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Canonical and phenomenological formulations of spin hydrodynamics
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Two formulations of relativistic hydrodynamics of particles with spin 1/2 are compared. The first approach,
dubbed the canonical one, uses expressions for the energy-momentum and spin tensors that have properties
that follow a direct application of Noether’s theorem, which yields a totally antisymmetric spin tensor. The
other one is based on a simplified form of the spin tensor and is commonly used in the current literature
under the name of a phenomenological approach. We show that these two frameworks are equivalent, i.e.,
they can be directly connected by a suitably defined pseudogauge transformation, only if the first framework
is initially improved by a suitable modification of the energy-momentum tensor (addition of a divergence-free
term that cannot be interpreted as a pseudogauge). Our analysis uses arguments related to the positivity of
entropy production. The latter turns out to be equivalent for the improved canonical and phenomenological
frameworks.
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I. INTRODUCTION

Recent observations of spin polarization of weakly decay-
ing hyperons produced in relativistic heavy-ion experiments
across various collision energies [1–9] have provided a unique
probe to study polarization phenomena in relativistic nuclear
matter under rotation [10]. Motivated by the earlier successes
of relativistic fluid dynamics in heavy-ion phenomenol-
ogy [11], several extensions of relativistic hydrodynamics
for spin-polarized fluids have been developed using quan-
tum statistical density operators [12–16], relativistic kinetic
theory [17–29], the effective Lagrangian approach [30–33],
entropy current analysis [34–42], holography [43,44], and
equilibrium partition functions [45].

At the macroscopic level, relativistic hydrodynamics with
spin can be formulated on the grounds of the conservation
laws of conserved currents, i.e., energy-momentum tensor,
baryon current, and the total angular momentum current, with
the last one composed of spin and orbital parts. In special
relativity, however, the decomposition of the total angular mo-
mentum current obtained by choosing a particular form of the
energy-momentum tensor and the spin tensor is not unique.
A given pair of these currents can always be transformed
to another one through the so-called pseudogauge [24,46].
Of particular importance in this context is the Belinfante
pseudogauge based on Belinfante’s improved, i.e., symmetric,
energy-momentum tensor [47–49], which provides a natural
connection to Einstein’s relativity theory. Another choice,
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known as the phenomenological pseudogauge, deals with an
arbitrary energy-momentum tensor, i.e., with symmetric and
antisymmetric components, and the spin tensor that is an-
tisymmetric in the last two indices, which turns out to be
especially convenient for the construction of hydrodynamic
frameworks. Last but not least, at the microscopic level,
the canonical forms of conserved currents, with the energy-
momentum tensor having both symmetric and antisymmetric
parts and the spin tensor being totally antisymmetric in all its
Lorentz indices, can be obtained. Such a choice of conserved
currents is motivated from the standpoint of the quantum
field theory of Dirac fermions when applying the Noether
theorem [28].

While the change to a particular pseudogauge leaves the
total charges and dynamical equations intact, it modifies
the densities of the macroscopic quantities, hence intro-
ducing possible pseudogauge dependence of the resulting
hydrodynamic formalism [20]. Moreover, in local thermal
equilibrium, the choice of decomposition of the angular mo-
mentum into an orbital and a spin part can significantly affect
the predictions of spin polarization [50]. To explore such
freedom, in Ref. [35] the dissipative spin hydrodynamics was
formulated using Belinfante pseudogauge, starting from the
phenomenological set of energy-momentum and spin tensors.

In the present work, we formulate the dissipative spin hy-
drodynamics using the entropy current analysis and canonical
forms of conserved currents. We find that the totally antisym-
metric nature of the spin tensor introduces new properties into
the hydrodynamic description that are otherwise missing in
the phenomenological [34] or the Belinfante [35] framework.
In particular, our work shows that the naive use of arbitrary
forms of canonical currents conflicts with the principle of
entropy production. To resolve this problem, we construct
an improved form of the canonical energy-momentum tensor
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without affecting the conservation equations. We prove that
the resulting improved canonical definitions can be considered
a suitable choice for a first-order dissipative hydrodynamic
framework. Using proper pseudogauge transformation, we
show an equivalence between the improved canonical frame-
work and the phenomenological framework of dissipative spin
hydrodynamics.

The paper is organized as follows. We begin our discussion
of the canonical formulation of first-order dissipative spin
hydrodynamics in Sec. II. In that section, we argue that a
naive use of a general canonical currents is in conflict with
the principle of entropy production for a dissipative system.
In Sec. III we discuss an improved canonical framework in
which one can uniquely identify different dissipative cur-
rents using entropy current analysis. In Sec. IV we show that
one can get the phenomenological framework of dissipative
spin hydrodynamics starting from the improved canonical
framework, while in Sec. V we justify the derivation of the
improved canonical framework from the phenomenological
one. In Sec. VI we summarize and conclude.

II. ENTROPY CURRENT ANALYSIS:
CANONICAL FRAMEWORK

For a spin-polarized fluid, the hydrodynamic framework
can be constructed based on the conservation of energy-
momentum tensor T μν and total angular momentum tensor1

Jμαβ :

∂μT μν = 0, (1)

∂μJμαβ = ∂μSμαβ + 2T [αβ] = 0. (2)

For symmetric and antisymmetric parts of arbitrary tensor
X μν we use the notation X μν

(s) ≡ X (μν) = (X μν + X νμ)/2 and
X μν

(a) ≡ X [μν] = (X μν − X νμ)/2, respectively. In Eq. (2) we
have taken advantage of the fact that the total angular mo-
mentum Jμαβ can be decomposed into an orbital angular
momentum component Lμαβ , which can be expressed using
the energy-momentum tensor as Lμαβ = 2x[αT μβ], and the
intrinsic angular momentum (spin) component Sμαβ .

