Systematic analysis of breakup reactions with t and ³He projectiles

Shoya Ogawa,^{1,*} Shin Watanabe,^{2,3} Takuma Matsumoto,^{1,4} and Kazuyuki Ogata^{1,4}

¹Department of Physics, Kyushu University, Fukuoka 819-0395, Japan ²National Institute of Technology, Gifu College, Gifu 501-0495, Japan ³RIKEN, Nishina Center, Wako, Saitama 351-0198, Japan

⁴Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki 567-0047, Japan

(Received 19 March 2023; accepted 9 June 2023; published 14 August 2023)

Background: Systematic measurement of t and ³He knockout processes is planned. The weakly-bound nature of these nuclei may affect the interpretation of forthcoming knockout reaction data.

Purpose: We aim at clarifying breakup properties of t and ³He by investigating their elastic and breakup cross sections.

Methods: We employ the four-body continuum-discretized coupled-channels method with the eikonal approximation to describe the reactions with t and ³He projectiles.

Results: The breakup cross section of t is found to be almost the same as that of ³He and is about one-third of that of d. Coulomb breakup plays negligible role in the breakup of t and ³He, in contrast to in the deuteron breakup reaction. It is found that t and ³He tend to break up into three nucleons rather than d and a nucleon. **Conclusions:** It is shown that the breakup cross sections of t and ³He are not as large as those of d but non-negligible. Because about 80% of them corresponds to the three-nucleon breakup process, a four-body breakup reaction model is necessary to quantitatively describe the breakup of t and ³He.

DOI: 10.1103/PhysRevC.108.024604

I. INTRODUCTION

It is quite well known that α cluster states appear in lightmass nuclei. Recently, motivated by the theoretical prediction by Typel [1] and its experimental confirmation [2], existence of α in medium-heavy nuclei has become a hot subject in nuclear physics [3,4]. Furthermore, the existence of d, t, and ³He are going to be studied by cluster knockout reactions. Investigation of the t and ³He cluster states of nuclei, their neutron and proton number dependence in particular, is considered to be crucial for determining the symmetry energy term in the equation of state [5-7]. However, there are very few theoretical studies of t and ³He clusters. In addition, despite the binding energies of t and ³He are only about 2 MeV/nucleon, their breakup effects on reaction observables have not been clarified well. Under the circumstance that tand ³He knockout reactions are going to be systematically measured, it will be important to clarify the breakup property of t and ³He.

In Ref. [8], the ³He breakup reaction was investigated, in which ³He was treated as a d + p two-body system. Because d is fragile, however, it is desirable to describe ³He as a p + p + n three-body system; including a target nucleus T, the reaction system consists of four particles. The four-body continuum-discretized coupled-channels method (four-body CDCC) [9,10] is one of the best models for this purpose.

This paper is organized as follows. In Sec. II, we describe the theoretical framework. In Sec. III, we present and discuss the numerical results. Finally, in Sec. IV, we give a summary of this study.

II. FORMALISM

A. Eikonal CDCC

In the four-body reaction system, the Schrödinger equation is written as

$$\left[K_{R} + \sum_{i \in t \text{ or }^{3}\text{He}} U_{i} + U_{C} + h - E\right]\Psi(\boldsymbol{\xi}, \boldsymbol{R}) = 0, \quad (1)$$

where R represents the coordinate between the target T and the center of mass (c.m.) of the projectile. The operator K_R is the kinetic energy associated with R, h is the internal Hamiltonian of the projectile, and ξ is the intrinsic coordinate. The optical

In this study, we investigate the four-body breakup reaction of t and ³He by using four-body CDCC to clarify the breakup properties of these nuclei and understand their breakup mechanism due to the nuclear and Coulomb interactions. Because coupled-channel calculations with the Coulomb breakup require high numerical costs in general, we use eikonal CDCC (E-CDCC) [11–14], in which the coupled-channel calculations are performed with the eikonal approximation. Using E-CDCC, we can take into account the Coulomb breakup precisely with low computational cost. We examine the description of the ³He breakup reaction with a d + p two-body model, i.e., three-body CDCC.

