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Background: Quantum simulations offer the potential to predict the structure and dynamics of nuclear many-
body systems that are beyond the capabilities of classical computing. Generally, preparing the ground state of
strongly interacting many-body systems relevant to nuclear physics is, however, inefficient, even using ideal
quantum computers. In addition, currently available noisy intermediate-scale quantum (NISQ) era quantum
devices possess modest numbers of qubits, limiting the size of quantum many-body systems that can be
simulated. In this context, a reformulation of the quantum many-body problems using truncated model spaces
and Hamiltonians is desirable to make them more amenable to near-term quantum computers. The importance of
symmetries in low-energy theories, including effective field theories (EFTs), lattice quantum chromodynamics
(QCD), and effective model spaces for nuclear systems, in particular their interplay with the reduction of
active Hilbert spaces, is well known. Lesser known is the fact that the noncommutivity of some symmetries
and truncations of the model space can be profitably combined with variational calculations to rearrange the
entanglement into localized structures and enable more efficient simulations.
Purpose: The goal of the present study is to explore and utilize the noncommutivity of symmetries and model-
space truncations of quantum many-body systems important to nuclear physics, particularly in combination with
variational algorithms for quantum simulations and effective Hamiltonian learning.
Method: We introduce an iterative hybrid classical-quantum algorithm, the Hamiltonian learning variational
quantum eigensolver (HL-VQE), that simultaneously optimizes an effective Hamiltonian, thereby rearranging
entanglement into the effective model space, and the associated ground-state wave function. Quantum sim-
ulations, using classical computers and IBM’s superconducting-qubit quantum computers, are performed to
demonstrate the HL-VQE algorithm, in the context of the Lipkin-Meshkov-Glick (LMG) model of interacting
fermions, where the Hamiltonian transformation corresponds to an orbital rotation. We use a mapping where
the number of qubits scales with the logarithm of the size of the effective model space, rather than the particle
number.
Results: HL-VQE is found to provide an exponential improvement in LMG-model calculations of the ground-
state energy and wave function, compared to naive truncations without Hamiltonian learning, throughout a
significant fraction of the Hilbert space. In the context of EFT, this corresponds to counterterms scaling
exponentially with the cutoff as opposed to power law. Implementations on IBM’s QExperience quantum
computers and simulators for one- and two-qubit effective model spaces are shown to provide accurate and
precise results, reproducing classical predictions.
Conclusions: For a range of parameters defining the LMG model, the HL-VQE algorithm is found to have better
scaling of quantum resources requirements than previously explored algorithms. In particular, the HL-VQE
scales efficiently over a large fraction of the model space, in contrast to VQE alone. This work constitutes a step
in the development of entanglement-driven quantum algorithms for descriptions of nuclear many-body systems.
This, in part, leverages the potential of noisy intermediate-scale quantum (NISQ) devices. The exponential
scaling of counterterms observed in this study suggests the possibility of more general applicability to other
nonperturbative EFTs.
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I. INTRODUCTION

Future quantum computers will allow us to predict the
properties and dynamics of physically relevant quantum
many-body systems that are inaccessible to classical comput-
ing [1–10], including nuclei and dense matter. It is the capa-
bility to control and maintain coherence, entanglement, and

2469-9985/2023/108(2)/024313(31) 024313-1 ©2023 American Physical Society

https://orcid.org/0000-0001-5487-270X
https://orcid.org/0000-0001-6502-7106
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.108.024313&domain=pdf&date_stamp=2023-08-18
https://doi.org/10.1103/PhysRevC.108.024313


CAROLINE E. P. ROBIN AND MARTIN J. SAVAGE PHYSICAL REVIEW C 108, 024313 (2023)

quantum correlations that allows some classically inefficient
simulations to be performed efficiently with (ideal) quan-
tum computers. One of the major features of such devices
is the linear scaling of the memory requirement (number
of qubits) needed to map a full N-particle Hilbert space.
However, even with this capability, the required time for solv-
ing some important nuclear many-body problems on quantum
computers in an exact way generally remains superpolynomial
in the number of particles, residing in the QMA complexity
class [11], rather than in BQP. This scaling can be mitigated by
applying truncations of the full Hilbert space and Hamiltonian
to render the problem solvable in polynomial time. Such trun-
cations, which can be made in space-time, of the continuous
fields, in the dimensionality of local Hilbert spaces, and so
forth, are usually justified because only a subset of the Hilbert
space is expected to be relevant to the description of ground
or low-lying excited states. Furthermore, currently available
quantum devices, in addition, suffer from important limita-
tions such as noise, limited number of qubits and connectivity,
as well as gate and measurement errors. In this context, trun-
cations of the Hilbert space allow for a reduction of the circuit
sizes, in terms of both qubit and gate numbers, decreasing the
noise and errors, thus making such circuits more suitable for
implementation on current noisy intermediate-scale quantum
(NISQ) [12] devices. Extracting meaningful predictions from
the truncated spaces then requires a complete quantification of
uncertainties in the simulations, and therefore theoretical and
algorithmic understandings of these truncations is essential
(for a recent review, see, for example, Ref. [13]).

In addition to truncations of the model space, simulations
of systems with truncated “nearby” Hamiltonians, with sys-
tematically removable deviations from a target Hamiltonian,
can also provide reliable results [13], if the associated uncer-
tainty is within the target uncertainty of the computation. In
this context, the use of effective field theory (EFT) naturally
lends itself, as, in principle, the order of truncation of the EFT
can be matched to the size of the simulation error through an
iterative tuning procedure [13]. EFTs, effective interactions,
and effective model spaces have been extensively employed
in modern nuclear physics for the simulations of few- and
many-baryon systems, and have provided new pathways for
classical simulations to address quantities of interest, well
before reliable predictions from quantum chromodynamics
(QCD) become possible [14–17]. It is also the means by
which lattice QCD calculations furnish results for low-lying
processes. The simulated Hamiltonian(s) derived from, for
example, EFT and variants thereof can be systematically im-
proved in support of more precise numerical computations of
the systems of interest as they become practical. In the context
of quantum simulations, an expansion of the EFT to higher
orders can be made as experimental progress is achieved in
building quantum devices.

For an EFT to be predictive, it must capture the low-
energy degrees of freedom with effective interactions that
systematically recover S-matrix elements order by order in
an expansion (that may or may not involve non-perturbative
resummations), with a power-counting defined in the context
of a regularization and renormalization scheme. The chal-
lenge in applying EFTs to nuclear systems is the size of

the expansion parameters, which can be uncomfortably large,
and establishing a consistent power-counting scheme. Clas-
sic examples of EFTs that are useful for nuclear physics
are chiral perturbation theory (χPT) [18,19], heavy-baryon
chiral perturbation theory (HBχPT) [20], and nuclear EFT
[21–24], which are designed to implement the approximate
global chiral symmetries of QCD. These techniques continue
to be merged with more traditional nuclear shell-model and
effective model-space frameworks (see, e.g., Ref. [25] for a re-
cent review), so that predictions for nuclei and multi-nucleon
systems are consistent with QCD. Ultimately, the objective of
the EFT program is to match effective nuclear forces to QCD,
which can then be used in nuclear many-body calculations
performed in effective model spaces, for the description of
both structure properties and dynamical processes, e.g., as
discussed in Refs. [14,26]. In the area of quantum simulations
of dynamics, it has recently been shown that product formula
can be used to evolve states in a low-energy space forward
in time with only exponentially small leakage into the high-
energy space [27], consistent with the rigorous use of effective
model spaces and EFTs.

The present work has emerged from considerations of en-
tanglement as an organizing principle for nuclear structure
calculations [28–42]. In a previous study [33], we ana-
lyzed the entanglement structures of single-particle orbitals
emerging from ab initio no-core configuration-interaction cal-
culations of light nuclei. In particular, we investigated how
transformations of the single-particle basis into a natural basis
could minimize and rearrange entanglement into a localized
part of the Hilbert space. Including two-nucleon correla-
tions in light nuclei to define variational natural (VNAT)
single-particle orbitals localized the one-orbital entanglement
entropy around the Fermi level, and eliminated two-orbital
negativity in the nuclear wave function. The variational char-
acter of the VNAT basis was found to restrict the two-orbital
mutual information to the truncated space and decoupled the
inactive space. In that sense, the VNAT basis minimizes the
number of many-body basis states necessary to describe the
nuclear wave function, and reduces the loss of information
originating from the model-space truncation. More recently,
the valence-space density matrix renormalization group (VS-
DMRG) has been used to compute orbital entanglement
entropy and mutual information in sd-shell nuclei, to motivate
a reorganization of orbitals [40].

Following our earlier work, we investigate whether the
localization of entanglement structures can be utilized in de-
signing efficient quantum simulations of nuclear many-body
systems amenable to quantum computers, including NISQ
devices. Our present study takes a step in that direction,
and demonstrates that an orbital transformation, equivalent
to transformation of the Hamiltonian, provides an efficient
mechanism for including quantum correlations in low-lying
states of a model many-body system in quantum simulations,
and is also potentially useful for classical simulations.

The widely appreciated Lipkin-Meshkov-Glick (LMG)
model is a useful “sandbox” for testing new ideas that may
have applicability (to varying degrees) to realistic nuclear sys-
tems and forces. The separation of scales in realistic systems
means that the ideas developed within the LMG model have
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also been helpful in those systems. Its rich phenomenology
from a simple Hamiltonian provides sufficient complexity that
has led to a number of previous studies that explore quan-
tum correlations and entanglement [36–38,43–48], quantum
algorithms [49–52], and more, to develop understanding and
techniques that can be applied to quantum simulations of
nuclei and multinucleon systems. Previous quantum simula-
tions of the LMG model [49–52] have directly mapped the
elementary SU(2) spaces associated with each fermion to
qubits in the quantum computer (or classical simulator). In
this way VQE has been used to determine the ground state of
few-nucleon systems in the model [49] using IBM’s quantum
computers [53], and ADAPT-VQE [54,55] has been used to
examine systems of up to N = 12 nucleons using a classical
simulator [51]. That extensive study explored the behavior of
ADAPT-VQE building upon the trivial 0p-0h state and also
the Hartee-Fock ground state. The authors also applied their
techniques to valence model spaces of nuclei in the sd and p f
shells, with interesting results, concluding that there could be
substantial benefits to applying such quantum algorithms to
nuclear structure calculations. One of these studies [52] also
considered a number of other mappings, including the J-space
mapping (that we utilize in this work) and binary encoding
of the occupation number with consideration of the efficient
Gray code, with good results obtained for the ground states,
and also excited states, for small systems.

In this work, we examine the utility of effective model
spaces for hybrid classical-quantum simulations of nuclear
many-body systems. Specifically, we explore potential advan-
tages of simultaneously learning the effective-model-space
Hamiltonian and finding the ground-state wave function in
the LMG model, introducing the Hamiltonian-Learning-VQE
algorithm, which is similar to the orbital-optimized VQE
(oo-VQE) algorithm used by quantum chemists [56,57], but
differing in the truncation used in defining the effective model
space(s). The truncation we employ more closely resembles
that employed in the EFTs mentioned above, aligning to a
greater extent with the Wilsonian renormalization group or-
ganization, than with the coupled-clusters truncation(s) used
in quantum chemistry. The optimized ground state in the
one-dimensional effective model space corresponds to the
Hartee-Fock state, while the ground state in larger spaces
systematically and self-consistently includes higher-body cor-
relations. The exponential improvement in convergence of the
estimated ground-state energy that we find from the optimiza-
tion, means that the VQE algorithm, which naively scales
poorly on quantum devices, scales favorably when the Hamil-
tonian in the effective model space is also learned.

The main points emerging from the present work are

(i) The use of EFTs and effective model spaces for
quantum simulations of nuclear structure calculations
is explored in the context of the Lipkin-Meshkov-
Glick model. Simultaneously optimizing the effective
Hamiltonian and ground-state wave function in (trun-
cated) effective model spaces, using the ground-state
energy as the cost-function, leads to exponential im-
provements in the ground-state energies and wave
functions throughout a significant fraction of the

Hilbert space over naive truncations of the Hamil-
tonian. We anticipate that the ideas and results are
broadly applicable.

(ii) A Hamiltonian learning variation of the VQE algo-
rithm, HL-VQE, is introduced that simultaneously
optimizes the Hamiltonian and variational ground-
state wave function in a truncated model space, that
is amenable to quantum simulations and scales ef-
ficiently [because of the above obervation(s)]. The
algorithm is hybrid-classical-quantum, where expec-
tation values of the Hamiltonian and its gradients
are evaluated using a quantum computer, while the
variations of the Hamiltonian and wave function pa-
rameters are performed classically.

(iii) Quantum simulations in effective model spaces us-
ing one and two qubits are performed using IBM’s
quantum computer ibm_lagos, which is one of the
IBM Quantum Falcon Processors [53], and simulator
AER using the QISKIT [58] API. These simulations
demonstrate techniques and workflows that could be
implemented on more capable quantum computers,
providing results that recover the exponential con-
vergence of ground-state energies and wave function
fidelities.

The outline of the paper is as follows: Section II introduces
the LMG model in detail, particularly its representation in
terms of SU(2) angular momentum states and the correspond-
ing Hamiltonian in that basis. These results naturally lend
themselves to considering effective model spaces and effec-
tive Hamiltonians with a variational parameter associated with
global rotations. This is detailed in Sec. III, which presents
results obtained with classical calculations for the conver-
gence of the ground-state energy and wave function fidelity
for selected model parameters and system sizes, along with an
overview of the theoretical fabric defining the logic of the ef-
fective model space calculations. The algorithms, techniques,
quantum circuits, gradient descent, and more associated with
the HL-VQE algorithm that we use for quantum simulations
performed using IBM’s quantum computers are detailed in
Sec. IV. Results obtained from one- and two-qubit quantum
simulations using ibm_lagos and classical simulator AER
are presented and discussed in Sec. V, where estimates of
quantum resources required for simulations using more ca-
pable quantum computers are also provided. In Sec. VI, we
conclude and summarize the results of this work.