The orbital and the spin parts, with the latter being given
by the fully antisymmetric tensor, can be argued to originate
from using the Noether theorem for the Lorentz symmetry of a
nonscalar field theory, namely, for our interest, the Dirac field.
Herein, we demand the Lorentz structure of the spin tensor to
be preserved at the macroscopic level. To this end, we define
the constitutive relations for the energy-momentum tensor and
the totally antisymmetric spin tensor up to the first order in the
gradient expansion as

T μν
can = T μν

(0) + T μν
can(1), (3)

Sμαβ
can = uμSαβ + uβSμα + uαSβμ + Sμαβ

can(1). (4)

1Here, for simplicity, we assume there are no other conserved
charges in the system.

The leading-order contribution to T μν
can in Eq. (3) has the

perfect-fluid form

T μν
(0) = εuμuν − p�μν, (5)

where ε and p are the energy density and pressure, re-
spectively, uμ is the fluid four-velocity satisfying the nor-
malization condition uμuμ = 1, �μν ≡ gμν − uμuν is the
symmetric operator projecting onto the space orthogonal to
uμ, i.e., �μνuμ = 0, and gμν = diag(+1,−1,−1,−1) is the
Minkowski metric. The spin density tensor Sμν is antisym-
metric, i.e., Sμν = −Sνμ, therefore the leading-order part of
the spin tensor Sμαβ

can is totally antisymmetric. The terms T μν
can(1)

and Sμαβ

can(1) denote the first-order derivative corrections to the
energy-momentum tensor and the spin tensor, respectively.
In general, T μν

can(1) contains both a symmetric T μν
can(1s) and an

antisymmetric T μν
can(1a) part. We can assume that, similarly to

the leading-order part, the Sμαβ

can(1) part is totally antisymmetric,
although this does not affect our analysis. The tensor Sαβ plays
a role analogous to the number density in the presence of a
conserved charge [34,35]. Near local thermal equilibrium, it
satisfies the generalized laws of thermodynamics, namely

ε + p = T s + ωαβSαβ,

dε = T ds + ωαβdSαβ, (6)

d p = sdT + Sαβdωαβ,

where s is the entropy density, T is the temperature, and
the antisymmetric tensor ωμν can be considered as the spin
chemical potential conjugate to the spin density Sμν [34].

At this point we should comment on the gradient order
of the quantities associated with spin. Throughout the paper
we consider ωμν ∼ O(∂1), as argued in Refs. [34,35], tak-
ing into account that the chemical spin potential at global
equilibrium can be expressed by the thermal vorticity tensor
	μν = −∂[μ(uν]/T ). At the same time, Sμν is considered to
be O(∂0), which is consistent with the derivative counting of
ωμν in the high-temperature limit, where one can assume that
Sμν ∼ T 2ωμν [39].2

In the presence of the spin chemical potential and spin den-
sity, the nonequilibrium entropy current can be generalized to
first-order terms in the gradient expansion as follows [34,35].3

Sμ
can = T μν

can βν + pβμ − ωαβSαββμ + O(∂2)

= Sμ
(0) + T μν

can(1) βν + O(∂2). (7)

2This is not necessarily the only choice. For example, in Ref. [37],
dissipative spin hydrodynamics was developed, where both the spin
chemical potential and the spin density tensor are assumed to be
O(∂0 ).

3Note that in addition to the antisymmetry property of Sμν one
can also impose the condition that Sμν is orthogonal to uμ, i.e.,
Sμνuμ = 0 [36]. This is analogous to the Frenkel condition. This
additional condition reduces the number of degrees of freedom of
the spin density tensor. In the present study, we do not impose such
conditions unless explicitly stated.
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Here Sμ
(0) =suμ is the equilibrium part of the entropy current,

β ≡ 1/T is the inverse temperature, and βμ ≡ βuμ. Note that,
up to the first order in the gradient expansion, in the expression
of the nonequilibrium entropy current Sμαβ

can(1) plays no role.
Only the dissipative part of the energy-momentum tensor, i.e.,
T μν

can(1), contributes to the nonequilibrium entropy current.
So far, the explicit forms of the various dissipative currents

in T μν
can(1) are not uniquely defined. They can be uniquely

determined by imposing the second law of thermodynamics,
i.e., ∂μSμ

can � 0. Using Eq. (7), the divergence of the entropy
current can be expressed as

∂μSμ
can = β

[
T ∂μSμ

(0) + uν∂μT μν
can(1)

] + T μν
can(1)∂μβν + O(∂3).

(8)

Using the conservation equations of the canonical energy-
momentum tensor and the total angular momentum tensor,
Eq. (8) can be simplified. The conservation of the energy-
momentum tensor (1) implies

uν∂μT μν
can(1) = −T ∂μSμ

(0) − ωαβ∂μ(uμSαβ ), (9)

which allows us to write Eq. (8) in the following way:

∂μSμ
can = −βωαβ∂μ(uμSαβ ) + T μν

can(1)∂μβν + O(∂3). (10)

Furthermore, using the constitutive relation for the canonical
spin tensor given in Eq. (4), the conservation of total angular
momentum (2) up to O(∂2) simplifies to

∂μ(uμSαβ ) = −2T αβ

can(1a) − 2∂μ

μαβ

can(0), (11)

where for simplicity we have introduced the tensor 

μαβ

can(0) ≡
u[αSβ]μ, which is antisymmetric in the last two indices. Thus,
if we substitute Eq. (11) into Eq. (10), we find

∂μSμ
can = T αβ

can(1s)∂αββ + T αβ

can(1a)[∂αββ + 2βωαβ ]

+ 2βωαβ∂μ

μαβ

can(0), (12)

where we have decomposed T μν
can(1) into its symmetric and

antisymmetric parts. It should be noted that, due to the to-
tally antisymmetric structure of the canonical spin tensor, the
conservation of the total angular momentum leads to mixing
between the different components of the spin tensor, as can
be clearly seen in Eq. (11). This is a unique property of the
canonical framework of spin hydrodynamics.