^{*}s-ogawa@phys.kyushu-u.ac.jp

^{2469-9985/2023/108(2)/024604(8)}

potential between T and each nucleon in the projectile is denoted by U_i . The Coulomb potential between a proton and T is represented by U_C ; we investigate the effect of Coulomb breakup of t and ³He in this study. In E-CDCC, the scattering wave function is represented as

$$\Psi(\boldsymbol{\xi}, \boldsymbol{R}) = \sum_{nIm} \psi_{nIm}(b, Z) \Phi_{nIm}(\boldsymbol{\xi}) e^{iK_n Z} e^{i(m_0 - m)\varphi_R} \phi_n^{\mathrm{C}}(R),$$
(2)

where *b* is the impact parameter. The position of the *Z* axis and the azimuthal angle of **R** are denoted by *Z* and φ_R , respectively. Φ_{nIm} is the *n*th discretized state of the projectile with the total spin *I* and its projection on the *z*-axis *m*, and m_0 is the *z* component of the total spin of the ground state. We denote $\gamma = \{n, I, m\}$ in this paper. The wave number K_n is written as

$$K_n = \frac{\sqrt{2\mu(E - \varepsilon_n)}}{\hbar},\tag{3}$$

where ε_n is the eigenenergy of Φ_{γ} and μ is the reduced mass between the projectile and T. ϕ_n^{C} in Eq. (2) is the incidentwave part of the Coulomb wave function given by

$$\phi_n^{\rm C}(R) = e^{i\eta_n \ln [K_n R - K_n Z]} \tag{4}$$

with

$$\eta_n = \frac{Z_P Z_T e^2}{\hbar K_n}.$$
(5)

Here, Z_P and Z_T are the atomic numbers of the projectile and T, respectively. Inserting Eq. (2) into Eq. (1), the following equation for ψ_{γ} is obtained:

$$\frac{\partial}{\partial Z}\psi_{\gamma}(b,Z) = \frac{1}{i\hbar v_n} \sum_{\gamma'} \mathcal{F}_{\gamma\gamma'}(\mathbf{R})\psi_{\gamma'}(b,z)e^{i(m-m')\varphi_{R}}\mathcal{R}_{\gamma\gamma'}(b,z)$$

with

$$\mathcal{R}_{\gamma\gamma'}(b,z) = \frac{(K_{n'}R - K_{n'}z)^{i\eta_{n'}}}{(K_{n}R - K_{n'}z)^{i\eta_{n}}}e^{i(K_{n'} - K_{n})z}$$
(7)

and

$$\mathcal{F}_{\gamma\gamma'}(\boldsymbol{R}) = \langle \Phi_{\gamma} | \sum_{i \in \mathbf{P}} U_i | \Phi_{\gamma'} \rangle_{\boldsymbol{\xi}}.$$
(8)

The subscript $\boldsymbol{\xi}$ of $\langle \cdots \rangle$ means the integral variable.

B. Gaussian expansion method

We apply the Gaussian expansion method (GEM) [15] to obtain the ground and the discretized-continuum states of t and ³He. In GEM, a wave function of the three-body system is expanded with Gaussian basis on the Jacobi coordinate as shown in Fig. 1, and the basis are described as

$$\phi_{i\lambda}(\boldsymbol{x}_c) = x_c^{\lambda} e^{-(x/x_i)^2} Y_{\lambda}(\Omega_{x_c}), \qquad (9)$$

$$\varphi_{j\ell}(\mathbf{y}_c) = y_c^{\ell} e^{-(y/y_j)^2} Y_{\ell}(\Omega_{y_c})$$
(10)

with

$$x_i = (x_{\max}/x_0)^{(i-1)/i_{\max}},$$
(11)

$$y_i = (y_{\text{max}}/y_0)^{(j-1)/j_{\text{max}}}.$$
 (12)

FIG. 1. The Jacobi coordinate for the three-body system. Particles 1, 2, and 3 correspond to n, n, and p (p, p, and n) for t (³He), respectively.

