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Effect of nonequal emission times and space-time correlations on (anti-) nuclei production
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Light (anti-) nuclei are a powerful tool both in collider physics and astrophysics. In searches for new and
exotic physics, the expected small astrophysical backgrounds at low energies make these antinuclei ideal probes
for, e.g., dark matter. At the same time, their composite structure and small binding energies imply that they can
be used in collider experiments to probe the hadronization process and two-particle correlations. For the proper
interpretation of such experimental studies, an improved theoretical understanding of (anti-) nuclei production
in specific kinematic regions and detector setups is needed. In this work, we develop a coalescence framework
for (anti-) deuteron production which accounts for both the emission volume and momentum correlations on an
event-by-event basis: While momentum correlations can be provided by event generators, such as PYTHIA, the
emission volume has to be derived from semiclassical considerations. Moreover, this framework goes beyond
the equal-time approximation, which has been often assumed in femtoscopy experiments and (anti-) nucleus
production models until now in small interacting systems. Using PYTHIA 8 as an event generator, we find that the
equal-time approximation leads to an error of O(10%) in low-energy processes like ϒ decays, while the errors
are negligible at CERN Large Hadron Collider energies. The framework introduced in this work paves the way
for tuning event generators to (anti-) nuclei measurements.
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I. INTRODUCTION

Light (anti-) nuclei are interesting particles due to their
composite structure and small binding energies. This makes
them ideal probes for, e.g., two-particle correlations and the
quantum chromodynamics (QCD) phase diagram in heavy ion
collisions [1]. In particle collisions and decays, (anti-) nuclei
can provide valuable information on the hadronization process
and momentum correlations that can be used to tune QCD
inspired event generators. For the astroparticle community,
the production of antinuclei is of immense interest since it is
an ideal tool to search for new and exotic physics, such as
dark matter annihilations or decays in the Milky Way [2–4].
In order to correctly interpret astrophysical and collider data,
a description of the formation process as precise as possible is
desirable.

The best motivated production model for light nuclei1 in
particle collisions—especially for small interacting systems—
is arguably the coalescence model. In this model, final-state
nucleons may merge if they are close in phase space. In heavy-
ion collisions, the coalescence probability is often assumed

1In the following, we denote with nuclei both nuclei and antinuclei.
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to be mainly determined by the nucleon emission volume,
while momentum correlations are neglected or treated as
a collective effect [5,6]. In small interacting systems, on
the other hand, the coalescence condition is typically only
evaluated in momentum space: For instance, in the simplest
phenomenological coalescence model two nucleons merge
if the momentum difference �p in their pair rest frame is
smaller than the coalescence momentum p0 [7,8]. However,
two-particle correlations should not be neglected in small
systems because of the low multiplicities and large anticorre-
lations of produced nucleons [9]. It was therefore suggested
in Refs. [10,11] that the coalescence condition �p < p0

should be evaluated on an event-by-event basis using a Monte
Carlo event generator. Moreover, the expected nucleon emis-
sion length in small interacting systems, σ � 1 fm, is of the
same order as the size of the wave function of the deuteron,
rd

rms � 2 fm, even in point-like interactions [12] (see also
Ref. [9] for an early discussion of the decay of ϒ mesons).
Thus, one should consider both the size of the formation
region and momentum correlations on an event-by-event ba-
sis simultaneously. This is currently only achieved by the
WiFunC model (Wigner Function with Correlations) intro-
duced in Ref. [12], and further developed and discussed in
Refs. [13–15]. This model is especially suitable for production
processes relevant to cosmic ray interactions [13,16,17].

The WiFunC model, as most other sophisticated coa-
lescence models [18–24], relies on the Wigner function
approach, in which the coalescence probability is found by
projecting the nucleon Wigner function onto the Wigner func-
tion of the light nucleus [6,25–27]. One of the key advantages
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of this approach is the fact that the coalescence probability
depends on the hadronic emission region, a quantity which
can be measured in femtoscopy experiments [18]. This allows
one to determine independently the free parameter of these
models [14,28,29]. Moreover, femtoscopy experiments can be
used to distinguish between the coalescence hypothesis and
other formation processes like thermal freeze-out [30–36]. For
instance, it was argued in Ref. [37] that the current success
of the framework is a strong indication that coalescence is a
major antinuclei production mechanism.

This work is structured as follows. In Sec. II, we review
the basis of the Wigner function approach to coalescence,
focusing on small interacting systems. In particular, we extend
the framework to allow for nonequal emission times of the
nucleons. That is, we go beyond the equal-time approximation
which underlies both the experimental and theoretical frame-
work of femtoscopy, and is expected to give up to O(30%)
uncertainties [37]. This effect has previously been considered
in the context of heavy-ion collisions when momentum cor-
relations can be neglected, in which case the source radius
effectively is increased as r → r + vt [38–40], or using trans-
port codes [27,41]. In this work, however, we are interested
in small interacting systems where momentum correlations
should not be neglected. In Sec. III, we review the WiFunC
model and give an in-depth discussion of the choice of the nu-
cleus wave function. Furthermore, we discuss the possibility
of using the semiclassical space-time picture in QCD inspired
event generators to describe the nucleon emission volume,
thus allowing one to take into account space-time correlations
on an event-by-event basis. Finally, in Sec. IV, the discussions

are exemplified using PYTHIA 8.3 [42,43], with a focus on the
equal-time approximation and the space-time picture provided
by PYTHIA. Concretely, we consider the size of the hadronic
emission region [44] (in Sec. IV A), the antideuteron spectrum
[45] (in Sec. IV B), and the coalescence probability in jets
[46,47] (in Sec. IV C) measured by the ALICE collabora-
tion. Furthermore, we compute the energy dependence of the
emission volume, predicted by PYTHIA in Sec. IV D and the
antideuteron production in ϒ decays [48,49] in Sec. IV E. The
examples indicate that the equal-time approximation leads to
an error of ≈10% at low energies, while the error is negligible
at CERN Large Hadron Collider (LHC) energies. The main
uncertainties of the WiFunC model and of its predictions are
currently related to the accuracy of the underlying event gen-
erators for high energy collisions. Conversely, the framework
allows one to use femtoscopy and antideuteron measurements
to tune such event generators.