To identify the transport coefficients in the canonical
framework, we should be able to write Eq. (12) in terms of
the dissipative currents. The symmetric and antisymmetric
components of T αβ

can(1) can be decomposed in terms of the
irreducible tensor basis as follows [34,35]:

T αβ

can(1s) = hαuβ + hβuα + ταβ, (13)

T αβ

can(1a) = qαuβ − qβuα + φαβ, (14)

respectively. Here, hμ, τμν , qμ, and φμν can be identified as
different dissipative currents and satisfy the following condi-
tions: q · u = 0, h · u = 0, τμνuμ = 0, φμνuμ = 0, τμν = τ νμ,
φμν = −φνμ. For the symmetric energy-momentum tensor,
the heat flux hμ and the viscous stress tensor τμν (which
contains the shear and bulk viscosity terms) are the only
dissipative fluxes. However, in the case of a nonvanishing

antisymmetric part of the energy-momentum tensor, the new
dissipative currents qμ and φμν arise.

Analogously to T μν
can(1a) in Eq. (14), we decompose the

antisymmetric term ∂μ

μαβ

can(0) and the spin chemical potential
ωαβ as

∂μ

μαβ

can(0) = δqαuβ − δqβuα + δφαβ, (15)

ωαβ = kαuβ − kβuα + λαβ, (16)

where the components δq and k as well as δφ and λ have the
same properties as q and φ, respectively.

Moreover, using the decomposition ∂μ ≡ ∇μ + uμD, with
uμ∇μ = 0,∇μ = �α

μ∂α and D = uμ∂μ, it can be shown that
(for a detailed derivation see Appendix A)

∂μSμ
can = − βhμ(β∇μT − Duμ) + βπμνσμν + β�θ

− βqμ(β∇μT + Duμ − 4ωμνuν )

+ φμν
(
�μν + 2β�α

μ�β
νωαβ

)

+ 2β[2kαδqα + λαβδφαβ]. (17)

Here πμν is the traceless part of τμν and � is the trace of τμν ,
i.e., τμν = πμν + ��μν , σμν ≡ ∇(μuν) − 1

3θ�μν is the shear
tensor with θ = ∇αuα , and �μν ≡ �α

μ�β
ν∂[αββ] = β∇[μuν] is

the vorticity tensor.
Imposing the second law of thermodynamics, i.e.,

∂μSμ
can � 0 we obtain the conditions

hμ = −κ (Duμ − β∇μT ), (18)

πμν = 2ησμν, (19)

� = ζθ, (20)

qμ = λ(β∇μT + Duμ − 4ωμνuν ), (21)

φμν = γ
(
�μν + 2β�μ

α�ν
βωαβ

)
, (22)

together with the constraint4

2kαδqα + λαβδφαβ � 0. (23)

Here various transport coefficients can be identified with the
conditions κ � 0, η � 0, ζ � 0, λ � 0, γ � 0. Note that kα ,
λαβ , as well as

δqα = �α
μuν∂λ


λμν

can(0), (24)

δφαβ = �α
[μ�

β

ν]∂λ

λμν

can(0), (25)

originate from completely different terms. Therefore, Eq. (23)
is not satisfied for arbitrary initial conditions in general. The
presence of such an additional condition implies that the
canonical framework with the energy-momentum tensor and
the spin tensor, as given in Eqs. (3) and (4), make the result-
ing hydrodynamic framework not a well-defined initial value
problem for an arbitrary set of hydrodynamic variables, T ,

4One can in principle use on-shell conditions/hydrodynamic equa-
tions to further simplify Eq. (17). But even in that case one will
end up with this additional constraint; see Appendix B for a detailed
discussion.
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uμ, and ωμν .5 However, such a problem can be solved by the
proper modification of the energy-momentum tensor, as we
discuss in the next section.

III. IMPROVED CANONICAL FRAMEWORK

The constitutive relation of the energy-momentum tensor,
as given in Eq. (3), is not unique. In particular, one can add to
it an additional totally divergent term, namely

T̃ μν
can = T μν

(0) + T μν
can(1) + ∂λ(uνSμλ). (26)

Since the additional term is O(∂1), it does not affect the
conservation law of the energy-momentum tensor (1), but it
does affect the evolution of the spin tensor (2) (if we require
the conservation of the total angular momentum). Moreover,
in the presence of the spin density tensor Sμν , at the level of
the first-order gradient expansion one can always add such a
term to the energy-momentum tensor, as it is allowed by the
Lorentz symmetry.

For the choice of the energy-momentum tensor in Eq. (26)
and the spin tensor in Eq. (4), the conservation of total angular
momentum (2) implies

∂μSμαβ
can = −2T αβ

can(1a) − ∂μ(uβSαμ) + ∂μ(uαSβμ)

⇒ ∂μ(uμSαβ ) = −2T αβ

can(1a). (27)

Similarly to the previous section, in this case we can also
define the nonequilibrium entropy current up to first order
terms in the gradient expansion as follows:

S̃μ
can = T̃ μν

can βν + pβμ − ωαβSαββμ + O(∂2)

= Sμ
(0) + T̃ μν

can(1) βν + O(∂2). (28)

However, compared to Eq. (7), the first-order correction to
the equilibrium energy-momentum tensor here includes an
additional term ∂λ(uνSμλ); see Eq. (26).

The divergence of the entropy current (28) can now be
expressed as

∂μS̃μ
can = T̃ μν

can(1)∂μβν − βωαβ∂μ(uμSαβ ) + O(∂3), (29)

which, using Eqs. (26) and (27), can be further rewritten as

∂μS̃μ
can = T αβ

can(1s)∂αββ + T αβ

can(1a)[∂αββ + 2βωαβ ]

+ ∂μβν∂λ(uνSμλ). (30)

Note that the last term in the above equation equals a total
derivative term ∂μ[βν∂λ(uνSμλ)] which can be absorbed in the

5In Ref. [51], a novel method was introduced for the entropy
current analysis to identify appropriate dissipative currents. Such a
generalized study of the entropy current can lead to new cross-terms
in the dissipative currents and related transport coefficients that have
not been reported in earlier research. It can be argued that even such
a generalized analysis does not solve the problem associated with the
entropy current analysis pointed out in the present analysis, where net
baryon number density is zero. Please see Appendix B for a detailed
discussion.

divergence of the entropy current and gives the following:

∂μS̃ ′μ
can = T αβ

can(1s)∂αββ + T αβ

can(1a)[∂αββ + 2βωαβ], (31)

where

S̃ ′μ
can = S̃μ

can − βν∂λ(uνSμλ)

= Sμ
(0) + βνT μν

can(1) + O(∂2). (32)

It is interesting to note that the last result indicates that S̃ ′μ
can =

Sμ
can, hence, our modification procedure does not change the

entropy current of the original system (although it changes
the dynamics of spin degrees of freedom to yield a positive
entropy growth).

