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Background: Deuteron-induced transfer reactions are a popular probe in nuclear structure and nuclear astro-
physics studies. The interpretation of these transfer measurements relies on reaction theory that takes as input
effective interactions between the nucleons and the target nucleus.

Purpose: Previous work quantified the uncertainty associated with the optical potentials between the nucleons
and the target. In this study, we extend that work by also including the parameters of the mean field associated
with the overlap function of the final bound state, thus obtaining the full parametric uncertainty on transfer
observables.

Method: We use Bayesian Markov chain Monte Carlo simulations to obtain parameter posterior distributions.
We use elastic-scattering cross sections to constrain the optical potential parameters and use the asymptotic
normalization coefficient of the final state to constrain the bound-state interaction. We then propagate these
posteriors to the transfer angular distributions and obtain confidence intervals for this observable.

Results: We study (d, p) reactions on *C, '°0, and **Ca at energies in the range E; = 7—24 MeV. Our results
show a strong reduction in uncertainty by using the asymptotic normalization coefficient as a constraint, partic-
ularly, for those reactions most sensitive to ambiguities in the mean field. For those reactions, the importance of
constraining the bound-state interaction is equal to that of constraining the optical potentials. The case of '*C is
an outlier because the cross section is less sensitive to the nuclear interior.

Conclusions: When minimal constraints are used on the parameters of the nucleon-target interaction, the lo
uncertainties on the differential cross sections are large (*50-100%). However, if elastic-scattering data and the
asymptotic normalization coefficient are used in the analysis, with an error of 10% (5%), this uncertainty reduces

to ~30% (~15%).

DOI: 10.1103/PhysRevC.108.024601

I. INTRODUCTION

For decades, transfer reactions have been successfully used
as a probe in nuclear structure and nuclear astrophysics [1,2].
While many of these studies have focused on investigating
single-particle states in nuclei (e.g., Refs. [3,4]), recent efforts
[5,6] have also explored transfer as a probe for significantly
deformed nuclei. In either case, the interpretation of the results
relies on a reaction model.

Theoretical advances for transfer reactions have focused
primarily on deuteron-induced reactions [e.g., A(d,p)B,
A(d,n)C]. While there are experiments that still use the
distorted-wave Born approximation in the analysis (a pertur-
bative method that, in its standard first-order implementation,
simplifies the deuteron incoming wave to the elastic channel
[7]), nowadays most studies include deuteron breakup non-
perturbatively in the reaction mechanism because it is known
to be important. Amongst these nonperturbative methods is
the adiabatic distorted-wave approximation (ADWA) [8]. The
ADWA treats the excitation energy of the deuteron adiabat-
ically and captures the three-body dynamics in the region
where it is necessary. In the ADWA, the inputs are the pairwise
interactions: The nucleon-target optical potentials (U,4 and
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Upa) and the effective interactions describing the two relevant
bound states (the deuteron V,,;, and the final state V,4). These
input interactions are not well known and introduce large
uncertainties.

The need for uncertainty quantification in reactions has
been identified as an important priority in the community [9].
To extract meaningful information from transfer reactions, be
it orbital occupancies or capture rates for astrophysics, it is
crucial to know the theoretical uncertainties. Over the last
few years, significant effort has been devoted to quantifying
uncertainties on the nucleon optical potential when using elas-
tic scattering as a constraint [10-17]. The Bayesian approach
first explored in the context of nuclear reactions by Lovell
and Nunes [12] offers a rich set of statistical tools to explore
the parameter space and provide diagnostics for reducing
uncertainties. Within the Bayesian analysis, propagation of
optical model uncertainties to (d,p) transfer observables is
straightforward (e.g., Refs. [12,14,15]). However, so far, the
uncertainties coming from the bound-state descriptions have
not been quantified.

While the deuteron bound state is comparatively well
known, usually the final state being populated through (d,p)
or (d,n) is not. Earlier studies have pointed out the large
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ambiguity associated with the choice of parameters for the
mean field in the final state [18,19]. As a consequence, the
combined method was suggested as a way to reduce this
ambiguity: The analysis of transfer (d,p) should be com-
bined with an independent peripheral measurement from
which the asymptotic normalization of the final state (the
so-called asymptotic normalization coefficient, ANC) can
be extracted. Amongst the various peripheral reactions that
can be used to extract ANCs are Coulomb dissociation and
direct neutron capture reactions (e.g., Refs. [20]), in addi-
tion to sub-Coulomb transfer reactions [19,21]. Using the
constraint on the ANC in the analysis of the nonperipheral
transfer reaction provides a better handle on the abovemen-
tioned ambiguities. However, it should be noted that none of
these earlier works [18,19] contain a statistical analysis of
uncertainties.