II. THE WIGNER FUNCTION APPROACH
TO COALESCENCE

A. General frame-work

In femtoscopy experiments, the correlations of pairs of
particles with small relative momenta are measured. Since
the final-state interactions that give rise to the correlations
even from an initially uncorrelated source decrease rapidly
with increasing distance in phase space, we only consider
the contribution from the dominant pair.2 The double energy
spectrum can in this case be written as

(2π )8γ1γ2
d6N

d3 p1d3 p2
=

∑
S

∫
d4x1d4x2d4x′

1d4x′
2ρ(x1, x2; x′

1, x′
2)�S(−)

p1,p2
(x1, x2)�S(−)

p1,p2

†
(x1, x2), (1)

where ρ is the two-particle density matrix of the source and �S(−)
p1,p2

(x1, x2) = [�S(+)
p1,p2

(x1, x2)]† is the Bethe-Salpeter wave function
accounting for the final-state interactions [50]. In the case of weakly bound systems such as the deuteron, helion, and triton, we
can connect Eq. (1) with the coalescence formalism based on generalized or relativistic Wigner functions: Neglecting the binding
energy and employing the sudden approximation, the Bethe-Salpeter wave function reduces to the wave function of the static
bound state. The deuteron energy spectrum can then be approximated as

(2π )8γd
d3Nd

dPd
3 = S

∫
d4x1d4x2d4x′

1d4x′
2ρ(x1, x2; x′

1, x′
2)� (−)

d,Pd
(x1, x2)� (−)

d,Pd

†
(x1, x2), (2)

where the factor S = 3/8 is obtained by averaging over all
spin and isospin states. Note that this formula follows directly
from the general rules of (relativistic) statistical quantum me-
chanics, if the sudden approximation is employed. The latter
requires that the formation time τ of the deuteron can be
neglected relative to the inverse of its binding energy Ed [51],
i.e., that τ � 1/Ed � 90 fm. The sudden approximation used
here is valid as long as one considers 25 fm/c � 90 fm/c.
Factoring out then the center-of-mass motion, �S(−)

d,Pd
(x1, x2) =

eiPd X �
S(−)
d (x), one can rewrite Eq. (2) as (see, e.g., Ref. [18]

2This was checked explicitly in Ref. [12] for coalescing nucleons
in small interacting systems.

for details),

(2π )8γd
d3Nd

dP3
d

= S
∫

d4rd4rd d4qD(4)(q, r)

× Wnp(Pd/2 + q, Pd/2 − q, r, rd ), (3)

where

D(4)(q, r) =
∫

d4ξe−iqξ�
(−)
d (r + ξ/2)� (−)

d

∗
(r − ξ/2) (4)

is the (generalized or off-shell) deuteron Wigner function and
Wnp the two-nucleon Wigner function of the source. Here, r
denotes the space-time distance between the nucleons, rd the
space-time position, and Pd = p1 + p2 the four-momentum of
the nucleus, while q = (p1 − p2)/2 is the four-momentum of
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the nucleons in the nucleus frame. The main difference be-
tween Eq. (3) and the expression usually used in the literature
(e.g., in Refs. [12,18,37]) is its time and energy dependence:
The variable r0

d describes the “freeze-out” time of the nucleus,
and does not affect the emission volume.3 Meanwhile, the
variable r0 = t describes the time difference in the produc-
tion of the nucleons, which clearly may impact the measured
emission volume. Finally, q0 describes the off-shell structure
of the two-particle system.

To proceed, it is normally assumed that the particles
are produced at the same time (equal-time approximation)
and/or that the source is independent of q (smoothness-
approximation) [52]. However, as argued in Ref. [37], the
equal-time approximation is not expected to be accurate in the
case of small interacting systems. In order to check the relia-
bility of this approximation, one should therefore go beyond
the equal time approximation. As we will see, it is sufficient
to assume that the particles are (approximately) on-shell when
they coalesce, Wnp � Wnp(q0 = 0). This assumption is well
motivated due to the low binding energy of the antinuclei. We
are in this case left with4

(2π )7γd
d3Nd

dP3
d

= S
∫

d4rd3qD(3)
t (q, r)

× W (4)
np (Pd/2 + q, Pd/2 − q, r), (5)

where

D(3)
t (q, r) =

∫
d3ξe−iq·ξ� (−)

d (r + ξ/2, t )� (−)
d

∗
(r − ξ/2, t )

(6)

is the time dependence of the static deuteron Wigner function.
In the nucleus frame, this reduces to

d3Nd

dPd
3 = S

(2π )7

∫
dtd3rd3qD(3)

t (q, r)W (4)
np (q, r, t ). (7)

In order to evaluate the deuteron yield using Eq. (5), the
deuteron Wigner function and the two-nucleon Wigner func-
tion have to be modelled. A key observation is that, in the
classical limit, the nucleon Wigner function will reduce to the
phase-space distribution. In Sec. III, we discuss the WiFunC
approach, in which the momentum correlations are provided
by an event generator, while the emission volume is either
assumed to be Gaussian or taken also from an event generator.

