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Survey of the 8He properties within a microscopic multiphonon approach
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Bulk properties, spectrum, and nuclear response of 8He are investigated within the equation of motion phonon
method, which generates an orthonormal basis of n-phonon states (n = 0, 1, 2, 3 . . .) whose constituents are
Tamm-Dancoff phonons. The basis is free of any contamination induced by the center-of-mass motion, in virtue
of a procedure exploiting the singular value decomposition of rectangular matrices. A self-consistent calculation
is performed within a space spanned by a basis of n-phonon states up to n = 3 using a potential derived from
the chiral effective field theory. The Hartree-Fock single-particle states are obtained from a harmonic-oscillator
space including all major shells up to Nmax = 12. The calculation is exact up to n = 2, whereas the three-phonon
(n = 3) states are assumed to be composed of noninteracting n = 1 and n = 2 constituent phonons. It yields
bulk and spectroscopic observables consistent with the available experimental data and provides an electric
dipole response exhibiting distinctive signatures.
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I. INTRODUCTION

Detecting the nuclei far from stability and exploring their
properties represents a fascinating challenge for nuclear ex-
perimentalists and theorists. While a great effort is being made
for creating new or upgrading existing radioactive beam facil-
ities [1], the past experiments have produced already several
radioactive isotopes exhibiting distinctive features.

The very light neutron-rich 6He and 8He isotopes char-
acterized by small separation energies and large radii [2,3]
represent a paradigmatic example. The properties of 6He qual-
ify this exotic isotope as a Borromean system [4], whereas
8He is a halo nucleus having the largest neutron to proton ratio
with a skin of the four valence neutrons around a tightly bound
4He core.

Several theoretical ab initio investigations have been de-
voted to these two isotopes. Among them, a coupled-cluster
(CC) calculation using a Berggren single-particle (s.p.) basis
[5], a hyperspherical harmonics approach [6,7], no-core shell
model (NCSM) calculations using a harmonic-oscillator (HO)
[8–10] or a Coulomb-Sturmian s.p. basis [11]. Closely related
is a calculation in a restricted SM space using an effective
interaction derived from chiral potentials through a CC simi-
larity transformation [12].

Important contributions have come from approaches of
different nature. Among them, a quantum Monte Carlo
calculation using a realistic NN + 3N potential [13], a phe-
nomenological Gamow (G)SM approach [14,15], a cluster

orbital SM applied to a five-body system composed of four
neutrons plus 4He [16,17], and an analysis of scattering data
using a sum of Gaussians for determining the neutron versus
proton density distributions [18].

In this paper, we will focus on 8He. Its bulk properties
have been determined with high precision. With respect to
6He, it has a larger neutron separation energy [19] and a
smaller charge radius [20,21], suggesting a 0p3/2 subshell
closure. It has also a slightly larger matter radius [2,22]. There
are only unbound excited levels. They have been searched
through transfer [23] and breakup [24] reactions as well as
via Coulomb excitations [25,26]. These experiments did not
converge to an unanimous unambiguous conclusion about the
energy and nature of the lowest resonant state. It was not
clear whether one is dealing with a soft dipole resonance
or a 2+ level. This uncertainty has been seemingly solved
by an analysis of the data produced by a recent low-energy
inelastic proton-scattering experiment, which ruled out the
dipole nature of the resonance and lead to the conclusion that
the first excited state is an unbound 2+ at 3.54(6) MeV [27].
A high statistic experiment planned at RIKEN devoted to the
determination of the dipole strength should hopefully shed
more light on the subject (see Ref. [28] for reference).

This ongoing experiment has stimulated new theoretical
investigations, an ab initio CC study [28], a random-phase
approximation (RPA) calculation framed within the energy
density functional (EDF) context [29], and a cluster shell
model analysis [30].
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Here, we investigate thoroughly this nucleus within the
equation of motion phonon method (EMPM) [31,32]. In its
updated formulation [33], the method constructs and solves
iteratively a set of equations of motion, which yields states
composed of an arbitrary number (n = 2, 3, . . .) of particle-
hole (p-h) or two-quasiparticle [34] Tamm-Dancoff (TD)
phonons. These states, added to the unperturbed ground (n =
0) and TD (n = 1) states, form a n-phonon (n = 0, 1, 2, 3 . . .)
orthonormal basis which is adopted to solve the full eigen-
value problem under no approximations apart from those
induced by the finite dimensions of the s.p. and multiphonon
spaces.