The right-hand side of Eq. (31) can be easily shown to
be positive definite by properly identifying the dissipative
currents. Indeed, after decomposing T μν

can(1) into the irreducible
tensor basis, as discussed in the previous section, we obtain

∂μS̃ ′μ
can = − βhμ(β∇μT − Duμ) + βπμνσμν + β�θ

− βqμ(β∇μT + Duμ − 4ωμνuν )

+ φμν
(
�μν + 2β�α

μ�β
νωαβ

)
. (33)

Note that, unlike Eq. (17), Eq. (33) is free of the potentially
problematic terms due to the use of an improved energy-
momentum tensor from (26). If we impose the second law of
thermodynamics, we can identify the dissipative currents as
in Eqs. (18)–(22), but without the constraint (23). Without the
additional condition (23), the improved version of the canoni-
cal framework is well defined and the dissipative currents can
be uniquely expressed by the hydrodynamic variables, i.e., T ,
uμ, and ωμν .

Some remarks on Eqs. (18)–(22) are in order here. Note
that the expressions of hμ, πμν , and � in terms of the transport
coefficients, i.e., heat conductivity (κ ), shear viscosity (η),
and bulk viscosity (ζ ), are expected from relativistic Navier-
Stokes hydrodynamics. The new coefficients λ and γ appear
in the dissipative formulation of hydrodynamic with spin and
were also found earlier [34,35]. It should be emphasized that
the transport coefficients κ , η, ζ , λ, and γ enter directly
into the expression of the energy-momentum tensor and are
expected to play an important role in the equilibration of the
system and in the fluctuation-dissipation relations.

IV. TRANSITION FROM IMPROVED CANONICAL
TO PHENOMENOLOGICAL FORMULATION

In the previous section, we discussed in detail the canonical
framework of dissipative spin hydrodynamics with dissipative
currents uniquely determined by the positivity of the diver-
gence of the entropy current. The canonical framework uses
the energy-momentum tensor, which contains both symmet-
ric and antisymmetric parts, and the canonical spin tensor
is totally antisymmetric. The latter property follows directly
from a microscopic theory [28], but does not provide a natural
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identification of the tensor Sμν in Eq. (4) as the spin density.6

Therefore, many formulations of spin hydrodynamics use a
simpler form of the spin tensor with Sμαβ

ph(0) = uμSαβ . In this
paper we refer to such formulations as to phenomenological
ones and use the subscript “ph” in this context.

It is well known that one can always generate a new set of
energy-momentum and spin tensors from a given set of such
tensors. This is achieved by performing the so-called pseudo-
gauge transformation [20,24,46–49]. In this section we show
that it is possible to construct explicitly a pseudogauge leading
directly from the (improved) canonical formulation given by
the set of tensors (4) and (26) to the phenomenological one.
The starting point is

T μν

ph = T̃ μν
can + 1

2∂λ(�λμν − �μλν − �νλμ), (34)

Sλμν

ph = Sλμν
can − �λμν, (35)

where the pseudogauge potential is of the form

�λμν = 2

λμν

can(0) + �
λμν
(1) , (36)

where we introduced �
λμν
(1) to include all higher order correc-

tion terms in the spin current. Note that here both �λμν and
�

λμν
(1) are antisymmetric only in the last two indices.
Using the pseudogauge transformation we obtain [up to

terms of order O(∂ )]

Sλμν

ph = uλSμν + Sλμν

ph(1) (37)

and

T μν

ph = T̃ μν
can − ∂λ(uνSμλ)

= T μν
(0) + T μν

can(1)

= T μν
(0) + T μν

ph(1), (38)

where Sλμν

ph(1) = Sλμν
can(1) − �

λμν
(1) is first order in gradient expan-

sion.
Having determined the energy-momentum tensor and the

spin tensor for the phenomenological framework, we can
study the nonequilibrium entropy current, which can be ex-
pressed as follows:

Sμ

ph = Sμ
(0) + βνT μν

ph(1) + O(∂2). (39)

Using the conservation equation of the phenomenological
energy-momentum tensor, the divergence of the phenomeno-
logical entropy current can be simplified as

∂μSμ

ph = T μν

ph(1)∂μβν − βωαβ∂μ(uμSαβ ) + O(∂3). (40)

From Eqs. (29) and (40), we can see that the divergence
of the canonical entropy current and the divergence of the
phenomenological entropy current are not the same. However,
∂μS̃μ

can and ∂μSμ

ph differ only by a total divergence term, see

6If one additionally uses the Frenkel condition Sμνuν = 0, then Sμν

can indeed be identified as the spin density, which in this case follows
from the definition of the canonical spin tensor.

Eq. (30). Using the expression of T μν

ph(1) (38) in Eq. (40) we
find

∂μSμ

ph = ∂μβνT μν
can(1s) + [∂αββ + 2βωαβ]T αβ

can(1a). (41)

In the last equation, we used conservation of total angular mo-
mentum for the phenomenological currents. From Eqs. (32)
and (39), we see that S̃ ′μ

can = Sμ
can = Sμ

ph. Moreover, from
Eqs. (31) and (41), we can conclude that the entropy con-
straints are the same in the canonical and phenomenological
formalisms. Using the tensor decomposition of T αβ

can(1s) and

T αβ

can(1a) together with the condition ∂μSμ

ph � 0 we get back the
dissipative currents as given in Eqs. (18)–(22). Note that the
expressions for the dissipative currents as given in Eqs. (18)–
(22) correspond exactly to the dissipative currents obtained
in Ref. [34]. Thus, we conclude that, starting from the im-
proved canonical framework, it is indeed possible to recover
the phenomenological formalism of first-order dissipative spin
hydrodynamics.