B. The effect of nonequal emission times

The various coalescence models based on the Wigner func-
tion approach differ mainly in the way how these functions
are determined: In heavy-ion collisions, semiclassical trans-
port models like the relativistic quantum molecular dynamics
(RQMD) [53] or a multiphase transport (AMPT) [22] schemes
are used to describe the space-time evolution of the parti-
cles [27,41]. While quantum effects are included via Pauli

3We emphasise that we are referring to the emission volume as a
function of r, which is what one measures experimentally.

4We define W (4)(Pd/2+q, Pd/2 − q, r)= ∫
d4rdW (4)

np (Pd/2+q,

Pd/2 − q, r, rd ).

blocking and the stochastic nature of scatterings, the propa-
gation of particles proceeds in these schemes classically. In
contrast, many approaches which aim to describe coalescence
and femtoscopy experiments in smaller interacting systems
prefer to stay as long as possible within the realm of quan-
tum mechanics. Therefore they have to rely typically on the
equal-time approximation [37,52], i.e., they assume that the
particles are produced at the same time, t = 0. More con-
cretely, it is assumed that q � mσ/t � 1 GeV [50], where σ

is the linear size of the emission volume. Since the bulk of
nuclei are produced by nucleons with q ≈ O(0.1) GeV, this
condition is expected to yield an uncertainty of O(10%) in pp
collisions [37].

The effect of nonequal emission times on femtoscopy ex-
periments is discussed in detail in Ref. [50], where it is shown
that the relation between the Bethe-Salpeter amplitude and the
corresponding nonrelativistic wave function can be expressed
as

�(r) = �(r, t ) =
∫

d3r′δq(r − r′, t )ψ (r′) (8)

under the condition q2 � m2, which clearly is the case we
are interested in. The function δq(r, t ) reduces to the ordinary
Dirac δ function for t = 0, and for t > 0 it is given by [50]

δq(r, t ) =
( m

2π it

)3/2
exp

(
iq2t

2m
+ ir2m

2t

)
. (9)

Inserting Eq. (8) into Eq. (6) leads to

D(3)
t (q, r) = D(3)(q, r + qt/m) (10)

with

D(3)(q, r) =
∫

d3ξe−iξ·qψ (r + ξ/2)ψ∗(r − ξ/2). (11)

Therefore, the deuteron yield can be expressed as

d3Nd

dPd
3 = S

(2π )7

∫
dtd3rd3qD(3)(q, r + qt/m)W (4)

np (q, r, t )

(12)

in the pair rest frame. By comparing with, e.g.,
Refs. [12,18,37], one can see that nonequal emission
times of the nucleons change r by the classical distance
the first particle propagates before the second particle is
produced. If the equal-time approximation (t → 0) is applied
to Eq. (12), one reobtains, as expected, the same equation as
in Refs. [12,18,37].

Note that four assumptions are needed to obtain Eq. (12):
(1) The coalescing particles are nonrelativistic in the pair rest
frame (q2 � m2) and (2) approximately on-shell. Moreover,
(3) the wave function describing the initial and final states
changes slowly compared to the interaction time (i.e., the sud-
den approximation) and (4) the interaction between a single
pair of nucleons is dominant. All these assumptions are well
motivated, and always used in the coalescence model. For
example, due to the small binding energy of the deuteron, one
will expect that the nucleons have to be close in phase space
and approximately on-shell to coalesce.
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C. Relation to femtoscopy experiments

Since the measured source function is strongly linked to the
Wigner function, any coalescence model arising from Eq. (5)
can be directly and independently tested and tuned by bary-
onic correlation experiments. Under the smoothness approxi-
mation [i.e., Wnp(r, rd , Pd , q) � Wnp(r, rd , Pd , 0)], Eq. (5) can
be written as

d3Nd

dPd
3 ∝

∫
d3rdtW (4)

np (r, t )
∫

d3qD(3)
t (q, r)

=
∫

d3r|φ(r)|2S (r), (13)

where S (r) = W (3)
np (r) is the emission source defined in the

pair rest frame. The last equality follows directly if one in
addition uses the equal-time approximation [52], Wnp ∝ δ(t ).
In a femtoscopy experiment, the source size S (r) can be
measured via the final-state interactions encoded into the wave
function ψ (r) [52]. Thus, a femtoscopy experiment can be
interpreted as an indirect measurement of the Wigner func-
tion. Recently, the ALICE collaboration measured the size of
the baryonic emission source in pp collisions at 13 TeV, as-
suming an isotropic Gaussian source [44]. This measurement
can be used to fix the free parameter of a coalescence model,
allowing one to test and tune the coalescence models like the
WiFunC model [14].

Femtoscopy experiments include often a cut in the momen-
tum q [44]. It is thus interesting to note that it is sufficient
to assume that qt/m � r to derive Eq. (13), thereby re-
moving the need to invoke the equal-time and smoothness
approximations.

III. THE WIFUNC MODEL

In the classical limit, the nucleon Wigner function [see
Eq. (12)] will describe the phase space distribution of the
nucleons [54]. The main idea behind the WiFunC model is to
include particle momentum correlations provided by a Monte
Carlo event generator. At the same time, the nucleon emis-
sion volume can be described either by an ansatz, following
general arguments regarding time and distance scales in the
production process, or by the event generator. In this section,
we give a short review of the model and at the same time a
deeper discussion of the choice of the nucleus wave function
as well as the use of the space-time picture provided by an
event generator to describe the nucleon emission volume. In
particular, we comment on the consequences of the equal-time
approximation [cf. Eq. (12)].

A. Deuteron wave function

In the WiFunC model, the deuteron Wigner function D is
an essential ingredient in the calculation of the coalescence
probability. For a specific choice of the deuteron wave func-
tion φ, the corresponding Wigner function D can be evaluated
using Eq. (11). The deuteron is in a pure state, and can be well
approximated by the Hulthen wave function [55]. However, it
is known that the Wigner function of a pure state is strictly
positive if and only if the wave function is a Gaussian [56,57].