The method is free of any spurious contamination coming
from the center-of-mass (c.m.) motion under no constraints
and for any s.p. basis. This is achieved in two steps. We first
decouple the c.m. from the TD states [35] by exploiting the
Gram-Schmidt orthogonalization method. We then remove
the residual contaminations from the multiphonon basis states
by resorting to the singular value decomposition (SVD) of
rectangular matrices [36]. In such a c.m. free formulation, the
method could be applied with a fair success to the study of
bulk and spectroscopic properties of 4He [37]. The advantage
of adopting the c.m. free EMPM with respect to the extensions
of RPA and TDA was illustrated through numerical applica-
tions in Ref. [38].

In the present paper, we have used the NNLOsat chi-
ral potential [39], to be referred to as VS , to generate a
Hartee-Fock (HF) basis in a HO space including 13 major
shells (Nmax = 12) and, then, solved the eigenvalue problem
in a space spanned by the n-phonon basis up to n = 3. The
calculation is exact up to n = 2 whereas the three-phonons
are treated in the diagonal approximation, which consists in
neglecting the interaction between the constituent n = 1 and
n = 2 phonons.

II. BRIEF OUTLINE OF THE METHOD

Assuming known the (n − 1)-phonon basis states |αn−1〉 of
energies Eαn−1 , we construct the set of redundant states

|λαn−1〉 = O†
λ |αn−1〉 , (1)

where

O†
λ =

∑
ph

cλ
pha†

pbh (2)

creates a TD phonon of energy Eλ out of HF vacuum |0〉
through the action of the particle (a†

p = a†
xp jpmp

) and hole

(bh = (−) jh+mh axh jh−mh ) creation operators.
We first extract from the redundant set a basis of linearly

independent (but not orthogonal) states |λαn−1〉 through the
Cholesky decomposition method and use this basis to derive
and solve the eigenvalue problem within the n subspace. To
this purpose, we start with the equations of motion

〈αn−1| [Oλ, H] |αn〉 = (Eαn − Eαn−1 )〈λαn−1 |αn〉 . (3)

After expanding the commutator and performing other ad-
ditional manipulations, we get the generalized eigenvalue

equations

(H − E )DC = 0, (4)

or, more explicitly,∑
jk

(Hαn
ik − Eαnδik

)Dαn
k jC

αn
j = 0. (5)

Here,

Hαn
ik = Hαn

(λαn−1 )(λ′α′
n−1 )

= (Eλ + Eαn−1 )δλλ′δαn−1α
′
n−1

+ Vαn

(λαn−1 )(λ′α′
n−1 ), (6)

where Vαn

(λαn−1 )(λ′α′
n−1 ) defines the phonon-phonon interaction,

and

Dαn
k j = Dαn

(λαn−1 )(λ′α′
n−1 ) = 〈λ′α′

n−1 |λαn−1〉 (7)

is the overlap or metric matrix which preserves the Pauli prin-
ciple. The expressions of D and V can be found, for instance,
in Ref. [33].

At this stage, we exploit the SVD method [36] to single
out and remove the spurious states. The resulting transformed
intrinsic states satisfy the transformed eigenvalue equation

(H′ − E )D′C′ = 0. (8)

The c.m. free n-phonon eigenstates so obtained can be recast
in terms of the original basis

|αn〉 =
∑
λαn−1

Cαn
λαn−1

|λαn−1〉 . (9)

The iteration of the procedure up to an arbitrary n produces a
set of states which, added to the HF vacuum (|0〉) and the TD
phonons ({|α1〉} = {|λ〉}), form an orthonormal basis {|αn〉}
(n = 0, 1, 2, 3 . . .).

