lorentz covariance for the N
interacting particle system in the 6N-dimensional phase-space
approach. To address this issue, numerical codes employ ef-
fective algorithms to approximate the relativistic effect in the
modeling. Despite the lack of covariance in these transport
models, reasonable results are obtained when a simulation
is performed in the global center-of-mass frame of colliding
two nuclei. It is important to note that different collision algo-
rithms lead to different numerical results [14,15,18–20]. The

*Deceased.

causality problems in the cascade models were discussed in
Refs. [6,18,20–23]. The full-ensemble (subdivision) method
[5,23–25] can reduce the causality violation, but it alters
event-by-event corrections and fluctuations and is computa-
tionally expensive.

A Poincaré covariant Hamiltonian formalism for an N-
interacting particle system can be constructed based on the
framework of constrained Hamiltonian dynamics [26–28] by
extending the phase space from the nonrelativistic 6N to
8N dimensions to avoid the no-interaction theorem [29–31],
where four-positions and four-momenta of particles are the
dynamical variables. The framework of constrained Hamilto-
nian dynamics [26–28] was utilized to develop a relativistic
version of quantum molecular dynamics (RQMD) [11,12,32–
35] to describe the dynamics of interacting particles by
mean-field potentials. New versions of RQMD approaches
are developed later by implementing Lorentz-vector potentials
[36–38].

In this paper, we propose a Poincaré covariant cascade
method based on the framework of constrained Hamiltonian
dynamics [26–28]. This method allows efficient numerical
simulations of the collision processes in 8N-dimensional
phase space, which is as efficient as the standard cascade
method in a 6N-dimensional phase space. In the constrained
Hamiltonian dynamics, the N-particle system is described
in terms of 8N-dimensional phase space. To ensure that the
dynamical system has the physical degrees of freedom of 6N ,
we impose 2N constraints. We employ the same constraints
as in Refs. [32,34–38], which were shown to describe inter-
acting N relativistic particles effectively through potentials.
We compare our approach with other models that employ
different constraints [11,12] to investigate the difference and
advantages of our proposed method. Our covariant cascade
method has been implemented in the event generator JAM
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[39,40]1 to simulate high-energy nuclear collisions for a wide
range of beam energy.

This paper is organized as follows: In Sec. II, we sum-
marize cascade methods in the 6N-dimensional phase space.
In Sec. III, a Poincaré covariant cascade method in 8N-
dimensional phase space will be presented. Section IV is
dedicated to the comparison and validation of different col-
lision schemes. We examine the collision rate and thermal
spectra in a box calculation. To investigate frame depen-
dence, we first analyze a one-dimensionally expanding system
considering only elastic scatterings. Then, different collision
schemes are applied to collisions of two nuclei in different
computational frames, including inelastic processes. We also
evaluate various collision schemes in the 6N-dimensional
phase space [4,20,42]. Our analysis reveals that some of the
collision schemes provide a reasonable description of the col-
lision term when applied in the center-of-mass system under
specific conditions. In Sec. V, we will introduce new covari-
ant equations of motion for a N-particle system interacting
through potentials, which is numerically efficient. The con-
clusion is given in Sec. VI. Throughout this paper, we use the
natural unit system of c = kB = 1 and the sign convention of
the metric gμν = diag(+,−,−,−).

II. CASCADE METHODS IN 6N-DIMENSIONAL
PHASE SPACE

We first summarize several cascade algorithms in the
6N-dimensional phase space. In these cascade models, the
geometrical interpretation of the cross section is commonly
employed, where two particles will collide if the impact pa-
rameter b becomes smaller than the interaction range specified
by the cross section σ : b � √

σ/π . The impact parameter is
defined as the minimum distance in the two-body center-of-
mass system (c.m.s.). Let us consider the collision of two
particles with coordinates q1 = (t1, x1) and q2 = (t2, x2), and
momenta p1 = (E1, p1) and p2 = (E2, p2). The Lorentz in-
variant expression of the squared impact parameter is given
by [21,43,44]

b2 = x2
cm − (xcm · vcm )2

v2
cm

= −q2
T + (q · pT )2

p2
T

, (1)

where xcm = xcm,1 − xcm,2 is the relative position between the
two particles, and vcm = vcm,1 − vcm,2 is the relative velocity
in the two-body c.m.s., respectively. The four-vectors qT and
pT are the transverse relative position and momentum,

q = q1 − q2, p = p1 − p2, (2)

qT = q − (q · u)u, pT = p − (p · u)u, (3)

where u is the unit vector proportional to the total momentum
of the two-body system,

u = p1 + p2√
(p1 + p2)2

. (4)

1The latest version of the code JAM2 is publicly available [41].

The time of the closest approach, tcm, in the two-body c.m.s.,

tcm = tcm,1 + λ(p1, p2,+q)(p2 · u), (5)

tcm = tcm,2 + λ(p2, p1,−q)(p2 · u), (6)

is Lorentz invariant quantity, where tcm,1 and tcm,2 denote the
last collision times of the respective particles in the two-body
c.m.s., and

λ(p1, p2, q) = p2
2(q · p1) − (p1 · p2)(q · p2)

(p1 p2)2 − p2
1 p2

2

. (7)

The times of the closest approach tc1 and tc2 for the two
colliding particles in the computational frame are obtained by
Lorentz transforming tcm (see Appendix A):

tc1 = t1 + λ(p1, p2,+q)E1,

tc2 = t2 + λ(p2, p1,−q)E2.
(8)

Although the times of the closest approach are simultaneous
in the two-body c.m.s., they are, in general, different in a com-
putational frame, which can lead to the violation of causality.
The two particles may collide when their impact parameter is
less than the interaction range

√
σ/π and tc1 > t1 and tc2 > t2

to avoid backward collision in time. We make a collision list
by ordering all possible collision pairs. The collision list is
updated after every collision. Thus, we need to define the
collision ordering time [18,20]. The ordering time, to, is used
to order the collisions in the collision list to determine which
particle pair collides first in the time-step–free cascade cal-
culation. The collision times, tcoll1 and tcoll2, are the times at
which the two particles collide, i.e., change their momentum
(and species in inelastic scattering), which may be different
from the time of closest approach.