II. THE LIPKIN-MESHKOV-GLICK MODEL

The Lipkin-Meshkov-Glick (LMG) model [59] describes
a system of N interacting fermions, each distributed be-
tween two levels separated by an energy ε, labeled by σ =
±. Each level is N-fold degenerate, with (noninteracting)
single-particle states labeled by p = 1, 2, . . . , N .1 This is

1This is equivalent to a system of N s = 1
2 particles immersed in

a magnetic field, where each spin interacts with all of the others
[43,44].
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FIG. 1. Lowest-energy noninteracting (0p-0h) configuration of a
system of N particles in the LMG model.

illustrated in Fig. 1, which shows the lowest-energy, or zero-
particle–zero-hole (0p-0h), noninteracting configuration of
the system. In the LMG model, the particles are assumed
to interact via a monopole-monopole interaction that scatters
pairs of particles between states of the upper and lower levels
having the same value of p. The Hamiltonian governing the
system has the form

Ĥ = ε

2

∑
σ p

σc†
pσ cpσ − V

2

∑
pqσ

c†
pσ c†

qσ cq−σ cp−σ

= εĴz − V

2
(Ĵ2

+ + Ĵ2
−), (1)

where the operators c†
pσ and cpσ create and destroy a fermion

in level σ of state p, respectively, and Ĵz, Ĵ+, Ĵ− are collective
quasi-spin operators defined as

Ĵz = 1

2

∑
pσ

σc†
pσ cpσ ,

Ĵ+ =
∑

p

c†
p+cp−,

Ĵ− = (J+)† =
∑

p

c†
p−cp+, (2)

which generate an su(2) algebra.
The Hamiltonian in Eq. (1) preserves a number of symme-

tries. In particular, it conserves rotational invariance so that
(exact) eigenstates |� (J )

ex 〉 of Ĥ can be expanded in the basis
{|J, M〉} formed by eigenstates of Ĵ2 and Ĵz as

∣∣� (J )
ex

〉 =
J∑

M=−J

AJ,M |J, M〉. (3)

Exact solutions can then be obtained via diagonalization of
the Hamiltonian in the {|J, M〉} basis, which is equivalent to
minimizing the energy of the system with respect to the coef-
ficients {AJ,M}. In the present work, we are interested in deter-
mining the ground state, which corresponds to diagonalization
in the block characterized by J = N/2. The quantum num-
ber M, eigenvalue of Ĵz, denotes the different noninteracting
configurations of the system. For instance, the configuration
where all particles are in the lower level (0p-0h configu-
ration) corresponds to |J = N/2, M = −N/2〉 (see Fig. 1),
the configurations with one particle in the upper level (1p-
1h configurations) are contained in |J = N/2, M = 1 − N/2〉,
and so on, up to the configuration where all N parti-
cles are in the upper level (Np-Nh), which corresponds
to |J = N/2, M = N/2〉. In the rest of the paper, we will
thus adopt the following short-hand notation to denote the

many-body basis states:

|n〉 ≡
∣∣∣∣J = N

2
, M = n − J = n − N

2

〉
, (4)

where n denotes the excitation order (np-nh) of the state.
The specific form of the interaction in Eq. (1) also pre-

serves the number of particles in a given state p (because V
scatters particles between states with same value of p), which
is associated with the operator

N̂p =
∑

σ

c†
pσ cpσ , (5)

with 〈� (J )
ex |N̂p|� (J )

ex 〉 = 1, as well as “parity” symmetry (some-
times referred to as number-parity symmetry [51]) associated
with

�̂ = eiπN̂+ , (6)

where

N̂+ =
∑

p

c†
p+cp+ = Ĵz + N

2
(7)

counts the number of particles in the σ = + upper level. The
configurations with an even (odd, respectively) number of par-
ticles in the upper level are eigenstates of �̂ with eigenvalue
+1 (−1, respectively):

�̂|n〉 = (−1)n|n〉. (8)

This parity symmetry is due to the fact that V only scatters
pairs of particles.

The matrix elements of the Hamiltonian in Eq. (1) are

〈n′|Ĥ |n〉 = ε Cz
n δn′,n − V

2
(C+

n δn′,n+2 + C−
n δn′,n−2), (9)

where

Cz
n = M = n − J,

C+
n =

√
J (J + 1) − M(M + 1)

√
J (J + 1)−(M + 1)(M + 2),

=
√

J (J + 1) − (n − J )(n − J + 1)

×
√

J (J + 1) − (n − J + 1)(n − J + 2),

C−
n =

√
J (J + 1) − M(M − 1)

√
J (J + 1) − (M − 1)(M − 2)

=
√

J (J + 1) − (n − J )(n − J − 1)

×
√

J (J + 1) − (n − J − 1)(n − J − 2). (10)

Thus the Hamiltonian only connects configurations with exci-
tation orders differing by zero or two units, as imposed by the
parity symmetry. Consequently, the interacting ground state
will be restricted to a superposition of even-n components
(0p-0h, 2p-2h, . . . ), while states with odd-n configurations
(1p-1h, 3p-3h, . . . ) will correspond to excited states.

It is worth briefly considering the behavior of the sys-
tem in the N → ∞ limit. With appropriate rescaling, the
discrete states map toward a continuum in n-space, and the
Hamiltonian matrix can be identified with the finite-difference
form of a second-order differential equation. For a range
of Hamiltonian parameters, the lowest-lying solutions of
the equation have wave functions that fall exponentially for
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large-, and consequently, the energy difference between the
lowest-lying even- and odd-parity states falls exponentially
with N , while the gap to the first excited states (with same
parity as the ground state) tends to a nearly N-independent
value. Thus, the ground state of the LMG-Hamiltonian is
doubly degenerate in the large-N limit, with states of opposite
parity that are gapped to nearest excitations.2

III. EFFECTIVE MODEL SPACES FOR THE
LIPKIN-MESHKOV-GLICK MODEL

When all configurations are included in Eq. (3), the so-
lution does not depend on the single-particle basis that is
used to build the configurations |n〉. In realistic many-body
calculations, however, one is typically forced to truncate such
an expansion in order to make the diagonalization problem
tractable. Once a truncation is made, the solution will depend
on the nature of the single-particle states, which can also be
optimized via a variational principle. Minimizing the energy
with respect to both expansion coefficients and orbitals cor-
responds to the approach known as the multiconfiguration
self-consistent field (MCSCF) method in quantum chemistry
(see, e.g., Ref. [62]). This approach has also been applied to
classical calculations of nuclear systems [63,64], and showed
good entanglement properties in ab initio calculations of light
nuclei [33]. In particular, it was found that the optimized or-
bitals led to an increased localization of quantum correlations
within the basis.

In the LMG model, in order to preserve the rotational
invariance and the symmetry associated with the operator N̂p

in Eq. (5), the orbital transformation between the original and
optimized single-particle bases is restricted to only mix states
of the lower and upper levels with the same value of p. This
can be written as a unitary transformation corresponding to a
rotation of the individual quasispins around the y axis by an
angle β, as(

cp+(β )
cp−(β )

)
=

(
cos(β/2) − sin(β/2)
sin(β/2) cos(β/2)

)(
cp+
cp−

)
. (11)

where cpσ ≡ cpσ (β = 0) is the operator annihilating a particle
in the original single-particle state (p, σ ). After this rotation,
a truncation can be made by imposing a cutoff 
 in the sum-
mation in Eq. (3) to include np-nh configurations with n �

 − 1. The effective (truncated) many-body state becomes

|�〉(
) =

−1∑
n=0

A(β )
n |n, β〉, (12)

where the basis states |n, β〉 are np-nh configurations built
on the rotated single-particle basis. In Eq. (12), |�〉(
) ≡
|�〉(
)(β ) with the explicit β dependence omitted in what
follows.

The effective Hamiltonian can then be written in
terms of the rotated collective quasispin operators,

2The ground-state sector of the LMG model with particular
Hamiltonian parameters possesses properties for a variant of a parity-
encoded logical qubit [60,61].

�̂J (β ) = Û †(β ) �̂J Û (β ), where Û (β ) = e−iĴyβ , as

Ĥ (β ) ≡ U †(β )ĤU (β )

= ε

[
cos β Ĵz(β ) + 1

2
sin β[Ĵ+(β ) + Ĵ−(β )]

]

− V

4
[sin2 β[4Ĵz(β )2 − {Ĵ+(β ), Ĵ−(β )}]

+ (1 + cos2 β )[Ĵ+(β )2 + Ĵ−(β )2] − 2 sin β cos β

× [{Ĵz(β ), Ĵ+(β )} + {Ĵz(β ), Ĵ−(β )}]], (13)

where the Ĵz,±(β ) operators can be expressed in terms of
cpσ (β ) and c†

pσ (β ) in analogy with Eq. (2) (see Appendix A
for details), and {Â, B̂} = ÂB̂ + B̂Â denotes an anticommuta-
tor. This unitary transformation of the Hamiltonian preserves
the energy eigenvalues in the absence of truncation, but mod-
ifies the eigenvalues for arbitrary 
. Ĥ (β ) thus represents
an effective Hamiltonian acting in the truncated many-body
space. We see from Eq. (13) that this effective Hamiltonian
connects states |n, β〉 and |n ± 1, β〉 (when β 	= 0), thus the
summation in Eq. (12) now runs over both even and odd
values of n. The corresponding matrix elements of Ĥ (β ) are
given in Appendix A. The angle β and set of coefficients
{A(β )

n } are determined by applying a variational principle
to the energy of the system E (
) = 〈� (
)|Ĥ (β )|� (
)〉 −
η〈� (
)|� (
)〉, where η is a Lagrange parameter ensuring nor-
malization of the many-body state |�〉(
).

The transformed and truncated effective Hamiltonian in
Eq. (13) is not expected to be complete in the sense of ex-
actly reproducing energy eigenvalues for the 
 levels, but
is expected to capture the one-body mean-field contributions
and systematically include the effect of correlations beyond
mean-field with increasing 
. To put this construction in the
framework of low-energy EFT, beyond the leading-order (LO)
Hamiltonian in Eq. (13) there are additional operators with co-
efficients (counterterms) that are required to be determined by
matching to the full theory. In the analysis that follows, these
coefficients are set equal to zero, and we focus on optimizing
results from the LO Hamiltonian. Interestingly, comparisons
with the exact results show that the omitted contributions from
the counterterms are exponentially suppressed with increasing

 for 
 
 N , above which an unexpected plateau region is
found; see Sec. III B. In the context of mapping to the register
of a quantum computer, this exponential behavior corresponds
to double-exponential behavior with respect to the number of
qubits.

To recover the approximation to the exact state in Eq. (3)
from the effective state |�〉(
) in Eq. (12), it is useful to
reexpress |�〉(
) in the original unrotated basis (β = 0) as

|�〉(
) =
N∑

m=0

A(β=0)
m |m, β = 0〉, (14)

where

A(β=0)
m =


−1∑
n=0

A(β )
n 〈m, β = 0|n, β〉. (15)
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Note that the summation in Eq. (14) is not limited to a cer-
tain cutoff, and thus includes all possible configurations (up
to Np-Nh configurations). The overlap between many-body
basis states built on the original and rotated single-particle
states are simply given by the matrix representing the rotation
of angle β around axis y as

〈m, β = 0|n, β〉 = 〈J, M ′ = m − J|eiJyβ |J, M = n − J〉
≡ dJ

M ′=m−J,M=n−J (β ), (16)

with J = N/2 and (see, e.g., Ref. [65])

dJ
M ′,M (β ) =

(
(J + M ′)!(J − M ′)!
(J + M )!(J − M )!

)1/2 ∑
s

(
J + M

J − M ′ − s

)

×
(

J − M

s

)
(−1)J−M ′−s(cos β/2)2s+M ′+M

× (sin β/2)2J−2s−M ′−M , (17)

where the sum over s is restricted by 1/(n!) = 0 for
n < 0.

Given the nature of the wave function obtained in an ef-
fective model space, |�〉(
), a projection onto states of good
parity, |�〉(
)

± , should be subsequently performed, which can
be obtained from

|�〉(
)
± = 1

2 (1 ± �)|�〉(
). (18)

It is straightforward to see from the matrix elements of
H (β ) (see Appendix A) that the states |�〉(
) and �̂|�〉(
) =∑

n�
−1 A(β )
n (−1)n|n,−β〉 are degenerate. In the unrotated

basis, the projection procedure amounts to canceling the coef-
ficients A(β=0)

m for odd values of m for the case of |�〉(
)
+ , and

even values of m for |�〉(
)
− , followed by a rescaling of the

coefficients to normalize |�〉(
)
± to 1. Note that, in this work,

we perform the projection after the minimization procedure.
In nuclear physics this is usually referred to as “projection
after variation” [66]. Techniques for projecting quantum states
in quantum simulations of nuclear many-body systems have
been developed in Refs. [67–70].

