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Influence of boundary conditions on the characteristics of nuclear fission
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In this work, we carried out a detailed study of the factors affecting the fission dynamics of selected even-even
actinide nuclei within a quasiclassical statistical approach based on the Langevin formalism. Essentially, the
influence of initial conditions and geometrical criteria for spontaneous and induced fission of 236U as for the test
case are worked out and then, using the knowledge thus acquired, we perform more extensive calculations for
selected nuclei of U, Pu, Cm, Cf, and Fm isotopic chains. Potential energy surfaces (PES) are calculated within a
macroscopic-microscopic approach in a three-dimensional space of the so-called Fourier deformation parameters
representing the square of surface radius function in cylindrical coordinates. We also use the Lublin-Strasbourg
Drop and folded-Yukawa mean-field models to estimate the full PES for these isotopes. The restoration of the
particle number in the superfluid BCS-like approach is realized within the generator coordinate method with the
Gaussian Overlap Approximation in the one-dimensional gauge-angle space. The tensors of inertia and friction,
which play the role of transport coefficients, are given respectively within the hydrodynamic Werner-Wheeler
approximation and what we usually call the “wall” formula. The main part of our research focuses on studying the
conditions imposed on the solutions of the Langevin equations. In particular, we analyze the effect of the initial
point distribution used to generate Langevin trajectories on resulting fragment mass and total kinetic energy
distributions. Furthermore, we derive a way to optimize the size of the neck showing up on a nuclear surface in
the final stage of its evolution to fission, taking into account the random and sudden natures of its rupture. Neck
thicknesses generated with an appropriate normal distribution reproduce reasonably well the empirical fragment
mass distributions in the lighter actinides along various excitation energies. However, for heavier actinides, such
as Cf and Fm, the capability of our model to reproduce the final fragmentation seems to be limited.
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I. INTRODUCTION

This year marks the 85th anniversary of the discovery that
heavy atomic nuclei are not only radioactive but can also,
under certain conditions, decay into fragments with variable
mass numbers, which was called the fission process. Although
fission has been intensively studied over this long time, we
still do not have complete knowledge of the process. Of
course, in the second half of the previous century, many
successful attempts were made to describe it theoretically,
which led to the development of various known macroscopic-
microscopic models based on a description of the energy of
a fissioning nucleus analogous to that of a deformed liq-
uid droplet with additional corrections for interactions of a
quantum nature, realized most often by the Strutinsky ap-
proach and the Bardeen-Cooper-Schrieffer (BCS) model of
superfluidity, respectively (see, e.g., Refs. [1–8]), providing
a correct description of fission characteristics, such as frag-
ment mass distributions (FMD), fragment charge distributions
(FCD), total kinetic energy (TKE) distributions, a multiplicity
of emitted particles, etc. One of the above-mentioned research
directions is coupling the macroscopic-microscopic approach
with the multidimensional stochastic Langevin equations,
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which can describe the evolution of nuclear fission as a
stochastic process. As computational power increases, this
method is continuously improved, for example, by adding
additional degrees of freedom on which the resulting frag-
ment mass (charge) or total kinetic energy distributions may
depend. Currently, there are several operative models us-
ing this method [9–20]. For instance, the models acting in
three-dimensional (3D) collective spaces are presented in
Refs. [10,11,15,17,18,20] while the four-dimensional (4D)
spaces are exploited, e.g., in Refs. [12,13,16,19]. Neverthe-
less, there are still uncertainties in the description of the
dynamics of the phenomenon under study, especially at its
final stage, when the fissile system is close to decaying into
fragments.

The starting point of our research is the construction of a
potential energy function based on the well-known nuclear
theory Strutinsky-type macroscopic-microscopic approach
[2,3], where the function in question depends on collective
degrees of freedom, here taken as deformation parameters of
the nuclear surface. The nuclear surface geometry is defined
by the shape parametrization, which is given here as a Fourier
expansion of the square of the distance of a given point on
the surface to the symmetry axis, ρ2(z, ϕ). The amplitudes of
such a linear combination standing in front of the sine and
cosine functions are related to the deformation parameters of
the potential energy surface (PES) [21]. The fission dynamics,
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where the evolution of the surface shape is governed by the
system of Langevin equations [22], is described by a set of
classical Hamilton-like trajectories, taking into account the
excitation energy, friction between moving nucleons, and dif-
fusion effects. Particular attention is paid to investigating and
testing the initial and the trajectory-termination conditions,
which are crucial in obtaining a reasonable agreement of the
generated mass distributions of primary fission fragments with
the empirical data. The presented model has been “calibrated”
to characterize in the best possible way the dynamics induced
by thermal and 15 MeV neutron fission of the 235U nucleus.
Afterward, with further minor generalizations, it was applied
to simulate the spontaneous and induced fission of compound
even-even actinides with proton numbers Z in the region
92–100.

The work has the following structure: After a general in-
troduction, the second section is devoted to the main points of
the model. In the third section, we investigate the dependence
of evaluated distributions of the primary fission fragments on
the initial and termination conditions for the Langevin trajec-
tories. In the fourth section, we apply the model developed
above to other than 236U even-even actinide nuclei and dis-
cuss the quality of our results, comparing them with existing
empirical data. In the final section, we summarize our results.

II. QUASICLASSICAL STOCHASTIC
LANGEVIN APPROACH

The precise determination of the deformation parameters
{qi} relevant to the fission process and the tensors of collective
inertia and friction are necessary for successfully applying the
Langevin formalism to simulate the evolution of the nucleus
toward fission. The key issue of this kind of quasistochastic
model is to obtain a realistic change of the shape of the
nuclear surface over time, which will be achieved by ac-
cumulating a large number of Langevin trajectories q(t) =
{q1(t ), . . . , qN (t )} in the assumed N-dimensional space of
collective variables.