There is no unambiguous guideline to specify the ordering
time. The ZPC parton cascade model assumes the ordering
time to be the average of the times of the closest approach,
to = (tc1 + tc2)/2, and assumes that the collision times are the
same as the ordering time tcoll1 = tcoll2 = to. This approach
is referred to as collision scheme G (CS-G) in Ref. [20].
Another possible choice is to define the ordering time to
be the minimum of the times of the closest approach: to =
min(tc1, tc2), which predicts a less collision rate [6] [collision
scheme A (CS-A)] with the collision times being the same as
the times of the closest approach: tcoll1 = tc1 and tcoll2 = tc2.
In Ref. [20], a collision scheme in which the collision times
and the collision ordering time are chosen by the minimum,
tcoll1 = tcoll2 = to = min(tc1, tc2) [collision scheme B (CS-B)],
accurately describes the collision rate and the equilibrium
momentum distribution in a box calculation. The distinct dif-
ference in the collision schemes is that two particles collide
simultaneously in their two-body c.m.s. in CS-A, while in
CS-B and CS-G the collision time of two colliding particles
is the same in the computational frame.

There are problems in these schemes due to the different
times for the closest approach in the computational frame. For
example, in collision scheme CS-A, the particle with a larger
collision time would not collide in the duration between the
collision times |tc1 − tc2| to avoid noncausal collisions, which
reduces the collision rate [23]. We note that particles do not
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collide at the distance of the closest approach in collision
schemes CS-B and CS-G. In these collision schemes, to avoid
noncausal collisions, we impose the additional conditions
tcoll1 > t1 and tcoll2 > t2.

As an alternative approach, the proper time interval δτi( j)
from the last collision time τi to the next collision time τci( j)
for the collision of particles i with particle j at the closest
approach

δτi( j) = τci( j) − τi = λ(pi, p j, qi − q j )
√

p2
i , (9)

are considered for the ordering of two-body collisions in
Ref. [21]. It is argued that in this approach, if only causal
collisions are required, the number of collisions is largely
reduced and may lead to the underestimation of the collision
rate [22].

To avoid the problems of collision ordering, one can intro-
duce the time step, and collision pairs are randomly selected
by using the predicted collision times in Eq. (8) [45]. We note
that the Lorentz transformation of Eq. (9) to the computational
frame yields Eq. (8). In this approach, a sufficiently small
time-step size should be selected to avoid the artifact of the
order of the collision and decay sequence [15]. In addition,
the comparisons of N (N − 1)/2 pairs in an N-particle system
have to be made at each time step, which leads to the increas-
ing computational time proportional to N2.

In UrQMD [42] and SMASH [46], the collision ordering time
and the collision time are defined as the time of the closest
approach in the computational reference frame,

t (ref)
coll = t1 − [x1(t1) − x2(t1)] · (v1 − v2)

(v1 − v2)2
, (10)

where coordinates and velocities v1 and v2 are taken in the
computational frame. It should be noted that the impact pa-
rameter is still defined in the two-body c.m.s. frame. Let us
call the collision scheme with this collision ordering CS-O.
This collision scheme does not have problems arising from
the difference in collision times.

As one possible way to recover the Lorentz covariance, the
full-ensemble method has been proposed [5,23–25], in which
particles are oversampled by the factor of Ntest: n → nNtest and
the cross section is reduced by σ → σ/Ntest . As the density
ρ scales as Ntest , the mean free path remains the same, 	 ∼
(ρσ )−1. Since the collision distance scales as d = √

σ/π ∝
1/

√
Ntest , the collision occurs at the same spacetime point in

the limit of Ntest → ∞ so that the collision term of the Boltz-
mann equation is recovered. However, this method destroys
the event-by-event fluctuations and correlations. Furthermore,
it requires intensive computational time.

As an alternative method, the “local-ensemble method”
[25,47,48], which is also called the “stochastic method” [6],
was developed based on the covariant collision rate. We first
divide the space into a set of small volumes and introduce
oversampled test particles by the factor Ntest . When the num-
ber of collisions occurring in volume dV in a time interval dt
is given by [49]

dν = σvMn1n2dV dt, vM =
√

(p1 · p2)2 − p2
1 p2

2

p0
1 p0

2

, (11)

one obtains the collision probability in volume dN and time
interval dt as

P22 = dν

dN1dN2
= σ

Ntest
vM

dt

dV
, (12)

where ni = dNi/dV . In each time step, the collision pairs are
randomly chosen from the volume. In the limits of dV → 0,
dt → 0, and Ntest → ∞, the collision rate converges to the
exact solutions of the Boltzmann equation. This approach has
the advantage that multiparticle collisions such as m → n pro-
cesses can be simulated in a straightforward way [48,50,51].
The stochastic method generally requires a large number of
test particles to ensure the accurate solution of the Boltzmann
equation. The cell length should be smaller than the mean
free path to reduce numerical artifacts. This method was first
used to solve the BUU transport model, which solves the time
evolution of the one-particle phase space function.

III. POINCARÉ COVARIANT CASCADE MODELS

We now consider the Poincaré covariant cascade method
in the 8N-dimensional phase space in terms of four-vectors
of the particle positions and momenta to construct a covariant
cascade method.

A. Covariant cascade method from the constrained
Hamiltonian formalism

According to Dirac’s constrained Hamiltonian formalism,
the Hamiltonian is given by a linear combination of 2N − 1
constraints,

H =
2N−1∑
i=1

uiφi. (13)

The trajectories of four-positions qi(τ ) and four-momenta
pi(τ ) are parametrized by the Poincaré invariant evolution
parameter τ . The equations of motion are given by

dqμ
i

dτ
= [

H, qμ
i

] =
2N−1∑

j=1

u j
∂φ j

∂ piμ
, (14)

d pμ
i

dτ
= [

H, pμ
i

] = −
2N−1∑

j=1

u j
∂φ j

∂qiμ
, (15)

where the Poisson brackets are defined as

[A, B] =
∑

k

(
∂A

∂ pk
· ∂B

∂qk
− ∂A

∂qk
· ∂B

∂ pk

)
. (16)

In the cascade method, particles travel on the straight-line
trajectory as if they are free most of the time, and the collision
takes place at discrete points in τ . Thus, we take the following
mass-shell constraints:

Hi = φi = p2
i − m2

i , i = 1, . . . , N. (17)

The remaining N constraints, which we call time fixation,
fix the times of particles. Different time fixations will be
discussed in the following subsections.
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The Lagrange multipliers ui are determined by requiring
the invariance of the constraints during the time evolution:

dφi

dτ
= [H, φi] + ∂φi

∂τ
=

2N−1∑
j=1

Ci ju j + ∂φi

∂τ
= 0, (18)

where Ci j = [φ j, φi]. Since the mass shell constraints com-
mute [Hi, Hj] = 0, the Lagrange multipliers can be obtained
by solving N × N system of linear equations for uj .