To quantify the rate of convergence of the approximate
wave function with respect to the size of the model space,
we will compute the Bures distance [71] DB(
) as a mea-
sure of the distance between the exact state |�ex〉 given
in Eq. (3) and the effective projected state |�〉(
)

+ given in
Eq. (18):

DB(
) =
√

2(1 − |〈�ex|�〉(
)
+ |), (19)

which we find to be a more useful measure of fidelity for
our purposes, as opposed to the usual overlap of states. Fig-
ure 2 summarizes the successive steps of the calculation.
The minimization of the ground-state energy in an effective
model space can be performed using classical computers (this
section), or using quantum or hybrid classical-quantum com-
putations (see Secs. IV and V). As mentioned above, in the
case of the LMG model, the Hamiltonian Ĥ preserves the
parity symmetry associated with the operator �̂ in Eq. (6).
This symmetry is broken by the transformation Û (β ) and thus
needs to be restored. We perform this restoration subsequently

FIG. 2. Flow chart of the calculation. Starting from the full-space
Hamiltonian Ĥ given in Eq. (1), with exact eigenvectors |�ex〉, an
effective model space is defined, characterized by a given cutoff 
,
as well as a unitary transformation Û (β ) corresponding to a rotation
of the quasispin operators by angle β. The transformed Hamilto-
nian Ĥ (β ) = Û †(β )ĤÛ (β ), defined in Eq. (13), possesses the same
eigenvalues as Ĥ . However, the goal is to determine the optimal
transformation Û (β ) so that the truncated transformed Hamiltonian,
diagonalized in the effective model space 
, reproduces the ground-
state energy of the full Hamiltonian with only a small error. Such an
optimal value of the angle β is determined via a variational principle
applied to the energy of the system.

to the calculation according to Eq. (18). Note that the pro-
jection introduces components outside of the truncated model
space 
. We emphasize, however, that the need for projection
is specific to the LMG model studied here. The forces gov-
erning realistic nuclear systems do not possess the symmetry
associated with the operator �̂, and the effective state in the
MCSCF approach typically preserves the symmetries of the
Hamiltonian [63].

A. Example system: N = 30

In order to gain physical insight into the model, and to
illustrate the capability of the method, we first investigate both
the energy and wave function of the ground state, obtained
from classical calculations, using different values of the cutoff

 for a system of N = 30 particles.

The truncation 
 = 1 corresponds to the Hartree-Fock
(HF) limit, i.e., when the many-body state is restricted to
the configuration |n = 0, β〉, where all particles occupy the
lower level of the rotated basis. This approximation has been
extensively studied (see, e.g., Ref. [72]), and it is well known
that in this case β becomes nonzero above a critical value
of the ratio of the single-particle and interaction terms in the
Hamiltonian v̄ = (N − 1)V/ε. In particular, the transition to a
parity-broken (“deformed”) phase occurs at v̄ = 1.0. Figure 3
shows the relative difference between the exact and HF energy
(green curve), as a function of v̄. As is well known, the HF
approximation works best for large values of v̄, away from
the phase transition, where the error drops below 1%. Close to
the phase transition, correlations beyond HF are required for
a correct description of the system. This is illustrated by the
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FIG. 3. Relative error | Eex−E (
)
Eex

| (in %) in the ground state energy
as a function of v̄, obtained for different values of the cutoff 
, for a
system of N = 30 particles.

other curves of Fig. 3, which have been obtained with cutoff
values 
 = 3, 5, 7, 9.

In the following, we examine the behavior of the ground-
state wave function away from and around the phase
transition, obtained with two different values of the interaction
ratio v̄ = 2.0 and v̄ = 1.2, respectively. Figure 4 shows the
composition of the many-body wave function in terms of
the components |n, β〉 built on the rotated basis, for the case
v̄ = 2.0. The corresponding values of β obtained variationally
for each cutoff 
 are shown in Table I. Note that when 


takes an even value, the configuration with maximal excitation
order n = 
 − 1 is always found to have zero amplitude in the
wave function (see Appendix C for discussion). This is why
the results in Table I do not change when 
 → 
 + 1 for odd

. We see that as 
 (and thus the model space) increases, the
angle β decreases, and the wave function becomes fragmented
into several components. For low values of 
, the wave func-
tion remains well localized around the n = 0 configuration in
the effective model space, and the contribution from higher
n states decreases rapidly. This rapid falloff is expected to
increase the efficiency of the quantum simulations (performed
in Sec. V). As 
 → N we observe a transition towards a
parity-unbroken phase (β = 0) at 
 = 21, and we find that the

FIG. 4. Absolute value of the amplitudes A(β )
n in the effective

wave function, obtained for N = 30, v̄ = 2.0, and different cutoff
values.

TABLE I. Values of the angle β obtained for different values of
the cutoff 
, for a system of N = 30 particles, and v̄ = 2.0. The
solution obtained for even values of 
 is the same as for the odd
cutoff 
′ = 
 − 1 (see discussion in Appendix C).


 β 
 β

1,2 1.047 17,18 0.289
3,4 1.016 19,20 0.150
5,6 0.977 21,22 0.0
7,8 0.906 23,24 0.0
9,10 0.791 25,26 0.0
11,12 0.664 27,28 0.0
13,14 0.538 29,30 0.0
15,16 0.415 31 0.0

wave function evolves towards the exact (full-Hilbert-space)
solution.

The transformation in Eq. (17) is implemented in order to
compare the exact and effective (truncated) wave functions.
The results are shown in Fig. 5 for the case 
 = 3. The black
histograms show the exact wave function, which is distributed
over ≈10 states, from 0p-0h to 20p-20h, and is peaked around
6p-6h and 8p-8h. The light blue histograms correspond to the
effective wave function expressed in the original β = 0 basis,
as in Eq (14). The trend of the exact distribution is rather
well reproduced, however, we observe nonzero contributions
from states characterized by odd values of m. These odd-m
components are due to the fact that the transformation Eq. (11)
breaks the parity symmetry associated with the operator �̂ in
Eq. (6) since

�̂|n, β〉 = (−1)n|n,−β〉, (20)

and thus the state |�〉(
) in Eq. (12) is no longer eigen-
state of �̂. One should therefore project |�〉(
) onto a
parity-preserving state |�〉(
)

± , as discussed in the previous
section around Eq. (18). The dark blue histograms in Fig. 5
correspond to the effective wave function expressed in the
original β = 0 basis, after projection onto a good parity state

FIG. 5. Absolute value of the amplitudes A(β=0)
m in the effective

wave function [see Eq. (14)], obtained for N = 30, v̄ = 2.0, and 
 =
3. The light are dark blue histograms show the results before and after
projection onto a good-parity state, respectively. For comparison the
exact wave function is shown in black.
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FIG. 6. Absolute value of the amplitudes A(β=0)
m obtained after

projection of the effective wave function, for N = 30, v̄ = 2.0, and
different cutoff values.

via Eq. (18). Even though there remain discrepancies in the
tails of the distribution, the 
 = 3 states in the effective space
well recover the exact wave function. These discrepancies are
rapidly corrected as 
 increases. This can be seen from Fig. 6
which displays the convergence of the effective wave function
in the original β = 0 basis. The Bures distance is displayed
in Fig. 7 as a function of the cutoff 
 (red points). For com-
parison we also show the Bures distance between the exact
state and the truncated state with fixed value of β = 0 (black
points). Evidently, applying a truncation to the model space
without rotating the single-particle basis only yields a polyno-
mial convergence of the wave function. In contrast, when β is
determined variationally, the convergence is accelerated and
matches an exponential behavior, up to 
 = 15. For 
 > 15
the Bures distance increases from its local minimum value in
order to recover the β = 0 (symmetry-unbroken) solution at

 = 21, as shown in Table I.

It is also interesting to study the behavior of the system
around the phase transition. For example we consider here
the case v̄ = 1.2. Figures 8 and 9 show the amplitude of the
configurations built on the rotated and original (β = 0) bases,
respectively. The corresponding optimal values of the angle

FIG. 7. Bures distance DB(
) [Eq. (19)] as a function of the
cutoff 
 for N = 30 and v̄ = 2.0. The red points show the results
obtained when optimizing the angle β via the variational principle,
while the black points are the results obtained with β = 0.

FIG. 8. Absolute value of the amplitudes A(β )
n in the effective

wave function, obtained for N = 30, v̄ = 1.2, and different cutoff
values.

β are shown in Table II. Figure 9 shows that the HF (
 = 1)
approximation leads to a poor description of the wave func-
tion in the region near the phase transition. This was already
pointed out in the original paper [72]. In particular, the weight
of the m = 0 basis state (0p-0h) is largely underestimated,
while the contributions of the m = 2 and m = 4 states (2p-2h
and 4p4h) are significantly overestimated, compared to the
exact solution. Including correlations by increasing 
 rapidly
corrects for this behavior. However, because the exact wave
function is already localized around the 0p-0h configuration,
and is contained within a few number of basis states, the
effective wave function quickly converges towards the result
characterized by β = 0 (see Table II). Thus, it appears that,
near the phase transition, the full-space and truncated-space
wave functions have comparable support, i.e., the number of
basis states spanning these two wave functions is of the same
order, and in that sense, there is no separation of scales to
utilize.

B. Convergence of effective-model-space calculations
with � and N

Figure 10 shows the difference between the energy of the
exact ground state and the state in the effective model space

FIG. 9. Absolute value of the amplitudes A(β=0)
m in the effective

wave function [see Eq. (14)], obtained for N = 30, v̄ = 1.2, and
different cutoff values.
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TABLE II. Values of the angle β obtained for different values of
the cutoff 
, for a system of N = 30 particles, and v̄ = 1.2.


 β

1 0.586
3 0.496
5 0.371
7 0.113
9 0.000

(plain circles),

�E (
) = |Eex − E (
)|, (21)

obtained for v̄ = 2.0, and for particle numbers N = 32
(green), N = 64 (blue) and N = 96 (red). For comparison,
�E (
)β=0 obtained for β = 0 (empty circles) is also shown.
The latter exhibits a polynomial convergence of the energy
with respect to the size of the model space. This behavior
is consistent with the convergence of the Bures distance of
the wave function in Fig. 7. Similarly, optimizing β also
accelerates the convergence of the energy is a way that is
consistent with exponential convergence, up to a certain value
of 
, after which �E (
) reaches a plateau, before merging
with the β = 0 solution. This behavior can again be easily
understood, since for large 
 the solution has to converge to
the exact one with β = 0. Because of the faster convergence of
�E (
) for small cutoffs, the plateau region is thus necessary
to link the symmetry-broken β 	= 0 and symmetry-unbroken
β = 0 phases. The full squares in Fig. 10 display the energy
difference �E (
)proj = |Eex − E (
)proj| obtained after pro-
jecting onto a state of good parity. The projection sustains the
exponential convergence to larger values of 
, and allows for
an improvement in precision by several orders of magnitude.

FIG. 10. The difference between the exact and effective model
space ground-state energies �E (
) as a function of 
 for v̄ = 2.0
and for particle numbers N = 32, 64, and 96. The plain circles and
squares are the results obtained without and with projection onto a
good-parity state, respectively. The empty circles show the results
obtained when fixing β = 0 and increasing the model space. Numer-
ical values for the shown results can be found in Tables X, XI, and
XII.

Around 
 ∼ N/2, the solution starts converging toward the
β = 0 solution.3

IV. QUANTUM SIMULATIONS: GENERAL TECHNIQUES
FOR HL-VQE

As discussed in earlier sections, the Hamiltonian in trun-
cated effective model spaces generally contains parameters
that are absent in the full Hilbert space, β, which relate
full-space and effective-space ladder operators. There are sta-
tionary values of β that, when combined with an optimal wave
function, minimize the total energy of the system. We there-
fore define the expectation value of the energy in the effective
model space as a cost function to be minimized with respect
to both the Hamiltonian parameters, β, and the parameters
defining the wave function, which we will generally denote
here as θ:

E (β, θ) = 〈ψ (θ)|Ĥ (β)|ψ (θ)〉. (22)

Assuming uniquely isolated ground states, this minimization
simultaneously learns the Hamiltonian in the effective model
space and identifies the associated variational ground-state
wave function. We define this to be the Hamiltonian learning
variational quantum eigensolver (HL-VQE). A straightfor-
ward way to converge to the optimal parameter set (for
non-pathological systems) is to use gradient descent, employ-
ing the linear variation of the E (β, θ). Combining the sets
of parameters into w = (β, θ), the iteration between adjacent
parameter estimates is

w[k+1] = w[k] − η ∇w E (w[k] ), (23)

where η is the learning rate. It is well known how to extend
this beyond linear order to quadratic order, but we have not
implemented this.4

Generally, the Hamiltonian in the effective model spaces
can be expanded in terms of coefficients, that are function of
β, times products of Pauli operators, as

Ĥ (β) =
4∑

i1,...,iM=1

hii,...,iM (β) σ i1 ⊗ · · · ⊗ σ iM , (24)

where σ = {X̂ , Ŷ , Ẑ, Î}. The cost function in Eq. (22) be-
comes

E (β, θ) =
4∑

i1,...,iM=1

hii,...,iM (β)

×〈�(θ)|σ i1 ⊗ · · · ⊗ σ iM |�(θ)〉. (25)

The HL-VQE requires the computation of the cost function
E (β, θ), as well as its derivatives with respect to β and θ for

3For sufficiently large N and 
, maintaining precision in the results
of matrix diagonalizations for the energy difference shown in Fig. 10
becomes increasingly challenging.

4For the system sizes considered in this work, only the simplest
classical implementation of gradient-descent methods is used. For
simulations of larger spaces, more sophisticated algorithms will be
necessary, such as ADAM [73] or ADAGRAD [74].
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FIG. 11. A schematic of the workflow implementing the HL-
VQE algorithm. The icons denoting classical or quantum computa-
tion are defined in Ref. [77].

the gradient descent. This involves computing the coefficients
hii,...,iM (β) and their derivatives with respect to β, as well as the
expectation values of the Pauli operators 〈�(θ)|σ i1 ⊗ · · · ⊗
σ iM |�(θ)〉 and their derivatives with respect to θ. Generally,
and as we will assume for the analysis of the LMG model, the
coefficients hii,...,iM (β) and their derivatives can be evaluated
classically. These classical computations become increasingly
demanding with increasing dimensionality of the effective
space(s). With the factorization in Eq. (25), it is therefore the
expectation values of the strings of Pauli operators evaluated
in the quantum-many-body wave function, as well as their
derivatives with respect to θ, which will require quantum
computation for a sufficiently large effective model space. The
corresponding procedure for the LMG model5 is detailed in
Sec. V.