At present, there exist various nuclear shape parametriza-
tions, among which the most popular are spherical-harmonic
decomposition [23], Cassini ovaloids [24,25], Funny-Hills
and its later variations [4,26], or two-center shell model
(TCSM) parametrization [27]. Nevertheless, this article uses
a relatively new, efficient, and fast convergent parametrization
[21], which represents the axially symmetric nuclear surface
in cylindrical coordinates, ρ2

s (z; a), as a Fourier expansion of
the form

ρ2
s (z; a) = R2

0

∑
n=1

[
a2n cos

(
2n − 1

2
π

z − zsh

z0

)

+ a2n+1 sin

(
2n

2
π

z − zsh

z0

)]
, (1)

where R0 = 1.2A1/3 is the radius of the corresponding spheri-
cal nucleus, and zsh is the displacement of the center of mass of
the deformed nucleus when a2n+1 �= 0 is considered. It would
be useful to define the auxiliary dimensionless parameter c(a)
responsible for elongating the nuclear body along the z axis.
If c > 1, nuclear shapes are prolate, whereas c < 1 produces

FIG. 1. An example of the elongated nuclear surface obtained in
the Fourier parametrization (1).

oblate shapes. Therefore, the length of the nucleus measured
along the z axis is 2z0 = 2cR0, where ±z0 determines the posi-
tion of the right and the left ends of the nucleus in case zsh = 0.
In expansion (1), the coefficients an are not yet the physical
deformation parameters. It was proved, e.g., in Ref. [21] that
the transformation between original {an} amplitudes in the
Fourier series (1) and the physical deformation parameters
{qn} can be of the following form:

q2 = a0
2/a2 − a2/a0

2,

q3 = a3,

q4 = a4 +
√

(q2/9)2 + (
a0

4

)2
,

q5 = a5 − (q2 − 2)a3/10,

q6 = a6 −
√

(q2/100)2 + (
a0

6

)2
. (2)

The parameters a0
2, a0

4, a0
6 describe, via Eq. (1), the spherical

shape with radius R0.
To discuss the influence of nonaxial surface shapes, one

can easily modify our shape parametrization by multiplying
the right-hand side of Eq. (1) by a function fη(ϕ) of the
nonaxiality parameter η defined as

fη(ϕ) = 1 − η2

1 + η2 + 2η cos ϕ
, (3)

chosen in such a way that any cross section of the nuclear drop
(1), perpendicular to the z axis, is an ellipse of half axes a
and b while η ≡ b−a

b+a . The geometric properties of a nonaxial,
prolate nuclear surface are presented schematically in Fig. 1,
whereas a series of shapes possible to obtain through Eq. (1)
configurations is visualized in Fig. 2.

It was investigated that the most relevant deformation pa-
rameters for fission process, {q2, q3, q4}, describe the nuclear
elongation along the z axis, mass (volume) asymmetry of the
left and right fragments, and the neck shape, respectively. It
should be noted that the results presented in Refs. [21,28]
reveal that the set of these three collective deformations, q =
{q2, q3, q4}, is sufficient to describe the behavior of the fis-
sioning system close to its scission point within a reasonable
energetic uncertainty of much less than 1 MeV. Therefore, the
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FIG. 2. Fourier-like surface shapes for q2 = 0.3 (blue dot-dashed line), q2 = 1 (green dashed line), q2 = 1.9 (orange solid line), q2 = 2.35
(black solid line), and q2 = 2.9 (black dotted line).

higher-order deformations, q5 and q6, which mainly modify
the shapes of fission fragments in an insignificant way, are
neglected at the current stage of our study.

A similar argumentation may be applied to the nonaxiality
degree of freedom, which is known to impact the PES of, in
particular, actinide nuclei in the region between the ground
state and the inner fission barrier by reducing its height within
0.5–1 MeV. Thus the above property of the PES allows us,
to a first approximation, to neglect the effect of the nonaxial
deformation η as being of minor importance for nuclear frag-
mentation.

A. Potential energy surface

Setting the geometry of the nuclear surface, we come to
the problem of defining the potential energy function, which
is an essential quantity determining the evolution of the fissile
system. As already mentioned, from among a wide range
of known approaches able to produce the potential energy
function depending on the surface shape, we decided to use a
well-known macroscopic-microscopic model. Then, the total
energy of a nucleus, V (q), can be composed of the leading
macroscopic term Emacr, evaluated using a liquid-drop-type
approach, while the microscopic interaction energy Emicr,
playing the role of the energy correction on top of the dom-
inating smooth liquid-drop term, is strictly related to the
specific single-particle structure of a given nucleus,

V = Emacr + Emicr. (4)

The deformation-dependent smooth energy contribution Emacr

in Eq. (4) is given through the macroscopic Lublin-Strasbourg
drop (LSD) energy term [29]

ELSD = bvol(1 − kvolI
2)A

− bsurf (1 − ksurf I
2)A2/3Bsurf (q)

− bcur (1 − kcurI
2)A1/3Bcur (q)

− 3

5
e2 Z2

rch
0 A1/3

BCoul(q) + C4
Z2

A

− 10 exp(−4.2|I|), (5)

where I = N−Z
A is the so-called reduced isospin, whereas

Bsurf , Bcur, and BCoul functions introduce the deformation
dependence on the surface, curvature, and Coulomb energy
contributions, respectively. The last deformation-independent
term is what we usually call the congruence energy and is
taken from the estimates of Myers and Swiatecki [1]. All
parameters of the LSD formula originally found in Ref. [29]
are also rewritten below:

bvol = 15.4920 MeV, kvol = 1.8601,

bsurf = 16.9707 MeV, ksurf = 2.2038,

bcur = 3.8602 MeV, kcur = −2.3764,

C4 = 0.9181 MeV, rch
0 = 1.21725 fm.

Please notice that this simple formula has been proven to
reproduce the ground-state masses of over 3000 isotopes and
over 80 fission barriers throughout the periodic table with
reasonable accuracy.

In turn, the microscopic part, Emicr, in Eq. (4) is custom-
arily decomposed into two energy components responsible
for the shell, Eshell, and pairing interaction (superfluidity),
Epair, effects simulated within the BCS model, proposed in
Ref. [30]. The shell correction Eshell is, by definition, obtained
by subtracting the mean energy Ẽ arisen due to smoothing out
the nucleon mean-field spectrum up to the levels belonging
to the energy continuum from the sum of all the occupied
single-particle energies ek (see, e.g., Ref. [31]) as

Eshell =
∑

k

ek − Ẽ . (6)

In Eq. (6), the averaged energy Ẽ is estimated through the
Strutinsky method [2,3] by smearing out the discrete spectrum
with the Hermite “correction” polynomial of sixth order.
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Finally, the pairing energy correction is determined in a
similar way as done in Eq. (6), but the resulting BCS energy is,
in addition, reduced by the so-called average pairing-energy
term Ẽpair, which is not accounted for in the smooth liquid-
drop contribution (5), as done in Ref. [32]:

Epair = EBCS −
∑

k

ek − Ẽpair. (7)

The single-particle spectra for protons and neutrons of the
actinide nuclei discussed here are obtained as the eigenvalues
of the folded-Yukawa mean-field Hamiltonian as described in
Ref. [31].