Using the basis, we diagonalize the following Hamiltonian:

$$h = K_x + K_y + V_{pn} + V_{pn} + V_{nn}$$
(13)

for t, and

$$h = K_x + K_y + V_{pn} + V_{pn} + V_{pp} + V_C$$
(14)

for ³He. Here, K_x (K_y) means the kinetic energy operator associated with x (y). The interactions for the *p*-*p*, *n*-*n*, and *p*-*n* systems are represented as V_{pp} , V_{nn} , and V_{pn} , respectively. In Eq. (14), V_C is the Coulomb interaction between the two protons.

III. RESULTS AND DISCUSSION

A. Three-body model for t and ³He

First, we obtain the ground-state wave functions of t and ³He by using GEM. In this study, we adopt the nucleonnucleon Minnesota interaction [16]. We neglect the spin of each nucleon for simplicity. Thus, we use the (S, T) = (0,1)component of the Minnesota interaction for V_{pp} and V_{nn} , where S(T) is the total spin (isospin) of the two nucleons, whereas we use the (S, T) = (1,0) component for V_{pn} . To reproduce the binding energies of t and ³He, a phenomenological three-body interaction

$$V_{3b}(x, y) = V_3 e^{-\nu(x^2 + y^2)}$$
(15)

is added to *h* of *t* and ³He. In the present analysis, $V_3 = 9.7$ MeV and $\nu = 0.1$ fm⁻². The parameter sets of the Gaussian basis are common in both the *t* and ³He calculations, and summarized in Table I. The spin-parity I^{π} for the ground states is 0⁺ because we neglect the spin of each nucleon in *t* and ³He. The results of the ground-state energies and root-mean-square radii are shown in Table II. Our calculations reproduce well the experimental data of the ground-state energy [17]. On the other hand, some deviation of the calculated root-mean-square radii from the experimental data is found. However, the difference does not affect the reaction analysis as shown below.

TABLE I. Parameters of Gaussian basis.

с	<i>i</i> _{max}	$x_0[fm]$	$x_{\max}[fm]$	j_{\max}	$y_0[fm]$	y _{max} [fm]
1, 2	12	0.1	20.0	12	0.1	20.0
3	12	0.1	20.0	12	0.1	20.0

(6)

TABLE II. Ground-state energies and root-mean-square radii of t and ³He. The experimental data are taken from Ref. [17].

	Ca	ıl.	Exp.		
	$\varepsilon_0 [{\rm MeV}]$	r _{rms} [fm]	$\varepsilon_0 [{\rm MeV}]$	r _{rms} [fm]	
t	-8.45	1.68	-8.48	1.84	
³ He	-7.77	1.70	-7.71	1.99	

In order to confirm the validity of our three-body model, we analyze elastic scattering of ³He off ⁴⁰Ca, ⁵⁸Ni, and ⁹⁰Zr. In the model space, we include continuum states up to the internal energy ε of 30 MeV for $I^{\pi} = 0^+$, 1⁻, and 2⁺ states of the projectile. U_i in Eq. (1) is constructed by folding the Melbourne g matrix [18] with the target density [19]. Figure 2 shows the elastic cross sections of ³He at 40, 70, and 150 MeV/nucleon, as a function of the transferred momentum q. The experimental data of the cross sections denoted by the dots are taken from Refs. [20–23]. The solid lines represent the results of the E-CDCC calculation. It is found that the E-CDCC results reproduce the experimental data in the small q region, in which the cross section is large. Therefore, the three-body model for ³He adopted in this study is expected to work well.

B. Breakup properties of t and ³He

We investigate the breakup effects of t and ³He on the breakup energy spectra and compare them with those of d. We adopt the method proposed in Ref. [24] to obtain a smooth breakup spectrum. The model space is the same as in the calculation of the elastic scattering.