Such a basis is used for constructing and solving the eigen-
value problem in the full space∑

αnβn′

[(Eαn − Eν )δαnβn′ + Vαnβn′ ]Cν
βn′ = 0, (10)

where Vαnβn′ = 0 for n′ = n.
The coupling of the n-phonon |α〉 = |αn〉 to the n′-phonon

states |β ′〉 = |βn′ 〉 has the structure

Vαβ ′ =
∑
λ′α′

Vλ′
αα′ 〈λ′α′ |β ′〉 (11)

for n′ = n + 1 and

Vαβ ′ =
∑
α2

〈0| H |α2〉 〈α2α |β ′〉 (12)

for n′ = n + 2. The formulas giving Vλ′
αα′ and 〈0| H |α2〉 can

be found elsewhere [37]. The solution of the final eigenvalue
Eq. (10) yields the eigenvectors (n = 0, 1, 2, 3 · · · )

|�ν〉 =
∑
n,αn

Cν
αn

|αn〉 . (13)
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III. NUMERICAL IMPLEMENTATION AND RESULTS

We adopt a Hamiltonian of the form

H = Tint + V, (14)

where Tint is the intrinsic kinetic energy and V is VS [39],
obtained by optimizing simultaneously the two-body and
three-body components of the χEFT potential at N2LO. The
full three-body force, limited to an energy cutoff E3 max =
12h̄ω, is used to generate the HF basis. It is, instead, trun-
cated at the normal ordered two-body level in solving the
multiphonon eigenvalue problem. This approximation was
discussed in CC using Vlowκ plus a 3N force [40]. More recent
investigations were carried within CC and NCSM using chiral
NN + 3N Hamiltonians evolved through the similarity renor-
malization group [41], and in a CC approach to nucleonic
matter using the Vopt potential plus a 3N force derived from
the chiral effective field theory at N2LO [42].

The numerical procedure goes through the following steps:
(i) Derive a HF basis from a HO space of dimensions Nmax and
frequency ω.; (ii) use the HF states to create the TD phonon
basis; (iii) generate the n-phonon (n = 2, 3 . . .) basis by deriv-
ing and solving iteratively the EMPM Eq. (8); (iv) the basis so
constructed is adopted to solve the final eigenvalue problem
in the multiphonon space [Eq. (10)]. We will examine the
ground-state properties, the spectrum, and the E1 response.

The HF basis was generated from a HO space of frequency
ω and including all major shells up to Nmax. The eigenvalue
Eq. (8) were solved exactly up to two phonons (n = 2). The
three phonons were treated in the diagonal approximation,
which consists in neglecting the phonon-phonon interaction
Vλαλ′α′ in Eq. (6). All the states of energies Eβ3 � Eα2 + Eλ <

180 MeV were included. We have kept only the leading-order
term of the overlap matrix [Eq. (7)] in computing the matrix
elements Vα1β3 [Eq. (12)] and Vα2β3 [Eq. (11)], which cou-
ple the three-phonon |β3〉 to the one-phonon |α1 = λ〉 and
two-phonon |α2〉 states, respectively. Given the huge dimen-
sions of the Hamiltonian matrix, we have extracted only the
eigenstates of excitation energies ων = Eν − E0 � 60 MeV
for Jπ = 1− and ων � 20 MeV for the other Jπ .

A. Ground state

We have studied the convergence of the ground state energy
versus the HO dimensions Nmax and frequency by performing
an exact calculation within the multiphonon space encompass-
ing up to the full two-phonon basis. As shown in Fig. 1(a)
the convergence is reached at Nmax ≈ 10 and h̄ω ≈ 20 MeV.
For our spectroscopic studies we have used Nmax = 12 and
h̄ω = 16 MeV, which is short from reaching convergence
and came out to be the optimal frequency within the more
complete CC calculation [28]. This implies an uncertainty
of ≈1 MeV, which comes mainly from the spreading with
respect to h̄ω. The inclusion of the three phonons adds only
∼200 keV. Thus, the final energy is E0 = −25(1) MeV, still
fairly distant from the experimental value E exp = −31.3961
MeV and from theoretical estimates using the same potential
[28,39].