In this work, we perform a Bayesian analysis of (d,p)
transfer reactions taking into account both the parametric
uncertainties associated with the optical potentials and the
mean field describing the final bound state. We constrain the
bound state with an independent extraction of the ANC, and
we constrain the optical potential with elastic scattering, as
done before. We then discuss the relative impact of these two
sources of uncertainty in the resulting transfer cross sections.
To span a variety of cases, we consider one-neutron transfer
reactions on '“C, '°0, and **Ca at energies in the range E; =
7—24 MeV for which real data exist (e.g., Refs. [22-28]). In
Sec. 11, we briefly present the theoretical framework used,
and in Sec. III, we introduce the numerical details of the
calculations. Results are presented and discussed in Sec. IV,
and the conclusions are drawn in Sec. V.

II. THEORETICAL FRAMEWORK

A. Statistical considerations
1. Bayesian methods

Unlike frequentist methods, Bayesian statistics give the
probability of a single occurrence given a model and some
prior information. This provides a robust methodology to
study uncertainty propagation, model comparison, and model
mixing. Bayes’ theorem states that for some hypothesis H,
model M, and experimental data D [29],

p(DIH, M)p(H|M)

H|D,M) = . 1
p(H|D, M) S(DIM) ()

That is, the posterior probability p(H|D, M) of a hypothesis
given some data and model is equal to the prior distribu-
tion p(H|M) (containing information known about the model
before looking at the data) times the likelihood p(D|H, M)
(containing information of the goodness of the fit between the
hypothesis of the model and the data, which for our appli-
cation is defined in Ref. [12]). The Bayes’ factor p(D|M) in
the denominator is the sum of all possible hypotheses of the
model space allowed by the prior information and weighted
by the likelihood. In previous studies, Bayesian methods have
been used to compare uncertainties coming from different
data sets and observables [15,16], including the use of the
Bayes’ factor [17].

In the work presented here, we are concerned with quan-
tifying the uncertainties of transfer reactions using few-body
methods. We perform this analysis in a two-step process. First,
we use the Bayesian prescription to optimize independently
the parameters of our model using several elastic-scattering
and ANC data sets. This allows us to quantify the uncer-
tainties in the nucleon-target optical potentials describing the
interactions of our model (Secs. II A2 and II B 1). Second, we
propagate the quantified uncertainties from the optimization
procedure to the different parts of the few-body transfer matrix
using the ADWA (Sec. IIB 2).

2. Optical model optimization

In this work, we use the optical model to describe the
effective interactions of the nucleon-target scattering states.
Optical potentials contain real and imaginary parts describing
the elastic channel and absorption into nonelastic channels.
The nuclear part of the optical potential typically contains
three parts: A volume term, a surface term, and a spin-orbit
term, all of Woods-Saxon shape or derivative of Woods-Saxon
shape, each term parametrized by a depth, a radius, and a
diffuseness:

U(R) = - ofWS(R; Yo, ao) - infWS(R; T, Gy)

d
- l4asvvaﬁfWS(R» Ts, as)

+VSOI%%JCWS(R; Fso0, Aso) + Ve(R, 1), 2
where fws(R;r;, a;) = m Vso contains the (Z . §)
term, and V¢ is the point-sphere Coulomb interaction. The
optimization using Bayesian methods is performed on the pa-
rameters of the volume and surface terms [first three terms in
Eq. (2)], while the parameters of the spin-orbit and Coulomb
terms are kept fixed [7].

B. Reaction theory

As mentioned in the previous subsection, we are interested
in transfer reactions. In particular, we look at one-neutron
transfer reactions of the form A(d, p)B(g.s.), where the final
state of B = A + n is in the ground state and is described as a
single-particle state. The low binding energy of the deuteron
allows us to describe (d,p) reactions using the three-body
Hamiltonian of the system n + p + A:

Hig =T + T + Ups + Ups + Vi, 3)

where Upy and U,y are the effective interactions of the
nucleon-target systems and V,,, is the nucleon-nucleon inter-
action. T; and 7, denote the two-body kinetic operators for
the deuteron-target and n-p systems, respectively, where r is
the relative distance in the n-p system and R is the distance
between the center of mass of the n-p system and the target.
In the three-body post form [7], we can write the T matrix as

T = (1, X5 Vap + Una — Ups| W), (4)

Here, W js the full solution of the three-body A +n+ p
problem in the incident channel, ¢;,;, is the overlap of the
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B = A + n and A bound-state wave functions, and x ;;) is the
proton distorted wave of the exit channel.