B. Nuclear shape evolution

As mentioned, to describe the fission dynamics of selected
actinide nuclei, we use a quasiclassical stochastic model,
widely presented in Ref. [22], where a compound, excited,
and in a general rotating nucleus, is represented in the form of
an evolving-in-time superfluid incompressible drop [4] with a
well-defined deformed surface. Its time evolution is governed
by the set of coupled Langevin equations as a function of
collective deformation variables {qi(t )} and the corresponding
canonically coupled momenta {pi(t )}:

dqi

dt
=

∑
j

[M−1]i j p j,

d pi

dt
= −

⎡
⎣1

2

∑
jk

∂[M−1] jk

∂qi
p j pk + ∂F

∂qi

+
∑

jk

γi j[M−1] jk pk

⎤
⎦ + Ri, (8)

where Mi j and γi j are tensors corresponding to mass (inertia)
and intrinsic friction, respectively, while F is the Helmholtz
free energy potential of the compound fissile system,

F (q, T ) = V (q) − a(q)T 2. (9)

In the above, a(q) is, in general, the deformation-
dependent energy level density obtained according to the
prescription in Ref. [33] and T is the temperature of the
system, which is related to the excitation energy E∗ through
the relation

E∗ = a(q) T 2. (10)

It is assumed in our work that the excitation energy, E∗
0 , at the

initial time t = 0 is given relative to the ground state and the
height of the fission barrier, VB.

The last term, Ri, in the second of Eqs. (8), corresponds to
the i-th component of the Langevin random force, which by
definition is

Ri =
∑

j

gi j� j (t ), (11)

where �(t ) is a time-dependent stochastic function given as
� j (t ) = ξ j/

√
t with the following properties: 〈ξk〉 = 0, 〈ξk〉2 =

2. The amplitudes gi j can be deduced from the fluctuation-
dissipation theorem [22,34], known as the Einstein relation
allowing calculation of the diffusion tensor

Di j ≡
∑

k

gikg jk = γi j · T, (12)

with γi j denoting the friction tensor. The collective iner-
tia used in Eqs. (8) is calculated within the incompressible
irrotational flow approach using the Werner-Wheeler approx-
imation [35],

Mi j (q) = πρm

∫ zmax

zmin

dzρ2
s (z, q)

[
Ai Aj + 1

8
ρ2

s (z, q)A′
iA

′
j

]
,

(13)

where ρm = M0/( 4
3 R3

0) is the average uniform nuclear density
with M0 = 0.0113A5/3, the coefficients Ai having the form

Ai = 1

ρ2
s (z, q)

∂

∂qi

∫ zmax

z
ρ2

s (z′, q)dz′. (14)

Since our discussion is limited to low-energy fission, using
the one-body approach to describe the γi j friction tensor is
convenient. Then such a dissipation friction-tensor component
may be expressed through the so-called wall formula [36] as

γ wall
i j = ρm

2
v̄

∫ zmax

zmin

∂ρ2
s

∂qi

∂ρ2
s

∂q j√
4ρ2

s + ( ∂ρ2
s

∂z

)2
dz. (15)

In the above, v̄ is the average intrinsic velocity of nucleons, the
value of which can be evaluated within the Fermi gas model to
be v̄ = 3

4vF with vF being nucleon velocity at the Fermi level.

C. Temperature effects

As it follows from Eq. (9), the system of Langevin equa-
tions (8) has an additional hidden parameter, namely, the
temperature T , which is necessary to obtain a correct solution
in the case of substantially excited systems. The information
about the change of T during nuclear shape evolution from
the initial to final prescission state can be extracted from the
conservation of the total energy, which must be constant at
each time along a given trajectory and is composed of the ki-
netic and potential terms and the excitation energy of intrinsic
degrees of freedom E∗:

Etotal = 1

2

∑
jk

[M−1] jk p j pk + V (q, T ) + E∗. (16)

It is well known that the microscopic component of the total
potential energy (4) vanishes when the temperature increases.
To account for this effect, the dependence of the exponential
form e−E∗/const to modify the shell correction was proposed
by Ignatyuk et al. in Ref. [37]. A few years later, a similar
dependence appeared also for pairing correction [38]. One of
the most recent works on this topic is Ref. [39], where the re-
duction of both the shell and pairing microscopic corrections
with excitation energy for deformed nuclei are revisited.

In our model, however, we use a slightly modified prescrip-
tion of this temperature correction in the form of a Fermi-type
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function, discussed in Refs. [28,33]:

Emic(q, T ) = Emic(q, T = 0)

1 + e− TE −T
aE

, (17)

with TE = 1.5 MeV and aE = 0.3 MeV. It was proved in
Refs. [17,28] that such a relationship could reliably describe
the evolution of the FMDs with increasing excitation energy.

Hence, as the excitation energy grows, the viscosity of the
nuclear liquid must increase, too, and finally, its superfluid
properties must drastically fade away. As shown in Ref. [40],
the temperature dependence of the friction tensor must have a
similar form as the above shell correction and is written

γ T
i j (q, T ) = 0.7

1 + e− Tγ −T
aγ

γ wall
i j (q, T = 0) (18)

with the constants Tγ = 0.7 MeV and aγ = 0.25 MeV pro-
viding a good description of the dissipative properties of the
diffusion tensor Di j of Eq. (12). The introduced temperature
dependence significantly changes the friction when T tends to
zero, which happens, e.g., in spontaneous fission. As known,
classical Brownian motion vanishes when the system’s tem-
perature tends to zero. Thus the diffusion tensor Di j , which
fixes the magnitude of the random Langevin force, should
vanish, too, and therefore, the statistical nature of the fission
processes will be violated. On the other hand, quantum-
mechanical considerations bring us to an obvious conclusion
that even with temperature being close to zero, i.e., for very
low excitation energy, the zero-point motion of nucleons can
cause fission.

To simulate these quantum effects in the semiclassical
Langevin description, one can replace the temperature T
with an effective temperature T ∗ in Eq. (12), as proposed in
Ref. [41]:

T ∗ = E0 coth
E0

T
, (19)

where E0 = h̄ω0
2 roughly corresponds to a nucleus’s zero-point

collective oscillation energy near its ground state, which typ-
ically varies between 0.5 and 2 MeV. Under this assumption,
one obtains from Eq. (12) a more realistic description of the
intrinsic friction in low-energy fission.

With all the above approximations, we can now solve the
set of Langevin equations (8) using the discretization method
in which the corresponding differential quotients are applied
instead of the time derivatives occurring on the left-hand
sides of both equations. The finite time step for the numer-
ical solution of their discretized forms is taken as 0.01τ ,
where τ ≡ 2M

γ
h̄

MeV is called the characteristic relaxation time,
sufficient to ensure the thermal equilibrium of the nuclear
system.