FIG. 1. Ground-state energy (a) and HF proton and neutron radii
(b) versus the HO frequency for different dimensions Nmax. The
dashed line indicates the experimental value [43].

It is not easy to find the reason of this discrepancy. It
may be due partly to the more restricted HO configuration
space we used, Nmax = 12 and E3 max = 12h̄ω compared to
Nmax = 14 and E3 max = 16h̄ω. Moreover, we have neglected
the coupling between HF and three-phonon states (3p-3h) in-
duced by the normal-ordered residual three-body force. Such
a contribution was estimated to leading order within CC in
Ref. [39], where VS was derived, and, specifically for 8He, in
Ref. [28] using the same potential.

It is worth to point out that the energy is due mainly to the
two-phonon correlations, E (corr)

0 = −20.1 MeV. HF accounts
only for ∼20%. Though contributing marginally to the en-
ergy, HF is by far the dominant component (∼80%) of the
ground-state wave function and yields realistic s.p. energies
(Fig. 2) in qualitative agreement with those determined within
the mentioned EDF approach [29].

It is also to be noted that the spurious contribution com-
ing from the c.m. motion decreases as the dimensions Nmax

increase and eventually becomes negligible. In fact, it ranges
from ≈800 keV for Nmax = 4 to ≈100 keV for Nmax = 12.

We make use of Eq. (13) to evaluate the neutron (τ = ν)
and proton (τ = π ) radii rτ = √〈r2

τ 〉, where

〈r2
τ 〉 = 1

Nτ

(
〈�0|

Nτ∑
i=1

(�rτ (i) − �Rc.m.)
2 |�0〉

)
. (15)

We refer the nucleonic coordinates to the c.m. in order to min-
imize spurious contributions to the HF mean value, the only
quantity which may be affected by the c.m. in our approach.
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FIG. 2. HF proton and neutron single-particle energies.

We have also neglected the cross terms [∝ �ri · �r j (i 
= j)] con-
sistently with Refs. [44,45].

The neutron radius is extracted from the measured matter
radius [18], and the proton one is derived from the experimen-
tal charge radius rch [20] through

〈
r2

ch

〉 = 〈
r2
π

〉 + R2
p + N

Z
R2

n + 3

4m2
p

+ R2
so, (16)

where Rp = 0.8414(19) fm [46] is the proton charge
radius, R2

n = −0.106+0.007
−0.005 fm2 [47] is the neutron charge

square radius, the factor 3/(4m2
p) = 0.033 fm2 is the Darwin-

Foldy term, and R2
so = −0.143 fm2 is the spin-orbit correction

taken from Ref. [28].

FIG. 3. HF neutron (ν) and proton (π ) densities.

TABLE I. HF and EMPM charge, proton, and neutron radii rτ =√〈r2
τ 〉 (in fm).

rch rπ rν rν − rπ

HF 1.95 (6) 1.88 (6) 2.7 (3) 0.8 (3)
EMPM 2.03 (6) 1.96 (6) 2.7 (3) 0.8 (3)
Exp 1.9559(165) 1.883(27) 2.71(8) 0.83(8)

The neutron over the proton excess, displayed in Fig. 3,
determines the root-mean-square radii rτ shown in Table I. All
radii, as well as the neutron skin, are consistent with the cor-
responding empirical quantities. They are determined almost
entirely by HF. As shown in Fig. 1(b), the convergence prop-
erties of the proton radius is fair with a maximum spreading
of ≈0.06 fm. The convergence of the neutron radius versus
frequency and space dimension is rather poor. The spreading
amounts to ≈0.3 fm.

B. Spectrum

Figure 4 shows that the low-lying spectrum contains all
levels that correspond to the experimental ones. It is to be
pointed out that in this figure, as well as in the others, we
use the excitation energies ων = Eν − EHF for n=1 (TD) and
ων = Eν − E0 for n=2 and n=3. The eigenvalues Eν are de-
fined in Eq. (10).

TD and EMPM yield the same number of levels in the
low-lying sector of the spectrum. In fact, the correspond-
ing eigenstates have a one-phonon dominance (�80%). No
two-phonon intruders occur. However, the multiphonon basis
states play the important role of redistributing the levels and
enhancing the separation between the lowest ones consistently
with the experiments.

