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Systematic analysis of breakup reactions with t and 3He projectiles
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Background: Systematic measurement of t and 3He knockout processes is planned. The weakly-bound nature
of these nuclei may affect the interpretation of forthcoming knockout reaction data.
Purpose: We aim at clarifying breakup properties of t and 3He by investigating their elastic and breakup cross
sections.
Methods: We employ the four-body continuum-discretized coupled-channels method with the eikonal approxi-
mation to describe the reactions with t and 3He projectiles.
Results: The breakup cross section of t is found to be almost the same as that of 3He and is about one-third
of that of d . Coulomb breakup plays negligible role in the breakup of t and 3He, in contrast to in the deuteron
breakup reaction. It is found that t and 3He tend to break up into three nucleons rather than d and a nucleon.
Conclusions: It is shown that the breakup cross sections of t and 3He are not as large as those of d but non-
negligible. Because about 80% of them corresponds to the three-nucleon breakup process, a four-body breakup
reaction model is necessary to quantitatively describe the breakup of t and 3He.
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I. INTRODUCTION

It is quite well known that α cluster states appear in light-
mass nuclei. Recently, motivated by the theoretical prediction
by Typel [1] and its experimental confirmation [2], existence
of α in medium-heavy nuclei has become a hot subject in
nuclear physics [3,4]. Furthermore, the existence of d , t , and
3He are going to be studied by cluster knockout reactions.
Investigation of the t and 3He cluster states of nuclei, their
neutron and proton number dependence in particular, is con-
sidered to be crucial for determining the symmetry energy
term in the equation of state [5–7]. However, there are very
few theoretical studies of t and 3He clusters. In addition,
despite the binding energies of t and 3He are only about
2 MeV/nucleon, their breakup effects on reaction observables
have not been clarified well. Under the circumstance that t
and 3He knockout reactions are going to be systematically
measured, it will be important to clarify the breakup property
of t and 3He.

In Ref. [8], the 3He breakup reaction was investigated, in
which 3He was treated as a d + p two-body system. Because
d is fragile, however, it is desirable to describe 3He as a
p + p + n three-body system; including a target nucleus T,
the reaction system consists of four particles. The four-body
continuum-discretized coupled-channels method (four-body
CDCC) [9,10] is one of the best models for this purpose.
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In this study, we investigate the four-body breakup reaction
of t and 3He by using four-body CDCC to clarify the breakup
properties of these nuclei and understand their breakup mech-
anism due to the nuclear and Coulomb interactions. Because
coupled-channel calculations with the Coulomb breakup re-
quire high numerical costs in general, we use eikonal CDCC
(E-CDCC) [11–14], in which the coupled-channel calcula-
tions are performed with the eikonal approximation. Using
E-CDCC, we can take into account the Coulomb breakup
precisely with low computational cost. We examine the de-
scription of the 3He breakup reaction with a d + p two-body
model, i.e., three-body CDCC.

This paper is organized as follows. In Sec. II, we describe
the theoretical framework. In Sec. III, we present and discuss
the numerical results. Finally, in Sec. IV, we give a summary
of this study.

II. FORMALISM

A. Eikonal CDCC

In the four-body reaction system, the Schrödinger equa-
tion is written as⎡

⎣KR +
∑

i∈t or 3He

Ui + UC + h − E

⎤
⎦�(ξ, R) = 0, (1)

where R represents the coordinate between the target T and the
center of mass (c.m.) of the projectile. The operator KR is the
kinetic energy associated with R, h is the internal Hamiltonian
of the projectile, and ξ is the intrinsic coordinate. The optical
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potential between T and each nucleon in the projectile is
denoted by Ui. The Coulomb potential between a proton and
T is represented by UC; we investigate the effect of Coulomb
breakup of t and 3He in this study. In E-CDCC, the scattering
wave function is represented as