Figure 11 summarizes the general workflow for HL-VQE.

(i) An initial set of parameters (β[0], θ[0] ) is chosen.
(ii) The algorithm then starts with preparation of the

state |�(θ[0] )〉 which can usually be implemented in
many ways with quantum circuits. In Sec. V, we will
choose quantum circuit structures such that each an-
gle parametrizing the wave function appears only in
one gate of the circuit. Thus, partial derivatives with
respect to that angle are localized to that one gate and
can be evaluated using a finite-difference relation. See
Appendix B for more details.

(iii) As is the case for VQE, matrix elements of strings of
Pauli operators are appropriately transformed into the
computational basis, where the polarization of each
qubit in the register along the z basis is projected for
each member of the ensemble. From these measure-
ments, the expectation values of each operator can be
evaluated.

(iv) Classical computers are used to evaluate Ĥ (β[0] ) and
∇βĤ (β[0] ), so that the cost function E (β[0], θ[0] ) and

5In future generalizations of the HL-VQE algorithm to more
realistic systems than the present LMG model, the use of re-
cently developed techniques, such as classical shadows [75] and
importance-sampled classical shadows [76], could potentially pro-
vide robust estimates of the expectation values with a reduced
number of measurements.

its derivatives, ∇θE (β[0], θ[0] ) and ∇βE (β[0], θ[0] ), can
be reconstructed classically, from the outputs of the
quantum device.

(v) Subsequently, a new set of parameters (β[1], θ[1] ) is
determined via classical optimization (here gradient
descent, as described above).

(vi) This procedure is repeated until the effective model
space Hamiltonian, wave function, and cost function
converge.

We note that similar ideas have been developed and applied
in the fields of quantum chemistry and condensed matter.
For instance, Ref. [78] introduced an algorithm for deter-
mining (nonvariational) natural orbitals, which was applied
to the two-dimensional Hubbard model, and Refs. [56,57]
developed orbital-optimized VQE (oo-VQE) techniques for
molecular calculations, which optimize orbitals via a varia-
tional principle, closer to the spirit of our present work, but
using a unitary coupled cluster (UCC) ansatz of the wave
function. Contrarily to the present HL-VQE, where both the
orbital parameters β (or, equivalently, the effective Hamil-
tonian) and the wave function parameters θ are determined
simultaneously at each iteration, the orbital optimizations of
Refs. [57,78] were, however, performed via two-step proce-
dures, in which the orbitals are determined classically using
the outputs of the VQE. While the algorithm developed of
Ref. [56] involved a one-step process, it differs from ours in
a number of ways. In particular, it employed a more costly
fermion-to-qubit mapping, together with a UCC ansatz for the
wave function which was further truncated in order to keep the
number of wave function parameters polynomial.

While in this work we focus on the determination of the
variational ground state, the HL-VQE algorithm described
here can also be applied to the description of excited states,
with few modifications. This is outlined in Appendix E. We
also note that, although we consider Hamiltonian parameters
corresponding to a one-body orbital transformation, the HL-
VQE algorithm can also be applied to more general parameter
learning, such as unitary transformations of the Hamiltonian
generated by two-body (or three-body) operators, with obvi-
ous connections to similarity renormalization group (SRG)
and in-medium SRG (IM-SRG) methods.

V. QUANTUM SIMULATIONS: IMPLEMENTING HL-VQE
AND RESULTS FROM IBM’s QUANTUM COMPUTERS

In this section, HL-VQE is applied to the LMG model,
for which the space of Hamiltonian parameters β = β is one
dimensional. We employ a form of the wave function |�〉(
)

given in Eq. (12), and present algorithms designed to be
executed on IBM’s QExperience quantum computers [53].
Results obtained for small quantum circuits using the simu-
lator AER and quantum computer ibm_lagos are presented.

A. Mapping and state preparation

In order to implement the HL-VQE method on a digital
quantum computer, an ansatz for the effective state |�〉(
) that
can be obtained by action of a unitary operator is required.
In general, this is not obviously achievable when the state is
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FIG. 12. Quantum circuits that can be used to prepare real wave
functions on one (upper) and two (lower) qubits. The two-qubit cir-
cuit utilizes IBM’s native RZX (θ ) gate, and for clarity the orientation
of the X̂ ⊗ Ẑ operation is shown explicitly.

written as a linear expansion of Slater determinants. In the
case of the LMG model, this is, however, possible by adopting
a mapping similar to the one used in quantum simulations of
quantum field theories [79–82], where the many-body basis
states (as opposed to the fermionic modes) are mapped onto
the qubits. In that case the number of required qubits nq is
fixed by the desired cutoff as 
 = 2nq .

For a CP-conserving Hamiltonian, such as the bare or
effective Hamiltonians Ĥ (β ) of the LMG model, the wave
function in the Hilbert space |�〉(
) in Eq. (12) can be
made relatively real, and, as such, there are 
 − 1 an-
gles θ = {θi}i=1,...,
−1 required to define the 
 amplitudes
{A(β )

n } of the states (unitarity fixes the remaining amplitude).
The parametrized state |�〉(
) can then be obtained by ac-
tion of a unitary operator Ŵ (θ), as |�〉(
) ≡ |�(θ)〉(
) =
Ŵ (θ)|n = 0, β〉. In practice, |�(θ)〉(
) can be prepared by
initializing the quantum register in the computational-basis
state |�〉ini = |0〉⊗N , corresponding to the unentangled 0p-0h
configuration |n = 0, β〉, and acting on the register with a
quantum circuit involving 
 − 1 angles implementing Ŵ (θ).
The are many ways to achieve this. As mentioned above, we
designed circuits such that each angle θi appears only once in
the gates comprising the circuit. In that way, partial derivatives
of the cost function with respect to θi are localized to one
operator. This will allow for any derivative with respect to
the angles θ to be evaluated in the same way using a finite-
difference relation, that does not suffer from unnecessarily
large statistical uncertainties. This is discussed in more detail
in Appendix B. The quantum circuits can be constructed in
terms of the available quantum gate set associated with a
particular quantum computer. We chose to work with IBM’s
QExperience superconducting quantum computers [53].

To provide elementary examples of the technique, we ex-
ecute quantum simulations of effective model spaces with

 = 2, 4, corresponding to one and two qubits, respectively,
and as such do not consider generation of quantum circuits to
furnish real wave functions in arbitrary-sized Hilbert spaces.
Figure 12 displays the corresponding quantum circuits used
to prepare arbitrary real wave functions. The two-qubit circuit
uses IBM’s native RZX (θ ) gate. The use of this gate allows
us to reduce the number of entangling operations. The wave
functions that are prepared, when the circuits in Fig. 12 act on

the states |0〉 and |00〉 respectively, are

|�(θ )〉(2) = cos
θ

2
|0〉 + sin

θ

2
|1〉,

|�(θ)〉(4) = cos
θ0

2
cos

θ2 − θ1

2
|00〉 + sin

θ0

2
cos

θ2 + θ1

2
|10〉

+ cos
θ0

2
sin

θ2 − θ1

2
|01〉+ sin

θ0

2
sin

θ2+θ1

2
|11〉.
(26)

These correspond to the ansatz in Eq. (12) for the wave func-
tion, with the mapping

|0〉 ≡ |n = 0, β〉,
|1〉 ≡ |n = 1, β〉, (27)

for the one-qubit case, and

|00〉 ≡ |n = 0, β〉,
|01〉 ≡ |n = 1, β〉,
|10〉 ≡ |n = 2, β〉,
|11〉 ≡ |n = 3, β〉, (28)

for the two-qubit case.

B. Quantum computation of the expectation
values and derivatives

Once the state in the effective model state |�(θ)〉(
) has
been prepared, the cost function E (β, θ) and its derivatives
with respect to β and θ can be computed.

The two-dimensional effective model space that can be
mapped onto one qubit has a Hamiltonian expectation value
and β derivative of the form, when given in terms of Pauli
operators,

〈Ĥ (2)(β )〉 = −N − 1

4
[(N − 3)V sin2 β + 2ε cos β]〈Î〉

− 1

4
[3(N − 1)V sin2 β + 2ε cos β]〈Ẑ〉

+
√

N

2
[ε − (N − 1)V cos β] sin β 〈X̂ 〉,

∇β〈Ĥ (2)(β )〉 = N − 1

2
[ε − (N − 3)V cos β] sin β 〈Î〉

+ 1

2
[ε − 3(N − 1)V cos β] sin β 〈Ẑ〉

+
√

N

2
[ε cos β − (N − 1)V cos 2β )] 〈X̂ 〉,

∇θ 〈Ĥ (2)(β )〉 = −N − 1

4
[(N − 3)V sin2 β + 2ε cos β]∇θ 〈Î〉

− 1

4
[3(N − 1)V sin2 β + 2ε cos β]∇θ 〈Ẑ〉

+
√

N

2
[ε − (N − 1)V cos β] sin β ∇θ 〈X̂ 〉,

(29)
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where 〈Ô〉 ≡ (2)〈�(θ)|Ô|�(θ)〉(2). Matrix elements of Ẑ are
found from the difference of probabilities in the computa-
tional basis, while matrix elements of X̂ require further action
by a Hadamard-gate Ĥ prior to measurement. Derivatives of
the expectation values of the Pauli operators with respect to
θ, which are computed using the finite difference method,
require two additional circuits per operator. Therefore six dif-
ferent ensembles of quantum circuits are needed. More details
are provided in Appendix B 1.

For the two-qubit systems, the four-dimensional Hamil-
tonian in the 
 = 4 effective model space has a Pauli
decomposition of the form

H (4)(β ) = h(4)
II (β ) + h(4)

xx (β ) X̂ ⊗ X̂

+ h(4)
xz (β ) X̂ ⊗ Ẑ + h(4)

xI (β ) X̂ ⊗ Î

+ h(4)
yy (β ) Ŷ ⊗ Ŷ + h(4)

zx (β ) Ẑ ⊗ X̂

+ h(4)
zz (β ) Ẑ ⊗ Ẑ + h(4)

zI (β ) Ẑ ⊗ Î

+ h(4)
Ix (β ) Î ⊗ X̂ + h(4)

Iz (β ) Î ⊗ Ẑ, (30)

with

h(4)
II (β ) = 1

4
(N − 3)[(N − 7)V sin2(β ) − 2 ε cos(β )],

h(4)
xx (β ) =

√
N − 1 sin(β )[ε + (N − 3)V cos(β )]

2
√

2
,

h(4)
xz (β ) = (

√
N − √

3
√

N − 2)
√

N − 1V [cos(2β ) + 3]

8
√

2
,

h(4)
xI (β ) = (

√
N + √

3
√

N − 2)
√

N − 1V [cos(2β ) + 3]

8
√

2
,

h(4)
yy (β ) = h(4)

xx (β ),

h(4)
zx (β ) = 1

4
sin(β )[ε(

√
N −

√
3
√

N − 2)

+ (N3/2 −
√

3
√

N − 2N −
√

N

+ 5
√

3
√

N − 2)V cos(β )],

h(4)
zz (β ) = 3

2
V sin2(β ),

h(4)
zI (β ) = 3

2
(N − 3)V sin2(β ) − ε cos(β ),

h(4)
Ix (β ) = 1

4
sin(β )[ε(

√
N +

√
3
√

N − 2)

+ (N3/2 +
√

3
√

N − 2N

−
√

N − 5
√

3
√

N − 2)V cos(β )],

h(4)
Iz (β ) = 1

4
[3(N − 3)V sin2(β ) − 2ε cos(β )], (31)

with derivatives with respect to β that can be evaluated
straightforwardly. The explicit forms for the expectation val-
ues of H (4)(β ) are given in Eqs. (B12) and (B13) with
products of Pauli operators Î , X̂ , Ŷ , or Ẑ acting on each qubit.
For qubits with an X̂ the action of Ĥ is further required, while
for Ŷ the action of Ŝ†Ĥ is required prior to measurement. For
each operator, there are six additional circuits per operator

to provide derivatives for the three angles θ0, θ1, and θ2,
leading to 35 physics ensemble measurements per iteration
step. Further details can be found in Appendix B 2.

With multiple circuits per iteration step, and using IBM’s
seven-qubit quantum computers, we explored packing mul-
tiple circuits for parallel running. For the one-qubit case,
executing single-qubit jobs was found to minimize errors, but
at the expense of an increased number of shots. For two-qubit
circuits, the large number of ensemble measurements moti-
vated executing multiple circuits in parallel. For each operator,
we executed 1,2,2,2 circuits per job. After initial tuning, runs
with 8 k shots per ensemble, where k denotes ×103, we used
32 k shots per circuit in production on ibm_lagos. We used
100 k shots per circuit on the AER classical simulator. IBM’s
measurement error correction routine was used as part of
postprocessing, and, because of the shallow circuit depth and
the use of the RZX gate, we did not utilize a CNOT extrapolation
[83,84] or randomized compiling of the CNOTs (Pauli twirling)
[85], and we also did not use dynamic decoupling [86–89] or
decoherence renormalization [90–92].6

C. Gradient descent and workflow of the calculation

For a given iteration [k] of the procedure, once the numer-
ical values of

G[k]
β

= (
)〈�(θ[k] )|∇βĤ (β[k] )|�(θ[k] )〉(
),

G[k]
θ

= ∇θ
(
)〈�(θ[k] )|Ĥ (β[k] )|�(θ[k] )〉(
) (32)

have been determined from combined contributions from the
classical and quantum computers, the values of the variational
parameters at the next iterative step are determined using
gradient descent,

β[k+1] = β[k] − η G[k]
β

/G[k],

θ[k+1] = θ[k] − η G[k]
θ

/G[k],

G[k] =
√∣∣G[k]

β

∣∣2 + ∣∣G[k]
θ

∣∣2
, (33)

where η is the learning rate. Tuning led to setting η = 0.07 for
production using one and two qubits with Eq. (33). What we
have described above is slightly different from what can be
found in Appendix B and Eq. (23) in defining the update step,
but was found to lead to more rapid numerical convergence.
The iteration continues until the wave function amplitudes and
ground-state energy stabilize, or until the number of iterations
reaches a given value, a number exceeding Niter � 80.