FIG. 4. TD and EMPM spectra. The experimental data are from
Ref. [43].
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C. Dipole response

We first compute the reduced strength

Bν (E1) = |〈�ν ‖ M(E1) ‖ �0〉|2 (17)

of the electric dipole (E1) transition from the ground to the νth

states [Eq. (13)]

〈�ν‖M(E1)‖�0〉 =
∑
αnαn′

C0
αn
Cν

αn′ 〈αn′ ‖M(E1)‖αn〉, (18)

where

M(E1, μ) = e
A∑

k=1

1 − τ3

2
rkY1μ(r̂k ). (19)

We point out that the c.m. contribution is zero since our
multiphonon wave functions are c.m. spurious free. Therefore,
the present calculation may be also viewed as a test of the
subtraction procedure operated within the EDF approach [29].

The E1 strength is used to evaluate the absorption cross
section

σ =
∫

σ (ω)dω = 16π3

9

e2

h̄c
m1, (20)

where m1 is the first moment

m1 =
∫

ωR(ω)dω, (21)

and

R(ω) = 1

e2

∑
ν

Bν (E1) δ(ω − ων ), (22)

the response function. The δ function is replaced with a
Lorentzian having a width � = 4 MeV in the numerical im-
plementation.

The energy weighted sum can be related to the
Thomas-Reiche-Kuhn sum rule through

m(cl )
1 = h̄2

2m

9

4π

NZ

A
(1 + κ ), (23)

where κ is the enhancement factor coming from the exchange-
and velocity-dependent terms of the Hamiltonian. Finally, we
compute the moments (r = 0,−1)

mr = 1

e2

∑
ν

ωr
νBν (E1). (24)

The inverse moment yields the polarizability

αD = 8π

9
e2m−1 = 8π

9

∑
ν

1

ων

Bν (E1). (25)

With respect to TD, the multiphonon coupling redistributes
the E1-reduced strength among the low-lying levels and pro-
duces damping and fragmentation at higher energy (Fig. 5).
The figure shows distinctly how the coupling to three phonons
brings the peaks back to the region of the TD spectrum.
They were shifted upward for n = 2 because of the depres-
sion of the ground-state energy induced by the strong HF to
two-phonon coupling. Such a mechanism is a general feature
pointed out in previous EMPM calculations [33,36,37] as well
as in a recent different approach [48].

The profile of the resulting cross-section σ (ω) (Fig. 6)
is qualitatively similar to the one obtained within the EDF

FIG. 5. E1 spectra computed within different multiphonon
spaces. The different scales used in the panels are to be noted.

approach [29]. However, the conclusions we draw about the
nature of the spectrum are different. In fact, let us get a more
complete characterization of the 1− states by evaluating the
reduced transition strengths of the isoscalar E1 operator

MIS(E1) = e
A∑

k=1

r3
kY1μ(r̂k ). (26)

As shown in Fig. 7, there is a clear distinction between the
low- and the high-energy sectors. Wherease the high-energy
transitions are purely isovector, the low-energy states, respon-
sible for the first hump in the cross section, are excited by

FIG. 6. E1 cross sections.
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FIG. 7. Isovector versus isoscalar E1 transition strengths.

both isovector and isoscalar operators, a distinctive feature of
a pigmy resonance.

For a better understanding we have computed the TD pro-
ton (τ = π ) and neutron (τ = ν) transition densities through

〈λ ‖ Mτ (λ) ‖ 0〉 =
∫

dr r2rλδρτ
λ , (27)

where

δρτ
λ =

∑
ph

cλ
ph

〈
jplp ‖ Y τ

λ (r̂) ‖ jhlh
〉
Rnplp (r)Rnhlh (r), (28)

Rnl (r) being the radial particle (p) and hole (h) wave func-
tions.