V. IMPROVED CANONICAL FRAMEWORK STARTING
FROM THE PHENOMENOLOGICAL FORMALISM

Till now we have derived the dissipative spin hydrody-
namics framework starting from the canonical formalism
with a general structure of the energy-momentum tensor
and the totally antisymmetric spin tensor. In such a frame-
work we uniquely determined the dissipative currents using
the entropy current analysis. Furthermore, using the pseudo-
gauge transformation we have obtained the phenomenological
energy-momentum and spin tensor and also studied the dis-
sipative spin hydrodynamics in this framework. The energy-
momentum tensor in the phenomenological framework as
well as in the canonical framework contains symmetric and
antisymmetric parts. However, contrary to the phenomenolog-
ical spin tensor, in the canonical framework the spin tensor is
always totally antisymmetric.

Note that to achieve a well defined description of
dissipative spin hydrodynamics we have improved the energy-
momentum tensor, adding to the standard dissipative part a
totally divergent term. We have argued that in the presence
of a spin density tensor Sμν such a term is very natural.
In this section we will explicitly show that such a term
automatically arises if one considers the pseudogauge trans-
formation that starts from the phenomenological forms. We
also argue that additional term which originates from the
pseudogauge transformation also modifies various dissipative
currents. Appearance of the pseudogauge corrections to var-
ious dissipative currents is straightforward to understand: as
the pseudogauge transformation enters into the expression of
the energy-momentum tensor at O(∂ ), it effectively intro-
duces new dissipative terms in the original energy-momentum
tensor. To put the above statement on the firm mathemat-
ical ground here we will first discuss the framework of
dissipative spin hydrodynamics using the phenomenological
energy-momentum tensor and spin tensor as introduced in
Ref. [34]. After that, we will derive the canonical framework
using pseudogauge transformation.
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In the phenomenological framework we start with the con-
stitutive relations for T μν

ph and Sμαβ

ph up to first order in the
gradient expansion7 [34],

T μν

ph = T μν
(0) + T μν

ph(1), (42)

Sμαβ

ph = uμSαβ + Sμαβ

ph(1). (43)

In general, T μν

ph(1) contains symmetric as well as antisymmetric

components, while Sμαβ

ph(1) is a tensor antisymmetric in last two
indices only. This also implies that the spin tensor in the
phenomenological framework is only antisymmetric in last
two indices.

Analogous to the previous sections, we define the nonequi-
librium entropy current up to the first-order term in the
gradient expansion as

Sμ

ph = βνT μν

ph + pβμ − βωαβSαβuμ + O(∂2). (44)

The divergence of Eq. (44) can then be expressed in the
form

∂μSμ

ph = T μν

ph(1s)∂μβν + T μν

ph(1a)(∂μβν + 2βωμν ) + O(∂3).
(45)

Decomposing the symmetric and antisymmetric compo-
nents of the phenomenological energy-momentum tensor
as T μν

ph(1s) = h
μ

uν + h
ν
uμ + τμν and T μν

ph(1a) = qμuν − qνuμ +
φ

μν
, we obtain the following constraint on the divergence of

the phenomenological entropy current:

∂μSμ

ph = − βh
μ

(β∇μT − Duμ) + βπμνσμν + β�θ

− βqμ(β∇μT + Duμ − 4uνωμν )

+ φ
μν(

�μν + 2β�α
μ�β

ν ωαβ

)
� 0 (46)

with dissipative currents h, π , �, q, and φ satisfying relations
similar to those shown in Eqs. (18)–(22).8

Let us now discuss the improved canonical framework that
results from applying the pseudogauge transformation to the
phenomenological framework. In this case, using the pseudo-
gauge transformation as

T μν = T μν

ph + 1
2∂λ(�λμν − �μλν − �νλμ), (47)

Sμαβ = Sμαβ

ph − �μαβ, (48)

and choosing the pseudogauge potential �λμν in the form

�μαβ = Sαμβ

ph − Sβμα

ph , (49)

we obtain the following constitutive relations:

T μν = T̃ μν
can = T μν

ph + δT μν

ph(1), (50)

Sμαβ = Sμαβ
can = Sμαβ

ph + Sβμα

ph + Sαβμ

ph , (51)

7Note that the calculations discussed in this section are completely
independent of the previous discussions. However, without intro-
ducing new notations for the energy-momentum tensor and the spin
tensor we use the same ones as introduced earlier in the paper.

8If the kinetic coefficients are independent of the pseudogauge,
which is reasonable to assume, the tensors h, π , �, q, and φ should
be equal to their counterparts without a bar.

where Sμαβ
can is totally antisymmetric and we have used in

Eq. (50) the expression of Sνμλ

ph from Eq. (43).

It should be emphasized that the term δT μν

ph(1) = ∂λ(uνSμλ)
was introduced in the previous section in a heuristic way to
obtain a well-defined description within the canonical formal-
ism. Interestingly, such a term is obtained here in a natural
way applying the pseudogauge transformation to the phe-
nomenological framework.

One can observe that the additional term δT μν

ph(1) gives rise
to the first-order corrections for various components of the
initial energy-momentum tensor, which are additional to those
arising from T μν

ph(1). Thus, the resulting energy-momentum ten-
sor can be written in the following form:

T̃ μν
can = T μν

(0) + T μν

ph(1) + δT μν

ph(1) (52)

= ε̃uμuν − p�μν + h̃μuν + h̃νuμ + τ̃ μν

+ q̃μuν − q̃νuμ + φ̃μν, (53)

where

ε̃ = ε + δε, (54)

h̃μ = h
μ + δh

μ
, (55)

τ̃ μν = τμν + δτμν, (56)

q̃μ = qμ + δqμ, (57)

φ̃μν = φ
μν + δφ

μν
. (58)

For the details of the decomposition in Eq. (53) and the defi-
nitions of the additional δ contributions in Eqs. (54)–(58) see
Appendix C.