D. Results for one-qubit truncation: � = 2

For our production using IBM’s QExperience supercon-
ducting quantum computer ibm_lagos and the simulator
AER, one set of model parameters was used: N = 30, v =
V (N − 1)/ε = 2.0, and ε = 1.0. These parameters will allow
for a comparison with the results obtained with explicit di-
agonalizations that were presented in Sec. III. The quantum

6Studies of the stability of (some of) IBM’s quantum computers can
be found in Ref. [93].
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FIG. 13. Central values of the ground-state energies (in units
of ε) obtained for the 
 = 2, 4 systems from one- and two-qubit
simulations using AER and ibm_lagos for the LMG-model param-
eters using 100 k and 32 k shots, respectively. Numerical values for
these energies are given in Tables V and VI. The starting values of
variational parameters of the one-qubit simulations were β [0] = 0.2
and θ

[0]
i = 0.30 using AER and β [0] = 0.2 and θ

[0]
i = 0.10 using

ibm_lagos. The starting values of variational parameters of the
two-qubit simulations were β [0] = 0.8 and θ

[0]
i = 0 using AER, and

β [0] = 0.2 and θ
[0]
i = 0 using ibm_lagos. The dark blue and dark

red dashed lines show the results obtained from exact diagonalization
in the effective model spaces 
 = 2 and 
 = 4, respectively. The
black dotted-dashed line shows the exact result, obtained from exact
diagonalization in the full Hilbert space.

circuits, HL-VQE algorithm, and workflow described above
were implemented using a learning rate of η = 0.07 and
starting values of the parameters β[0] = 0.2 and θ

[0]
i = 0.10.

Typically, 80 iterations were performed, with stable results
being obtained after many fewer.

The results obtained from ibm_lagos and AER for the
central values of the ground-state energy (in unit of ε) as a
function of iteration are shown in Fig. 13, and numerical val-
ues are given in Tables V and VI. The uncertainty associated
with each iteration is not shown, but can be deduced, in combi-
nation with other uncertainties, from the fluctuations about the
mean value (as each iteration is statistically independent). The
ground-state energy of the 
 = 2 systems obtained from AER
and ibm_lagos are consistent with each other, and with the
exact diagonalization in the (truncated) effective model space
performed in Sec. III (see Table III). As different starting
values of parameters in the HL-VQE were used in production
on AER and ibm_lagos, a direct and meaningful comparison
of the two approaches to the ground-state energy should not be
made, and only the asymptotic values and uncertainties should
be compared.

The wave function amplitudes as a function of iteration are
shown in Fig. 14 and numerical values are given in Tables
V and VI. For an effective model space with 
 = 2 states,
the effective Hamiltonian is defined by the lowest-lying 2 × 2
block of H (β )(2). Thus, for fixed values of N , ε and v, it
is a 2 × 2 numerical matrix with entries that are functions
of β. For the value of v we are considering, the structure
of the Hamiltonian is such that the vanishing of the off-
diagonal element, � = ε − (N − 1)V cos β = 0, corresponds
to the minimum of the lowest-lying eigenvalue. This is most

TABLE III. Results obtained for N = 30, ε = 1.0, and v = 2.0
using IBM’s AER and ibm_lagos, and results obtained by exact
diagonalization, in the 
 = 2 effective model space and in the full
Hilbert space. The central values and uncertainties are derived from
iterations steps between 70 and 80. The central value is the mean in
this interval, while the uncertainty is the half the difference between
the maximum and minimum values. The values at each iteration step
from which these results are obtained, are given in Tables V and VI,
and displayed in Figs. 13, 14, and 16.

Quantity AER ibm_lagos Exact effective Exact full

Eg.s. −18.7500(0) −18.7490(37) −18.750000 −18.916414
β 1.0472(14) 1.041(13) 1.0471975 0
|A0| 1.00000(2) 1.00000(5) 1
|A1| 0.0018(12) 0.0035(16) 0
DB 0.1926(7) 0.1922(15) 0.1922023

easily seen in an N-expansion followed by a considerations of
perturbations around � = 0. In that case the ground state of
this system corresponds to |�(θ )〉(2) in Eq. (26) with θ = 0,
and therefore is without mixing between 0p-0h and 1p-1h
configurations in the truncated basis, corresponding to the HF
state. See Appendix C for more details. We see from Fig. 14
that the amplitudes obtained from both AER and ibm_lagos
are consistent with these expectations, as we observe that
the amplitude of the 1p-1h state is systematically decreasing
with iteration steps. The precision of extracted amplitudes,
at any iteration step, is limited by the precision used in the
workflow, along with the learning rate. The results obtained
with ibm_lagos show signs of the impact of simulation er-
rors at the percent level, as is to be expected, with similar
fluctuations occurring an order of magnitude smaller for AER.
The convergence to the known result is consistent with an
exponential over a large number of iteration steps.

FIG. 14. Central values of the wave function amplitudes obtained
for the 
 = 2 systems from one-qubit simulations using AER and
ibm_lagos for the LMG-model parameters using 100 k and 32 k
shots, respectively. Numerical values for these amplitudes are given
in Tables V and VI. The starting values of variational parameters of
the one-qubit simulations were β [0] = 0.2 and θ

[0]
i = 0.30 using AER

and β [0] = 0.2 and θ
[0]
i = 0.10 using ibm_lagos. Exact diagonaliza-

tion in the effective model space yields |A0| = 1 (red horizontal line)
and |A1| = 0.
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FIG. 15. Full-space wave functions reconstructed from the ef-
fective model spaces with 
 = 2, 4 from one- and two-qubit
simulations using AER and ibm_lagos for the LMG-model pa-
rameters using 100k and 32k shots, respectively. The black crosses
denote the exact full-Hilbert space wave functions. Numerical values
for these amplitudes are given in Table IX. The starting values of
variational parameters of the one-qubit simulations were β [0] = 0.2
and θ

[0]
i = 0.30 using AER and β [0] = 0.2 and θ

[0]
i = 0.10 using

ibm_lagos. The starting values of variational parameters of the
two-qubit simulations were β [0] = 0.8 and θ

[0]
i = 0 using AER, and

β [0] = 0.2 and θ
[0]
i = 0 using ibm_lagos. The uncertainties are

determined from the standard deviation derived from a correlated
propagation of the last 20 iterations.

The full-space wave functions (expressed in the unrotated
β = 0 basis) reconstructed from the previous 
 = 2 effective
model space using Eq. (17) are shown in Fig. 15 (green and
blue points), with numerical results given in Table IX. The
Bures distance of the reconstructed full-space wave function,
given in Eq. (19), is displayed in Fig. 16. While the conver-
gence of the amplitudes and energies towards the expected

FIG. 16. Central values of the Bures distance defined in Eq. (19),
obtained for the 
 = 2, 4 systems from one- and two-qubit simu-
lations using AER and ibm_lagos for the LMG-model parameters
using 100 k and 32 k shots, respectively. Numerical values for these
distances are given in Tables V and VI. The starting values of
variational parameters of the one-qubit simulations were β [0] = 0.2
and θ

[0]
i = 0.30 using AER and β [0] = 0.2 and θ

[0]
i = 0.10 using

ibm_lagos. The starting values of variational parameters of the
two-qubit simulations were β [0] = 0.8 and θ

[0]
i = 0 using AER and

β [0] = 0.2 and θ
[0]
i = 0 using ibm_lagos.

TABLE IV. Results obtained for N = 30, ε = 1.0, and v = 2.0
using IBM’s AER and ibm_lagos, and results obtained by exact
diagonalization, from the 
 = 4 effective model space and in the full
Hilbert space. The central values and uncertainties are derived from
iterations steps between 70 and 80. The central value is the mean in
this interval, while the uncertainty is the half the difference between
the maximum and minimum values. The values at each iteration step
from which these results are obtained, are given in Tables VII and
VIII, and displayed in Figs. 13, 14, and 16.

Quantity AER ibm_lagos Exact effective Exact full

Eg.s. −18.9000(12) −18.929(44) −18.900130 −18.916414
β 1.01479(39) 1.0160(96) 1.0162245 0
|A0| 0.98500(02) 0.98666(85) 0.98516
|A1| 0.04193(18) 0.0469(98) 0.03901
|A2| 0.16739(06) 0.1557(34) 0.16711
|A3| 0.00020(01) 0.00258(28) 0
DB 0.05559(12) 0.0579(42) 0.05578

(classical) values are consistent with single exponentials, the
convergence of the 
 = 2 ground-state wave function has a
different functional form, with initial fidelities only slowly
converging for a number of iteration steps. This is followed
by an interval of rapid convergence to the wave function that
is exact for the effective model space.

A summary of the results obtained for the 
 = 2 state
effective model space from IBM’s classical simulator AER
and from their superconducting-qubit quantum computer
ibm_lagos, along with results obtained by exact diagonaliza-
tion, in effective and full model spaces, are given in Table III.
Good agreement is found between the results obtained from
AER and ibm_lagos, and those from exact diagonalizations
within the model space.

E. Results for two-qubit truncation: � = 4

The HL-VQE algorithm is applied to the 
 = 4 system in
the same way that is was applied to the 
 = 2 system, with
the obtained ground-state energy as a function of iteration
shown in Fig. 13 (red and purple points), with a converged
value provided in Table IV. The results obtained with both
AER and ibm_lagos are consistent with the exact value in the
effective model space, but the results from AER are an order
of magnitude more precise than that from ibm_lagos. The
extracted value of β from AER is a few standard deviations
away from the expected value, while that from ibm_lagos is
consistent, but with a larger uncertainty, as seen in Table IV.

Figure 17 shows the amplitudes |A(β )
n | of the 
 = 4

states in the effective model space determined with AER
and ibm_lagos. With the effective Hamiltonian H (4)(β ) [see
Eq. (30)] truncated for 
 = 4 states, and with the parameters
used in the 
 = 4 effective model space, the amplitude of the
3p-3h state is expected to vanish by the arguments given in
Appendix C 2. However, this expectation was not enforced
in carrying out the HL-VQE, and, in addition to β, the three
angles θ0, θ1, and θ2, in |�(θ)〉(4) [Eq. (26)] were varied. The
amplitude of the 3p-3h state is found to be much smaller than
the other amplitudes from both simulations, consistent with its
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FIG. 17. Central values of the wave function amplitudes obtained
for the 
 = 4 systems from two-qubit simulations using AER and
ibm_lagos for the LMG-model parameters using 100 k and 32 k
shots, respectively. Numerical values for these amplitudes are given
in Tables VII and VIII. The starting values of variational parameters
of the two-qubit simulations were β [0] = 0.8 and θ

[0]
i = 0 using AER

and β [0] = 0.2 and θ
[0]
i = 0 using ibm_lagos. Exact diagonalization

in the truncated effective space yields the values of |A0|, |A1|, and
|A2|, shown with horizontal lines, and |A3| = 0.

vanishing in the exact diagonalization in the effective model
space, along with the statistical and systematic errors implicit
in the simulations. The results obtained for |A(β )

0,1,2,3| from
AER and ibm_lagos at large iteration number are consistent
with each other and with expectations at the few-σ level, as
can be seen from Fig. 17 and Tables IV, VII, and VIII.

The full-space wave functions reconstructed from |A(β )
0,1,2,3|

using Eqs. (16) and (17) are shown in Fig. 15 (red and purple
points) and given in Table IX. The corresponding Bures dis-
tance to the exact full-space wave function is shown in Fig. 16
and given in Tables VII and VIII. The Bures distance for

 = 4 is significantly improved over that for 
 = 2, consis-
tent with the exponential scaling for 
 
 N that is anticipated
from the exact calculations in effective model space.

F. The scaling of quantum resources

It is helpful to consider the scaling of quantum resources
required for these effective model space simulations in order
to estimate the practicality of our HL-VQE algorithm. For
the present calculations using ibm_lagos, the workflow that
we implemented for 
 = 4 used 1,2,2,2 circuits per ensemble
run, with 32k shots (measurements) per ensemble, for a total
of 128k shots. For the 80 iterations that were run, this corre-
sponds to ≈10.2 × 106 shots. Of course, this number could be
reduced using more sophisticated classical search algorithms,
implementing more aggressive convergence criteria, imple-
menting a dynamical shot estimator between iterations, and
more, but the order-of-magnitude quantum resource cost will
remain.

The exponential growth in the number of angles required to
define the variational wave function, scaling with the number
of states in the Hilbert space, nominally renders VQE algo-
rithms unsuitable for use at scale. However, with the double
exponential improvement in ground-state energy and wave
function fidelity with increasing number of qubits supporting
the effective model spaces for 
 
 N , the scaling of the VQE
algorithm, and in this case the HL-VQE algorithm, becomes
favorable for increasing the size of effective model spaces
until threshold effects become significant.