As shown in Fig. 8, neutrons and protons oscillate in
phase at low energy and in opposition of phase at high en-
ergy. It is interesting to observe the smooth transition from
the low-lying to the high-energy regime. Thus, contrary to
what suggested in Ref. [29], we do predict a low-energy
soft mode. Unfortunately we cannot adopt the EMPM to
evaluate the m0 and m1 momenta since we have extracted
the eigenvectors up to ων � 60 MeV. At higher energies, the
spectrum includes many states with dominant three-phonon
configurations, which couple to one- and two-phonon compo-
nents. The description of these states would require an exact
treatment of the three-phonon states. This goal, at the mo-
ment, is not within our reach. On the other hand, we checked
that m0 is strictly conserved in going from TD (n = 1) to
the space including also the two-phonon basis. We verified
that also m1 is preserved if the energy shift of the ground
state induced by the two-phonon coupling is ignored and the
energies are referred to HF. This is what is done also in
the extensions of both TD and RPA and was discussed in
Ref. [38]. Thus, we expect the conservation of these quanti-
ties in the space including up to three phonons, if properly
treated.

Therefore, we take TD as a term of comparison. We get
m0 = 1.44 fm2 and m1 = 32.92 MeV fm2. The m1 exceeds

FIG. 8. Proton (τ = π ) and neutron (τ = ν) λ = 1 transition
densities at different energies.

the energy weighted sum rule (EWSR) by a factor 1 + κ =
1.5. The moment obtained within the EDF approach is fully
consistent with the EWSR (κ = 0) [29]. CC [28], although
using the same potential VS adopted here, yields a larger
enhancement (1 + κ ∼ 2). This discrepancy is fictitious in our
opinion. From comparing our Eq. (20) with the corresponding
CC Eq. (20) [28], we obtain just (m1)CC = 4π

9 m1 ∼ 1.4m1.
Apparently, the ratio between the two formulas is absorbed
in the enhancement factor used in CC.

The inverse moment m−1 and, consequently, αD are de-
termined mainly by the low-energy transitions. Thus, even
our truncated EMPM calculation yields a reliable esti-
mate. As shown in Fig. 9, m−1 saturates at the value
m−1 = 0.074 MeV−1 fm2, yielding a polarizability αD =
0.206 fm3. It came out to be ∼0.8 times the TD values,
m−1 = 0.090 MeV−1 fm2, αD = 0.252 fm3. Both TD and
EMPM estimates are roughly consistent with those obtained
within the EDF [29] approach. They are appreciably smaller
than the CC [28]. On the other hand, as for the first moment
m1, the discrepancy is to be attributed to the different defini-
tions adopted in the two approaches.

IV. CONCLUDING REMARKS

We have seen that our multiphonon approach provides an
exhaustive description of bulk and spectroscopic properties
of the halo 8He. It accounts only for 80% of the binding
energy, which is instead reproduced in other CC calculations
[28,39] using the same potential. The reason of this underes-
timation cannot be ascribed to the method, which was shown
to be perfectly equivalent to an exact diagonalization of the
Hamiltonian in the np-nh (n = 0, 1, 2 . . .) configuration space
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FIG. 9. The running sum determining the dipole polarizability αD.

[38]. We can make only conjectures, such as the truncation
of the space and/or the missing contribution coming from the
residual normal-ordered three-body potential.

On the other hand, our calculation yields radii and neutron
skin fairly close to the corresponding empirical quantities.
The level scheme is consistent with the available experimental
spectrum. This agreement is reached thanks to the coupling to

the 3p-3h configurations incorporated into the three-phonon
basis states.

This consistency could not be achieved if the spurious
admixtures induced by the c.m. motion were not removed.
This is a peculiarity of our method, which has a crucial impact
on the nuclear response.

The global properties of the electric dipole response,
namely dipole and inverse dipole moments, are consistent
with the EDF results and with CC if we take for granted the
different definitions adopted in Ref. [28]. The behavior of
the cross section is qualitatively similar to the one exhibited
by the EDF corresponding quantity. However, contrary to
the conclusions drawn in that approach, our detailed anal-
ysis suggests two distinct collective motions, a low-energy
soft mode and the standard giant resonance. This issue may
be hopefully clarified by the incoming and/or other future
experiments.
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