�(ξ, R) =
∑
nIm

ψnIm(b, Z )�nIm(ξ)eiKnZei(m0−m)ϕRφC
n (R),

(2)

where b is the impact parameter. The position of the Z axis
and the azimuthal angle of R are denoted by Z and ϕR, respec-
tively. �nIm is the nth discretized state of the projectile with
the total spin I and its projection on the z-axis m, and m0 is the
z component of the total spin of the ground state. We denote
γ = {n, I, m} in this paper. The wave number Kn is written as

Kn =
√

2μ(E − εn)

h̄
, (3)

where εn is the eigenenergy of �γ and μ is the reduced mass
between the projectile and T. φC

n in Eq. (2) is the incident-
wave part of the Coulomb wave function given by

φC
n (R) = eiηn ln [KnR−KnZ] (4)

with

ηn = ZPZTe2

h̄Kn
. (5)

Here, ZP and ZT are the atomic numbers of the projectile and
T, respectively. Inserting Eq. (2) into Eq. (1), the following
equation for ψγ is obtained:

∂

∂Z
ψγ (b, Z ) = 1

ih̄vn

∑
γ ′

Fγ γ ′ (R)ψγ ′ (b, z)ei(m−m′ )ϕRRγ γ ′ (b, z)

(6)

with

Rγ γ ′ (b, z) = (Kn′R − Kn′z)iηn′

(KnR − Knz)iηn
ei(Kn′ −Kn )z (7)

and

Fγ γ ′ (R) = 〈�γ | ∑i∈P Ui|�γ ′ 〉
ξ
. (8)

The subscript ξ of 〈· · ·〉 means the integral variable.

B. Gaussian expansion method

We apply the Gaussian expansion method (GEM) [15] to
obtain the ground and the discretized-continuum states of t
and 3He. In GEM, a wave function of the three-body system
is expanded with Gaussian basis on the Jacobi coordinate as
shown in Fig. 1, and the basis are described as

φiλ(xc) = xλ
c e−(x/xi )2

Yλ(xc ), (9)

ϕ j�(yc) = y�
ce−(y/y j )2

Y�(yc ) (10)

with

xi = (xmax/x0)(i−1)/imax , (11)

yi = (ymax/y0)( j−1)/ jmax . (12)

FIG. 1. The Jacobi coordinate for the three-body system. Parti-
cles 1, 2, and 3 correspond to n, n, and p (p, p, and n) for t (3He),
respectively.

Using the basis, we diagonalize the following Hamiltonian:

h = Kx + Ky + Vpn + Vpn + Vnn (13)

for t , and

h = Kx + Ky + Vpn + Vpn + Vpp + VC (14)

for 3He. Here, Kx (Ky) means the kinetic energy operator
associated with x (y). The interactions for the p-p, n-n, and
p-n systems are represented as Vpp, Vnn, and Vpn, respectively.
In Eq. (14), VC is the Coulomb interaction between the two
protons.

III. RESULTS AND DISCUSSION

A. Three-body model for t and 3He

First, we obtain the ground-state wave functions of t and
3He by using GEM. In this study, we adopt the nucleon-
nucleon Minnesota interaction [16]. We neglect the spin of
each nucleon for simplicity. Thus, we use the (S, T ) = (0,1)
component of the Minnesota interaction for Vpp and Vnn,
where S (T ) is the total spin (isospin) of the two nucleons,
whereas we use the (S, T ) = (1,0) component for Vpn. To
reproduce the binding energies of t and 3He, a phenomeno-
logical three-body interaction

V3b(x, y) = V3e−ν(x2+y2 ) (15)

is added to h of t and 3He. In the present analysis, V3 = 9.7
MeV and ν = 0.1 fm−2. The parameter sets of the Gaussian
basis are common in both the t and 3He calculations, and sum-
marized in Table I. The spin-parity Iπ for the ground states is
0+ because we neglect the spin of each nucleon in t and 3He.
The results of the ground-state energies and root-mean-square
radii are shown in Table II. Our calculations reproduce well
the experimental data of the ground-state energy [17]. On the
other hand, some deviation of the calculated root-mean-square
radii from the experimental data is found. However, the differ-
ence does not affect the reaction analysis as shown below.