VI. SUMMARY, CONCLUSIONS, AND OUTLOOK

We have performed a detailed study of the use of effective
model spaces and effective Hamiltonians for the prepara-
tion of low-lying states of the Lipkin-Meshkov-Glick model,
a well-known solvable nuclear physics model of multin-
ucleon systems, using quantum computers. In this model,
while variational ground states for systematically truncated
Hamiltonians exhibit power-law convergence to the exact re-
sults, additionally optimizing the truncated Hamiltonian from
a variational principle is shown to exponentially improve
convergence throughout the regime where the optimal en-
ergy surface leads to spontaneous symmetry breaking. We
have demonstrated these gains using exact and approximate
classical calculations. These findings indicate that quantum
simulations using small model spaces with variationally im-
proved Hamiltonians can furnish precise and accurate results,
and have utility in bounded-error simulations with reduced
quantum resource requirements. Borrowing ideas from quan-
tum chemistry, we have suggested and explored an algorithm
that combined Hamiltonian learning with VQE to be used in
classical-quantum hybrid computing environments, which we
call HL-VQE. In this algorithm, parameters defining an effec-
tive Hamiltonian used in an effective model space (or EFT),
and the parameters defining its ground-state wave function,
are simultaneously determined through minimization of an
associated cost function, which we took to be the ground-
state energy. In the regime where the convergence is scaling
exponentially with increasing model space dimensionality be-
cause of the localized wave function in the Hilbert space,
the HL-VQE algorithm is efficient, with the addition of a
single qubit, and associated state preparation resource require-
ments, leading to an exponential improvement in ground-state
energy and wave function fidelity, compared to traditional
VQE. This was demonstrated by classical calculations and by
performing quantum simulations of one- and two-qubit sys-
tems using IBM’s simulator and quantum computer, AER and
ibm_lagos, which reproduced the expected classical results
within (small) uncertainties.

There are obvious connections and differences between
this work and unitary coupled-clusters calculations of the
LMG model. The HL-VQE algorithm involves performing
a unitary transformation on the states, mixing particle-hole
states, which leads to a unitary-equivalent Hamiltonian. In
addition to limiting the form of the transformation, the Hilbert
space is truncated and the Hamiltonian optimized in the trun-
cated space. To add some further context to the HL-VQE
method, while the previous coupled-cluster simulations of
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systems of N particles required N qubits, the HL-VQE method
requires log 
, and so a LMG model with N ≈ 100, which
is generically impractical today for the coupled-cluster VQE
algorithms, can be simulated with exponential precision with
just two or three qubits using HL-VQE. In some ways, HL-
VQE makes a bridge between coupled-cluster expansions
and EFT techniques. It is conceivable that a combination of
ADAPT-VQE and HL-VQE algorithms could also be useful
due to their complementary nature. Exploring and better un-
derstanding these connections, similarities, and differences is
the subject of future works.

This study of the Lipkin-Meshkov-Glick model has
provided insights and demonstrations of the utility of Hamil-
tonian learning in effective model spaces. As this model
exhibits symmetries of simple and well-structured interac-
tions, the question remains as to the utility beyond this model
for more realistic effective interactions. We do not address
this question in this work; however, we find it likely that for
systems where there are clear separations of scale(s), some
or all of the methods developed and employed in this work
can also be used, and will be the subject of future work. An
important element of this framework is that the optimal value
of the variational parameter in the Hamiltonian is such that, in
the transformed basis, the multi-particle-hole correlations are
strongly localized around the mean-field (0p-0h) solution, and
rapidly converge with increasing model space.

In general, the noncommutivity of the global orbital trans-
formation with the truncation to effective model spaces is
the feature that provides an opportunity for variational im-
provements through Hamiltonian learning. This is one unitary
transformation that rearranges matrix elements and entangle-
ment in nuclear many-body systems. Another such unitary
transformation is the SRG, in which a flow that, in its simplest
form, introduces a Gaussian suppression of high momentum
modes in the system. Consequently, the Hamiltonian matrix
is evolved toward a block diagonal form. While somewhat
dissimilar in form, the SRG flow and a truncation do not
generally commute, and the utility for SRG-flowed systems
remains to be explored. Similarly, the HL-VQE algorithm,
used together with a desired ansatz for the nuclear state,
could be potentially utilized to perform various versions of
in-medium SRG (IMSRG) on a quantum computer. A fur-
ther possibility that comes to mind, would be to use the
variational orbital transformation, which reduces the coupling
between effective model space and the remaining part of the
Hilbert space [33], as a preprocessing step before the IMSRG
procedure.

The HL-VQE algorithm combined with the use of effective
model spaces is likely to have applicability beyond nuclear
many-body systems. EFTs are a well-defined and systematic
ways to recover S-matrix elements and bound states from
a (more) complete theory through operator and Hamiltonian
matching or through reproducing experimental results. As
such, variationally optimizing nonperturbative leading-order
contributions, when the one-body and higher-body interac-
tions make comparable contributions, though the HL-VQE
algorithm may have applicability to EFT calculations of few-
body systems. It could also be the case that these methods
will be useful in simulating quantum field theories, e.g.,

Refs. [13,94], in particular, lattice scalar field theory and
gauge theories. For example, local truncations in the represen-
tations of the SU(Nc) in each link space could be mitigated by
improving the Kogut-Susskind Hamiltonian [95] and learning
the coefficients of gauge-invariant operators. A challenge for
this application is to transform the states in the local Hilbert
spaces in such a way to preserve Gauss’s law at each vertex,
e.g., Refs. [96], or to include protocols that constrain the wave
function to the gauge-invariant space. In addition, the methods
developed in this work may also be useful in designing quan-
tum sensors, where VQE is being utilized in encoding and
decoding sensors to enhance sensitivity to external fields [97].
These applications are the subject of future work.

The part of this paper that has focused on quantum sim-
ulation has addressed implementations using digital devices.
With the rapid convergence with increasing dimension of the
effective model space, it is useful to consider implementations
on other devices such as analog simulators and quantum an-
nealers. For the 
 = 2, 4 systems that we have considered,
and for much larger effective model spaces, analogous cal-
culations could be performed using, for example, D-Wave’s
quantum annealers, such as ADVANTAGE [98]. This too will be
the subject of future work.

In closing, with the approximate symmetries of QCD and
the emergent separations of scales, which in some sense define
nuclear physics, implementing the HL-VQE algorithm in low-
energy effective model spaces using quantum computers may
have utility for calculations involving realistic nuclear forces,
and also for improving convergence of quantum simulations
of quantum field theories relevant to the standard model.
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APPENDIX A: THE LIPKIN-MESHKOV-GLICK MODEL:
MORE DETAILS

In this Appendix, we provide more details about computing
matrix elements of the effective Hamiltonian in the LMG
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model. The Hamiltonian can be written as

Ĥ = ε Ĵz − V

2
(Ĵ2

+ + Ĵ2
−), (A1)

where the quasispin operators �̂J are defined in Eq. (2). A
rotation by an angle β around the y axis,

�̂J ≡ �̂J (β = 0) �→ �̂J (β ), (A2)

in quasispin space can be obtained from the general transfor-
mation properties of rank-1 spherical tensors

T (1)
q (β ) = Û †(β ) T̂ (1)

q Û (β ),

=
∑

q′=0,±
d1

qq′ (β ) T̂ (1)
q′ , (A3)

where the spherical components are related via Ĵz = T̂ (1)
0 ,

Ĵ± = ±√
2T̂ (1)

± , and the expression for d1
qq′ (β ) is given in

Eq. (17). This leads to

Ĵz = cos(β )Jz(β ) + 1
2 sin β[J+(β ) + J−(β )], (A4)

Ĵ+ = 1
2 [−2 sin(β )Jz(β )

+ (cos β + 1)J+(β ) + (cos β − 1)J−(β )], (A5)

Ĵ− = (J+)† = 1
2 [−2 sin βJz(β )

+ (cos β + 1)J−(β ) + (cos β − 1)J+(β )], (A6)

corresponding to

Ĵz(β ) = 1

2

∑
pσ

σc(β )†
pσ c(β )pσ , (A7)

Ĵ+(β ) =
∑

p

c(β )†
p+c(β )p−, (A8)

Ĵ−(β ) = (Ĵ+)† =
∑

p

c(β )†
p−c(β )p+, (A9)

where the operators c(β ), c(β )† are related to c, c† via
Eq. (11).

Inserting Eq. (A6) into Eq. (A1), the effective Hamiltonian
becomes

Ĥ (β ) = ε

[
cos β Ĵz(β ) + 1

2
sin β[Ĵ+(β ) + Ĵ−(β )]

]

− V

4
[sin2 β[4Ĵz(β )2 − {Ĵ+(β ), Ĵ−(β )}]

+ (1 + cos2 β )[Ĵ+(β )2 + Ĵ−(β )2]

− 2 sin β cos β[{Ĵz(β ), Ĵ+(β )} + {Ĵz(β ), Ĵ−(β )}]].
(A10)

Matrix elements of the Hamiltonian between the many-body
basis states |n, β〉 are determined by

〈n′, β|Ĵz(β )|n, β〉 = Mδn′,n,

〈n′, β|Ĵ±(β )|n, β〉 =
√

J (J + 1) − M(M ± 1)δn′,n±1,

〈n′, β|Ĵz(β )2|n, β〉 = M2δn′,n,

〈n′, β|Ĵ±(β )2|n, β〉 =
√

J (J + 1) − M(M ± 1)
√

J (J + 1) − (M ± 2)(M ± 1)δn′,n±2,

〈n′, β|{Ĵz(β ), Ĵ±(β )}|n, β〉 = (2M ± 1)
√

J (J + 1) − M(M ± 1)δn′,n±1,

〈n′, β|{Ĵ+(β ), Ĵ−(β )}|n, β〉 = [2J (J + 1) − 2M2]δn′,n, (A11)

where J = N/2 and M = n − J = n − N/2. This leads to

〈n′, β|Ĥ (β )|n, β〉 =
(

ε cos(β )

(
n − N

2

)
− V

4
sin2(β )[N2 + 6n2 − 6nN − N]

)
δn′,n

+1

2

√
(N − n)(n + 1) sin(β )[ε − V cos(β )(N − 2n − 1)]δn′,n+1

+1

2

√
n(N − n + 1) sin(β )[ε − V cos(β )(N − 2n + 1)]δn′,n−1

−V

4
(1 + cos2(β ))

√
(N − n)(n + 1)

√
(N − n − 1)(n + 2)δn′,n+2

−V

4
(1 + cos2(β ))

√
(N − n + 2)(n − 1)

√
n(N − n + 1)δn′,n−2. (A12)

When β = 0, the Hamiltonian in Eq. (A1), which does not connect configurations characterized by n′ = n ± 1, is recovered.

APPENDIX B: HAMILTONIAN LEARNING VARIATIONAL
QUANTUM EIGENSOLVER (HL-VQE): MORE DETAILS

In this Appendix, we detail the hybrid algorithm that
combines VQE with Hamiltonian learning to optimize the

efficacy of effective model spaces in recovering the lowest-
lying states of the LMG model, as described in the main
text. The Hamiltonian is uniquely defined with β = 0 in the
full model space, and the lowest-lying states can be found
by using, for example, the VQE algorithm with a quantum
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computer, or variants thereof, if the system lies beyond the
capabilities of classical computing. If available quantum re-
sources are insufficient to accommodate the full Hamiltonian,
then truncated systems can be implemented, but the Hamil-
tonian in the effective model space will include operators
with coefficients that must be determined in addition to the
parameters defining the ground state, or low-lying excited
state wave functions. For a general system, we define the cost
function for the variation to be the expectation value of the
energy, which for the ground state is (with one variational
parameter in the effective model space Hamiltonian)

E (β, θ) = 〈�(θ)|Ĥ (β )|�(θ)〉. (B1)

We assume that the functional dependence of Ĥ (β ) on β can
be determined classically, as is the case for the LMG model,
and that the derivative ∂

∂β
Ĥ (β ) can also be determined classi-

cally. While not required, it is further assumed that the Pauli
decomposition of both can be readily determined classically.
The usual arguments motivating the use of VQE to determine
matrix elements of Pauli-operators in a quantum many-body
wave function hold in this case, and therefore a quantum
computer enables evaluation of parts of

E (β, θ),
∂

∂β
E (β, θ),

∂

∂θi
E (β, θ). (B2)

Using gradient descent to learn the parameters that minimize
E (β, θ), and starting from initial values, β[k=0] and θ

[k=0]
i , sets

of evaluations are used to determine updated values for the
next iteration,

β[k+1] = β[k] − η
∂

∂β
E (β[k], θ[k] ),

θ
[k+1]
i = θ

[k]
i − η

∂

∂θi
E (β[k], θ[k] ), (B3)

using a linear learning function, with a learning rate η iter-
atively tuned for optimal convergence. If the starting points
for the parameters are within the domain of attraction of
the optimal value, this system will iteratively converge to
the optimal values. This simultaneous iteration and variation
of parameters identifies the optimal variational ground-state
wave function and learns the Hamiltonian in the effective
model space by determining β. This method generalizes
straightforwardly to multiple parameters defining an effective
Hamiltonian.

1. One-qubit quantum circuits (� = 2 states)

An effective model space defined by one qubit is straight-
forward to study. The β-transformation described previously
leads to an effective two-state Hamiltonian represented on one
qubit that has a Pauli-decomposition,

Ĥ (2)(β ) = h(2)
x (β ) X̂ + h(2)

y (β ) Ŷ + h(2)
z (β ) Ẑ + h(2)

I (β ) Î.