In the following, we will discuss different realizations of
cascade models within the constrained Hamiltonian formula-
tion by employing different time fixations.

B. Sorge’s constraints

One of the main requirements in relativistic particle dy-
namics is the cluster separability. The cluster separability
means that when the Minkowski distance between two clus-
ters of particles is spacelike and sufficiently large, they do not
interact with each other.

Based on the idea [28], Sorge proposed the following time
constraints [11], which satisfy the cluster separability,

χi =
∑
i �= j

Gi jui j · qi j = 0, i = 1, . . . , N − 1, (19)

where pi j = pi + p j , qi j = qi − q j , and ui j = pi j/
√

p2
i j . The

evolution parameter τ may be fixed by the gauging condition
[12] that equates the average time of particles in the global
c.m.s. to τ :

χN = Q · U − τ = 0, (20)

where

Q = 1

N

N∑
i=1

qi, P =
∑

i

pi, U = P√
P2

. (21)

The weight function Gi j only depends on the Minkowski
distance qi j and is chosen as

Gi j = exp
(
q2

i j/L
)

q2
i j/L

, (22)

where we use L = 8 fm2. In these constraints, the times of the
interacting two particles in their c.m.s. are equal in the dilute
limit. The terms 1/q2

i j are introduced to keep the spacelike
distance between two particles to maintain the causality.

Numerical implementation of the constraints (19) is quite
challenging for the simulation of realistic collisions. At every
two-body collision and decay, time constraints (19) break.
Thus, one needs to solve the non-linear equations in N un-
knowns to recover the time constraints after every collision
or decay. It is too time consuming to perform such numerical
simulations on a current computer. In addition, the standard
Newton-Raphson method often does not find the solution.
Therefore, we simulate an approximate solution of the con-
straints by introducing time steps, and we try to recover the
time constraints at every time step. We recognize clusters at
every time step and solve these constraints for each cluster.
Furthermore, we approximate the solution in only one iter-
ation in the Newton-Raphson method. We also assume that

the Lagrange multiplier ui remains the same during each time
step after two-body collisions. It should be mentioned, in the
actual numerical simulations, the constraints given by Eq. (19)
occasionally result in a negative Lagrange multiplier ui, which
means the time traversal of particle i. In such cases, we assume
that the Lagrange multiplier is equal to zero, ui = 0.

C. Poincaré covariant parton cascade model

The Poincaré covariant parton cascade (PCPC) [52] is an
alternative approach for a manifestly covariant formulation
of the cascade model. This model is based on a Hamilto-
nian formulation that allows N particles to move freely in
an 8N-dimensional phase space. The Hamiltonian for the free
particle system [53,54] is given by2.

H =
N∑

i=1

p2
i − m2

i

2mi
, (23)

and Hamilton’s equations of motion specify the world lines of
particles,

dqi

dτ
= pi

mi
≡ ui, (24)

where the four-position vector qi is a function of the Poincaré
invariant parameter τ . In the case of a massless particle sys-
tem, the Hamiltonian [55]

H =
N∑

i=1

λ

2
p2

i (25)

gives the equations of motion

dqi

dτ
= λpi, (26)

where λ is an arbitrary constant. The collision can happen
when the two-body distance in the center-of-mass system
becomes the closest.

Let us consider this approach based on the constrained
Hamiltonian dynamics. The first N constraints are the same
as the free mass-shell constraints. To find the time constraints,
by multiplying ui by both sides of Eq. (24) one obtains

ui · dqi

dτ
= 1. (27)

After integrating Eq. (27) over τ , the time fixation constraints
are expected to be

χi = ui · [qi(τ ) − qi(τ0i )] − τ + τ0i, (28)

where i runs over i = 1, . . . , N . Indeed, the Lagrange multi-
pliers are given by ui = 1/(2pi · ui ) = 1/2mi and we obtain
the equations of motion (24). One can choose the initial co-
ordinate qi(τ0i ) and evolution parameter τ0i for the particle
arbitrarily at the collision point, thus there are no constraints

2This is actually a constraint and different from the usual Hamilto-
nian in the sense of total energy.
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in Eq. (28). Moreover, the time constraints do not depend on
other particles.

Similarly, for the massless particle case, Eq. (26) implies

pi · dqi

dτ
= 0, i = 1, . . . , N. (29)

Thus, the equations of motion for massless particles may be
obtained from the constraints

φi = p2
i , i = 1, . . . , N, (30)

φN+i = pi · (qi(τ ) − qi(τ0i )), i = 1, . . . , N − 1, (31)

φ2N = Q · P

P2
− λτ, (32)

where Q = ∑N
i=1 qi and P = ∑N

i=1 pi. The last constraint
implies tcm = λEcmτ , where tcm = Q0 and Ecm = P0 in the
global c.m.s. One finds that the Lagrange multipliers are the
same for all particles, ui = λ/2, and the equations of motion
are identical to Eq. (26).

In the PCPC approach, the times of the particles elapse in
proportion to their energies, and there is no time relation be-
tween particles. Times of the particles are randomly spread at
later times. Consequently, particle distances can be timelike,
which violates the causality because a particle can collide with
an absolute-future particle. In a box simulation, ignoring such
acausal collisions leads to a significant reduction in collision
rate at late times. However, when simulating the collision of
two nuclei, these effects may not be as relevant at a certain
level because the momenta, and thus the times of particles are
similar when they are close to each other in the coordinate
space.