As mentioned above, the nonequilibrium entropy current
can be defined as

S̃μ
can = βν T̃ μν

can + pβμ − βμωαβSαβ + O(∂2)

= Sμ
(0) + βν T̃ μν

can(1) + O(∂2). (59)

Using the conservation of canonical energy-momentum ten-
sor, the divergence of the canonical entropy current can be
written as follows:

∂μS̃μ
can = ∂μβν T̃ μν

can(1) − βωαβ∂μ(uμSαβ ) + O(∂3)

= ∂μβνT μν

ph(1) + ∂μ[βν∂λ(uνSμλ)]

− βωαβ∂μ(uμSαβ ) + O(∂3). (60)

Absorbing that total derivative term into the definition of the
entropy current, we get

∂μSμ

ph = ∂μβνT μν

ph(1) − βωαβ∂μ(uμSαβ ) + O(∂3), (61)

where Sμ

ph = S̃μ
can − βν∂λ(uνSμλ) = Sμ

can. Thus, we conclude
that the entropy current constraints in these two frameworks
are equivalent.

VI. SUMMARY AND CONCLUSIONS

We formulate the first-order dissipative spin hydrodynam-
ics for the canonical framework with a totally antisymmetric
spin tensor. We argue that the naive use of a general
energy-momentum tensor containing both a symmetric and an
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antisymmetric part, together with a totally antisymmetric spin
tensor, is in conflict with the principle of entropy production.
We show that this problem can be solved by an improved form
of the canonical energy-momentum tensor, obtained by mod-
ifying the canonical energy-momentum tensor with a suitable
totally divergent term that does not affect the conservation
of the energy-momentum tensor. The origin of such a term
in the improved canonical framework can also be justified
using the concept of the pseudogauge transformation start-
ing from the phenomenological formalism. Using such an
improved form, we show that the framework of dissipative
spin hydrodynamics is well defined within the canonical
framework. We argue that one can always recover the
phenomenological framework of spin hydrodynamics from
such an improved canonical framework using an appropri-
ate pseudogauge transformation, and vice versa. Therefore,
the improved canonical framework and the phenomenological
framework of first-order dissipative spin hydrodynamics are
equivalent since they are connected by a suitable pseudogauge
transformation. Although a pseudogauge transformation can
lead to modified dissipative currents, entropy current analysis
shows that the entropy production condition for a dissipative
system remains unchanged in these two frameworks, i.e., the
entropy current constraint is independent of a pseudogauge
transformation.
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APPENDIX A: DERIVATION OF EQ. (17)

Here we present the detailed derivation of Eq. (17). We
start with Eq. (12), which using the decomposition of sym-
metric and antisymmetric components of T μν

can(1) in terms of
the dissipative currents as given in Eqs. (13) and (14) can be
rewritten as

∂μSμ
can = 2βωαβ

[
T αβ

can(1a) + ∂μ

μαβ

can(0)

]

+ hμuν (∂μβν + ∂νβμ) + τμν∂μβν

+ qμuν (∂μβν − ∂νβμ) + φμν∂μβν. (A1)

Using the decomposition ∂μ ≡ ∇μ + uμD, with uμ∇μ =
0,∇μ = �α

μ∂α , and D = uμ∂μ, it can be shown that

∂μβν = uν∇μβ + uνuμDβ + β∇μuν + βuμDuν . (A2)

This implies

hμuν
(
∂μβν + ∂νβμ

) = − βhμ
(
β∇μT − Duμ

)
(A3)

and

qμuν (∂μβν − ∂νβμ) = −βqμ(β∇μT + Duμ). (A4)

The symmetric tensor τμν can be decomposed into trace and
traceless part, τμν = πμν + ��μν . Using Eq. (A2) and the

fact that τμν is orthogonal to the fluid four velocity we obtain

τμν∂μβν = τμνβ∇μuν = β(πμν + ��μν )∇μuν

= βπμν
[

1
2 (∇μuν + ∇νuμ) − 1

3�μν∇αuα

+ 1
3�μν∇αuα

] + β��μν∇μuν

= βπμν
[∇(μuν) − 1

3θ�μν

] + β�θ

= βπμνσμν + β�θ, (A5)

where θ = ∇αuα . In the third line of the above equation we
have used the property that πμν is traceless, i.e., πμ

μ = 0 and
πμνuν = 0 = πμνuμ. It is also important to note that σμν =
∇(μuν) − 1

3θ�μν is traceless, i.e., σμ
μ = 0, and orthogonal to

the fluid four-velocity, i.e., σμνuμ = 0 = σμνuν .
Moreover it can be shown that

φμν∂μβν = 1

2
φμν

(
∂μβν − ∂νβμ

) = φμν∂[μβν]

= βφμν∇[μuν]

= β

2
φμν

(
�α

μ∂αuν − �α
ν ∂αuμ

)

= φμν�α
μ�β

ν∂[α (βuβ] ) = φμν�μν, (A6)

where we defined �μν ≡ �α
μ�β

ν∂[αββ] = β∇[μuν].
Using Eqs. (A3)–(A6), the divergence of the entropy cur-

rent as given in Eq. (A1) can be expressed as

∂μSμ
can = 2βωαβ∂μ


μαβ

can(0)

− βhμ(β∇μT − Duμ) + βπμνσμν + β�∂αuα

− βqμ(β∇μT + Duμ − 4ωμνuν )

+ φμν
(
�μν + 2β�α

μ�β
νωαβ

)
. (A7)

Using in the above equation decompositions (15) and (16) we
obtain Eq. (17).