1. Asymptotic normalization coefficient

A central element of the analysis of the A(d,p)B(g.s.)
reaction, not included in previous uncertainty propagation
analyses, is the many-body radial overlap function ¢y,
which depends on the vector-radius p connecting the center
of mass of A and n. The wave function for the B=A +n
system is a bound state, and so it behaves as a spherical Hankel
function in the exterior region (p — 00) where the nuclear
potential is negligible,

p=00 :
Ornapp) ~ ikCiih(ikp). (5)

In the above equation, we have k = +/24an€4n, Where pa,
and €y, are the reduced mass and the binding energy of the
A + n system. We also introduce the quantum numbers / and
j for A — n relative orbital and total angular momentum. Fi-
nally, C;; is the ANC. Assuming that the many-body overlap
function is proportional to the single-particle function, the
experimental ANC, C, and the spectroscopic factor, S, can be
related via the following equation:

Cli = Su1ib2 1) (6)

Note that here we used the asymptotic properties of the single-
particle wave function:

nA P b i
Uy 1.;(P) R ikby, 1l (iK p), @)

where the single-particle wave function MZ‘;‘ .; 1s generated by
adjusting a Woods-Saxon-shaped potential with parameters
V,s 74, and a, to reproduce the correct separation energy of
the bound state with the correct quantum numbers (n,, [, j).
Here n,, is the principal quantum number. We have introduced
the asymptotic normalization coefficient of uﬁf 1,; 38 by,1;. The
relationship in Eq. (6) demonstrates that the ANC is directly
related to the spectroscopic factor and, therefore, can be used
to reduce the uncertainties in (d, p) reactions.

2. ADWA

The expression for the 7 matrix in Eq. (4) can be further
simplified, as shown by Johnson and Tandy, due to the fact
that the exact three-body wave function W is only required
within the small range of the potential V,,, [8]. One can then
use the Weinberg basis to expand the exact three-body wave
function. Neglecting the excitation of the n-p system in the
reaction and using only the first term in the expansion, one
obtains the adiabatic form of the 7" matrix:

T = (una X5 Vap|npx 7). (8)

where we have dropped the remnant term in the operator
U,a — Upp. We also note that, in the above, we have replaced
the many-body overlap function by the single-particle bound
state. The adiabatic function x2¢ is generated from the effec-
tive adiabatic potential

UST = —(@o(r)VapUna + Upa)|do(r)), )

where ¢, is the first Weinberg state. This method is referred
to as the ADWA (see Ref. [8] for a detailed discussion).

TABLE 1. Quantum numbers, neutron separation energies, and
experimental ANCs squared for the cases considered in this Bayesian
analysis.

Bound state s ! j BE.(MeV)  C, (fm™)
5c(gs.) 05 0 0.5 1.280 1.48
70(g.s.) 05 20 25 4.143 0.67
“Ca(g.s.) 05 1.0 15 5.146 32.1

In this study we only consider local V4 interactions (see
Ref. [30] for work on incorporating nonlocal interactions into
the framework). Eventually, when comparing to transfer data,
one multiplies the right-hand side of Eq. (8) by the spectro-
scopic factor S.

As in previous work (e.g., Refs. [15-17]), we use elastic-
scattering data and our Bayesian procedure to constrain the
entrance channel effective potentials of the nucleon-target sys-
tem in Eq. (9). The same procedure also constrains the proton
distorted wave of the exit channel X,EE) in Eq. (8). By now
including the ANC in the analysis, we can put a parametric
constraint on the last piece of the puzzle, the overlap function
of the bound state, u4,. In this way, we obtain a full parametric
uncertainty analysis of (d, p) transfer reactions using Bayesian
statistics.

III. METHODS AND NUMERICAL DETAILS

In our Bayesian analysis, we aim to fit a theoretical model
prediction, o™ (x) (corresponding to some set of parameters
X), to a set of experimental data, o;"", with some experi-
mental error ¢;. The corresponding set of parameters x for
each nucleon-target interaction is optimized separately using
data for each reaction. Two types of reaction data are used
in this paper, the ANC and differential elastic-scattering cross
sections.

A. ANC fitting

The first type of data, o;"", considered here is the ANCs ex-
tracted from previous work (references provided in Table II).
These ANCs are used to constrain the single-particle bound-
state wave function in the 7' matrix of Eq. (8). For this type of
data, our theoretical model o' consists of the single-particle
potential for B = A + n described by a real volume term and a
spin-orbit term. Our Bayesian analysis of the ANC only sam-
ples the real radius r, and the real diffuseness a, of the volume
term. For each two-dimensional parameter draw x = (r,, agp),
the real volume depth V,, is adjusted to reproduce the correct
neutron separation energy of the system. The spin-orbit term,
although included in the model, remains fixed and is, thus, not
part of the Bayesian analysis. The quantum numbers, neutron
separation energies, and experimental C2’s are summarized in
Table 1.

B. Elastic fitting

The second type of data 0" used in this work is

the elastic-scattering angular distributions (do/d€2) that
constrain the nucleon-target interactions for the incoming and
outgoing channels. As in our previous work (see Refs. [12,16]
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TABLEII. Data type (column 4) and number of parameters being
optimized independently (column 3) for each of the reactions or
bound states (column 1) at the given reaction energy or neutron
binding energy (column 2) considered in the Bayesian analysis.