III. INITIAL AND TRAJECTORY-TERMINATING
CONDITIONS

Having described the essential components of the model,
we can proceed toward one of the key points of this work,
namely, defining the set of boundary conditions for the differ-
ential Langevin equations. For this purpose, first, one should
define a region in the domain of collective variables q in which

the shape evolution of a nucleus is to be performed. Some
detailed studies have shown that for the majority of actinide
nuclei, it is sufficient to consider the following collective
three-dimensional deformation space,

q2 = [0 (0.05) 2.35],

q3 = [−0.21 (0.03) 0.21],

q4 = [−0.21 (0.03) 0.21], (20)

which comprises vicinities of the ground state, all relevant
for fission-process saddle points and isomeric minima ending
within the configurations, where the nucleus is already split
into two fragments. The latter statement may mean that the
width of the neck of a compound nucleus is sufficiently small
compared with the effective diameter of a nucleon (≈0.2R0)
to observe the fission. In the nodes of such a lattice, we have
calculated the previously introduced values of the collective
potential, inertia, and friction tensors. To determine the values
between the nodes, we use the so-called Gauss-Hermite ap-
proximation method proposed in Ref. [42], which determines
the demanded values on, generally, N-dimensional mesh with
pretty satisfactory accuracy.

Let us mention the behavior of a trajectory when a variable
qi, being a part of the parametric definition of that, reaches its
extreme (border) value given in Eqs. (20). This may happen,
for example, when the entry point in a given isotope is located
relatively close to the grid boundaries and, therefore, after a
couple of time steps, can easily reach the border. Technically,
such a trajectory does not lead to fission and, strictly speaking,
should be removed from our consideration. In such a case,
some conditions for resuming such a trajectory may be help-
ful. A reasonable possibility to omit this problem may be to
change the sign of the momentum component conjugated to
this coordinate, allowing it to turn around and continue its
evolution.

The situation is slightly exceptional with the leading coor-
dinate q2. After reaching its extreme value qmax

2 = 2.35 [see
relation (20)], the system is elongated more than twice that
in its ground state. Suppose that for such a large deforma-
tion, the decisive criterion for qualifying a given trajectory
as the fissioning one is still not fulfilled. In that case, such
a trajectory seems to have no physical sense, and its fur-
ther evolution is meaningless. Hence, this basic condition
must be imposed in most further calculations, mainly if a
symmetric and highly elongated fission channel is intensely
populated.

A. Adjusting the initial conditions

We initiate the evolution of a Langevin trajectory by choos-
ing its initial deformation point on the PES. In general, such
a point is assumed to be the ground state of the compound
system, as it is done in the classical works of Abe [22,43]. In
order to be able to describe its evolution into different decay
channels, the compound system must initially remain close
to its ground state. However, in practical calculations, a thus-
defined starting configuration usually needs to be adjusted to a
given particular nucleus and its excitation energy to effectively
determine a set of thousands of stochastic trajectories within
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FIG. 3. Primary FMDs for thermal neutron-induced fission of
235U initiated from the ground state (red) and the second saddle
(blue), whereas black triangles correspond to values adapted from
experimental data [45]. Here Y (Af ) denotes the yield for the corre-
sponding fragment mass.

a reasonable time scale. In fission, the available energy excess
has, at least, to be enough for the system to overcome the
barriers standing in the way of the fissioning nucleus. Thus,
the set of initial configurations drawn at the beginning of each
trajectory is likely located in a specific area in the vicinity of
the outer saddle point, through which the system must pass,
moving towards fission.

To test the above assumption, we first calculate the frag-
ment mass distributions for the thermal neutron-induced
fission of a 235U nucleus starting from two different initial
configurations. The first and most natural option is to initiate
the trajectory from the ground state. Afterward, to compare
the results, the trajectories begin in the outer saddle point.
In both cases, the initial conjugated momenta are all equal to
zero.

As a nucleus is assumed to undergo fission, the determina-
tion of the corresponding trajectory is terminated if the neck
radius in the thinnest point reaches rstop

neck ≈ (0.2–0.3)R0 ≈ 1.5
fm on average (for comparison, see, e.g., Res. [10,18,44]). To
some extent, such a criterion is chosen arbitrarily. It can be
modified by introducing a dependence of rneck on the prescis-
sion deformation (elongation) or temperature in the scission
point. Technically, as the temperature increases, the neck col-
lapses faster, with larger neck thicknesses. Clues supporting
this hypothesis will be given later. As seen in Fig. 3, the
fragment mass distributions for both these cases are almost
identical. The total number of trajectories used here to gen-
erate reliable statistics is significant and equal to 105. Only 1
out of 100 initiated in the ground-state trajectories overcome
the barrier and efficiently evolve to fission. At the same time,
the rest are stuck in the potential energy well for a long time.
If, however, calculations begin in the immediate vicinity of
the outer saddle point, the number of “trapped” trajectories is
lower by practically an order of magnitude.

By introducing a method proposed in Refs. [17,46], one
can still improve the ratio of “passed” to “trapped” trajecto-
ries. Using the normal distribution ξnorm(μ, σ ) with the mean
value μ = 0 and the standard deviation of 1

2

√
E0/∂2V

∂q2
i

defined

in the prefixed starting point qstart , we define the set of initial

spatial configurations q(1) of subsequent trajectories through
the following condition:

q(1)
2 � qstart

2 ,

V (qstart ) − V (q(1) ) − E0 ≡ E (1)
kin � 0, (21)

where E (1)
kin is the kinetic energy of collective motion in the ini-

tial point of a given trajectory calculated through the classical
relation as

E (1)
kin (q(1) ) = 1

2

∑
i j

[M−1(q(1) )]i j p(1)
i p(1)

j . (22)

The constant E0 in the second condition of Eqs. (21) describes
a contribution of the zero-point vibrations to the total potential
energy in qstart . The values of momenta p(1)

k , like the coordi-
nates q(1), must be randomly distributed. The mean (standard)
deviation for the ith momentum component within its normal
distribution ξnorm is σ = E (1)

kinMii(q(1) ). To finally identify the
randomly chosen momenta p′

i with actual components of p(1)
i

entering the Langevin equations as their initial value, they
need to be renormalized as

p(1)
k = p′

k

√√√√ E (1)
kin

1
2

∑
i j [M−1]i j p′

i p
′
j

to satisfy condition (21).
The question arises whether the space of q(1) points should

be restricted to a specific volume around the qstart point. In
terms of condition (21), such a problem may occur when
the PES is sufficiently flat around this point, allowing the
initial configuration to exceed the borders of the fixed grid
[see Figs. 4(a) and 4(c)]. To avoid this, we can limit the de-
formation space q(1) of the initial configurations by a slightly
arbitrary interval as follows:

q(1)
2 ∈ [

qstart
2 ; qstart

2 + 0.2
]
,

q(1)
3 ∈ [

qstart
3 − 0.09; qstart

3 + 0.09
]
,

q(1)
4 ∈ [

qstart
4 − 0.09; qstart

4 + 0.09
]
. (23)

In Fig. 4, we can see the PES for 236U, where the coordinates
q(1) are distributed without [Figs. 4(a) and 4(b)] and with
[Figs. 4(c) and 4(d)] the zero-point energy in Eq. (21) or
with and without limitations for the initial coordinate region
[Figs. 4(b) and 4(d)]. In particular, the two curves of Figs. 5(c)
and 5(d) reveal the lack of sensitivity of the FMD for these
limitations. In this case, the ratio of traversed to not traversed
trajectories in Fig. 5(d) falls within the interval 1–1.5, notice-
ably reducing the computation time.