An interpretation of the deuteron Wigner function as a prob-
ability distribution, as it is required for the evaluation of the
coalescence probability, requires therefore at first sight to use
a simple Gaussian wave function, φ(r) ∝ exp(−r2/2d2). In
this case, the Wigner function becomes

D(r, q) = 8e−r2/d2−d2q2
, (14)

where the choice d = 3.2 fm reproduces the deuteron charge
radius. However, the Gaussian wave function is neither a good
representation of the Hulthen wave function nor does it lead
to a Wigner function which is similar to that obtained using
the Hulthen wave function, cf. with Fig. 1. Thus, one should
aim for a better description of the deuteron wave function.

In order to find such an improved wave function, consider
now the more general pure state φ(r) = (φr (r) + iφi(r))/

√
2,

where φr and φi are real wave functions. In this case, the
Wigner function can be split into a symmetric and an antisym-
metric part, D(q, r) = Dr (q, r) + Di(q, r) − A(q, r), where
Dr and Di are the Wigner functions of φr and φi, respec-
tively. The antisymmetric interference term A vanishes upon
performing the integrations in Eq. (12) and will therefore not
contribute to the coalescence probability. This implies that the
sum of two Wigner functions from pure states can be recast
into a Wigner function from a mixed state,

Dr (q, r) + Di(q, r) =
∫

d3ξe−iq·ξ 〈r − ξ/2|
(

1

2
|φr〉 〈φr |

+1

2
|φi〉 〈φi|

)
|r + ξ/2〉 . (15)

A particular choice is the “φ0-fit” of Ref. [12], where the
deuteron Wigner function is given by

D(q, r) = 8�e−d2
1 q2−r2d2

1 + 8(1 − �)e−d2
2 q2−r2d2

2 − A(q, r)
(16)

with � = 0.581, d1 = 3.979 fm, d2 = 0.890 fm, and A is an-
tisymmetric in q and r.

If one describes the deuteron—incorrectly—as a mixed
state, one can approximate its wave function, e.g., the Hulthen
wave function, arbitrarily accurately by a sum of Gaussian
states. In the fourth panel of Fig. 1, we show a one-
dimensional example5 using 12 Gaussians whose centers are
distributed evenly between x = −5 and x = 5. Since we are
considering a mixed state of Gaussians, the deuteron Wigner
function is itself a sum of Gaussians and strictly positive. This
approach presents a clear method for handling the negative
parts of the phase space distribution. However, the mixed state
neglects the “quantum correlations” encoded in the Wigner
function.

The negative parts of the Wigner function should van-
ish in the classical limit. This leads to another method
of getting around the problem of a negative Wigner func-
tion: If one uses the equal-time approximation and assumes
that the space and momentum distributions are uncorrelated,

5See, e.g., Ref. [27] for an example in three dimensions.
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FIG. 1. The Wigner function in the (x, qx ) plane obtained numer-
ically using (from top to bottom) (a) the Hulthen wave function, (b) a
single Gaussian wave function, (c) the sum of two Gaussians with a
phase shift π , and (d) the sum of 12 Gaussians. The wave functions
are discussed in more detail in the text and in Ref. [12]. While it is
difficult to see in the plot, the Hulthen Wigner function is symmetric,
while the negative parts of the two-Gaussian Wigner function are
antisymmetric.

Wnp = G(q)H (rp, rn), the deuteron yield can be written as

d3Nd

dPd
3 = S

(2π )6

∫
d3qG(3)

np (q)
∫

d3rpd3rn

× D(3)(q, r)Hnp(rn, rp), (17)

where the last integral can be interpreted at the probability
density for coalescence and Gnp is the momentum distri-
bution provided by the event generator [12]. These are the
same assumptions used in the next subsection, where Hnp

is approximated as a Gaussian. If Hnp is sufficiently wide
and well behaved, the “probability density” will be strictly
positive.6 Thus, this may allow one to use any wave function
and evaluate numerically the coalescence probability event by
event. While this may work well for, e.g., high multiplicity
pp collisions, the method should not be applied if position-
momentum correlations are included, or the multiplicity of the
interaction is small, such as in ϒ decays.

In conclusion, if the deuteron wave function in the WiFunC
model is represented by any φ(r) = φr (r) + iφi(r), where φr

and φi are Gaussians centered at r = 0, the coalescence prob-
ability is well defined for all interactions; we suggest, with the
current theoretical uncertainties, using the Wigner function in
Eq. (16).

B. Nucleon distribution

Current QCD inspired event generators evaluate the parton
cascade in momentum space, using a probabilistic scheme.
While this is sufficient to provide two-particle momentum
correlations, an extraction of the two-nucleon Wigner func-
tion Wnp is not possible. Therefore, a semiclassical ansatz
has to be made before one can evaluate the coalescence
equation (12) on an event-by-event basis. In Ref. [12], the
equal-time approximation was used and it was assumed
that the space and momentum distributions are uncorrelated,
Wnp(q, Pd , rp, rn) = G(q)H (rp, rn). In turn, the ansatz

H (rp, rn) = h(rp)h(rn) (18)

with

h(r) = (2πσ 2)−3/2 exp

(
− r2

⊥
2σ 2

⊥
− r2

‖
2σ 2

‖

)
(19)

was used for the nucleon distributions in the laboratory (lab)
frame. In particle collisions, e.g., pp, e+e−, and pN , the
longitudinal and transverse directions are defined relative to
the beam direction. In annihilation and decay processes, e.g.,
dark matter annihilations, one should define the coordinate
system relative to the initial quark-antiquark pair. With a one-
Gaussian wave function, the deuteron spectrum can be written
as

d3Nd

dPd
3 = 3ζ (d )

(2π )3

∫
d3qe−q2d2

G(q), (20)

6The positivity condition depends on the shape of Hnp and the wave
function.
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where

ζ (d )=
[(

d2

d2 + 4σ 2
⊥m2

T /m2

)(
d2

d2 + 4σ 2
⊥

)(
d2

d2 + 4σ 2
‖

)]1/2

.