Reaction/bound state ~ Energy (MeV)  dim(x) Data type
5C(g.s.) —1.280 2 cz, 132]
14C(PsP)14C 85 9 (do-/dQ)mock
“em,nc 8.5 9 (do /d ) mocx
“ep.p)tc 17 9 (do /dS)mock
70(g.s.) —4.143 2 C2, 133]
150(p,p)'%0 75 9 (do /dS)mock
1°0(n,n)'°0 75 9 (do /d ) mock
]6O(p’p)l6o 15 9 (da/dQ)mock
“Ca(g.s.) —5.146 2 C2, [19]
*Ca(p,p)**Ca 12 9 (do /dQ)mock
BCa(n,n)®Ca 12 9 (do /dS)mock
“Ca(p,p)*Ca 24 9 (do /d2)mock

for details), our optical model o™ now consists of real and
imaginary volume terms, a surface term, a spin-orbit term, and
a Coulomb term as in Eq. (3). We use elastic mock data as
was done in Refs. [15-17]. The mock data are generated from
the Koning-Delaroche (KD) optical model [31]. To fit the
mock data, we optimize parameter sets consisting of the real
and imaginary volume terms and the surface term, for a to-
tal of nine parameters, X = (V,, 1y, ao, Wy, 1y, ay, Wi, 1y, ay).
The spin-orbit and Coulomb terms are kept fixed to the KD
value used to generate the mock data. Table II summarizes
the number of parameters being fitted for each reaction (dim,
column three) and the type of data used (column four).

C. Numerical details

As in previous work, we use the Metropolis-Hastings
Markov chain Monte Carlo (MH-MCMC, see Ref. [12] for
numerical details). Our optical potential parameters are ini-
tialized with the Becchetti-Greenlees (BG) parametrization
[34]. We introduce the following shorthand notation for the
percent error in the data, es = 0.050%P, g9 = 0.16**P, and
€100 = 1.00%*P, corresponding to 5%, 10%, and 100% error
on the data. Our prior distributions are Gaussian and centered
around the BG value with a width equal to 20% of the mean
distribution. As was done in Ref. [17], if any of the imaginary
potential depths is equal to zero, we set it to 1 MeV and
give it a width of 10 MeV. Using the MH-MCMC, we draw
parameter sets x until 16 000 sets are accepted and we keep
one of every ten of these. These 1600 pulls constitute our pos-
terior distributions. The computations are performed using the
QUILTR code [16,35]. Using the posterior distributions from
the bound-state and elastic-scattering sampling, we generate
predictions for the ADWA transfer cross section using QUILTR,
which embeds the transfer code NLAT [36].

IV. RESULTS

The main goal of this work is to include the parametric
uncertainties of the bound state, on top of the uncertainties

arising from the optical model, into the analysis of transfer
reactions, thus obtaining the full parametric uncertainty quan-
tification for the predicted observables.

A. Constraining the bound state

As a first step, we quantify the parametric uncertainties
obtained by constraining only the bound state using the ANC
(C?) and then propagating this uncertainty via the T matrix
in Eq. (8). As mentioned in the previous section, the effective
interactions for the A + n bound states consist of a real volume
term and a spin-orbit term; of these, we sample independently
the radius (r,) and diffuseness (a,) adjusting the depth (V,,) to
reproduce the correct binding energies of the bound state. The
means of the prior distributions are chosen to reproduce the
experimental ANC. In Fig. 1, we show the accepted param-
eter correlations (off-diagonal plots), posterior distributions
(diagonal histograms), and prior distributions (green line in
the diagonal histograms).

We have studied the parameter constraint obtained with the
ANC (C?) when the experimental error on C? is changed from
10% (g10) in brown to 100% (gp) in teal. In Fig. 1(a), we
show the parameters of the '7C bound state; in Fig. 1(b), we
show the parameters for the !’ bound state; and in Fig. 1(c),
we show the parameters for the ’Ca bound state.

In Table III, the mean value and the standard deviation of
the posteriors are given for each bound state and C? experi-
mental error (g1 or €1¢p). As expected, there is an increase in
the width of the posteriors when increasing the experimental
error since then a larger set of parameter combinations can
be accepted into the Bayesian optimization. The tightened
constraint on the parameters from a smaller error on C? results
in a stronger correlation between r, and a, (see off-diagonal
plots in Fig. 1). One should keep in mind that, because the
depth (V,) is not directly sampled, it is strongly correlated
with r,.