APPENDIX B: ESTABLISHING THE IMPERATIVENESS
OF INDEPENDENT TREATMENT FOR DIFFERENT

DISSIPATIVE CURRENTS

In the work presented in Ref. [51], a novel approach
was introduced for analyzing the entropy current in order
to correctly identify dissipative terms. This comprehensive
investigation of the entropy current has the potential to reveal
previously unreported cross terms in the dissipative currents
as well as uncover new transport coefficients. However, here
we argue that, at zero chemical potential, different dissipative
currents should indeed be considered independently without
any cross-effects. Moreover, we also show that hydrodynamic
equations and associated hydrodynamic gradient expansion
do not affect our conclusion. For a clear demonstration, let
us start with the following part of the entropy production
equation [associated with the dissipative currents, which are
four-vectors, i.e., hμ, and qμ as given in Eq. (17)]:

∂μSμ

can(h,q) = −βhμ(β∇μT − Duμ)

− βqμ(β∇μT + Duμ − 4ωμνuν ). (B1)
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Following the arguments presented in Ref. [51] in general one
can write,

hμ = a(β∇μT − Duμ) + b(β∇μT + Duμ − 4ωμνuν )

≡ aX μ + bY μ (B2)

and

qμ = c(β∇μT − Duμ) + d (β∇μT + Duμ − 4ωμνuν )

≡ cX μ + dY μ. (B3)

Therefore, plugging Eqs. (B2) and (B3) back into Eq. (B1) we
can write

∂μSμ

can(h,q) = −βXμ(aX μ + bY μ) − βYμ(cX μ + dY μ)

= −aβX μXμ − βdY μYμ − β(b + c)X μYμ.

(B4)

Note that X μuμ = 0 = Y μuμ. Hence X μ and Y μ are spacelike
and we can write X μXμ = −X 2, Y μYμ = −Y 2, with X 2 � 0,
Y 2 � 0. However, we cannot say anything about the pos-
itivity of the product X μYμ. Nevertheless, we can always
choose a frame where X μ ≡ (0, �X ) and Y μ ≡ (0, �Y ), which
implies X 2 = �X · �X , Y 2 = �Y · �Y , and X μYμ = − �X · �Y . We can
further simplify by representing �X ≡ (X 1, X 2, X 3) and �Y ≡
(Y 1,Y 2,Y 3):

∂μSμ

can(h,q) = aβ[(X 1)2 + (X 2)2 + (X 3)2]

+ βd[(Y 1)2 + (Y 2)2 + (Y 3)2]

+ β(b + c)[X 1Y 1 + X 2Y 2 + X 3Y 3]. (B5)

Hence, the condition for the entropy production implies

aβ[(X 1)2 + (X 2)2 + (X 3)2]

+ βd[(Y 1)2 + (Y 2)2 + (Y 3)2]

+ β(b + c)[X 1Y 1 + X 2Y 2 + X 3Y 3] � 0. (B6)

The above equation leads to the following conditions:

aβ � 0, βd � 0, 4adβ2 � (b + c)2β2. (B7)

The above discussion fixes the sign of various coefficients
(a, b, c, d) in the dissipative currents. Interestingly the above
discussion does not imply that b = 0, or c = 0. Note that
only for b = 0 and c = 0 we get back our results [Eqs. (18)
and (21)], i.e.,

hμ = aX μ = a(β∇μT − Duμ), a � 0, (B8)

qμ = d (β∇μT + Duμ − 4ωμνuν ), d � 0. (B9)

However, when b �= 0 and/or c �= 0, hμ and qμ will differ
from Eqs. (B8) and (B9). In such a situation, one will get some
additional cross-terms in dissipative currents. This interesting
observation was pointed out in Ref. [51].

In our calculation, however, we do not consider such
cross-effects as we argue (see discussion below) that the cross-
effects can give rise to contradictory results (at least for zero
baryon chemical potential considered herein). We start with
the hydrodynamic equation,

(ε + p)Duμ = ∇μ p. (B10)

One may take into account the dissipative hydrodynamic
equations but that would only give rise to higher-order terms
in the subsequent discussions. From Eq. (B10) we find

Duμ = ∇μ p

ε + p
= ∂ p

∂T

∇μT

ε + p
+ ∂ p

∂ωαβ

∇μωαβ

ε + p

= ∂ p

∂T

∇μT

ε + p
+ Sαβ ∇μωαβ

ε + p
. (B11)

Note that Sμν ∼ O(1) and ωαβ ∼ O(∂ ). Then the second term
in the above equation is O(∂2), but the first term is O(∂ ).
Therefore, we can ignore the second term in the above equa-
tion. This implies

Duμ = ∂ p

∂T

∇μT

ε + p
+ O(∂2) = s

∇μT

ε + p
+ O(∂2)

= β
ε + p − ωαβSαβ

ε + p
∇μT + O(∂2)

= β∇μT + O(∂2)

⇒ Duμ − β∇μT = 0 + O(∂2). (B12)

Therefore, X μ ≡ β∇μT − Duμ cannot be fixed at O(∂ ) if we
consider the on-shell conditions (hydrodynamic equations).
We can use this observation in the entropy current analysis.
Recall Eq. (B1),

∂μSμ

can(h,q) = −βhμ(β∇μT − Duμ)

− βqμ(β∇μT + Duμ − 4ωμνuν )

= −βhμXμ − βqμYμ. (B13)

(i) Entropy current analysis without cross-effects. This is
the approach that we followed in our calculation. In
this case, we have

hμ = aX μ, a � 0, (B14)

qμ = bY μ, b � 0. (B15)

If we use the hydrodynamic equations, i.e., Eq. (B12),
we can argue that X μ = 0 + O(∂2). If we use this
observation in Eq. (B13), then we find

∂μSμ

can(h,q) = −βqμYμ + O(∂3). (B16)

The above equation again implies that X μ or hμ van-
ish at the order O(∂ ). The terms hμ or X μ can only
contribute to the entropy current at higher order in
gradient. The same conclusion can be obtained from
Eq. (B14), namely hμ = 0 + O(∂2), because X μ ∼
0 + O(∂2). Therefore, in this approach, the results
obtained for hμ using Eqs. (B13) and (B14) are con-
sistent with each other. Similarly, [from Eqs. (B13)
and (B15)] we can consistently find qμ at O(∂ ).