D. A new covariant cascade method

In this section, we introduce our covariant cascade method
based on the constrained Hamiltonian dynamics taking the
constraints used in Refs. [26,32] for the potential interactions.
Specifically, we apply the mass shell constraints (17) and the
following time constraints to formulate a cascade method for
the first time:

φN+i = χi = â · (qi − qN ), i = 1, . . . , N − 1, (33)

φ2N = χN = â · qN − τ, (34)

where â is a Lorentz vector, which acts as a timekeeper. In
Refs. [27,35], â is defined as âμ = Pμ/(PμPμ)1/2, where Pμ

is the total momentum of the system. This choice equates the
times of all particles in the global c.m.s. In other words, the
evolution parameter τ is interpreted as the time as measured
in the global c.m.s. Another way to specify â is to introduce
a freely moving dummy particle and to specify â using the
momentum of the dummy particle [26]. If we choose the rest
frame of the dummy particle as the global c.m.s., the two
models become identical. We note that a different choice of
timekeeper yields a different physical system of interacting
particles. Throughout this work, we define â = (1, 0, 0, 0) in
the global c.m.s. We should note that the four-vector â is
subject to the Poincaré transformation in switching to another

computational frame so that the Poincaré covariance of the
model is maintained.

The Lagrange multipliers are solved to be ui = 1/(2â · pi ),
and the equations of motion are obtained as

dqi

dτ
= pi

â · pi
. (35)

Note that â · pi is the energy of the ith particle in the frame in
which â = (1, 0, 0, 0). The time coordinate of the ith particle
is identical to the evolution parameter q0

i = τ in this frame,
but it is different in other frames. We note that the physical
velocity of the particle

dqi

dq0
i

= dqi

dτ

dτ

dq0
i

= pi

p0
i

(36)

is kept to be less than the speed of light.
Our approach satisfies the cluster separability in the sense

that independent clusters do not interact with each other since
the timekeeper â is a constant vector after specifying the com-
putational frame. However, when a cluster is separated into
clusters, the c.m.s. of each cluster is different from the original
frame. This implies that to be consistent with the simulations
started from the separated state as an initial condition, the
different â must be reassigned to each cluster, which is not
included in our constraints. We will discuss this issue with a
different model in Sec. IV D.

E. Closest distance approach in 8N-dimensional phase space

Let us now consider a covariant cascade procedure. The
main interest is to determine the collision point of two
particles in a covariant way. This is straightforward in the
8N-dimensional phase-space approach. In the cascade model,
particles move in straight lines and change their momentum
only by collisions or decays. The distance squared between
two particles is defined as the distance in the two-body c.m.s.:

d2 = −q2 + (q · P)2

P2
, (37)

where q = q1 − q2 and P = p1 + p2. The time of the closest
distance may be obtained by the condition

−1

2

∂d2

∂τ
= qT · v = q · vT = 0, (38)

where v = dq
dτ

is the relative velocity, and

vT = v − (v · P)

P2
P (39)

is the transverse relative velocity of the colliding two parti-
cles. Applying the closest distance condition q · vT = 0 to the
equations of motion of two particles,

qi(τ ) = qi(τi) + vi (τ − τi ), i = 1, 2, (40)

where vi = pi/(â · pi ) is a constant velocity in our model, we
get the time of the closest approach τcoll as

τcoll − τi = − [q1(τi) − q2(τi )] · vT

v2
T

, i = 1, 2. (41)
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TABLE I. Different collision schemes in the closest approach. In
the covariant collision scheme, collisions happen at a single collision
time specified by the Lorentz invariant evolution parameter τcoll. In
CS-A, CS-B, and CS-G, the times of the closest approach for the
two colliding particles are computed in the two-body center-of-mass
system (c.m.s.), then these times are transformed to the compu-
tational frame, which is represented by tc1 and tc2. In CS-O, the
collision time t (ref)

coll is the time of the closest approach computed in
the computational frame. The frame where the impact parameter b is
defined is listed. Other collision schemes are examined in Ref. [20].
We list CS-M in Ref. [20] to avoid confusion with CS-O.

Collision time Ordering time Frame of b

Covariant τcoll τcoll two-body c.m.s
CS-A tc1 and tc2 min(tc1, tc2) two-body c.m.s.
CS-B min(tc1, tc2) min(tc1, tc2) two-body c.m.s.
CS-G (tc1 + tc2)/2 (tc1 + tc2)/2 two-body c.m.s.
CS-O t (ref)

coll t (ref)
coll two-body c.m.s.

CS-M t (ref)
coll t (ref)

coll computational frame

The two-body collision will occur at τcoll, and it is ordered in
τ in a frame-independent way. In this way, we avoid the frame
dependence of the ordering time.

The closest distance b2, i.e., squared impact parameter,
may be obtained by

b2 = −q2
c + (qc · P)2

P2
, (42)

where qc = q1(τcoll ) − q2(τcoll ) is the relative distance when
the collision takes place. We note that b2 is identical to the
previously presented impact parameter (1) (see Appendix B).

IV. RESULTS

In the following, we validate the thermal distribution and
collision rate of our covariant scheme within a box sim-
ulation assuming massless particles and elastic scattering.
We compare the simulation results with analytical expres-
sions. Next, we examine the frame dependence of the results
for a one-dimensionally expanding system. Furthermore, we
present simulation results of nucleus-nucleus collisions from
compression stages to expansion stages, including inelastic
processes.

In Table I, we summarize the collision schemes that will be
compared in this section.