First, we show the breakup cross sections of the t (³He) + ⁹⁰Zr reaction at 150 MeV/nucleon in Fig. 3(a) [Fig. 3(b)]. $\varepsilon = -2.2$ and 0 MeV correspond to the thresholds of the d + n (d + p) and n + n + p (p + p + n) channels for t (³He), respectively. One can see that the behaviors of the breakup cross section of t and ³He are almost the same. This can be understood from the fact that the strength of the electric dipole transition, which mainly contributes to Coulomb breakup reactions, for t is the same as for ³He; details are found in the Appendix. The similar behavior of the cross section between t and ³He is also confirmed in other reaction systems. Thus, in what follows, we will concentrate on the results of ³He.

Next, we compare systematically the breakup cross sections of ³He and *d*. For the E-CDCC calculation of the *d* breakup reaction, the optical potentials are constructed in the same manner as of *t* and ³He. We include continuum states of *d* up to $\varepsilon = 30$ MeV for $I^{\pi} = 0^+$, 1⁻, and 2⁺ states; the spin of each nucleon is neglected, as in the description of *t* and ³He. The solid and dotted lines in Figs. 4–6 represent the results for ³He and *d*, respectively. The dot-dashed (dashed) line corresponds to the result with only the nuclear breakup of ³He (*d*). Although the effective charge of ³He is 2/3*e*, which is larger than 1/2*e* of *d*, the Coulomb breakup of ³He is negligible compared to that of *d* because of the large binding energy of ³He. We show the total breakup cross section of ³He and *d* in Table III. The results for ³He are found to

FIG. 2. Transferred momentum distributions of elastic cross sections of ³He with (a) ⁴⁰Ca, (b) ⁵⁸Ni, and (c) ⁹⁰Zr targets at 40, 70, and 150 MeV/nucleon. The experimental data are taken from Refs. [20–23].

be about one-third of those for d in all the cases. Next, we investigate the mechanism of the ³He breakup reaction, i.e., the decomposition of the breakup channels into the following

FIG. 3. (a) Breakup cross section of t with a 90 Zr target at E = 150 MeV/nucleon. (b) Same as (a) but of ³He.

FIG. 4. The energy spectra of breakup cross sections of ³He and *d* with a ⁴⁰Ca target at (a) 40 MeV/nucleon, (b) 70 MeV/nucleon, and (c) 150 MeV/nucleon. The upper (lower) horizontal axis shows the breakup energy of d (³He) regarding the p + n (p + p + n) threshold.

FIG. 5. Same as in Fig. 4 but with a ⁵⁸Ni target.

FIG. 6. Same as in Fig. 4 but with a ⁹⁰Zr target.

two:

³He
$$\rightarrow d + p$$
,
³He $\rightarrow p + p + n$.

For this purpose, we use the *P*-separation method proposed in Ref. [25]. In this method, the probability P_{γ} of the existence of *d* in Φ_{γ} is defined by

$$P_{\gamma} = \int \langle \Phi_{\gamma}(\boldsymbol{x}, \boldsymbol{y}) | \chi_d(\boldsymbol{x}_1) \rangle_{\boldsymbol{x}_1} \langle \chi_d(\boldsymbol{x}_1) | \Phi_{\gamma}(\boldsymbol{x}, \boldsymbol{y}) \rangle_{\boldsymbol{x}_1} d\boldsymbol{y}_1, \quad (16)$$

where χ_d is the wave function of *d*. Then, by using P_{γ} , the *d* + *p* and *p* + *p* + *n* channel contributions to the total breakup cross section can be obtained as follows:

$$\sigma_{d+p} \equiv \sum_{\gamma} P_{\gamma} \sigma_{\gamma}, \qquad (17)$$

$$\sigma_{p+p+n} \equiv \sum_{\gamma} (1 - P_{\gamma}) \sigma_{\gamma}.$$
(18)

Here, σ_{γ} is the breakup cross section to the discretized state Φ_{γ} . Figure 7 shows the results of P_{γ} for each state of ³He. For the ground state, $P_0 \approx 0.9$ is obtained, which is consistent with the value 90% [26] obtained with the *ab initio* quantum Monte Carlo calculation. The left and right vertical dotted lines in Fig. 7 represent the thresholds of the d + p and p + p + n channels, respectively. P_{γ} for the continuum states between the two thresholds are found to be about 0.5. For other states, P_{γ} are mostly smaller than 0.3. This result indicates that the p + p + n channel contribution is dominant in the total breakup cross section of ³He.