(B4)

Defining the (real) wave function through a rotation about the
y axis,

|�(θ )〉 = cos
θ

2
|0〉 + sin

θ

2
|1〉, (B5)

matrix elements of the Pauli operators are

〈X̂ 〉θ = sin θ, 〈Ŷ 〉θ = 0, 〈Ẑ〉θ = cos θ, 〈Î2〉θ = 1,

(B6)

where 〈Ô〉θ ≡ 〈�(θ )|Ô|�(θ )〉. The computation of deriva-
tives is straightforward using a finite-difference relation,

∂

∂θ
〈X̂ 〉θ = 1

2

(〈X̂ 〉θ+π/2 − 〈X̂ 〉θ−π/2
)
,

∂

∂θ
〈Ẑ〉θ = 1

2

(〈Ẑ〉θ+π/2 − 〈Ẑ〉θ−π/2
)
, (B7)

and is directly implementable on a quantum computer with
two different ensemble measurements per operator. From
these relations, the expectation value of the Hamiltonian is

〈Ĥ (2)(β )〉θ = h(2)
I (β ) + h(2)

x (β ) 〈X̂ 〉θ + h(2)
z (β ) 〈Ẑ〉θ ,

∂

∂β
〈Ĥ (2)(β )〉θ = ∂

∂β
h(2)

I (β ) + ∂

∂β
h(2)

x (β ) 〈X̂ 〉θ

+ ∂

∂β
h(2)

z (β ) 〈Ẑ〉θ ,
∂

∂θ
〈Ĥ (2)(β )〉θ = h(2)

x (β )
∂

∂θ
〈X̂ 〉θ + h(2)

z (β )
∂

∂θ
〈Ẑ〉θ . (B8)

A gradient-descent learning of β, θ involves iteratively ap-
plying

β[k+1] = β[k] − η
∂

∂β
〈Ĥ (2)(β[k] )〉θ [k] ,

θ [k+1] = θ [k] − η
∂

∂θ
〈Ĥ (2)(β[k] )〉θ [k] , (B9)

until the parameters have reached stable values. The value of
the learned parameters are found from the mean and standard
deviation7 of the last nsel parameters steps after the parameter
sets have converged, where nsel is typically taken to be nsel �
10, and determined by the quantum resources. The learning
rate, η, is selected based upon the convergence behavior of the
iteration. As is well known, a value that is too large leads to
instability, and a value that is too small leads to large resource
requirements.

Quantum circuits are used to prepare ensembles of states
|�(θ [k] )〉, |�(θ [k] + π

2 )〉, |�(θ [k] − π
2 )〉, in which expectation

values of X̂ and Ẑ are measured. The latter is in the com-
putational basis and requires no further operations before
measurement, while the former requires an application of a
Hadamard gate. With classical computation of the h(2)

a (β[k] )
and derivatives, this is sufficient to implement the learning in
Eq. (B9), which will have efficacy dictated, in part, by the
statistical and systematic errors associated with the quantum
computations.

2. Two-qubit quantum Circuits (� = 4 states)

For an effective model space contained in two qubits, the
protocol is analogous to that of one qubit, described above.

7Alternately, half of the difference between the maximum and
minimum values in that interval could be quoted.
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A real wave function on two qubits can be prepared by the
quantum circuit shown in Fig. 12 in terms of three angles
θ0,1,2. The RZX (θ ) gate is available for the IBM’s quantum
computers, and we find it to be convenient for our purposes:

RZX (θ ) = e−iθ X̂⊗Ẑ/2. (B10)

The most general Hamiltonian for this system has the form,
restricting ourselves again to one unknown parameter defining
the Hamiltonian, β,

H (4)(β ) =
4∑

i, j

h(4)
i j (β ) σ i ⊗ σ j, (B11)

where σ = {X̂ , Ŷ , Ẑ, Î}. There are ten operator structures con-
tributing to the Hamiltonian, with Pauli decomposition,

〈H (4)(β )〉θ = h(4)
II (β ) + h(4)

xx (β ) 〈X̂ ⊗ X̂ 〉θ
+ h(4)

xz (β ) 〈X̂ ⊗ Ẑ〉θ + h(4)
xI (β ) 〈X̂ ⊗ Î〉θ

+ h(4)
yy (β ) 〈Ŷ ⊗ Ŷ 〉θ + h(4)

zx (β ) 〈Ẑ ⊗ X̂ 〉θ
+ h(4)

zz (β ) 〈Ẑ ⊗ Ẑ〉θ + h(4)
zI (β ) 〈Ẑ ⊗ Î〉θ

+ h(4)
Ix (β ) 〈Î ⊗ X̂ 〉θ + h(4)

Iz (β ) 〈Î ⊗ Ẑ〉θ,
(B12)

with explicit expressions for the h(2)
ab (β ) given in Eq. (31), and

with expectation values in the wave function in Eq. (26),

〈X̂ ⊗ X̂ 〉θ = sin θ0 sin θ2,

〈X̂ ⊗ Ẑ〉θ = cos θ0 cos θ1 sin θ2 − sin θ1 cos θ2,

〈X̂ ⊗ Î〉θ = cos θ1 sin θ2 − cos θ0 sin θ1 cos θ2,

〈Ŷ ⊗ Ŷ 〉θ = − sin θ0 sin θ1,

〈Ẑ ⊗ X̂ 〉θ = sin θ0 cos θ2,

〈Ẑ ⊗ Ẑ〉θ = cos θ0 cos θ1 cos θ2 + sin θ1 sin θ2,

〈Ẑ ⊗ Î〉θ = cos θ0 sin θ1 sin θ2 + cos θ1 cos θ2,

〈Î ⊗ X̂ 〉θ = sin θ0 cos θ1,

〈Î ⊗ Ẑ〉θ = cos θ0,

〈Î ⊗ Î〉θ = 1. (B13)

Derivatives of 〈H (4)(β )〉θ with respect to the θi (i = 0, 1, 2)
can be found from finite differences, analogous to the single
qubit case, e.g.,

∂

∂θ0
〈X̂ ⊗ X̂ 〉θ

= 1

2

(〈X̂ ⊗ X̂ 〉(θ0+ π
2 ,θ1,θ2 ) − 〈X̂ ⊗ X̂ 〉(θ0− π

2 ,θ1,θ2 )
)
. (B14)

This relation can be used for all of the operators for θ0,1,2,
made possible by the structure of the quantum circuit in
Fig. 12, where each angle only appears in one gate in the
operator.

In our quantum simulations, for a given set of θi, the circuit
in Fig. 12 prepares the wave function on the two qubits.
This is performed for seven quantum circuits, with param-
eters (θ0, θ1, θ2), (θ0 ± π/2, θ1, θ2), (θ0, θ1 ± π/2, θ2), and
(θ0, θ1, θ2 ± π/2). Matrix elements of the operators Ẑ ⊗ Ẑ ,
Î ⊗ Ẑ , and Ẑ ⊗ Î can be constructed from combinations of
measurements of the circuit in the computational basis. Ma-
trix elements of operators X̂ ⊗ X̂ , Î ⊗ X̂ , X̂ ⊗ Î , Ẑ ⊗ X̂ , and
X̂ ⊗ Ẑ can be found by adding a Hadamard gate, Ĥ, to the
qubits with X̂ operators, and then performing measurements
in the computational basis. For Ŷ ⊗ Ŷ , adding Ŝ† followed
by Ĥ to both qubits rotates the system into the computational
basis. If {p00, p11, p01, p10} are the probabilities of outcomes
in the computational basis, then contracting with the vectors
{1, 1,−1,−1} gives the matrix element of X̂ ⊗ X̂ or Ŷ ⊗ Ŷ or
Ẑ ⊗ Ẑ or X̂ ⊗ Ẑ or Ẑ ⊗ X̂ , {1,−1,−1, 1} gives the matrix el-
ement of Ẑ ⊗ Î or X̂ ⊗ Î , and {1,−1, 1,−1} gives the matrix
element of Î ⊗ Ẑ or Î ⊗ X̂ .

The gradient descent takes a form analogous to that for one
qubit, iterating on β and θ0,1,2:

β[k+1] = β[k] − η
∂

∂β
〈Ĥ (4)(β[k] )〉θ[k],

θ
[k+1]
0 = θ

[k]
0 − η

∂

∂θ0
〈Ĥ (4)(β[k] )〉θ[k],

θ
[k+1]
1 = θ

[k]
1 − η

∂

∂θ1
〈Ĥ (4)(β[k] )〉θ[k],

θ
[k+1]
2 = θ

[k]
2 − η

∂

∂θ2
〈Ĥ (4)(β[k] )〉θ[k] . (B15)

APPENDIX C: GROUND STATES IN THE EFFECTIVE
MODEL SPACES

The ground states of the LMG model in the effective model
spaces have a particular form for the parameters that we have
chosen to work with. In particular, the highest-lying odd p-h
configuration has a vanishing amplitude independent of the
size of the space.

1. Vanishing of the 1p-1h amplitude for � = 2

For the effective model space defined on a single qubit,
and for the parameters we are working with, the Hamiltonian
in Eq. (29) can be written as, for v = (N − 1)V/ε > 0,

H (2)(β ) =

⎛
⎜⎝

h(2)
11 h(2)

12

h(2)
12 h(2)

22

⎞
⎟⎠,

h(2)
11 = − 1

4 Nε[2 cos(β ) + |v| sin2(β )],

h(2)
12 = − 1

2

√
Nε sin(β )[|v| cos(β ) − 1],

h(2)
22 = h(1)

11 + ε
(
cos(β ) + 3

2 |v| sin2(β )
)
, (C1)

from which we see that h(2)
11 , h(2)

22 ∼ N and h(2)
12 ∼ √

N and
h(2)

11 − h(2)
22 ∼ 1. The minimum eigenvalue of this system is
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obtained at a value of β such that h(2)
12 = 0. This is not so ob-

vious from the matrix itself, but can be found from a stability
argument around this condition. Writing β = cos−1( 1

|v| ) + δβ ,
the eigenvalues are found to be

Eg.s. = −N (|v|2 + 1)ε

4|v| + δ2
β

N |v|(|v|2 + 1)ε

4(3|v|2 − 1)
,

E1 = Eg.s. + (3|v|2 − 1)ε

2|v| − 2εδβ. (C2)

From these expressions, it is clear that for δβ ∼ 1/
√

N the
eigenvalues do not invert and the extremum occurs at δβ =
0. Consequently, the eigenvector at the minimum is entirely
0p-0h configuration, corresponding to the HF wave function.
Numerically, this is found to be true for the explored parame-
ter space even for small N .

2. Vanishing of the 3p-3h amplitude for � = 4

The structure of the Hamiltonian, particularly the degree
of symmetry that renders the LMG-model solvable, leads to
ground states with some properties that are naively unex-
pected. One of those properties is the vanishing of the 3p-3h
amplitude in the four-state effective model space, and gen-
erally the vanishing of the (
 − 1)p − (
 − 1)h amplitude
in the 
 model space. The origin of this can be seen by
considering the N scaling of the elements of the Hamiltonian,

H (4)(β ) ∼

⎛
⎜⎜⎜⎜⎜⎝

N
√

N 1 0
√

N N
√

N 1

1
√

N N
√

N

0 1
√

N N

⎞
⎟⎟⎟⎟⎟⎠

, (C3)

where the entries denote the maximum power of N . The scal-
ing of the diagonal entries remains the same after subtracting
the identity contribution. We diagonalize the upper-left 3 × 3
block of this matrix with a transformation S ,

S =
(

U 0
0 1

)
,

H
(4)

(β ) = S · H (4)(β ) · S† =
⎛
⎝ H (4)

3,diag(β ) �

�† δ

⎞
⎠, (C4)

where H (4)
3,diag(β ) is a diagonal 3 × 3 matrix and δ ∼ N . Be-

cause of the hierarchy explicit in Eq. (C3), the transformation
U is of the form U ∼ I3 + ξ aT a, where ξ a ∼ 1/

√
N and T a

are the generators of SU(3). Thus, the elements of � scale
at most as � ∼ √

N , and the element of � corresponding to

the lowest eigenvalue, Eg.s.,3 scales attached most as �1 ∼ 1
(compared to the diagonal element that scales as ∼N). Return-
ing to diagonalizing H

(4)
(β ), by considering perturbations in

1/N , the lowest eigenvalue corresponding to an eigenvector of
the form d(2) = (1, 0, 0, α)T /

√
1 + |α|2 is of the form

E (4)
g.s. = 1

1 + |α|2 [Eg.s.,3 + |α|2�1]. (C5)

For �1 > Eg.s.,3, which is manifest from the N scaling, the
minimum energy is obtained for α = 0, corresponding to
E (4)

g.s. = Eg.s.,3.
If we had assumed from the start that the amplitude of

the 3p-3h configuration vanished, only two parameters would
have been required to parametrize the wave function. From
the previous subsection, enforcing the vanishing of the 3p-3h
configuration requires θ1 + θ2 = 0. As such, a more compact
circuit could have been used with just two independent angles
defining the wave function, or the circuit in Fig. 12 can be
used, with a modified gradient descent.

APPENDIX D: COMMENTS ON THE METHODS USED IN
THE QUANTUM SIMULATIONS USING IBM’s QUANTUM

COMPUTERS

Standard techniques and QISKIT [58] packages were
used to produce results from IBM’s QExperience [53] AER
and ibm_lagos. PYTHON [102] and JUPYTER notebooks
[103] were used as an interface after developing codes
with Mathematica [104]. The Hamiltonian coefficients and
derivatives were included as function calls, as were the
state-preparation quantum circuits. Measurement errors
were mitigated using the standard packages in QISKIT [58],
TensoredMeasFitter and meas_fitter, but the errors
associated with entangling operations and decoherence were
not mitigated as the implemented circuits are sufficiently
shallow. A higher precision simulation would require
such mitigation. The quantum circuits were transpiled
onto the qubits with the highest fidelity (as determined
from the most recent calibration) consistent with not
using swap gates, for example, qc2t = transpile
(qc2a,backend=backend,optimization_level=3).
When multiple circuits were executed, the measurements
related to one of the circuits were determined by tracing over
the other qubits.

The workflow was implemented with an initialization of
the IBMQ environment, functions and subroutines. Gradient
descent was accomplished with a for loop that generated
the quantum circuits, submitted them to the device queue,
postprocessed the results to determine the energy, amplitudes
and gradients, appended them to appropriate arrays, deter-
mined updated values of the variational parameters, and then
repeated until the iteration limit was exceeded.