TABLE I. Parameters of Gaussian basis.

c imax x0[fm] xmax[fm] jmax y0[fm] ymax[fm]

1, 2 12 0.1 20.0 12 0.1 20.0
3 12 0.1 20.0 12 0.1 20.0
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TABLE II. Ground-state energies and root-mean-square radii of
t and 3He. The experimental data are taken from Ref. [17].

Cal. Exp.

ε0 [MeV] rrms [fm] ε0 [MeV] rrms [fm]

t −8.45 1.68 −8.48 1.84
3He −7.77 1.70 −7.71 1.99

In order to confirm the validity of our three-body model,
we analyze elastic scattering of 3He off 40Ca, 58Ni, and 90Zr.
In the model space, we include continuum states up to the
internal energy ε of 30 MeV for Iπ = 0+, 1−, and 2+ states
of the projectile. Ui in Eq. (1) is constructed by folding the
Melbourne g matrix [18] with the target density [19]. Fig-
ure 2 shows the elastic cross sections of 3He at 40, 70, and
150 MeV/nucleon, as a function of the transferred momentum
q. The experimental data of the cross sections denoted by the
dots are taken from Refs. [20–23]. The solid lines represent
the results of the E-CDCC calculation. It is found that the
E-CDCC results reproduce the experimental data in the small
q region, in which the cross section is large. Therefore, the
three-body model for 3He adopted in this study is expected to
work well.

B. Breakup properties of t and 3He

We investigate the breakup effects of t and 3He on the
breakup energy spectra and compare them with those of d . We
adopt the method proposed in Ref. [24] to obtain a smooth
breakup spectrum. The model space is the same as in the
calculation of the elastic scattering.

First, we show the breakup cross sections of the t (3He) +
90Zr reaction at 150 MeV/nucleon in Fig. 3(a) [Fig. 3(b)].
ε = −2.2 and 0 MeV correspond to the thresholds of the
d + n (d + p) and n + n + p (p + p + n) channels for t (3He),
respectively. One can see that the behaviors of the breakup
cross section of t and 3He are almost the same. This can be
understood from the fact that the strength of the electric dipole
transition, which mainly contributes to Coulomb breakup re-
actions, for t is the same as for 3He; details are found in the
Appendix. The similar behavior of the cross section between
t and 3He is also confirmed in other reaction systems. Thus,
in what follows, we will concentrate on the results of 3He.

Next, we compare systematically the breakup cross sec-
tions of 3He and d . For the E-CDCC calculation of the d
breakup reaction, the optical potentials are constructed in the
same manner as of t and 3He. We include continuum states
of d up to ε = 30 MeV for Iπ = 0+, 1−, and 2+ states; the
spin of each nucleon is neglected, as in the description of t
and 3He. The solid and dotted lines in Figs. 4–6 represent the
results for 3He and d , respectively. The dot-dashed (dashed)
line corresponds to the result with only the nuclear breakup
of 3He (d). Although the effective charge of 3He is 2/3e,
which is larger than 1/2e of d , the Coulomb breakup of 3He is
negligible compared to that of d because of the large binding
energy of 3He. We show the total breakup cross section of
3He and d in Table III. The results for 3He are found to

×

×

×

dσ
/d
Ω

q

×

×

×

dσ
/d
Ω

q

×

×

×

dσ
/d
Ω

q

(a)

(b)

(c)

FIG. 2. Transferred momentum distributions of elastic cross sec-
tions of 3He with (a) 40Ca, (b) 58Ni, and (c) 90Zr targets at 40,
70, and 150 MeV/nucleon. The experimental data are taken from
Refs. [20–23].

be about one-third of those for d in all the cases. Next, we
investigate the mechanism of the 3He breakup reaction, i.e.,
the decomposition of the breakup channels into the following
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(a) (b)

FIG. 3. (a) Breakup cross section of t with a 90Zr target at E = 150 MeV/nucleon. (b) Same as (a) but of 3He.

FIG. 4. The energy spectra of breakup cross sections of 3He and d with a 40Ca target at (a) 40 MeV/nucleon, (b) 70 MeV/nucleon, and
(c) 150 MeV/nucleon. The upper (lower) horizontal axis shows the breakup energy of d (3He) regarding the p + n (p + p + n) threshold.