TABLE III. Total breakup cross section (in mb) of ³He and d for the present reaction systems. E represents the incident energy per nucleon.

E	40 MeV		70 MeV		150 MeV	
	$\overline{\sigma_{ m BU}^{(d)}}$	$\sigma_{ m BU}^{(^{3} m He)}$	$\overline{\sigma_{ m BU}^{(d)}}$	$\sigma_{ m BU}^{(^{3} m He)}$	$\overline{\sigma_{ m BU}^{(d)}}$	$\sigma_{ m BU}^{(^{3} m He)}$
⁴⁰ Ca	148	62	114	48	47	20
⁵⁸ Ni	181	68	150	56	69	26
⁹⁰ Zr	228	71	205	64	108	33

Figure 8 shows the results of σ_{d+p} and σ_{p+p+n} . In this calculation, we do not include the Coulomb breakup because its contribution is negligible as mentioned above. One sees that the contribution of the p + p + n three-body breakup is about five times as large as that of the d + p two-body breakup in all of the three reaction systems. This behavior can be understood from the larger three-body phase volume. It should be noted, however, that this is not always the case. In Ref. [25], the authors found with a similar approach that, for the breakup of ⁶Li, the $d + {}^{4}$ He two-body channel is more important than the $p + n + {}^{4}$ He one, despite that the latter has a larger phase volume. Further investigations are needed to clarify the relation between the cross sections and the sizes of the phase volume for two-body and three-body breakup processes. In any case, the results in Fig. 8 suggest that the ³He breakup reaction should be described as a four-body breakup reaction.

C. Four-body and three-body reactions

In the present study, we have analyzed the ³He reaction with a p + p + n + T four-body model, whereas in Ref. [8],

FIG. 7. Probabilities of the existence of *d* in the ground and discretized states of ³He. The left and right vertical dotted lines represent the thresholds of the d + p and p + p + n channels, respectively.

FIG. 8. Total breakup cross sections for ³He breakup reactions separated into the d + p and p + p + n channels by using the *P*-separation method.

it was investigated with a d + p + T three-body model. We investigate the difference between the two reaction models. To describe ³He as a two-body model, we use the same potential between d and p as in Ref. [8]. While the previous study adopted a phenomenological potential for the optical potential between d and T, we use the following folding-model potential:

$$U_d = \langle \chi_d | U_p + U_n | \chi_d \rangle. \tag{19}$$

It should be noted that the three-body calculation using U_d does not include the breakup of d. The optical potential between p and T is the same as that used in the four-body calculation. The solid and dotted lines in Fig. 9 represent the results of the E-CDCC calculation with the four-body and three-body reaction models with a ⁹⁰Zr target, respectively, as a function of q. We have included only the nuclear breakup in this calculation. Although some differences are found around the dips at low incident energy, the shapes of the oscillations are almost the same. The difference of the depth around the dips is considered to come from the effects of the p + p + n channel. To discuss this in detail, we perform the four-body E-CDCC calculation including only the ground state and the d + p continuum states located between the

FIG. 9. Transferred momentum distributions of elastic cross section off 90 Zr. The energies in the panels represent the incident energies per nucleon.

two vertical dotted lines in Fig. 7. The dot-dashed lines thus obtained are close to the results of the three-body calculation. This confirms the slight effect of the p + p + n channel on the elastic scattering. Figure 10 shows the comparison of the total breakup cross section with a ⁹⁰Zr target calculated with four- and three-body E-CDCC. The squares and circles are the same as in Fig. 8, whereas the triangles represent the cross sections calculated with three-body E-CDCC. The total breakup cross sections obtained with the four-body calculation are two times as large as those with the three-body calculation. This difference can be basically understood from the significant contribution of the p + p + n channel, which is missing in three-body E-CDCC, in the ³He breakup reaction. In addition,

FIG. 10. Comparison between the breakup cross sections obtained by four- and three-body E-CDCC with a 90 Zr target.

it is suggested by the difference between the triangles and circles that the d + p two-body breakup process is suppressed in the four-body calculation, probably because of the coupling between the d + p and p + p + n channels.