A. Box calculations

We first examine energy distribution in a box calculation.
We assume massless gluons, elastic collisions with the cross
section of σ = 2.6 fm, and isotropic scattering [20]. The co-
ordinates of the particles are uniformly distributed, and the
momenta of the particles are initialized as

dN

Nd pT d pz
= δ(pT − 1.5 GeV)δ(pz ) (43)

with the total number of particles N = 5400 in the box size of
6 fm×6 fm×6 fm. At late times, the distribution should obey

FIG. 1. Energy distributions are compared for different collision
schemes. The size of the box is 6 fm×6 fm×6 fm. The cross sec-
tion for the massless gluons is set to 2.6 mb, and an isotropic angular
distribution is assumed. The line represents the thermal distribution
of temperature T = 0.5 GeV.

the Boltzmann form

dN

NE2dE
= 1

2T 3
e−E/T . (44)

Figure 1 compares the final energy distributions among
different collision schemes in a box calculation together with
the theoretical curve (44) with the temperature T = 0.5 GeV.
The final energy distributions are obtained after the global
time of 5 fm/c. The energy distribution from collision scheme
CS-G, which uses the average collision time for the ordering
time, deviates from the thermal distribution. The results from
the other collision schemes are in good agreement with the
expected thermal distribution except for the PCPC approach.
As explained in the previous section, the PCPC evolution
does not have any time correlation between particles; particle
times spread without any restriction, which leads to timelike
distances between particles. This might be the main reason
for unphysical distribution from the PCPC approach. We note
that the results of the 6N-dimensional phase-space cascade
schemes of CS-B and CS-G are consistent with the results in
Ref. [20].

In Fig. 2, the collision rates per collision pair in a box
calculation are plotted as functions of density n for different
collision schemes. We use the cross section of σ = 10 mb
and isotropic scattering. Collision schemes CS-A and CS-G
predict much lower collision rates than the analytical expec-
tation σn, which is consistent with the result in Refs. [6,20];
the collision rate is significantly suppressed in schemes CS-
A and CS-G when the mean free path is smaller than the
interaction range because the number of noncausal collisions
increases [23]. The other collision schemes are consistent with
the analytical expectation, including our covariant cascade
method. As discussed in detail in Ref. [6], the difference in
the collision times in the computational frame in collision
schemes CS-A and CS-G leads to the lower collision rate.
Let us consider the collision of particles 1 and 2 with t1 and
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FIG. 2. Collision rate per collision pair as a function of density.
The size of the box is 6 fm×6 fm×6 fm. The cross section for the
massless gluons is set to 10 mb, and an isotropic angular distribution
is assumed. The line corresponds to the analytical expectation σn.

t2 being the times when the last collision of particles 1 and
2 happened. The times of the closest approach are denoted
by tc1 and tc2. In the scheme CS-A, the collision ordering
time is defined as the smaller one of the two collision times:
to = min(tc1, tc2). In the situation t1 < tc1 < t2 < tc2, the col-
lision between particles 1 and 2 occurs at t = tc1, which is
earlier than t2, the time of the collision between particle 2 and
another. To forbid such noncausal collisions, we need an ad-
ditional condition to > ti, i = 1, 2, which reduces the number
of collisions since possible collisions of particle 2 during the
time interval |tc1 − tc2| are not considered. In contrast, colli-
sion scheme CS-B assumes the collision time and the ordering
time to be the smallest one: to = tcoll1 = tcoll2 = min(tc1, tc2),
which does not suppress possible collisions in the interval
|tc1 − tc2|. The collision rate in the collision scheme CS-B is
close to the analytical one in the box simulation as found in
Ref. [20]. The collision scheme CS-O, in which the collision
times of particles and the collision ordering time are the same
and are determined in the computational frame, correctly re-
produces the analytical value since there is no problem arising
from the difference in the collision times.

B. One-dimensionally expanding systems

To study the frame dependence of cascade results, we
examine a one-dimensionally expanding system that is mo-
tivated by the initial conditions at RHIC (Relativistic Heavy
Ion Collider). For this purpose, we adopt the same initial
condition as in Ref. [18]. Specifically, we consider a system
consisting of N = 4000 gluons that are uniformly distributed
within a spacetime rapidity interval η ∈ [−5, 5]. The trans-
verse distribution of particles is assumed to be a disk of
radius 5 fm. The momentum distribution of the particles is
taken from the Boltzmann distribution with the temperature
of 0.5 GeV and boosted with the velocity β = tanh ηi, where
ηi is the spacetime rapidity of the ith particle. The times and
longitudinal positions of particles are then obtained, assuming

FIG. 3. Rapidity distributions are compared for different colli-
sion schemes. The cross section for the massless gluons is set to
3.5 mb, and an isotropic angular distribution is assumed. The solid,
dashed-dotted, and dotted lines correspond to the results from the
covariant collision scheme, CS-B, and CS-O in the collider frame.
The results from the target frame are shown by the circles, squares,
and triangles for the covariant collision scheme, CS-B, and CS-O,
respectively.

the formation time of τ0 = 0.1 fm/c:

ti = τ0 cosh ηi, zi = τ0 sinh ηi. (45)

The transverse positions xTi are propagated up to the for-
mation time, xTi(ti ) = xTi(0) + vTiti. To study the frame
dependence, we boost the above initial condition defined in
the global c.m.s. (the collider frame) using the velocity β =
tanh η0 with η0 = 5 (the target frame).

In Fig. 3, we compare the rapidity distributions with
different collision schemes for different frames. The solid,
dashed-dotted, and dotted lines correspond to the results from
the covariant cascade, CS-B, and CS-O, respectively. The
corresponding results from the calculations in the target frame
are expressed by symbols. We do not show collision schemes
CS-A and CS-G because the frame dependencies turned out to
be the same as that of scheme CS-B. In the one-dimensionally
expanding system with elastic collisions, we do not see frame
dependence even for the noncovariant collision schemes. In
Ref. [18], strong frame dependence is observed in the collision
scheme in which both the collision frame and the defining
frame of the impact parameter of the two-body scattering
are the computational frame. In collision scheme CS-O, the
time of the closest approach is computed in the computational
frame while the impact parameter is defined in the two-body
c.m.s. frame of the colliding pair. This is the reason why the
frame dependence is greatly suppressed in collision scheme
CS-O.

The transverse momentum distributions are compared in
Fig. 4. The results from three collision schemes in the collider
frame are indistinguishable. We see a slight enhancement of
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FIG. 4. Transverse momentum distributions are compared for
different collision schemes The cross section for the massless gluons
is set to 3.5 mb, and an isotropic angular distribution is assumed. The
meanings of the lines and symbols are the same as in Fig. 3.

the transverse energy in collision scheme CS-O in the target
frame.