FIG. 5. Same as in Fig. 4 but with a 58Ni target.
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FIG. 6. Same as in Fig. 4 but with a 90Zr target.

two:

3He → d + p,
3He → p + p + n.

For this purpose, we use the P-separation method proposed in
Ref. [25]. In this method, the probability Pγ of the existence
of d in �γ is defined by

Pγ =
∫

〈�γ (x, y)|χd (x1)〉x1
〈χd (x1)|�γ (x, y)〉x1

dy1, (16)

where χd is the wave function of d . Then, by using Pγ , the d +
p and p + p + n channel contributions to the total breakup
cross section can be obtained as follows:

σd+p ≡
∑

γ

Pγ σγ , (17)

σp+p+n ≡
∑

γ

(1 − Pγ )σγ . (18)

Here, σγ is the breakup cross section to the discretized state
�γ . Figure 7 shows the results of Pγ for each state of 3He.
For the ground state, P0 ≈ 0.9 is obtained, which is con-
sistent with the value 90% [26] obtained with the ab initio
quantum Monte Carlo calculation. The left and right vertical
dotted lines in Fig. 7 represent the thresholds of the d + p
and p + p + n channels, respectively. Pγ for the continuum
states between the two thresholds are found to be about 0.5.
For other states, Pγ are mostly smaller than 0.3. This result
indicates that the p + p + n channel contribution is dominant
in the total breakup cross section of 3He.

TABLE III. Total breakup cross section (in mb) of 3He and d for
the present reaction systems. E represents the incident energy per
nucleon.

40 MeV 70 MeV 150 MeV

E σ
(d )
BU σ

(3He)
BU σ

(d )
BU σ

(3He)
BU σ

(d )
BU σ

(3He)
BU

40Ca 148 62 114 48 47 20
58Ni 181 68 150 56 69 26
90Zr 228 71 205 64 108 33

Figure 8 shows the results of σd+p and σp+p+n. In this
calculation, we do not include the Coulomb breakup because
its contribution is negligible as mentioned above. One sees
that the contribution of the p + p + n three-body breakup
is about five times as large as that of the d + p two-body
breakup in all of the three reaction systems. This behavior
can be understood from the larger three-body phase volume.
It should be noted, however, that this is not always the case.
In Ref. [25], the authors found with a similar approach that,
for the breakup of 6Li, the d + 4He two-body channel is more
important than the p + n + 4He one, despite that the latter has
a larger phase volume. Further investigations are needed to
clarify the relation between the cross sections and the sizes
of the phase volume for two-body and three-body breakup
processes. In any case, the results in Fig. 8 suggest that the 3He
breakup reaction should be described as a four-body breakup
reaction.

C. Four-body and three-body reactions

In the present study, we have analyzed the 3He reaction
with a p + p + n + T four-body model, whereas in Ref. [8],

FIG. 7. Probabilities of the existence of d in the ground and
discretized states of 3He. The left and right vertical dotted lines repre-
sent the thresholds of the d + p and p + p + n channels, respectively.
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FIG. 8. Total breakup cross sections for 3He breakup reactions
separated into the d + p and p + p + n channels by using the P-
separation method.

it was investigated with a d + p + T three-body model. We
investigate the difference between the two reaction models. To
describe 3He as a two-body model, we use the same potential
between d and p as in Ref. [8]. While the previous study
adopted a phenomenological potential for the optical poten-
tial between d and T, we use the following folding-model
potential:

Ud = 〈χd |Up + Un|χd〉. (19)

It should be noted that the three-body calculation using Ud

does not include the breakup of d . The optical potential be-
tween p and T is the same as that used in the four-body
calculation. The solid and dotted lines in Fig. 9 represent
the results of the E-CDCC calculation with the four-body
and three-body reaction models with a 90Zr target, respec-
tively, as a function of q. We have included only the nuclear
breakup in this calculation. Although some differences are
found around the dips at low incident energy, the shapes of
the oscillations are almost the same. The difference of the
depth around the dips is considered to come from the effects
of the p + p + n channel. To discuss this in detail, we perform
the four-body E-CDCC calculation including only the ground
state and the d + p continuum states located between the