(21)

The mT dependence arises due to the Lorentz boost of the
transverse spread from the laboratory frame to the pair rest
frame, see Ref. [12] for details. The model can be added as an
afterburner to any Monte Carlo event generator by applying
the weight,

w = 3�ζ (d1)e−d2
1 q2 + 3(1 − �)ζ (d2)e−d2

2 q2
, (22)

to each nucleon pair. Here, the numerical values of the pa-
rameters are � = 0.581, d1 = 3.979 fm, and d2 = 0.890 fm,
while mT and q are determined event by event from the Monte
Carlo data.

The two parameters σi describe the average emission
length of nucleons, σ‖/⊥ � 1 fm. In point-like processes, like
e+e− collisions, the longitudinal spread is dominated by the
hadronization length, σ‖ ∼ Lhad � 1 fm, while the transverse
spread is related to �QCD. Since they are of the same order of
magnitude, it is convenient to set σ = σ⊥ = σ‖. In collisions
involving hadrons and nuclei, the spread will also obtain a
geometrical contribution due to multiple parton-parton scat-
terings. In the particular case of pp collisions, the spread in the
transverse and longitudinal directions are of the same size as
the point-like spread [12]. Thus, one will expect σ ≡ σe+e− =
σpp/

√
2.

The numerical value σ = (1.0 ± 0.1) fm has been shown
to reproduce a wide range of experimental data on pp,
e+e−, and pN collisions, as well as baryonic femtoscopy,
within experimental and theoretical uncertainties [15]. This
value is also in agreement with the physical interpretation of
the model, being thus a strong indication of the validity of the
underlying model assumptions. The spread should in principle
vary between events; in particular, it should depend on the
impact parameter and multiplicity. Moreover, σ⊥ � σ‖. With
improved experimental data and improved event generators,
one may have therefore to tune σ⊥ and σ‖ independently and
vary them as a function of multiplicity.

C. Spatial correlations in event generators

Some event generators, like PYTHIA [42,43] and EPOS

[58,59], include a semiclassical description of the space-time
evolution of the cascade. If one employs the space-time treat-
ment of an event generator, the coalescence weight becomes

w = D(q, r) = 3 exp

{
− 1

d2

(
r + qt

m

)2

− q2d2

}
, (23)

and can be extended to a two-Gaussian wave function as
Eq. (2). Heisenberg’s uncertainty relation limits the precision
of the space-time information a specific event can contain. As
a result, the space-time evolution predicted by these genera-
tors can be only an approximation to the expected probability
distributions. Thus, this approach is merely a change of the
semiclassical description of the nucleon distribution from that
discussed in the previous subsection to that supplied by the

FIG. 2. The Gaussian emission size of pp and p̄p̄, rcore, mea-
sured by the ALICE collaboration [44] (blue circles) is compared
to the prediction of the WiFunC model using the space-time pic-
ture of PYTHIA 8 (red dashed line) and the Gaussian ansatz for the
emission volume [14] (orange solid line). Since the longitudinal
geometrical spread is not yet included in PYTHIA, we show the results
with a longitudinal spread added by hand (green dashed dotted) for
visualization.

event generator. It has, however, some advantages: First, the
nontrivial Lorentz transformation of the emission volume can
be taken into account in a straightforward manner. For ex-
ample, one does not have to assume that the momenta of the
quark pair initiating the cascade are directed along the beam
direction. Thus, more complicated processes, like ϒ → ggg,
are trivial to consider, provided that the event generator de-
scribes the process accurately. Second, the emission volume
is expected to be strongly correlated with the centrality of the
collision in pN and NN collisions, and thus the multiplic-
ity. These effects can in principle be described by an event
generator. Third, a weak energy dependence of the emission
volume is expected. Note that these effects will likely only
be visible in accelerator data, when narrow parts of the phase
space are considered. In cosmic ray physics, however, it is
more appropriate to use an event generator which is special-
ized to such applications, e.g., QGSJET [60,61].

IV. EXAMPLES

In this section, we will be considering a few examples
of antinuclei production in small interacting systems, using
PYTHIA 8 as event generator. One should note that the space-
time treatment of parton-parton interactions in PYTHIA is not
yet complete and there exist yet no official tunes [43]. In par-
ticular, the geometrical contribution to the longitudinal spread
is not implemented, i.e., all parton-parton interactions occur
at z = 0. As such, we cannot expect at this time PYTHIA to
perfectly reproduce the experimental data. Nevertheless, the
examples we are considering can be used to tune and develop
PYTHIA’s space-time picture. Moreover, they will highlight
some of the important features of the WiFunC model.
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FIG. 3. The antideuteron spectrum in pp collisions at
√

s = 0.9,
2.7, 7, and 13 TeV, predicted by PYTHIA 8, using a Gaussian ansatz
with σ = (1.0 ± 0.1) fm (green dashed line) and the space-time ap-
proach of PYTHIA (orange line), is compared to the experimental data
of the ALICE collaboration [45,62] (the data at 13 TeV is multiplied
by a factor 0.79 to normalize the spectrum to the total number of
inelastic events). The result without the equal-time approximation
(red dotted line) is shown for completeness.