Now, we propagate the uncertainties to the differential
transfer cross sections. First, we only allow the bound-state
parameters to vary, while all other interactions are held con-
stant, including all optical potentials. The 68% confidence
intervals for the predicted transfer cross section are shown in
Fig. 2 (left panels): Panel (a) for '*C(d, p) ’C(g.s.), panel (c)
for '°0(d, p) 70(g.s.), and panel (e) for **Ca(d, p) *Ca(g.s.).
The right panels (b), (d), and (f) provide the corresponding
percent error plots, obtained from the width of the 68% con-
fidence interval divided by the mean at every angle (Ao /&).
The results using 10% error (100%) on the ANC squared are
in brown (teal). We can clearly see that reducing the experi-
mental error from 100% to 10% leads to a large decrease in
the uncertainty of the transfer cross section, for all reactions
shown.

We first focus on Figs. 2(a) and 2(b). The
4C(d,p) P C(g.s.) is special in that it populates the halo state
in 15C. Because, in the ground state of 3¢, the neutron is in a
loosely bound s wave, at leading order, the ANC is provided
by the one-neutron separation energy and independent of
the parameters of the mean field [37]. The corresponding
transfer reaction is mostly peripheral and, therefore, not
very sensitive to details of the single-particle bound-state
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(a)

o

Vo ro do

....

Vo o do

FIG. 1. Parameter posteriors and correlations for single-particle
parameters of (a) the '>C bound state, (b) the 'O bound state, and
(c) the ¥*Ca bound state, using Bayesian optimization to compare two
different experimental errors on C?, &;9(¢ = 10%) shown in brown
and &199(¢ = 100%) shown in teal. Histograms on the diagonal cor-
respond to the posterior distributions of the given parameters; the
priors are shown in green.

TABLE III. Posterior means and standard deviations optimized
with different experimental errors .2 for each bound state studied
(column 1), the mean of the real volume term parameters; depth,
radius, and diffuseness are listed in the second, third, and fourth
columns, respectively (their corresponding standard deviations & are
in parentheses).

Bound state (gc2) V,(6) (MeV) r,(6) (fm) a,(6) (fm)
5C (e10) 94.5(19.8) 0.87(0.12) 0.54(0.06)
5C (8100) 82.7(15.2) 0.93(0.15) 0.59(0.08)
170 (e19) 68.7(13.5) 1.09(0.12) 0.64(0.08)
170 (£100) 69.9(24.9) 1.12(0.22) 0.67(0.10)
YCa (819) 48.98(3.817) 1.24(0.06) 0.64(0.07)
“Ca (£100) 50.6(13.5) 1.24(0.17) 0.64(0.10)

parameters. As a consequence, even without any constraint on
the ANC, the uncertainty from the single-particle bound-state
parameters is small. Adding the ANC constraint on the
mean-field parameters then offers a modest improvement of
less than a factor of 2 at forward angles (modest compared
to other cases we study). This does not mean that the ANC
should not be used in the analysis, quite the opposite. In
the limit of a purely peripheral reaction, the cross section
is directly proportional to C*> and completely insensitive to
the single-particle mean-field parameters. In such a case, C?
is the only quantity of the bound state that matters (apart
from the quantum numbers and the binding energy) and
the uncertainty coming from the bound state is trivially and
uniquely related to the error on C2. In this work, we are
focusing on quantifying the nontrivial uncertainty from the
single-particle parameters of the bound state.

The reactions on '°0 and *®Ca, representing the more typ-
ical cases, are less peripheral. As such, when there is little
constraint on the ANC, the uncertainties of the transfer cross
section propagating from the single-particle parameters are
large (=60-80). The gain offered by introducing the ANC
constraints is a factor of 4 (3) for '°0(**Ca) at forward angles.

For these three targets, we have verified that the uncertainty
of the calculated transfer cross section scales with and is
directly proportional to the error on the C? for sub-Coulomb
reactions. In those cases, the uncertainties from the single-
particle parameters is negligible.

B. Elastic vs ANC constrain

All results in Sec. IV A assume the optical potentials are
fixed. We have studied optical potential uncertainties before
(e.g., Refs. [12,14,16,17]); so, next, we proceed by combin-
ing the uncertainties from the bound-state interactions with
those from the optical potentials, to obtain the full uncertainty
quantification (see Table II for a description of the reactions
and bound states considered).

Figure 3 contains transfer results for several assump-
tions. As before, 68% confidence intervals are shown in
the left-hand panels and the percentage uncertainties are
shown in the right-hand panels, '“C(d,p) °C(g.s.) [panels
(a) and (b)], '°0(d,p) "O(g.s.) [panels (c) and (d)], and
BCa(d,p)*Ca(g.s.) [panels (e) and (f)]. The results in brown
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C?[e10]
—— C?[£100]

40- (a)
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B 40-
E3p- (e)
c
320
10-
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60 80

20 40 60 80
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FIG. 2. A comparison of results for transfer assuming two C? experimental data errors, 10% error in brown (g0) and 100% error in teal
(8100). '*C(d, p) at 17-MeV 68% confidence intervals (a) and percentage uncertainty (b). '°0(d, p) at 15-MeV 68% confidence intervals (c) and
percentage uncertainty (d). BCa(d,p) at 24-MeV 68% confidence intervals (¢) and percentage uncertainty (f).