FIG. 9. Transferred momentum distributions of elastic cross sec-
tion off 90Zr. The energies in the panels represent the incident
energies per nucleon.

two vertical dotted lines in Fig. 7. The dot-dashed lines thus
obtained are close to the results of the three-body calculation.
This confirms the slight effect of the p + p + n channel on
the elastic scattering. Figure 10 shows the comparison of the
total breakup cross section with a 90Zr target calculated with
four- and three-body E-CDCC. The squares and circles are the
same as in Fig. 8, whereas the triangles represent the cross sec-
tions calculated with three-body E-CDCC. The total breakup
cross sections obtained with the four-body calculation are two
times as large as those with the three-body calculation. This
difference can be basically understood from the significant
contribution of the p + p + n channel, which is missing in
three-body E-CDCC, in the 3He breakup reaction. In addition,

FIG. 10. Comparison between the breakup cross sections ob-
tained by four- and three-body E-CDCC with a 90Zr target.
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it is suggested by the difference between the triangles and
circles that the d + p two-body breakup process is suppressed
in the four-body calculation, probably because of the coupling
between the d + p and p + p + n channels.

IV. SUMMARY

We have investigated the t and 3He breakup reactions with
four-body E-CDCC. We treated t and 3He as three-nucleon
systems. The elastic scattering cross section data of t and 3He
are reproduced well by the present framework. For the analy-
sis of breakup reactions, we take into account the nuclear and
Coulomb breakup in the E-CDCC calculations. The breakup
cross sections of t and 3He are almost the same for the reaction
systems considered. The Coulomb breakup of 3He is found to
be negligibly small, and the total breakup cross section of 3He
is about one-third of that of d .

In addition, we applied the P-separation method to the
investigation of the final channels of the 3He breakup reaction
and showed that the contribution of the p + p + n channel
is dominant. We have further investigated the difference
between the four-body E-CDCC calculation and three-body
one; in the latter, 3He is described as a d + p system. These
two models are found to give almost the same result for the
elastic scattering. For the breakup reaction, the total breakup
cross section calculated with four-body E-CDCC is as twice
as that with three-body E-CDCC. Thus, we conclude that the t
and 3He breakup reactions should be treated as the four-body
reaction.

ACKNOWLEDGMENTS

This work is supported in part by Grant-in-Aid for Sci-
entific Research (Grants No. JP22K14043, No. JP21H00125,
and No. JP21H04975) from Japan Society for the Promotion
of Science (JSPS).

APPENDIX

The electric dipole (E1) transition operator is defined as

Dμ =
3∑

i=1

(
1

2
− τiz

)
eriY1μ(ri ), (A1)

FIG. 11. The coordinate from c.m. to each particle represented
with the Jacobi coordinate. G means the c.m. of the t and 3He.

where τiz is the z component of the isospin operator. ri means
the coordinate from c.m. to each particle as shown in Fig. 11,
and can be represented as follows by using the Jacobi coordi-
nate {x3, y3}:

r1 = − 1
2 x3 + 1

3 y3,

r2 = 1
2 x3 + 1

3 y3,

r3 = − 2
3 y3. (A2)

Using this relation, the spherical harmonics is written as

r1Y1μ(r1 ) = − 1
2 x3Y1μ(x3 ) + 1

3 y3Y1μ(y3 ),

r2Y1μ(r2 ) = 1
2 x3Y1μ(x3 ) + 1

3 y3Y1μ(y3 ),

r3Y1μ(r3 ) = − 2
3 y3Y1μ(y3 ). (A3)

Inserting Eq. (A3) to Eq. (A1), we can obtain

Dμ = − 2
3 ey3Y1μ(y3 ) (A4)

for t and

Dμ = 2
3 ey3Y1μ(y3 ) (A5)

for 3He. Thus, t and 3He have the same E1 effective charge.
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