A. Emission volume in pp collisions at LHC

The ALICE collaboration measured recently the source
radius of the baryon emission at 13 TeV in pp collisions by
assuming an isotropic Gaussian source profile in the fem-
toscopy framework [44]. As discussed in Sec. II C, the source
radius is directly connected to the Wigner function in the
coalescence model via Eq. (12). Although a simplified de-
scription of the source was used, the treatment of Wnp in
the coalescence model should reproduce this measurement. It
allows us thereby to tune the coalescence model completely
independently of antideuteron measurements. A caveat is that
the measurement is conducted in the laboratory frame, while
the source is defined in the pair rest frame. Therefore, the mea-
sured source size is the Euclidean distance in the laboratory
frame at “freeze-out” boosted into the pair rest frame. This
naturally explains the mT scaling observed in Ref. [44].

In Fig. 2, we compare the pp ⊗ p̄p̄ source radius measured
by ALICE to that predicted by the Gaussian ansatz in the
WiFunC model (see Ref. [14]) and by the space-time picture
implemented in PYTHIA. It is clear that the qualitative behavior
of the mT scaling is well reproduced by PYTHIA, while the
overall source size is underestimated. The latter is expected
as the longitudinal geometrical spread is not yet included in
PYTHIA. For illustration, we have added an additional line
where σz was increased by a factor

√
2; the resulting agree-

ment indicates that the space-time picture in PYTHIA has the
potential to reproduce the experimental data. In turn, these
data can be used to tune the space-time approach of PYTHIA.

B. Deuteron spectrum at LHC

In Fig. 3, the deuteron spectrum in pp collisions at 0.9,
2.76, 7, and 13 TeV, as predicted by the WiFunC model with
the Gaussian emission volume and with the space-time picture
implemented in PYTHIA, is compared to the experimental data

FIG. 4. The measured coalescence factor B2 in pp collisions at√
s = 13 TeV (blue circles) is compared to the predictions of PYTHIA

8.3 combined with the WiFunC model using a simple Gaussian
ansatz (orange triangles) or based on the space-time treatment of
PYTHIA (green squares). In addition, the results using the simple
coalescence model (red diamonds) are shown for comparison.

measured by the ALICE collaboration [45,62]. It is clear that
the space-time approach of PYTHIA is overproducing antin-
uclei, as expected from the underestimated longitudinal size
discussed in the previous subsection. We note again that these
measurements can be used to tune PYTHIA’s space-time pic-
ture. Due to the composite structure of the deuteron, one can
also use antinuclei experiments to tune the event generator to
two-particle correlations.

The lines with and without the equal-time approximation
completely overlap. That is, PYTHIA predicts that the inac-
curacy of the equal-time approximation is negligible at LHC
energies: Although the uncertainty in the emission volume in
single events is of order 10%, the effect is suppressed since
the coalescence condition requires the pairs of nucleons to be
close by in phase space.

C. Enhanced coalescence probability in jets

The ALICE collaboration has measured an enhanced
(anti-) deuteron coalescence probability in jets [46,47], com-
pared to the underlying events for pp collisions at 13 TeV.
More concretely, the measured coalescence factor

B2 =
(

1

2π pdeut
T

d2Ndeut

dy dpdeut
T

)/(
1

2π pp
T

d2Np

dy dpp
T

)2

(24)

for pp
T = pd

T /2 and |y| < 0.5 is a factor ≈10 larger in a jet
than in the underlying event. In the coalescence model, this
is naturally explained by the larger phase space density of
nucleons in the jet, and is therefore a strong indication that
coalescence is a major production mechanism for deuterons.
Moreover, this experiment may prove useful for understand-
ing the exact nature of the coalescence mechanism.

In Fig. 4, we compare the coalescence factor (24) pre-
dicted by the WiFunC model with a simple Gaussian ansatz
(blue) and using the space-time picture in PYTHIA (orange).
The results were obtained simulating inelastic pp collisions
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at 13 TeV, using PYTHIA 8.3 and enforcing the experimental
triggers and cuts used in the event selection [46,47]. The jet
axis was approximated as the region with an azimuthal angle
|�φ| < 60◦ around the so-called leading particle, as explained
in Ref. [47]. Any charged particle at midrapidity (|y| < 0.5)
and high transverse momentum (pT > 5 GeV) is considered
a leading particle. In the same manner, the underlying event
was approximated by the region 60◦ < |�φ| < 120◦.

The overall results shown in Fig. 4 are consistent with
those of Ref. [46]: There is an enhancement of a factor ≈10
in the coalescence probability (i.e., the coalescence factor B2)
in the jet, compared to the underlying event. For compari-
son, we also use the simple coalescence model [46] (green)
with a hard cutoff in momentum space, p < 0.285 GeV, and
a statistical weight 3/8. We emphasise that no fitting was
performed, and the result from the WiFunC model (orange and
blue) should be considered as a prediction. In accordance with
Fig. 2, the space-time treatment overpredicts the coalescence
probability. One should further note that the emission volume
used in the simple Gaussian ansatz includes a Lorentz trans-
formation relative to the beam axis, which is expected to be
a valid approximation for a typical pp interaction. However,
in Fig. 4, we are only considering events within a clear jet,
in which case the boost should be done relative to the initial
parton in the parton cascades. This is one of the main perks in
using the space-time treatment in PYTHIA, since more compli-
cated geometries are automatically taken into account.