(ii) Entropy current analysis with cross-effects. This is
the approach considered in Ref. [51]. We argue that
this approach can lead to a logical contradiction at
zero chemical potential. In this case, hμ and qμ are
expressed as [Eqs. (B2) and (B3)]

hμ = aX μ + bY μ, (B17)

qμ = cX μ + dY μ. (B18)
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As we argued above, the positivity of the entropy pro-
duction gives the following conditions:

aβ � 0, βd � 0, 4adβ2 � (b + c)2β2. (B19)

Once again, let us now use the hydrodynamic equa-
tion, i.e., Eq. (B12), that gives X μ = 0 + O(∂2).
Therefore, Eq. (B13) again leads to

∂μSμ

can(h,q) = −βqμY μ + O(∂3), (B20)

that immediately implies hμ = 0 + O(∂2). However,
we can find qμ at the order O(∂ ). Now let us look at
Eq. (B17). This equation along with Eq. (B12) implies

hμ = bY μ + O(∂2) ∼ O(∂ ). (B21)

However, this is in contradiction with Eqs. (B20) from
which we concluded that hμ = 0 + O(∂2). The source
of this contradiction is the way Eqs. (B17) and (B18)
are written. In these equations, we have expressed
hμ and qμ as a combination of different dissipative
currents. If we did not then there is no contradiction;
e.g., for b = 0, the second term in Eq. (B17) will drop,
and in that case the contradiction does not appear. This
indicates that we should consider different dissipative
currents individually at least for zero baryon chemical
potential.

In order to argue that dissipative currents should be
considered individually we make use of the hydrodynamic
equation explicitly. Now we show that our calculation as
described in Sec. II remains unchanged even if we use the
hydrodynamic equations explicitly. To clearly demonstrate
this, let us start with Eq. (17),

∂μSμ
can = − βhμ(β∇μT − Duμ) + βπμνσμν + β�θ

− βqμ(β∇μT + Duμ − 4ωμνuν )

+ φμν
(
�μν + 2β�α

μ�β
νωαβ

)

+ 2β[2kαδqα + λαβδφαβ ]. (B22)

As we have already shown, if we consider hydrodynamic
equations, then hμ ∼ 0 + O(∂2). This observation has already
been pointed out in Ref. [34]. But in the main text for the
sake of generality, we have reported the general expression
of hμ obtained using the entropy current analysis. If we use
hμ ∼ 0 + O(∂2) in the above equation, we get

∂μSμ
can = βπμνσμν + β�θ − βqμ(β∇μT + Duμ − 4ωμνuν )

+ φμν
(
�μν + 2β�α

μ�β
νωαβ

)

+ 2β[2kαδqα + λαβδφαβ ] + O(∂3). (B23)

Since we have already argued that cross-effects in identifying
dissipative currents can be misleading at zero chemical poten-
tial, we will consider dissipative currents individually. If we
follow the steps discussed in the main text, we obtain a unique
constitutive relation for various dissipative currents,

πμν = 2ησμν, (B24)

� = ζθ, (B25)

qμ = λ(β∇μT + Duμ − 4ωμνuν ), (B26)

φμν = γ
(
�μν + 2β�μ

α�ν
βωαβ

)
, (B27)

together with the constraint

2kαδqα + λαβδφαβ � 0. (B28)

Therefore, even for hμ = 0 + O(∂2), the dissipative currents
πμν , �, qμ, and φμν can be uniquely obtained in terms of hy-
drodynamic variables, T , uμ, and ωμν . However, once again,
the difficulty arises due to the last constraint that must be sat-
isfied to argue that away from equilibrium the entropy should
be produced. This additional condition is independent of hμ.
Hence, even setting hμ = 0, does not remove this additional
constraint. Therefore, we have to improve the naive canonical
framework to find consistent constitutive relations for various
dissipative currents.

APPENDIX C: DECOMPOSITION OF δT μν
ph(1)

Here we provide details on the decomposition of the
first-order gradient term, the term δT μν

ph(1) = ∂λ(uνSμλ) into
different irreducible tensor structures. This can be done by
first decomposing δT μν

ph(1) into symmetric and antisymmetric
parts

δT μν

ph(1) = δT (μν)
ph(1) + δT [μν]

ph(1), (C1)

which can be decomposed further in the following way:

δT (μν)
ph(1) = δεuμuν + δh

μ
uν + δh

ν
uμ + δτμν (C2)

δT [μν]
ph(1) = δqμuν − δqνuμ + δφ

μν
, (C3)

along with the conditions δh
μ

uμ = 0, δτμνuμ = 0, δqμuμ =
0, δφ

μν
uμ = 0, δτμν = δτ νμ, δφ

μν = −δφ
νμ

.
The symmetric tensor δτμν can be further decomposed into

a traceless part and a trace,

δτμν = (
�

μ
(α�ν

β ) − 1
3�μν�αβ

)
δταβ + 1

3�μν�αβδταβ

= δτ 〈μν〉 + δτ�μν. (C4)

Note that δφ
μν

is antisymmetric, therefore it is traceless.
The unknown quantities in Eqs. (C2) and (C3) can be

obtained by taking the following projections:

δε = uμuν∂λ(u(νSμ)λ) = uμ∂λSμλ, (C5)

δh
β = �β

νuμ∂λ(u(νSμ)λ) = 1
2 uμ(∂λuβ )Sμλ + 1

2�β
ν∂λSνλ,

(C6)

δτ 〈μν〉 = (
�

μ
(α�ν

β ) − 1
3�μν�αβ

)
∂λ(u(βSα)λ)

= (
�

μ
(α�ν

β ) − 1
3�μν�αβ

)
∂λ(uαSβλ), (C7)

δτ = 1
3�μν∂λ(u(νSμ)λ) = 1

3�μν∂λ(uνSμλ), (C8)

δqβ = uν�
β
μ∂λ(u[νSμ]λ), (C9)

δφ
αβ = �[α

μ�β]
ν ∂λ(u[νSμ]λ) = �[α

μ�β]
ν ∂λ(uνSμλ). (C10)

Therefore, using Eqs. (C1)–(C3), the canonical energy-
momentum tensor takes the form (53), where δ contributions
in Eqs. (54)–(58) are calculable from Eqs. (C5)–(C10).
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