In Fig. 5, we compare the dN/dy dependence of the total
number of collisions per dN/dy. We consider three collision
schemes: covariant, CS-B, and CS-O (see more details in the
previous section). While these schemes exhibit similar behav-
ior in the box calculation, they show noticeable differences in
the expanding system. The covariant collision scheme predicts
the same number of collisions for both the collider frame and
the target frame, as it should, while the number of collisions
in the target frame is slightly smaller in the noncovariant col-
lision schemes, CS-B and CS-O. This suppression of collision

FIG. 5. The total number of collisions normalized by the dN/dy
as a function of dN/dy for the one-dimensionally expanding initial
condition. The cross section for the massless gluons is set to 3.5 mb,
and an isotropic angular distribution is assumed. The meanings of the
lines and symbols are the same as in Fig. 3.

number in the target frame is also reported in Ref. [18]. The
number of collisions in CS-B becomes very small compared
to the covariant scheme in the expanding system, contrary to
the static box calculations. Collision scheme CS-O predicts a
slightly larger collision number than the covariant scheme in
the collider frame, although the difference between the covari-
ant scheme and CS-O is very small. Let us consider a collision
of two particles with t1 and t2 (assuming t1 < t2 without loss of
generality) where the times of the closest approach are given
by tc1 and tc2. In collision scheme CS-B, the collision time
is assumed to be the minimum of the times of the closest
approach. As discussed in the previous section, CS-B requires
the condition tc1 > t2 to prevent noncausal collisions. The
times of all particles are different in the initial condition (45)
unlike the box initial conditions, where the initial times of all
particles are set to zero. This expanding initial condition might
be a part of the reasons for the reduction of the collision num-
ber in CS-B. A possible reason for the slight enhancement of
the collision number in CS-O may be due to the effects of the
flow because CS-O computes the time of the closest approach
in the computational frame, while the others compute in the
two-body c.m.s.

C. AA and pA collisions

In the preceding section, we examined different collision
schemes for a one-dimensionally expanding system assuming
only elastic scatterings. In this section, we extend our inves-
tigation to include other effects such as particle production,
decay, and the compression stages of nuclear collisions, which
involve more violent reactions compared to the expanding
stages. For this purpose, we examine the central Au+Au
(Pb+Pb) and p+Au collisions using the event generator JAM

[39,40], in which particle productions are modeled by the ex-
citations of resonances and strings, followed by their decays.
The nuclear collisions are simulated from the compression
stages to the expanding stages, covering the entire collision
process until all the particles freeze out.

Figures 6 and 7 show the rapidity and transverse mass
distributions of protons and negative pions in central Au+Au
collisions at

√
sNN = 4.86 GeV (upper panels),

√
sNN = 200

GeV (lower panels), and central Pb+Pb collisions at
√

sNN =
17.3 GeV (middle panels) calculated by the JAM2 cascade
mode with different collision schemes. The impact parame-
ter b � 3.4 fm is chosen to approximately simulate the 5%
central collisions. The three different collision schemes, co-
variant, CS-B, and CS-O, are compared including the frame
dependence. The three collision schemes yield almost iden-
tical rapidity and transverse mass distributions for protons
and pions for all three beam energies when simulating in the
global c.m.s. However, a weak frame dependence is observed
for the collision at

√
sNN = 4.86 GeV. The frame depen-

dence becomes more pronounced at
√

sNN = 17.3 GeV and
even stronger at

√
sNN = 200 GeV. The frame dependence of

scheme CS-O turned out to be more significant compared with
scheme CS-B.

To see the difference in the collision schemes in more
detail, we display in Fig. 8 the beam energy dependence

024910-8



POINCARÉ COVARIANT CASCADE METHOD FOR … PHYSICAL REVIEW C 108, 024910 (2023)

FIG. 6. Rapidity distributions of protons and negative pions in
central Au + Au collisions at

√
sNN = 4.86 GeV (upper panels),√

sNN = 200 GeV (lower panels), and central Pb + Pb collision
at

√
sNN = 17.3 GeV (middle panels) are compared with different

collision schemes. The solid, dashed-dotted, and dotted lines corre-
spond to the results of the calculations from the covariant collision
scheme, CS-B, and CS-O in the center-of-mass frame. The results
of calculations in the target frame are presented by circles, squares,
and triangles in the covariant collision scheme, CS-B, and CS-O,
respectively. Experimental data were taken from [56–62].

of the total number of collisions per dN/dy at midrapidity
(|y| < 0.2) for different collision schemes. We observe that
the collision number for scheme CS-O is nearly identical
to the covariant scheme up to the center-of-mass energy of√

sNN = 20 GeV when a simulation is done in the global
c.m.s. On the other hand, the collision number in scheme
CS-B consistently appears below the results obtained from the
covariant scheme. Furthermore, we observe that the difference
in the collision number between the c.m.s. and laboratory
(target) frame is more pronounced in scheme CS-O compared
with scheme CS-B, which leads to the strong frame depen-
dence seen in the particle spectra.

We now examine asymmetric nuclear collisions. Figure 9
shows the rapidity distribution of negative pions in central
p+Au collisions at

√
sNN = 200 GeV. The results from the

three computational frames—the equal-speed frame of the
two colliding nuclei (NN), the global c.m.s., and the target
frame—are compared for the collision schemes covariant,
CS-B, and CS-O. It is observed that the results from the
three schemes are close to one another in the global c.m.s.
The scheme CS-O predictions show strong frame dependence
while scheme CS-B does not. The study of the frame depen-
dence in p+Au collisions reveals that noncovariant cascade
schemes perform best in the global c.m.s. but not in the equal-
speed frame in pA collisions.

FIG. 7. Transverse mass distributions of protons and negative pi-
ons in central Au+Au collision at

√
sNN = 4.86 GeV (upper panels),

in central Pb+Pb collision at
√

sNN = 17.3 GeV (middle panels), and
in central Au+Au collision at

√
sNN = 200 GeV (lower panels). The

BRAHMS proton data are divided by factor 2 to correct weak decay
contribution roughly. The meanings of the lines and symbols are the
same as in Fig. 6. Experimental data were taken from [57,60–63].