IV. SUMMARY

We have investigated the t and ³He breakup reactions with four-body E-CDCC. We treated t and ³He as three-nucleon systems. The elastic scattering cross section data of t and ³He are reproduced well by the present framework. For the analysis of breakup reactions, we take into account the nuclear and Coulomb breakup in the E-CDCC calculations. The breakup cross sections of t and ³He are almost the same for the reaction systems considered. The Coulomb breakup of ³He is found to be negligibly small, and the total breakup cross section of ³He is about one-third of that of d.

In addition, we applied the *P*-separation method to the investigation of the final channels of the ³He breakup reaction and showed that the contribution of the p + p + n channel is dominant. We have further investigated the difference between the four-body E-CDCC calculation and three-body one; in the latter, ³He is described as a d + p system. These two models are found to give almost the same result for the elastic scattering. For the breakup reaction, the total breakup cross section calculated with four-body E-CDCC is as twice as that with three-body E-CDCC. Thus, we conclude that the *t* and ³He breakup reactions should be treated as the four-body reaction.

ACKNOWLEDGMENTS

This work is supported in part by Grant-in-Aid for Scientific Research (Grants No. JP22K14043, No. JP21H00125, and No. JP21H04975) from Japan Society for the Promotion of Science (JSPS).

APPENDIX

The electric dipole (E1) transition operator is defined as

$$D_{\mu} = \sum_{i=1}^{3} \left(\frac{1}{2} - \tau_{iz} \right) er_{i} Y_{1\mu}(\Omega_{r_{i}}), \tag{A1}$$

PHYSICAL REVIEW C 108, 024604 (2023)

FIG. 11. The coordinate from c.m. to each particle represented with the Jacobi coordinate. G means the c.m. of the *t* and 3 He.

where τ_{iz} is the *z* component of the isospin operator. r_i means the coordinate from c.m. to each particle as shown in Fig. 11, and can be represented as follows by using the Jacobi coordinate $\{x_3, y_3\}$:

$$r_{1} = -\frac{1}{2}x_{3} + \frac{1}{3}y_{3},$$

$$r_{2} = \frac{1}{2}x_{3} + \frac{1}{3}y_{3},$$

$$r_{3} = -\frac{2}{3}y_{3}.$$
 (A2)

Using this relation, the spherical harmonics is written as

$$r_{1}Y_{1\mu}(\Omega_{r_{1}}) = -\frac{1}{2}x_{3}Y_{1\mu}(\Omega_{x_{3}}) + \frac{1}{3}y_{3}Y_{1\mu}(\Omega_{y_{3}}),$$

$$r_{2}Y_{1\mu}(\Omega_{r_{2}}) = \frac{1}{2}x_{3}Y_{1\mu}(\Omega_{x_{3}}) + \frac{1}{3}y_{3}Y_{1\mu}(\Omega_{y_{3}}),$$

$$r_{3}Y_{1\mu}(\Omega_{r_{3}}) = -\frac{2}{3}y_{3}Y_{1\mu}(\Omega_{y_{3}}).$$
(A3)

Inserting Eq. (A3) to Eq. (A1), we can obtain

$$D_{\mu} = -\frac{2}{3} e y_3 Y_{1\mu}(\Omega_{y_3}) \tag{A4}$$

for t and

$$D_{\mu} = \frac{2}{3} e y_3 Y_{1\mu}(\Omega_{y_3})$$
 (A5)

for ³He. Thus, t and ³He have the same E1 effective charge.