D. Energy dependence of the emission volume

The emission volume is expected to have a weak en-
ergy dependence [12]. Within the current experimental and
theoretical uncertainties, the emission volume is consistent
with being constant [15]. The expected energy dependence
and its relevance to coalescence is however not trivial: At
high energies, the source size measured via femtoscopy ex-
periments will increase and be much larger than 1 fm. For
instance, the average � factor of nucleons in their pair rest-
frame increases with the center-of-mass energy

√
s of the

collision. As a result, the hadronization length � � �/mN

increases with
√

s. This growth will affect mainly the lon-
gitudinal emission length. Moreover, multiple scattering in
hadronic collisions enlarges the source volume additionally.
While the first effect is strongly suppressed in the production
of light nuclei because of the coalescence weight w, it is also
suppressed in femtospectroscopy measurements because of
experimental cuts. For instance, the ALICE collaboration used
q < 0.375 GeV, in addition to the trigger condition and the
rapidity cut.

In order to test this expectation and at the same time to
highlight some differences between the Gaussian ansatz for
the emission volume and the space-time picture of the event
generator, we plot in Fig. 5 the predicted energy dependence
of σ by PYTHIA 8.3 in pp collisions. A weight exp(−d2q2)
was included (q being the nucleon momentum in the pair rest
frame) to highlight the “coalescence relevant” source size.
PYTHIA predicts, as expected [12], a weak energy dependence
of the emission volume and σ‖ > σ⊥. The energy dependence
can be explained by correlations between the position and

FIG. 5. The spread σ predicted by PYTHIA is computed as the
rms value of the size of the nucleon emission region, while using
the weight exp(−d2q2). The transverse (blue triangles), longitudinal
(orange diamonds) and total (green circles) spreads are plotted as a
function of the center of mass energy in pp collisions.

momentum: Initially, the spread σ increases due to the in-
creased energy available to the nucleons; the increase is
dominated by nucleons produced back to back. At some point,
the cut in momentum space suppresses the emission volume,
making σ approximately constant.

Furthermore, there is a significant difference in the energy
evolution of the spread in the longitudinal and transverse
direction. In the Gaussian ansatz of the source volume [cf.
with Eq. (21)], the longitudinal spread will be constant while
the transverse spread will effectively be Lorentz contracted for
large transverse momenta: σ⊥ = σm/mT . Meanwhile, using
PYTHIA, the Lorentz boost is performed on a pair-by-pair basis
and is thus not defined relative to the initial particle beam.
Therefore, the expected transverse contraction in PYTHIA will
occur both for σ⊥ and σ‖.

Cosmic ray antinuclei are mainly produced by primary
protons colliding with the interstellar medium at energies
10−20 GeV in the center-of-mass frame. According to the
results in Fig. 5, PYTHIA predicts a decrease of σ by ≈0.1 fm,
when moving from LHC to such low energies. Closer to the
threshold, outside the validity range of PYTHIA, anticorrela-
tions can increase the baryon emission volume but will have
little impact on the final deuteron spectrum since the nuclei
are already suppressed by the anticorrelations in momentum.
This will in any case have negligible effects on cosmic ray
studies.

E. ϒ decays

The decay of ϒ is interesting because one can learn about
the hadronization and coalescence process at low energies.
Recently, Ref. [63] systematically tested phase-space Monte
Carlo models on ϒ decay data. Using the WiFunC model, it
was found that the emission size σ � 1.6 fm—greatly larger
than the expected � 1 fm—is needed to reproduce the mea-
sured antideuteron yield. This may have three explanations
[16]: (1) the WiFunC model fails, (2) the event generator
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TABLE I. Branching ratios of common J/ψ decays into pions
and nucleons.

Decay Measured value [64] PYTHIA

2(π+π−)π 0 (3.71 ± 0.28) × 10−2 2.50 × 10−3

3(π+π−)π 0 (2.9 ± 0.6) × 10−2 0
π+π−3π 0 (1.9 ± 0.9) × 10−2 1.36 × 10−3

π+π−4π 0 (6.1 ± 1.3) × 10−3 6.5 × 10−5

π+π−π 0 (2.10 ± 0.08) × 10−2 1.51 × 10−2

2(π+π−π 0) (1.61 ± 0.20) × 10−2 2.50 × 10−4

π+π−π 0K+K− (1.20 ± 0.30) × 10−2 6.06 × 10−3

π+π− (1.47 ± 0.14) × 10−4 7.68 × 10−3

2(π+π−) (3.57 ± 0.30) × 10−3 5.31 × 10−3

γ 2π+2π− (2.8 ± 0.5) × 10−3 –
3(π+π−) (4.3 ± 0.4) × 10−3 5.90 × 10−5

2(π+π−)3π 0 (6.2 ± 0.9) × 10−2 7.30 × 10−6

4(π+π−)π 0 (9.0 ± 3.0) × 10−3 0

Total 0.222 ± 0.015 0.057

pp̄ (2.120 ± 0.029) × 10−3 1.36 × 10−2

pp̄π 0 (1.19 ± 0.08) × 10−3 4.31 × 10−3

pp̄π+π− (6.0 ± 0.5) × 10−3 9.07 × 10−4

pp̄π+π−π 0 (2.3 ± 0.9) × 10−3 1.02 × 10−4

pn̄π− (2.12 ± 0.09) × 10−3 7.47 × 10−3

nn̄ (2.09 ± 0.16) × 10−3 1.36 × 10−2

Total (1.58 ± 0.01) × 10−2 4.10 × 10−2

over-predicts the nucleon yield or nucleon correlations, or (3)
the nucleon emission volume is larger than expected in this
process.