D. Cluster separability

In this section, we address the issue of the cluster sepa-
rability in our covariant cascade scheme. When a system is
separated into independent clusters, clusters do not interact
with each other in our approach since the timekeeper is a

FIG. 8. Collision energy dependence of the total number of col-
lisions in central Au+Au collision (b � 3.4 fm) normalized by the
dN/dy for all particles at |y| < 0.2. Symbols represent the results
from the laboratory frame or the target frame, while lines show the
results of the simulation in the global c.m.s.
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FIG. 9. Rapidity dependence of negative pions in p+Au colli-
sions (b = 1 fm) at

√
sNN = 200 GeV from the collision schemes

Covariant (left panel), CS-B (middle panel), and CS-O (right panel)
are compared for different frames. The equal-speed frame (NN
frame), the global c.m.s., and the target frame are plotted by solid,
dashed, and dotted lines, respectively.

constant vector. However, our scheme does not guarantee the
cluster separability in the following sense: When the system
is divided into two subsystems with the total momentum of P1

and P2,

P = P1 + P2, (46)

the cluster separability condition implies that the equations of
motion for the system must exhibit two distinct sets of equa-
tions,

dqi

dτ
= pi

â1 · pi
,

dq j

dτ
= p j

â2 · p j
, (47)

where â1 = P1/
√

P2
1 and â2 = P2/

√
P2

2 . However, this condi-
tion is not satisfied in our model. To investigate the effects
of cluster separability, we manually impose the cluster sepa-
rability condition in numerical simulations: when clusters are
identified, we incorporate Eq. (47) into the actual simulations.
To identify clusters we introduce time steps, and at every time
step we group particles that are close to one another in the
coordinate space based on the interaction range.

The rapidity distribution of protons from our approach is
compared with the original covariant method in Fig. 10. We
found that our original equations of motion yield the same
results as the one that the cluster separability is imposed. As
a comparison, the rapidity distribution from the model with
Sorge’s constraints (19) is plotted by a dashed-dotted line
in Fig. 10, which is in good agreement with our covariant
method. Based on these findings, it appears that the issues of
cluster separability may not be highly relevant for simulating
high-energy nuclear collisions using our approach. However,
it is worth noting that when nuclear cluster productions are
discussed with the model, such as in the relativistic quantum
molecular dynamics, the model incorporating cluster separa-
bility may produce more stable clusters. We will leave this
topic as a future work.

V. POTENTIAL INTERACTIONS

The main ingredients of the QMD model are the
Boltzmann-type collision term to simulate hard interactions

FIG. 10. Rapidity distributions in central Au + Au collision at√
sNN = 4.86 GeV are compared with different covariant collision

schemes. The solid and dashed lines show the results from the
covariant method without and with cluster separation, respectively.
The dashed-dotted line corresponds to the results from the covariant
method using Sorge’s constraints (19). Experimental data were taken
from [56].

and the potential interactions for the soft part of the in-
teractions, which play a significant role in determining the
collective dynamics of the system. The relativistic version of
the QMD (RQMD) model has been developed based on the
relativistic constrained dynamics [11,12] using the constraints
(19). However, as we mentioned before, accurately solving the
constraints (19) is practically infeasible with the current com-
puter capabilities. To address this challenge, RQMD models
with the time constraints (33) were proposed [32,34,36–38],
which provide a numerically efficient method. However, these
models are limited to the uses in the global c.m.s. We derive
covariant equations of motion for the RQMD approach, which
allows numerically efficient simulations.

We consider the following mass shell constraints for the
particle system interacting through the Lorentz scalar Si and
vector Vi potentials,

Hi = p∗2
i − m∗2

i , i = 1, . . . , N, (48)

where p∗
i = pi − Vi and m∗

i = mi − Si. We use the time con-
straints of Eqs. (33) and (34). Under the assumption of
the approximate commutation of the mass shell constraints
[Hi, Hj] = 0 as in Ref. [11], the equations of motions (14)
and (15) become

dqμ
i

dτ
=

N∑
j=1

2u j�
μ
ji,

d pμ
i

dτ
=

N∑
j=1

2u jQ
μ
ji, (49)

where

�
μ
ji = 1

2

∂Hj

∂ piμ
= p∗μ

i δi j − m∗
j

∂m∗
j

∂ piμ
− p∗ν

j

∂Vjν

∂ piμ
, (50)

Qμ
ji = −1

2

∂Hj

∂qiμ
= m∗

j

∂m∗
j

∂qiμ
+ p∗ν

j

∂Vjν

∂qiμ
. (51)
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We need to solve the following system of equations for the
Lagrangian multipliers ui:

N∑
j=1

(â · � ji ) u j = 1, i = 1, . . . , N. (52)

Let us consider some approximations to avoid solving the
system of equations. If we neglect the derivatives of potentials
with respect to the energy, we have only the free part, âi ·
(∂Hj/∂ pi ) = 2p∗0

i in the frame specified by â = (1, 0, 0, 0).
Thus, the Lagrange multipliers ui are given by ui = 1/(2â ·
p∗

i ) in any computational frame, and we get the equations of
motion

dqμ
i

dτ
=

N∑
j=1

�
μ
ji

â · p∗
j

,
d pμ

i

dτ
=

N∑
j=1

Qμ
ji

â · p∗
j

. (53)

These equations of motion with â = (1, 0, 0, 0) are success-
fully applied in Refs. [36–38] for the simulations of heavy-ion
collisions.

We expect that the off-diagonal parts of Eq. (52) are small
because only one term of the derivatives in the sum of the
potentials is nonzero, unlike the diagonal term, in which we
need to take the sum for all particles for the derivatives. When
we only take the diagonal parts, ui can be obtained trivially as
ui = 1/(2â · �ii ), and the equations of motion become

dqμ
i

dτ
=

N∑
j=1

�
μ
ji

â · � j j
,

d pμ
i

dτ
=

N∑
j=1

Qμ
ji

â · � j j
. (54)

We note that the diagonal part �ii is the same as �̃μ in
Eq. (33) in Ref. [64]. When we take only j = i part of the
sum in Eq. (54) in the frame â = (1, 0, 0, 0), where all time
coordinates of particles are the same as τ , Eq. (54) becomes
identical to the equations of motion of the test particles in
the relativistic BUU (RBUU) approach [64]. The numerical
simulations of the RBUU approach with these equations of
motion have been realized for the study of heavy-ion colli-
sions in Ref. [65].