assume no uncertainty on the optical potentials constrained
by elastic data (these parameters are fixed to the KD values
used to generate the data) and only the uncertainties on the
bound-state parameters are constrained through C? taking an
error of 10% (&) just as presented by the brown bands in
Fig. 2. The results in bright green are the reverse, we assume
no uncertainty on the bound-state interaction and quantify
uncertainties only from all optical potentials taking elastic
data (el) with 10% uncertainty (€10). The results in blue in-
corporate the uncertainties in both the bound-state interaction
and the optical potentials assuming the errors on the ANC
and elastic-scattering data are 10% (C? + el). Finally, the
results in gray are the same as those in blue except that the
errors are now 100%. Note that the gray band in Fig. 3 does
not correspond to the results in teal in Fig. 2. All results in
Fig. 2 assume fixed optical potential parameters. The results
in gray in Fig. 3 are a lower limit to the “unconstrained”
case; they represent only minimal constraint on the parameters
of both the bound state and the entrance and exit distorted
waves.

From the width of the confidence bands and the percent
error plots shown in Fig. 3, we can see that the parametric
uncertainties coming from the ANC (C?) and the elastic (el)
constraints are of similar order of magnitude and, therefore, of
equal importance. Again we single out the '*C case: Because
the uncertainty propagating from the single-particle param-
eters is small in this case, the optical model uncertainties
dominate the problem.

As shown by the wider blue band in Fig. 3, choosing to
only propagate the uncertainty of the bound-state interaction
or the optical potential parameters can lead to an under-
representation of the uncertainty in the predicted transfer cross
section. Finally, assuming minimal knowledge constraint on
the parameters leads to very large errors.

These results are summarized in Table IV, which provides
the percent error of the predicted transfer cross section at
the first peak of the angular distribution for all cases consid-
ered. We choose to quantify the error at this specific angle
because the spectroscopic factor (S) is typically extracted
around this point: The reaction and the beam energy are given
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C?[£10]

elle1o]
— C?legol+ellero]
—— C?[g100]+ell€100]

do/dQ (mb/sr)
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)
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(@]
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©
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S
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FIG. 3. A comparison of results using only ANC (C?) data in brown, only elastic data (el) in bright green, and both types of data
simultaneously (C? + el), all at 10% error (g}() in blue and unconstrained in gray. (a) and (b) '*C(d, p) at 17-MeV 68% confidence intervals and
percentage uncertainty plot. (¢) and (d) '°0(d, p) at 15-MeV 68% confidence intervals and percentage uncertainty plot. (¢) and (f) BCa(d,p)

at 24-MeV 68% confidence intervals and percentage uncertainty plot.

in columns 1 and 2, respectively; the data and experimental
error used to constrain the parametric uncertainties are pro-
vided in column 3; and columns 4 and 5 show the percent
error at the peak for 68% and 95% confidence intervals. This
analysis shows that, for nonperipheral reactions, constrain-
ing the bound-state parameters is equally as important as
constraining the nucleon-target interactions determining the
incoming and outgoing channels. One might expect that the
uncertainties coming from these different interactions would
be independent of one another. Our results are consistent with
this expectation: The quadrature sum of the error obtained
constraining only the bound-state interaction with the ANC
and the error obtained constraining only the nucleon-target
optical potentials with elastic scattering is equal to the square
of the error of constraining both simultaneously, as expected
for independent errors.

Constraining only the bound-state parameters or only the
optical model parameters provides an inaccurate account of
the uncertainties. Note that the brown and bright green bands

in Fig. 3, which correspond to constraining either the bound-
state interaction only or the optical model parameters only,
while fixing the other parameters, are not realistic predictions
for uncertainties. These calculations were done to quantify the
effects of these two different sources of uncertainty. How-
ever, they rely on the unphysical assumption that the fixed
parameters are known exactly (with zero error). To assess the
uncertainty when no constraint is imposed on the parameters,
we take 100% error on both ANC and elastic angular distri-
butions, a way of representing minimal knowledge (shown in
gray).

In Fig. 4, we compare the results for the physical situa-
tion when only one aspect is constrained, namely, just the
bound-state interaction with the ANC (red) or the optical
potentials with elastic scattering (green), and the other pa-
rameters (so-called unconstrained parameters) have posteriors
corresponding to an experimental error of 100%. For compar-
ison, we also include in Fig. 4 the same unconstrained result
of Fig. 3 (gray), and the results obtained when both, bound
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TABLE IV. Summary of the effect of propagating different combinations of the ANC (C?) and elastic (el) uncertainties to the peak of the
transfer angular distribution. For each reaction and energy considered (columns 1 and 2), and data included in the calculations along with
a corresponding error (column 3), the percent error at the peak of the angular distribution of 68% confidence intervals (column 4) and 95%

confidence intervals (column 5) are included.