B. Fissioning trajectories

Having determined the criteria for fixing the starting point
for a Langevin trajectory, let us now turn to the problem of
the rupture of the fissile system. In reality, the division of
a nucleus into fragments may significantly depend not on
the neck width alone but also on a series of other quantities
characterizing bulk and surface properties of both fragments,
their shell structures, deformations, excitation energies, the
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FIG. 4. Samples of starting-point distributions on the PES of 236U: (a) without limit control, and subtraction of E0, (b) without limit control,
and inclusion of E0, (c) without control, and inclusion of E0, and (d) with limit control, and E0 included. The gray cross gives the location of
the second saddle.

relative collective velocity of fragments towards fission, neck
curvature, etc. Knowing the decisive criteria for stopping the
trajectory evolution due to the achievement of a neck-breaking
configuration is even more crucial than choosing its starting
point. Unfortunately, this problem is not unambiguously solv-
able at the moment. It requires the introduction of additional
phenomenological assumptions, which will only be tested by
comparing the simulation results with empirical data. That, in
turn, can definitively reduce the transparency and universality
of this approach.

Since the phenomenological criteria for the neck rupture
are model dependent and can be fixed to some extent arbi-
trarily, we decided to test within this work the one which
effectively would lead to a division of an axial nucleus into

FIG. 5. Primary FMDs obtained for starting-point distributions
presented in Fig. 4. Panels (a)–(d) refer to analogous panels of Fig. 4.

two fragments and depending only on the neck radius value,
rneck. By collecting the configurations which satisfy the re-
quired condition, e.g., rstop

neck = const, we obtain the prescission
hypersurface in the multidimensional space of deformation
variables. It was tested in our approach that a nucleus has a
chance to split into two fragments when the neck radius varies
in the range 0–2.5 fm with a mean value of about 1 fm, being
comparable to the effective radius rn of a single nucleon resid-
ing inside the neck. Similar termination conditions in terms of
nonzero neck width are considered in Refs. [9,10,15,18,44].

There also exists another point of view on the neck size cri-
terion, in which splitting into fragments occurs when rneck =
0; i.e., the thickness of the neck at the thinnest point vanishes.
Indeed, this approach makes it possible to precisely determine
the masses and kinetic energies (TKE) of the fragments of
such a binuclear shape because their volumes and relative
distances are determined unambiguously. This kind of con-
dition was exploited in Refs. [11–13,16,19], where the mean
field was given in the form of the two-center Nilsson-like
potential allowing for a reasonably credible description of
the single-particle spectra at the neck rupture deformation.
In contrast, within a similar model, good results can also be
achieved if one fixes rstop

neck = 0.5 fm (see, e.g., Ref. [15]). One
can observe in Fig. 2 that already all shapes at the upper limit
qmax

2 = 2.35 and the values of q4 <≈ −0.15 are split into two
fragments, whereas for higher q′

4s they are still single shaped.
Therefore, theoretically, not all trajectories passing through
the limit of qmax

2 must result in fission. Obviously, the number
of fission acts may depend here on the particular choice of
rstop

neck. In practice, the topography of the PES and the inertia
parameters in the 236U nucleus at q2 > 2.35 indicate that the
number of actually obtained trajectories with rstop

neck > 0 may
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FIG. 6. Primary FMDs (a) for thermal neutron-induced fission of
235U with obligatory usage of neck radius condition (red) and without
it (navy blue). (b) The histogram shows the rneck distribution for both
(a) and (b) cases.

occur for thermal neutron-induced fission, relatively small and
feeding mostly moderately asymmetric yields.

Since the present calculations are carried out on a finite
deformation grid, the grid-border values are usually fixed
slightly before the geometrical scission, i.e., where the neck
radius is strictly equal to zero. This is so because the uncer-
tainty of numerical determination of the PES and necessary
transport quantities for the two strongly elongated fragments
already well separated by the zero-width neck are consider-
ably lowered due to limitations of numerical routines used to
develop the eigensolutions of the Yukawa-folded Hamiltonian
and the liquid-drop deformation functions.

However, in specific test cases shown below, where
the prescission configurations for symmetric fission can be
strongly elongated, we allow for the possibility that the trajec-
tory is continued even though the above-mentioned elongation
limit, qmax

2 , is slightly exceeded. At the same time, the condi-
tion for the neck radius is still not satisfied.

To depict the contribution of such strongly elongated states
to the final FMD, in addition to the previously developed
initial conditions (23), we will introduce the trajectory-
termination conditions in two ways. First, for elongations,
q2 < qmax

2 , a trajectory that satisfies only the neck-radius cri-
terion, rneck < rstop

neck, is counted as a fissioning one. In the case
q2 > qmax

2 and when the neck radius is still greater than a fixed
rstop

neck value, such a trajectory is then rejected. This scenario is
shown in Fig. 6(a) with the red line. In contrast, we consider
the second way, where the neck radius condition is completely
ignored, and the trajectory reaching the elongation limit qmax

2
describes the act of fission unequivocally. Clearly, in the latter

FIG. 7. Primary FMDs for thermal neutron-induced fission of
235U with nonobligatory neck radius condition usage at limit values
qmax

2 = 2.35 (dotted line), qmax
2 = 2.5 (dash-dotted line), and qmax

2 =
2.9 (solid line).

scenario, the values of the neck radii in the fissile configu-
rations distribute over different possible values ranging from
rn to even more than 4rn with a clear peak around 2rn, as
presented in Fig. 6(b) with the navy blue line.