- S. Typel, G. Röpke, T. Klähn, D. Blaschke, and H. H. Wolter, Phys. Rev. C 81, 015803 (2010).
- [2] J. Tanaka, Z. Yang et al., Science 371, 260 (2021).
- [3] K. Yoshida, K. Minomo, and K. Ogata, Phys. Rev. C 94, 044604 (2016).
- [4] K. Yoshida and J. Tanaka, Phys. Rev. C 106, 014621 (2022).
- [5] M. K. Gaidarov, E. M. de Guerra, A. N. Antonov, I. C. Danchev, P. Sarriguren, and D. N. Kadrev, Phys. Rev. C 104, 044312 (2021).
- [6] L.-W. Chen, C. M. Ko, and B.-A. Li, Phys. Rev. C 69, 054606 (2004).
- [7] A. Ono, J. Phys.: Conf. Ser. 569, 012086 (2014).
- [8] Y. Iseri, M. Yahiro, and M. Kamimura, Prog. Theor. Phys. Suppl. 89, 84 (1986).

- [9] T. Matsumoto, E. Hiyama, K. Ogata, Y. Iseri, M. Kamimura, S. Chiba, and M. Yahiro, Phys. Rev. C 70, 061601(R) (2004).
- [10] T. Matsumoto, T. Egami, K. Ogata, Y. Iseri, M. Kamimura, and M. Yahiro, Phys. Rev. C 73, 051602(R) (2006).
- [11] K. Ogata, M. Yahiro, Y. Iseri, T. Matsumoto, and M. Kamimura, Phys. Rev. C 68, 064609 (2003).
- [12] K. Ogata and C. A. Bertulani, Prog. Theor. Phys. (Lett.) 121, 1399 (2009).
- [13] K. Ogata and C. A. Bertulani, Prog. Theor. Phys. 123, 701 (2010).
- [14] T. Fukui, K. Ogata, K. Minomo, and M. Yahiro, Phys. Rev. C 86, 022801(R) (2012).
- [15] E. Hiyama, Y. Kino, and M. Kamimura, Prog. Part. Nucl. Phys. 51, 223 (2003).

- [16] D. Thompson, M. Lemere, and Y. Tang, Nucl. Phys. A 286, 53 (1977).
- [17] J. Purcell, J. Kelley, E. Kwan, C. Sheu, and H. Weller, Nucl. Phys. A 848, 1 (2010).
- [18] K. Amos, P. J. Dortmans, H. V. von Geramb, S. Karataglidis, and J. Raynnal, in *Advances in Nuclear Physics*, edited by J. W. Negele and E. Vogt (Springer US, Boston, MA, 2000), pp. 276–536.
- [19] K. Minomo, K. Ogata, M. Kohno, Y. R. Shimizu, and M. Yahiro, J. Phys. G 37, 085011 (2010).
- [20] S. L. Tabor, C. C. Chang, M. T. Collins, G. J. Wagner, J. R. Wu, D. W. Halderson, and F. Petrovich, Phys. Rev. C 25, 1253 (1982).

- [21] N. Willis, I. Brissaud, Y. Le Bornec, B. Tatischeff, and G. Duhamel, Nucl. Phys. A 204, 454 (1973).
- [22] M. Hyakutake, I. Kumabe, M. Fukada, T. Komatuzaki, T. Yamagata, M. Inoue, and H. Ogata, Nucl. Phys. A 333, 1 (1980).
- [23] J. Kamiya, K. Hatanaka, T. Adachi, K. Fujita, K. Hara, T. Kawabata, T. Noro, H. Sakaguchi, N. Sakamoto, Y. Sakemi *et al.*, Phys. Rev. C 67, 064612 (2003).
- [24] T. Matsumoto, K. Katō, and M. Yahiro, Phys. Rev. C 82, 051602(R) (2010).
- [25] S. Watanabe, K. Ogata, and T. Matsumoto, Phys. Rev. C 103, L031601 (2021).
- [26] I. Brida, S. C. Pieper, and R. B. Wiringa, Phys. Rev. C 84, 024319 (2011).