Reaction E (MeV) Data [error] (Ao /& )ggak (%) (Ao /& )ggak (%)
“eWd,p)Pc(egs.) 17 C?[e10] 13.0 24.7
4CcWd,p)PC(g.s.) 17 ell&10] 30.0 63.2
e, p)Pe(gs.) 17 C?[es] + el[es] 15.4 28.9
“eWd,p)Pc(egs.) 17 C?[g10] + elleo] 333 61.6
e, p)ic(gs.) 17 C?[e10] + ell&100] 45.8 104.7
“cd,p)PC(gs.) 17 elle10] + C*[e100] 35.5 71.1
14C(d,p)lsc(g.5.) 17 Cz [810()] + 31[8100] 48.1 109.1
°0(d, p)"0(gs.) 15 C?[e10] 19.6 44.8
150(d, p)0(g.s.) 15 el[eo] 15.5 34.3
1%0(d,p)'"0(g.s.) 15 C?[es] + el[es] 12.7 27.1
°0(d,p)"0(gs.) 15 C?[e10] + el[e1o] 243 55.6
150(d,p)""0(g.s.) 15 C?[g10] + el[g100] 33.1 71.7
°0(d, p)'0(g.s.) 15 elle0] + C2e100] 78.7 149.3
16O(d,p)170(g.5,) 15 CZ[EI()()] + 31[8100] 78.9 149.9
BCa(d,p)¥Ca(g.s.) 24 C?[e10] 18.1 34.7
BCa(d,p)¥Ca(g.s.) 24 el[eo] 18.4 36.4
BCa(d,p)¥Ca(g.s.) 24 C?[es] + el[es] 13.5 25.7
BCa(d,p)¥Ca(g.s.) 24 C?[e10] + elleo] 24.9 487
BCa(d,p)¥Ca(g.s.) 24 C?[g10] + el[&100] 52.4 131.5
BCa(d,p)¥Ca(g.s.) 24 elleio] + C?[e100] 62.2 135.1
BCa(d,p)*Ca(g.s.) 24 C*e100] + €lle100] 84.0 167.4

state and scattering potentials, are constrained with precise
data 1o (blue). As before, the 68% confidence intervals for
the predicted transfer cross section are shown in the left-hand
panels of Fig. 4: (a) “C(d,p)C(g.s.), (c) '°0(d,p)""O(g.s.),
and (e) ¥Ca(d, p)49Ca(g.s.). The corresponding percentage
uncertainties as a function of angle are shown in the the
right-hand panels of Fig. 4: (b), (d), and (f).

Comparing the blue and gray bands in Fig. 4 gives a good
estimate of the incredible improvement obtained when con-
straining the interactions using quality data. Comparing the
green and red bands to the blue band, it is evident that there is
only partial gain obtained by just constraining part of the inter-
actions. For all cases, the uncertainties can be brought down
to 20-30% if both ANC and elastic-scattering constraints are
included. It is also clear, comparing the red and gray lines in
Fig. 4(b), that for a peripheral reaction the ANC constraint
on the single-particle parameters is not significant, whereas it
produces a large reduction of the uncertainty in the forward-
angle cross sections for the reactions on '°0 and *3Ca [red
and gray lines in Figs. 4(d) and 4(f)]. Through calculations
not shown here, we determined that the forward-angle cross
section for '“C(d,p) at 17 MeV is not sensitive to the wave
function at small distances, contrary to the (d,p) reactions
on '°0Q and “8Ca here considered. We find that for the (d, p)
reaction populating the halo state in '3C, the parametric uncer-
tainties of the optical potential are much more important than
the parametric uncertainties on the single-particle bound state,
and as such the elastic scattering offers the best uncertainty
reduction.

As before, we can quantify the uncertainties by looking at
the percent error at the peak of the transfer angular distribution
(shown in Table 1V).

C. The effect of the experimental error
on parametric uncertainties

Finally, given the rapid advances in beam intensities and
detector systems, it is interesting to consider the improve-
ment that can be obtained with high-precision experimental
measurements. In this section we show the effects of de-
creasing the error in the data from 10% to 5%. Figure 5
is similar to Fig. 4: the left-hand panels depict the 68%
confidence intervals of the predicted transfer cross sec-
tions, (a) “C(d,p)°C(g:s.), (¢) '°0(d,p)'"0(g.s.), and (e)
BCa(d,p)*Ca(g.s.), and the right-hand panels are the cor-
responding angular percent errors. We plot the results when
all of the parameters are constrained by data with 5% errors
(magenta) to be compared with the results obtained before,
with 10% error (blue). For reference we also include the
unconstrained case, corresponding to results obtained when
the data have 100% error (gray).