VI. SUMMARY

We have presented a Poincaré covariant cascade method
that enables efficient numerical simulation of the Boltzmann-
type collision term. This method provides an effective
approach for accurately modeling and studying collision pro-
cesses in high energy heavy-ion collisions. We have verified
that our covariant cascade method predicts the correct col-
lision rate and the thermal spectrum in a box simulation.
Moreover, we have demonstrated the frame independence of
our method in a one-dimensionally expanding system as well
as actual nuclear collisions, including AA and pA collisions.

Detailed comparisons with the cascade schemes in the 6N-
dimensional phase space have been conducted. It is found that
some noncovariant collision schemes can yield reliable results
under specific conditions. Specifically, collision scheme CS-O
shows reliable results when applied to an expanding system
or to the collision of two nuclei with a beam energy less than√

sNN � 20 GeV. In CS-O, the impact parameter is defined in

the two-body c.m.s. of the colliding particles, and the collision
time is specified in the computational frame, which is chosen
to be the global center-of-mass frame of the two nuclei.

Finally, we proposed numerically efficient covariant equa-
tions of motion for N-particle systems interacting through
potentials, which can be utilized in the QMD simulations at
relativistic collision energies.
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APPENDIX A: CLOSEST DISTANCE APPROACH IN
6N-DIMENSIONAL PHASE SPACE

In this Appendix, we provide a derivation of the expres-
sions for the impact parameter and the times of the closest
approach within a 6N-dimensional phase space approach. See
also Refs. [19,43,44].

The impact parameter is defined as the minimum distance
in the two-body center-of-mass system (c.m.s.),

b2 = x2
cm − (xcm · vcm )2

v2
cm

. (A1)

To obtain the Lorentz invariant expression, we define the
transverse relative distance xT and the transverse relative mo-
mentum pT :

qT ≡ �μνqν = q − (q · u)u, (A2)

pT ≡ �μν pν = p − (p · u)u, (A3)

where q = q1 − q2, p = p1 − p2, u = p1+p2√
(p1+p2 )2

, and �μν =
gμν − uμuν is the projector to the transverse distances. The
impact parameter vector b is orthogonal to the transverse
relative momentum b · pT = 0, which is given by

b = qT − (qT · pT )

p2
T

pT = qT − (q · pT )

p2
T

pT , (A4)

where we used qT · pT = q · pT . Then, the square of the in-
variant impact parameter is evaluated as [21,43,44]

−b · b = −q2
T + (q · pT )2

p2
T

= −q2 + (q · u)2 + (q · pT )2

p2
T

.

(A5)
Noting that the relative momentum is proportional to the
relative velocity in the c.m.s., this expression is equivalent to
Eq. (A1) since

x2
cm = t2

cm − q2 = (q · u)2 − q2, (A6)

p2
cm = E2

cm − p2 = (p · u)2 − p2, (A7)

xcm · pcm = Ecmtcm − q · p = q · [(p · u)u − p]. (A8)
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The times of the closest approach are also computed in the
two-body c.m.s.:

tcm − tcm,1 = − [xcm,1(tcm,1) − xcm,2(tcm,1)] · vcm

v2
cm

= − [xcm − vcm,2tcm] · vcm

v2
cm

, (A9)

where tcm = tcm,1 − tcm,2. Using the relation

vcm = −pcm,2

(
1

Ecm,1
+ 1

Ecm,2

)
(A10)

and

(xcm − vcm,2tcm ) · pcm,2 = x · p2 − tcm

Ecm,2
p2

2, (A11)

a Lorentz invariant expression of the collision time is obtained
as

tcm − tcm,1 = Ecm,1

Ecm

tcm p2
2 − Ecm,2(x · p2)

(p2 · u)2 − p2
2

= Ecm,1
(x · p1)p2

2 − (x · p2)(p1 · p2)

(p1 · p2)2 − p2
1 p2

2

(A12)

where Ecm = Ecm,1 + Ecm,2 =
√

(p1 + p2)2. The times of the
closest approach tc1 and tc2 for the two colliding particles in
the computational frame are obtained by Lorentz transforming
the collision time

tc1 − t1 = (tcm − tcm,1)
E1

Ecm,1
, (A13)

which are given by

tc1 = t1 + p2
2(q · p1) − (p1 · p2)(q · p2)

(p1 p2)2 − p2
1 p2

2

E1, (A14)

tc2 = t2 − p2
1(q · p2) − (p1 · p2)(q · p1)

(p1 p2)2 − p2
1 p2

2

E2. (A15)

APPENDIX B: IMPACT PARAMETER

In this Appendix, we show that the impact parameter
Eq. (1) is equivalent to the transverse distance at the collision
point in the Lorentz covariant cascade method in Eq. (42).
From the equations of motion for two particles Eq. (40) and
the time of closest approach Eq. (41), the collision point is
expressed as

qc = q′ − v′
2(τ1 − τ2), (B1)

where we have used the relation v · vT = v2
T , and

q′ = q − (q · vT )

v2
T

v, v′
2 = v2 − (v2 · vT )

v2
T

v. (B2)

The impact parameter vector becomes

b = qc − (qc · P)

P2
P

= qT − (qT · vT )

v2
T

vT − v′
2T (τ1 − τ2), (B3)

where

vT 2 = v2 − (v2 · P)

P2
P, v′

T 2 = vT 2 − (vT 2 · vT )

v2
T

vT . (B4)

Noting that the transverse relative velocity vT = vT 1 − vT 2 is
parallel to the transverse velocity of a particle 2 vT 2,

vT −−→
c.m.

vcm = vcm,1 − vcm,2 ≈ −vcm,2, (B5)

we can replace vT by v2T in Eq. (B4), and one finds v′
T 2 = 0.

Furthermore, since vT is also parallel to pT , the impact pa-
rameter vector becomes

b = qT − (q · vT )

v2
T

vT = qT − (q · pT )

p2
T

pT , (B6)

which is the same expression as the impact parameter vector
in the c.m.s., Eq. (A4).
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