As shown in Fig. 6(a), neglecting the condition rstop
neck >

rneck leads to significant enhancement of both near-symmetric
and highly asymmetric channels compared to the experimen-
tal yields. To clarify this, let us return to Fig. 2, where, among
other things, the shapes with q2 = qmax

2 > 2.35 are tested for
neck radius value. Indeed, it can be seen that at such a limit
of qmax

2 , only compact-shaped and rather mass-asymmetric
configurations prefer the neck radius around (0–0.3)R0, which
favors fissioning in low excitation energy regimes. In con-
trast, very elongated fragmentation modes are relatively less
populated. The increase of mostly asymmetric FMD fission
yields with a gradual shift of qmax

2 from 2.35 to 2.9 visible in
Fig. 7 can therefore be found as a consequence of an unde-
sirable property of our Fourier shape parametrization which,
especially for extremely large nuclear elongations q2, is un-
able to produce well-separated (rneck ≈ 0) very elongated
symmetric fragments which may appear in the fission of
thorium and uranium isotopes. This disadvantage is essen-
tially removed in an upgraded version of the Fourier-like
parametrization, which is currently being extensively tested.

One then deduces that the conditions for nuclear scission
applied to our Langevin framework, which mainly determines
the quality of reproduction of FMD, have to be sought ac-
cording to the following indications: first, by considering pure
geometrical criteria for the neck width, dependent only on
the surface-parametrization properties, and second, by testing,
whereas, for such a preselected deformation point, the accu-
racy of determining the macroscopic-microscopic quantities
fits the acceptable limits. This also indicates that the choice
of the optimal rstop

neck value may not, in general, be universal
across the complete set of studied nuclei and needs, at least,
to be validated when changing Z or N by a couple of units.

C. Optimal neck radius

Now, after demonstrating that the condition for the neck
size is essential, let us investigate its effect on the distributions
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FIG. 8. Primary FMDs for neutron-induced fission 235U with
variation of the neck radius rneck from (a) 3rn, (b) 2rn, (c) rn,
and (d) 0.

of the fission mass fragments. For this purpose, we assume
that the corresponding value of the neck radius rstop

neck limit at
which a trajectory is stopped may vary from 3rn to as low as
zero with a step of rn. We set the initial point according to
the prescription of Eq. (23) while the upper elongation limit
qmax

2 = 2.35. As can be seen from Fig. 8, the resulting mass
distributions noticeably change their form for different rstop

neck
radii. With decreasing neck radius, the fragment mass distri-
bution is getting slightly narrower, and the asymmetric peak
shifts towards more and more symmetric yields. At the same
time, its symmetric part is gradually vanishing, approaching
the experimental value.

To understand the dominance of the asymmetric fission
channel in this nucleus, let us notice at the PES presented in
Fig. 4 that the most likely path from the starting configuration,
set around the second saddle point at (q2, q3) ≈ (1.0, 0.09),
to the scission leads directly towards the asymmetric valley
which is separated from the symmetric one by the edge almost
3 MeV high, visible around q3 ≈ 0.06. Moreover, since the
excitation energy at the initial configuration is relatively low,
the random force defined through Eqs. (11) and (12) has little
chance to push the system over this edge. It can also be seen

that except for the extreme cases of Figs. 8(a) and 8(d) with
rstop

neck = 3rn and rstop
neck = 0, respectively, the overall features of

other presented distributions are generally weakly affected,
which may indicate that the main contributions to the final
FMD come from rstop

neck = {2rn, rn, 0}.

D. Stochastic character of neck breaking

Taking into account the results shown in Fig. 8, one can
ask whether the use of the strictly fixed value of rstop

neck which
governs the moment of splitting of a nucleus into fragments
of different masses (charges) is not a severe simplification
of the stochasticity of the fission phenomenon. A simplistic
realization of the idea of, to some extent, a random value of
the rstop

neck radius just before the neck breaking is to draw at the
beginning of each trajectory its value from a specific interval,
say, [0, αr rn], with a probability given through the uniform
distribution. The fragment mass distributions shown in Fig. 9
are calculated for the following three values: αr = {1, 2, 3}.
The results are compared with the FMD obtained within anal-
ogous intervals as in Figs. 8(a)–8(c), respectively.

The above concept may also be realized if instead of the
uniform discrete distribution of rstop

neck one uses the continuous
normal distribution peaked at rn with the dispersion σ equal
to rn, denoted by Pnorm(rn, rn). These parameter values allow
us to cover all the scission neck configurations previously
considered in Fig. 9.

If the drawn value of rstop
neck happens to be negative, its abso-

lute value is taken. The resulting distributions seen in Fig. 10
with comparison to the previously used ones of Fig. 9(b) seem
to be hardly distinguishable.

E. Final conditions and excitation energy

As can be seen, the introduction of a more involved
Gaussian distribution on rstop

neck thresholds does not qualita-
tively change the final fragment mass distributions for thermal
neutron-induced fission of 235U. One can, in turn, apply a
similar procedure to analyze the shapes of distributions for
the systems of higher excitation energies. It is clear that
the system, especially in the neck region, is less stable at

FIG. 9. Primary FMDs for thermal neutron-induced fission of 235U calculated within random pick of rstop
neck (blue) defined on the following

intervals: (a) [0,3rn], (b) [0, 2rn], and (c) [0,rn], compared with analogous FMDs of Figs. 8(a)–8(c).

024605-9



PAVEL V. KOSTRYUKOV AND ARTUR DOBROWOLSKI PHYSICAL REVIEW C 108, 024605 (2023)

FIG. 10. Comparison of primary FMDs for thermal neutron-
induced fission of 235U calculated within Gaussian Pnorm(μ =
rn, σ = rn) (gray) and random picking (blue) distributions imposed
on rstop

neck.

higher temperatures. Some local surface vibration provoked
by thermal nucleon motion can lead to a more rapid neck
rupture, even when it is much greater than a nucleon’s effec-
tive diameter. We then study the fast-neutron fission reaction,
where En = 14.8 MeV. This means the excitation energy E∗
exceeds the fission barrier VB by almost 15 MeV. Here it
is worth mentioning that at such initial excitation energies
the compound nucleus may emit prescission neutrons during
the fission process. Sometimes this kind of fission is called
“multichance,” which undoubtedly affects the fission charac-
teristics as shown, for example, in Ref. [14]. However, within
the framework of this work we neglect this effect. The influ-
ence of the light particle emission both from the compound
nucleus and from the fission fragments will be studied and
accounted for in the future publications. The calculation is
performed for the two variants of rstop

neck conditions, where
first, rstop

neck = 2rn (see further), and second, rstop
neck is randomly

drawn with the probability given by the Gaussian distribution
Pnorm(rn, rn). The results are shown in Fig. 11. It is seen that
both theoretical estimates of FMDs exhibit a serious discrep-
ancy compared with the experimental data in the region of
symmetric fission channels.