We can observe from the percent errors in Figs. 5(b),
5(d) and 5(f) that the decrease in experimental error unam-
biguously decreases the uncertainty in the predicted transfer
cross sections. This uncertainty is quantified in Table IV.
Decreasing the experimental error from 10% to 5% reduces
the percent error of the predicted cross section by roughly a
factor of 2.
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FIG. 4. A comparison of results using different combinations of ANC (C?) and elastic (el) constrains, 10% error on both the ANC and
the elastic data in blue, 10% error on the ANC and 100% error on the elastic in red, 10% error on the elastic and 100% error on the ANC in
green, and unconstrained ANC and elastic data (100% error on both) in gray. (a) and (b) '“C(d,p) at 17-MeV 68% confidence intervals and
percentage uncertainty plot. (c) and (d) '°0O(d, p) at 15-MeV 68% confidence intervals and percentage uncertainty plot. (e) and (f) “*Ca(d, p)

at 24 MeV 68% confidence intervals and percentage uncertainty plot.

V. CONCLUSIONS

In this study we present the first complete quantification
of parametric uncertainties in (d,p) transfer cross sections.
We extend previous work focused on the quantification of
uncertainties from the optical potentials to include the uncer-
tainties associated with the final bound state. While the optical
potential parameters are constrained through elastic-scattering
mock data, the bound state is constrained with the asymptotic
normalization coefficient extracted from an independent mea-
surement. This choice is based on previous work that indicated
the usefulness of the ANC in reducing the ambiguity of the
bound-state overlap function.

As in previous studies, we use a Bayesian MCMC frame-
work to determine parameter posterior distributions, and
we propagate these to the transfer cross sections, generat-
ing the 68% and 95% confidence intervals for the angular
distributions. We consider three reactions: '“C(d, p)lSC(g.s.)

at E; = 17 MeV; '%0(d,p)'"0(g.s.) at E; = 15 MeV; and
“Ca(d, p)49Ca(g.s.) at E; = 24 MeV. These reactions include
a wide range of separation energies and angular momentum
of the final state. Of the three, the reaction on *C is unique
because it populates an s-wave halo state that is loosely bound.

We compare results using a standard 10% error on the
data (an error achievable for many current experiments)
versus a 100% error on the data, the latter representing
minimal information from experiment. Our results demon-
strate conclusively that introducing the additional constraint
on the bound-state parameters through the ANC, on top of
the constraints on the optical potential parameters through the
elastic-scattering data, reduces the uncertainty on the transfer
cross section. This reduction is more noticeable for the re-
actions more sensitive to the interior, because it is for those
reactions that the ambiguities associated with the bound-state
mean field are the largest.
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FIG. 5. A comparison of results using different errors on both ANC (C?) and elastic (el) data, 5% error in magenta, 10% error in blue, and
unconstrained data (100% error) in gray. (a) and (b) '“C(d, p) at 17-MeV 68% confidence intervals and percentage uncertainty plot. (c) and
(d) "°0(d, p) at 15-MeV 68% confidence intervals and percentage uncertainty plot; (e) and (f) “*Ca(d, p) at 24-MeV 68% confidence intervals

and percentage uncertainty plot.

It is important to note that for peripheral reactions (such
as the reaction on '*C studied here), the cross section is ap-
proximately proportional to the ANC squared and, therefore,
the cross section should be parametrized directly in terms of
the ANC. What we quantify in this work is the uncertainty
from the mean field. Our results show that the ANC is not as
stringent a constraint on the single-particle parameters of the
bound state as for the nonperipheral reactions.

We also show how misleading the uncertainty quantifica-
tion can be when one ignores the uncertainties associated with
a set of interactions. Keeping the interactions fixed (assuming
zero error) leads to erroneously small uncertainties that do not
correspond to reality. The low limit for the percent width of
the 68% confidence interval on the transfer cross section when
minimal information is available on both optical potentials
and bound-state interactions close to ~100%. This number
is greatly reduced by introducing constraints on the optical
potential and the bound-state interaction: ~30%.

Finally, we consider the prospect of having high-precision
experiments with 5% error, given the continual advances
in accelerator and detector technologies. For such cases,
the percent lo width of the transfer-cross-section angular
distribution stays consistently around 15% for all reactions
considered, a factor of 2 lower than that obtained when the
experimental data have a 10% error.

This work relies on a specific reaction model, namely, the
ADWA. Although it accounts for deuteron breakup, it sim-
plifies the deuteron three-body wave function by making the
adiabatic approximation. In addition, this study assumes only
pairwise interactions. These simplifications may introduce
model uncertainties that are not yet quantified. More work is
needed to address model uncertainties. Given the computa-
tional cost of exact three-body calculations, a necessary step
to proceed with the quantification of model uncertainties is the
development of fast and reliable emulators, along the lines of
what was done in Ref. [38].
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