To test the first explanations, we simulate the decay of
107 ϒ using PYTHIA 8.3, turning off the decay of strong
resonances. In the WiFunC model with the Gaussian ansatz,
we obtain7B(ϒ → d̄X ) = 6.7+0.1

−0.2 × 10−5 with σ = (1.0 ±
0.1) fm. In agreement with Ref. [63], we need σ � 1.5 fm
to reproduce the value measured by BaBar [48], 2.81 ±
0.49+0.2

−0.24. Using the space-time treatment of PYTHIA, we
obtain B(ϒ → d̄X ) = 18.0 × 10−5, and an effective size
σ = 0.83 fm. Without the equal time approximation, the re-
sult is B(ϒ → d̄X ) = 17.2 × 10−5 with an effective size
σ = 0.93 fm. This is a change of 4.5%. Even if the esti-
mated emission volume in PYTHIA is similar to the one used
in the Gaussian ansatz, the branching ratio is a factor 2–3
larger, indicating a substantial enhancement due to position
and momentum correlations. In all cases, the WiFunC model
overpredicts the measurement, which may well be due to
uncertainties in the event generator.

In order to test the hypothesis that PYTHIA overpredicts the
nucleon yield in the meson-to-three-gluon decay,8 we simu-
late the decay of J/ψ and compare the measured branching

7Due to the lack of a preferred direction, we neglect the Lorentz
boost in the transverse direction.

8In the decay tables in PYTHIA, the J/ψ meson decays mainly into
two gluons, even though the dominant decay channel is J/ψ → ggg
[64]. We therefore change this decay channel to three gluons, like for
ϒ , in the simulations.

ratio [64] of common decays into nucleons and pions.9 The re-
sult is shown in Table I. As readily seen from the table, PYTHIA

has a tendency to underestimate the branching ratio into pi-
ons, and to overestimate the branching into nucleons. This
is a strong indication that PYTHIA overpredicts the nucleon
production in J/ψ , and thus ϒ decays. The nucleon yield is
overproduced by a factor 2–3, implying that the deuteron yield
may be overestimated by a factor 4–9.

In PYTHIA, the ϒ meson decays mainly into three gluons,
which may initiate parton showers and hadronize. In a dif-
ferent line of thought, the three gluons expand a triangular
Lund string, and so the hadronic emission length might be
substantially larger than in other processes, ≈3 fm [9].

In conclusion, the theoretical uncertainties prevent at
present a conclusion about the size of the emission volume
in ϒ decays. The baryonic production and baryon-baryon
femtoscopy measurements in ϒ decays are therefore highly
warranted. This will allow one, in tandem with the an-
tideuteron data, to learn about hadronic meson decays, the
hadronization process and the coalescence process. Moreover,
it may increase significantly the predictive power for some
exotic antinuclei production mechanisms, such as dark matter
decays or annihilation.

V. SUMMARY AND CONCLUSIONS

We have discussed the WiFunC model, a coalescence
model that allows one to include momentum and spatial cor-
relations on an event-by-event basis. Two choices for the
nucleon emission volume were discussed: (1) a Gaussian
ansatz and (2) using the emission volume provided by an event
generator. In the latter case, one can go beyond the equal-time
approximation which until now has been invariably assumed.
We have shown that this approximation leads to a O(10 %)
uncertainty in the coalescence probability in processes close
to the production threshold, such as ϒ decays. The error is
strongly reduced at high energies, implying that non-equal
production times can be neglected for hadronic collisions at
LHC.

As concrete examples, we considered pp collisions and ϒ

decays, using PYTHIA 8. The Gaussian ansatz for the emis-
sion volume leads to a satisfactory description of the baryon
emission volume and the antideuteron spectrum measured by
the ALICE collaboration at LHC, while overpredicting the
antideuteron production in ϒ decays. We have argued, based
on experimental data on nucleon production in J/ψ decays,
that PYTHIA likely overpredicts the nucleon production in ϒ

decays. The space-time approach of PYTHIA 8, on the other
hand, underpredicts the nucleon emission volume and fails
to accurately describe the antideuteron spectrum. However,
these deficiencies are most likely explained by the fact that the
space-time treatment is not yet complete and has not yet been
tuned to experimental data. Importantly, this implies that the
coalescence framework introduced in this work can be used to
tune the space-time treatments and momentum correlations in

9We neglect the contributions from resonances, as well as final state
photons since PYTHIA includes Bremstralung photons in the decays.
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event generators, when comparing them to antideuteron and
femtoscopy data. Once nucleon production in ϒ decays is
measured, one can use also antinuclei to probe the hadroniza-
tion process. In addition, we predicted the energy dependence
of the emission volume using PYTHIA 8. This resulted, as
expected, in a weak energy dependence, consistent with a
constant (1.0 ± 0.1) fm within experimental and theoretical
uncertainties.

This work has been motivated by an increasing amount of
high-precision data on antinuclei production in small inter-
acting systems, obtained by, e.g., the ALICE, NA61/SHINE,
and BELLE-II experiments. Our framework paves the way for
using these antinuclei measurements to tune the space-time
picture and momentum correlations in event generators used
to describe these data. Improving thereby the accuracy of such
generators, regarding the description of antinuclei production,
may furthermore have an important impact on predictions of
antinuclei production by cosmic rays and dark matter.

Note added in proof. While finalizing this paper, the related
work [65] appeared on the arxiv. The authors of that work
employ the equal-time approximation together with Eq. (17)
and a Gaussian ansatz for Hnp. The width of the Gaussian
was however treated as a variable, σ → σ (r, t ), what is

inconsistent with the assumptions needed to derive the
deuteron yield in Eq. (17). We also note that our results for the
emission volume, based on PYTHIA 8, are in disagreement with
theirs: We obtain with PYTHIA a source size which decreases
with transverse mass—in agreement with the experimental
data—while the source size derived in Ref. [65] increases.
This discrepancy is likely mainly caused by a different in-
terpretation of the effect of the equal-time approximation in
a femtoscopy experiment: In deriving the core size shown in
Fig. 2, we enforce t = 0 in the laboratory frame. Meanwhile,
Ref. [65] enlarges the emission volume by propagating the
produced particles until t = 0.
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