FIG. 11. Comparison of primary FMD with experimental data
[47] for 15 MeV neutron-induced fission of 235U (black triangles)
with the ones calculated with Gaussian Pnorm(rn, rn) distribution
(gray) and constant value 2rn (red) of rstop

neck.

FIG. 12. Comparison of the primary FMDs for 15 MeV neutron-
induced fission 235U (left) and 236U with 55 MeV excitation above
the barrier top (right), calculated for the value of rstop

neck varying from
2rn (dotted line), 3rn (dashed line), and 4rn (solid line). Experimental
data [47] are also presented to make the comparison clearer.

This example illustrates, slightly in contrast to the thermal
neutron-induced fission depicted in Fig. 10, an increased FMD
sensitivity to the conditions defining the end of a Langevin
trajectory. A good illustration of that statement is shown in
Fig. 12, where the neck radius rstop

neck varies from 2rn to 4rn for
the previously considered system with an excitation energy of
about 15 MeV above the barrier (left panel). For comparison,
we consider the uranium system with excitation energies al-
ready of 55 MeV in Fig. 12(b). With the condition for neck
radius rstop

neck = rn, the form of the FMD is practically the same
as for 2rn while at higher values, e.g., rstop

neck > 4rn, it is difficult
to say about the occurrence of the true neck. One can see that
the symmetric yields of the final FMDs become closer to the
measured values when the neck radius is higher than in the
case of the thermal neutron-induced fission shown in Fig. 10
and varies between 2rn and 3rn. A highly excited system
of 236U shows a similar tendency to enhance the symmetric
fission channel.

F. Symmetric fission effect of very elongated systems

Now, let us return to the influence of the upper limit value
of elongation, qmax

2 , on the resulting FMDs—a problem al-
ready introduced in Sec. III B. In Fig. 13, the change of the
FMD for a medium excited fissioning 235U system as a func-
tion of qmax

2 is presented. If qmax
2 is continuously prolonged

FIG. 13. Comparison of primary FMDs for 15 MeV neutron-
induced fission of 235U calculated within Gaussian Pnorm(rn, rn)
distribution of rstop

neck with the upper limit of qmax
2 as 2.35 (dotted line),

2.5 (dot-dashed line), 2.7 (dashed line), and 2.9 (solid line).
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beyond the safe limit of 2.35, some growing numerical uncer-
tainties in determining the PES and the transport coefficients
may appear. Therefore, the temporal evolution of this nucleus
is performed until this limit is achieved. We realize that ignor-
ing such inaccuracies can obtain distributions that fit better
the experimental data, but this accordance might as well be
only accidental. Nonetheless, using the two-center Nilsson-
like mean-field model and larger upper limit of elongation
qmax

2 = 2.9 than we use allowed the authors to nicely describe
the mass and total kinetic energy distributions for the thermal
neutron-induced fission of 235U and 239Pu at an energy of
14.8 MeV with a realistic condition for rstop

neck = rn. As we
already mentioned, the FMD obtained with qmax

2 = 2.8–2.9 is
very close to its empirical results, as shown in Fig. 13. Its sym-
metric part grows gradually with increasing qmax

2 , reaching the
experimentally measured value at qmax

2 ≈ 2.9. In addition, the
height of the asymmetric peak is then perfectly reproduced.
Unfortunately, the yields for extremely asymmetric mass di-
visions are slightly overestimated in our approach.

Using the point-charge Coulomb interaction ECoul =
e2 ZH ZL

R12
(where H and L denote heavy and light fission frag-

ment, respectively), supplemented by the kinetic energy of
the relative motion of both fragments defined by Eqs. (22),
we evaluate the average kinetic energy distributions TKE as
a function of the heavy fragment mass, AH , and present them
in Fig. 14 for 235U nucleus. The limit values of qmax

2 fixed
respectively at 2.35 (blue curve) and 2.9 (orange curve) are
distinguished for both reactions. At the higher value of the
qmax

2 limit, especially for reactions with 14.8 MeV neutrons,
the resulting distributions are noticeably closer to the experi-
mental curves and fit well the error-bar areas.

Studying the results of Fig. 13, we notice that by the
systematic extending of qmax

2 up to 2.9, we obtain a more
substantial population of the highly elongated near-symmetric
yields that contribute on average to the reduction of the TKE,
mainly in part corresponding to symmetric fragmentation.
However, this confirms the assumption made in Ref. [19],
where from the analysis of TKEs and the quadrupole moments
at the neck rupture of 236U and 240Pu it was found that at
higher excitation energies there are special configurations of
nuclei that have unusual elongated form.

Summarizing, the above-presented benchmark results ob-
tained for selected uranium isotopes permitted us to fix the
starting as well as the trajectory-termination conditions on the
neck width, which are proved to be essential to reasonably
reproduce empirical FMD and TKE distributions, especially
at higher excitation energies. The other types of constraints are
of ancillary nature, allowing for the elimination of trajectories
that generally are not physical, thus reducing the calculation
time. Moreover, a nontrivial relation between the final condi-
tions and the excitation energy was observed, which still needs
to be mathematically formulated.

IV. RESULTS AND DISCUSSION

After establishing the initial and termination (final) criteria
for Langevin trajectories by studying the fission of the 235U
isotope as the exemplary case, let us broaden the applica-
bility of the model in question to the other actinide nuclei.

FIG. 14. Comparison of average total kinetic energy (TKE) dis-
tributions of primary fission fragments for 15 MeV neutron-induced
fission of 235U calculated within Gaussian distribution Pnorm(rn, rn) of
rstop

neck with the upper limit qmax
2 equal to 2.35 (blue) and 2.9 (orange).

In particular, we will focus on the isotopes of 233U, 239Pu,
245Cm, 249Cf, and 255Fm, for which experimental data on
FMD are available. The resulting distributions for selected
nuclei among these isotopic chains are illustrated in Fig. 15.
The evaluated yields agree with experimental data in medium-
heavy actinides, such as uranium, plutonium, and curium.
Nevertheless, some larger discrepancies between estimated
and empirical distributions are present in some heavy ac-
tinides of californium and fermium isotopes. Although the
available experimental data refer to the distributions of sec-
ondary fragments (after the emission of light particles from
compound nuclei as well as from fission fragments), the mu-
tual shift of both those distributions by a couple of mass units
for 250Cf or the appearance of the symmetric-fission peak in
our FMDs of 255Fm cannot be fully explained by the effects
of light particle evaporation alone. Also, as commonly known,
in Cf and Fm nuclei, a rapid transition from the dominant
asymmetric to symmetric fission mode, caused by adding two
neutrons, is noticed. The reproduction of that is a particular
challenge for our model. Recall that spontaneous or induced
fission processes are probabilistic phenomena associated with
overcoming the fission barrier between the ground state or
some excited state and an exit point of the same energy located
outside the barrier. In a quantum approach, the probability
of passing the barrier is crudely dependent on the barrier
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FIG. 15. Comparison of primary FMDs calculated in our
Langevin approach within Pnorm(rn, rn) (solid red line) with primary
(solid triangles) and secondary (open triangles) FMDs [45,48,49] for
thermal neutron-induced fission of 233U, 235U, 239Pu, 245Cm, 249Cf,
and 255Fm nuclei.

shape and the number of hits on the barrier per time unit. In
contrast, in our Langevin semiclassical approach, the barrier
is not “tunneled,” but it must be over-jumped by a system
with kinetic energy greater than the barrier height in the initial
evolution stage.

Using the method of determining the starting points given
by formula (21), which are located slightly outside the outer
saddle point, we perform the calculations of Langevin tra-
jectories corresponding to the spontaneous fission for the
following even-even nuclei series: 238U, 238–244Pu, 244–248Cm,
252–256Cf, and 254–260Fm. The trajectory evolution is initiated
using similar rules as in the case of induced fission, described
in the previous sections. A particular value of rstop

neck for which
a given trajectory is terminated at the prescission point is
randomly drawn at the beginning of each trajectory with the
Gaussian-distributed probability, Pnorm(rn, rn), as already used
in the study of the 235U isotope. Figure 16 illustrates the final
FMDs for the spontaneous fission of the mentioned nuclei. At
the background of generally satisfactory agreement between
theory and experiment, mainly primary FMDs in these nuclei,
we notice in 252Cf that although the evaluated distributions

reproduce the dominance of asymmetric yields, they consid-
erably overestimate the number of symmetrical fragments and
are much too narrow. Note also that in 254,256Fm and 256Cf,
the measured distributions include the effect of light-particle
emission. However, both distributions compared in this fig-
ure differ dramatically.

Searching the discrete grids of the potential energy of
californium and fermium nuclei with neutron numbers corre-
sponding to the transition area from asymmetric to symmetric
FMD, we find more than one point describing possible con-
figurations of the exit from under the barrier. We, therefore,
postulate that each such state should be treated as the starting
point to perform the Langevin fission simulation. The final
FMD thus obtained, say, “partial fragment mass distributions,”
should be superimposed with appropriate weights to obtain
the final FMD. A classical measure of these weights may
be the values of the action integrals evaluated between given
starting and exit points. The latter can be found either in the
symmetric or asymmetric fission valley. This approach can be
used mainly for Cf and Fm nuclei, in which the system decides
where to go within a small bifurcation area in the PES after the
fission barrier. Nevertheless, this issue is beyond the scope of
this work and will be addressed in future investigations.

For a complete comparison, we also present the experimen-
tal distributions of primary and secondary fission fragments
and the FMDs evaluated using the Pnorm(rn, rn) neck radius
normal distribution. In addition, the above results will be
contrasted with those calculated within the framework of the
static BOA. This latter approach is based on an approximate
solution of the eigenvalue problem of the three-dimensional
collective Hamiltonian along the fission path. A more detailed
description and relevant results for a wide range of even-even
actinides can be found in Refs. [28,53]. Despite the differ-
ent theoretical underpinnings of these two models, they both
use identical PES and inertia parameters associated with our
three-dimensional Fourier deformation space.

V. SUMMARY

In this work, we have systematically reported the de-
pendence of the mass and total kinetic energy distributions
of fission fragments in the low and medium excitation
energy regimes, generally on the boundary conditions of
the stochastic model used. For this purpose, quasiclassical
Langevin equations are solved to simulate the stochastic na-
ture of the fission dynamics of deformed excited compound
actinide nuclei. To define this system of coupled equa-
tions with the constraint for the total energy conservation, the
macroscopic-microscopic free (Helmholtz) energy, depending
on the surface deformation and temperature, and the so-called
transport coefficients must be precalculated. The numerical
solutions using a discretization method are generated in the
space of three Fourier surface deformations relevant for the
fission process to describe the nucleus elongation, mass asym-
metry, and neck thickness. As widely known, the impact of
the nonaxiality degree of freedom on the PES is practically
negligible outside the inner saddle and even much less in
the vicinity of the scission configurations; thus it is totally
neglected in this study. A simple way of defining the initial
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FIG. 16. Comparison of primary FMDs (solid red line) calculated in the Langevin approach within Pnorm(rn, rn) with experimental [48–52]
primary (solid circles) and secondary (open circles) FMDs for spontaneous fission of U, Pu, Cm, Cf, and Fm nuclei also calculated with FMDs
calculated within Born-Oppenheimer approximation (BOA) method [28] (green dashed lines).

and termination conditions for a single stochastic trajectory al-
lows for generating hundreds of thousands of such trajectories
in a reasonable time. Ultimately, the deformation properties
of the final shape configurations of a large number of these
trajectories are translated into statistical distributions of mass
and kinetic energy.

We emphasize the importance of initial and trajectory-
termination conditions, which can be considered independent
of the particular realization of the Langevin framework. The
latter condition seems particularly important, as it defines the
“critical” width of the neck at which splitting the compound
nucleus into fragments is highly probable. Since our calcula-
tions are carried out on a finite lattice of the potential energy
function, we pay particular attention to accurately delineating
its boundaries so that we can capture all essential fission
modes, predominantly asymmetric, and, on the other hand, we
do not consider nonphysical energy configurations which may
show up in U isotopes at considerably large elongations.

After analyzing the conditions that are most important
for our simulations and that determine the end of a single
trajectory, we conclude that noticeably better results can be
obtained if a normal probability distribution Pnorm(rn, rn) of
the neck radii rstop

neck is used, instead of its fixed value. The peak
of this distribution is, as expected, approximately located at
the average value of the nucleon radius rn while its standard
deviation σ is also equal to rn. As shown, with the increasing
temperature, the rstop

neck radius must be shifted towards larger
values.

Despite the relatively simplistic nature of the conditions
discussed above, especially those describing the end of
stochastic trajectories, the results for spontaneous and induced
fission of even-even U, Pu, Cm, Cf, and Fm nuclei gener-
ally show satisfactory agreement with experimental data for
medium and selected heavy actinides. However, we observe
serious discrepancies in the overall behavior of the FMDs in
the Cf and Fm series. Applying the aforementioned concept
of superposition of several partial FMDs initiated from a dif-
ferent available exit from the barrier points would allow us to
reproduce better the effect of the abrupt transition between
asymmetric and symmetric fission modes. Further work is
needed to improve the model’s ability to describe other fission
characteristics, such as secondary FMDs and TKEs, corrected
by the light particle evaporation effect.
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