The following codesnippets were used to determine the
matrix elements of, as an example, X̂ X̂ from the variational
wave function in the two-qubit simulations:
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# XX
qc0 = QuantumCircuit(nQ, nQ)
qc0 = iniwaveRZX(qc0,theta0,theta1,theta2,cq0,cq1)
qc0.h(cq0)
qc0.h(cq1)
qc0.measure([0,1,2,3],[0,1,2,3])
for ntnt in range(nTwirl):
qc0a = qc0
qc0t = transpile(qc0a,backend=backend,optimization_level=3)
circ_list.append(qc0t)
.
.
.
.
qc3 = QuantumCircuit(nQ, nQ)
qc3 = iniwaveRZX(qc3,theta0,theta1,theta2+npihalf,cq0,cq1)
qc3 = iniwaveRZX(qc3,theta0,theta1,theta2-npihalf,cq2,cq3)
qc3.h(cq0)
qc3.h(cq1)
qc3.h(cq2)
qc3.h(cq3)
qc3.measure([0,1,2,3],[0,1,2,3])
for ntnt in range(nTwirl):
qc3a = qc3
qc3t = transpile(qc3a,backend=backend,optimization_level=3)
circ_list.append(qc3t)

using the function

def iniwaveRZX(qc,ttt0,ttt1,ttt2,s0,s1):
qc.ry(ttt0,s1)
qc.s(s0)
qc.rzx(ttt1,s1,s0)
qc.sdg(s0)
qc.ry(ttt2,s0)
return qc

corresponding to Fig. 12.

APPENDIX E: EXCITED STATES

Finding the excited states in the effective model space is
straightforward using chemical potentials, as demonstrated in
Ref. [105]. A chemical potential can be given to the ground-
state wave function of sufficient size to move the state high
into the spectrum, above the first excited state, and the ground
state of this new system is the first excited state. Adding a
chemical potential μ0 to Eq. (24) for the ground state |�〉(
),

Ĥ ′(β0) = Ĥ (β0) + μ0 |�〉(
)(
)〈�|, (E1)

where β = β0 is the value optimized for the ground state,
furnishes a Hamiltonian which can be used with the VQE al-
gorithm (or others) to variationally find the first excited state.
Tracing against products of Pauli matrices, σ i1 ⊗ · · · ⊗ σ iM ,
allows this modified Hamiltonian to be written as

Ĥ ′(β0) =
4∑

i1,...,iM=1

h′
ii,...,iM (β0) σ i1 ⊗ · · · ⊗ σ iM ,

h′ = h + μ0

2M
(
)〈�|σ i1 ⊗ · · · ⊗ σ iM |�〉(
), (E2)

which can be evaluated straightforwardly as the matrix ele-
ments of the Pauli operators in the ground state have already
been determined. The ground state of Ĥ ′(β0) can be deter-
mined using VQE, thereby providing the energy and wave
function of the first excited state in the effective model space.
Higher excited states can be determined by repeated applica-
tion of this procedure. As shown in Refs. [105] and [92], the
repeated application can lead to an accumulation of errors in
the effective Hamiltonian for highly excited states.

We note that the procedure described above means that the
same effective Hamiltonian determines the ground and excited
states, which are orthonormal. In principle, the Hamiltonian
parameter could be optimized for each state, which would
lead to nonorthogonal states, but would provide a better ap-
proximation to the exact states. From an EFT perspective,
this corresponds to resumming contributions from an infinite
number of higher-order operators differently for each state
(with the difference vanishing for increasing size of model
space). It then becomes interesting to understand better the
form of perturbation theory that could be used to systemati-
cally include residual (higher-order) terms in the Hamiltonian.
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One can potentially force the orthogonality of the ground and
excited states via the addition of constraints [106]. Another
approach, which appears to be widely used in quantum chem-
istry, is to determine the orbitals via state-averaged variational
calculations [107,108], so that the resulting single-particle
basis contains information about both ground and excited
states correlations. The latter technique provides some sort of
comprise as the orthonormality of the states is automatically
fulfilled, at the price of potentially degrading the quality of
each individual state.

APPENDIX F: TABLES OF THE RESULTS SHOWN
IN THE FIGURES

Tables V–XII present the numerical results shown in
Figs. 13–17.

TABLE V. Central values of one-qubit quantum simulations ob-
tained using AER simulator for the ground-state energy (in units of
ε), wave function amplitudes, and Bures distances [Eq. (19)] for the

 = 2 effective model space using 100 k shots per ensemble. The
LMG model parameters are N = 30, ε = 1.0, v = 2.0. The starting
values of variational parameters were β [0] = 0.2 and θ

[0]
i = 0.30.


 = 2, AER

Iteration Energy |A0| |A1| Bures distance

1 −15.43 0.9879 0.1550 1.229
2 −15.66 0.9869 0.1613 1.179
3 −15.94 0.9858 0.1678 1.119
4 −16.24 0.9846 0.1746 1.048
5 −16.56 0.9834 0.1814 0.9676
6 −16.91 0.9821 0.1882 0.8762
7 −17.24 0.9808 0.1949 0.7749
8 −17.57 0.9795 0.2014 0.6649
9 −17.89 0.9783 0.2074 0.5487
10 −18.15 0.9771 0.2128 0.4307
11 −18.37 0.9761 0.2172 0.3200
12 −18.55 0.9757 0.2191 0.2390
13 −18.66 0.9769 0.2138 0.2249
14 −18.69 0.9805 0.1965 0.2162
15 −18.70 0.9831 0.1829 0.2143
16 −18.71 0.9856 0.1691 0.2104
17 −18.71 0.9876 0.1573 0.2084
18 −18.72 0.9893 0.1458 0.2059
19 −18.72 0.9908 0.1353 0.2041
20 −18.73 0.9921 0.1252 0.2017
21 −18.73 0.9932 0.1165 0.2010
22 −18.73 0.9942 0.1078 0.1997
23 −18.73 0.9950 0.09995 0.1984
24 −18.74 0.9956 0.09333 0.1975
25 −18.74 0.9962 0.08662 0.1973
26 −18.74 0.9968 0.07996 0.1958
27 −18.74 0.9972 0.07458 0.1953
28 −18.74 0.9976 0.06978 0.1954

TABLE V. (Continued.)


 = 2, AER

Iteration Energy |A0| |A1| Bures distance

29 −18.74 0.9979 0.06461 0.1954
30 −18.74 0.9982 0.05996 0.1946
31 −18.75 0.9985 0.05552 0.1939
32 −18.75 0.9986 0.05197 0.1938
33 −18.75 0.9988 0.04821 0.1933
34 −18.75 0.9990 0.04518 0.1940
35 −18.75 0.9991 0.04158 0.1934
36 −18.75 0.9993 0.03870 0.1932
37 −18.75 0.9993 0.03634 0.1931
38 −18.75 0.9994 0.03370 0.1939
39 −18.75 0.9995 0.03104 0.1927
40 −18.75 0.9996 0.02922 0.1931
41 −18.75 0.9996 0.02728 0.1928
42 −18.75 0.9997 0.02535 0.1926
43 −18.75 0.9997 0.02321 0.1927
44 −18.75 0.9998 0.02172 0.1925
45 −18.75 0.9998 0.02003 0.1925
46 −18.75 0.9998 0.01867 0.1930
47 −18.75 0.9999 0.01708 0.1921
48 −18.75 0.9999 0.01595 0.1926
49 −18.75 0.9999 0.01493 0.1925
50 −18.75 0.9999 0.01389 0.1925
51 −18.75 0.9999 0.01264 0.1928
52 −18.75 0.9999 0.01129 0.1927
53 −18.75 0.9999 0.01003 0.1922
54 −18.75 1.000 0.009508 0.1926
55 −18.75 1.000 0.008560 0.1921
56 −18.75 1.000 0.007880 0.1928
57 −18.75 1.000 0.007372 0.1921
58 −18.75 1.000 0.007416 0.1925
59 −18.75 1.000 0.006891 0.1921
60 −18.75 1.000 0.006850 0.1930
61 −18.75 1.000 0.006336 0.1921
62 −18.75 1.000 0.006331 0.1927
63 −18.75 1.000 0.005625 0.1927
64 −18.75 1.000 0.005190 0.1927
65 −18.75 1.000 0.005027 0.1919
66 −18.75 1.000 0.005102 0.1926
67 −18.75 1.000 0.004761 0.1928
68 −18.75 1.000 0.004395 0.1928
69 −18.75 1.000 0.003703 0.1922
70 −18.75 1.000 0.003271 0.1927
71 −18.75 1.000 0.002348 0.1918
72 −18.75 1.000 0.002814 0.1932
73 −18.75 1.000 0.002179 0.1924
74 −18.75 1.000 0.001911 0.1928
75 −18.75 1.000 0.001652 0.1926
76 −18.75 1.000 0.001393 0.1926
77 −18.75 1.000 0.001261 0.1925
78 −18.75 1.000 0.001172 0.1925
79 −18.75 1.000 0.0008452 0.1923
80 −18.75 1.000 0.001096 0.1929
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TABLE VI. Central values of one-qubit quantum simulations
obtained using ibm_lagos for the ground-state energy (in units of
ε), wave function amplitudes, and Bures distances [Eq. (19)] for the

 = 2 effective model space using 32 k shots per ensemble. The
LMG model parameters are N = 30, ε = 1.0, v = 2.0. The starting
values of variational parameters were β [0] = 0.2 and θ

[0]
i = 0.10.


 = 2, ibm_lagos

Iteration Energy |A0| |A1| Bures distance

1 −15.33 0.9982 0.06027 1.243
2 −15.60 0.9975 0.07069 1.186
3 −15.91 0.9967 0.08118 1.116
4 −16.25 0.9958 0.09165 1.032
5 −16.65 0.9948 0.1018 0.9335
6 −17.06 0.9937 0.1120 0.8204
7 −17.49 0.9925 0.1220 0.6944
8 −17.81 0.9913 0.1314 0.5583
9 −18.16 0.9901 0.1403 0.4179
10 −18.46 0.9890 0.1482 0.2873
11 −18.66 0.9881 0.1537 0.2083
12 −18.72 0.9891 0.1471 0.2140
13 −18.72 0.9914 0.1310 0.2011
14 −18.71 0.9924 0.1228 0.2052
15 −18.72 0.9938 0.1110 0.1986
16 −18.73 0.9946 0.1034 0.2017
17 −18.73 0.9956 0.09329 0.1971
18 −18.74 0.9963 0.08597 0.1970
19 −18.73 0.9969 0.07820 0.1961
20 −18.75 0.9974 0.07203 0.1949
21 −18.74 0.9978 0.06672 0.1951
22 −18.74 0.9981 0.06094 0.1945
23 −18.74 0.9984 0.05637 0.1949
24 −18.76 0.9987 0.05183 0.1922
25 −18.76 0.9988 0.04881 0.1923
26 −18.75 0.9989 0.04652 0.1952
27 −18.74 0.9991 0.04197 0.1935
28 −18.75 0.9992 0.03876 0.1933
29 −18.74 0.9994 0.03522 0.1922
30 −18.74 0.9995 0.03311 0.1946
31 −18.75 0.9996 0.02958 0.1922
32 −18.75 0.9996 0.02833 0.1916
33 −18.75 0.9996 0.02764 0.1955
34 −18.75 0.9997 0.02354 0.1906
35 −18.75 0.9997 0.02406 0.1903
36 −18.75 0.9997 0.02501 0.1938
37 −18.75 0.9998 0.02224 0.1907
38 −18.75 0.9997 0.02339 0.1981

TABLE VI. (Continued.)


 = 2, ibm_lagos

Iteration Energy |A0| |A1| Bures distance

39 −18.75 0.9998 0.01918 0.1923
40 −18.74 0.9998 0.01891 0.1948
41 −18.75 0.9999 0.01641 0.1922
42 −18.75 0.9999 0.01604 0.1923
43 −18.75 0.9999 0.01448 0.1926
44 −18.75 0.9999 0.01274 0.1901
45 −18.75 0.9999 0.01409 0.1934
46 −18.75 0.9999 0.01251 0.1900
47 −18.75 0.9999 0.01391 0.1954
48 −18.75 0.9999 0.01204 0.1926
49 −18.75 0.9999 0.01266 0.1935
50 −18.75 0.9999 0.01233 0.1898
51 −18.75 0.9999 0.01492 0.1902
52 −18.75 0.9999 0.01574 0.1921
53 −18.75 0.9999 0.01413 0.1922
54 −18.74 0.9999 0.01312 0.1924
55 −18.75 0.9999 0.01175 0.1924
56 −18.75 0.9999 0.01091 0.1923
57 −18.74 1.000 0.009768 0.1924
58 −18.75 1.000 0.009526 0.1921
59 −18.74 1.000 0.008957 0.1938
60 −18.74 1.000 0.007376 0.1913
61 −18.75 1.000 0.008537 0.1931
62 −18.74 1.000 0.007399 0.1922
63 −18.75 1.000 0.006512 0.1915
64 −18.75 1.000 0.006302 0.1910
65 −18.75 1.000 0.006617 0.1925
66 −18.75 1.000 0.005911 0.1919
67 −18.73 1.000 0.005819 0.1925
68 −18.72 1.000 0.005404 0.1929
69 −18.75 1.000 0.005169 0.1920
70 −18.75 1.000 0.004952 0.1914
71 −18.75 1.000 0.004762 0.1923
72 −18.75 1.000 0.004237 0.1916
73 −18.74 1.000 0.004602 0.1937
74 −18.75 1.000 0.003239 0.1912
75 −18.74 1.000 0.003477 0.1928
76 −18.74 1.000 0.002555 0.1923
77 −18.74 1.000 0.002776 0.1931
78 −18.74 1.000 0.001708 0.1908
79 −18.75 1.000 0.003603 0.1934
80 −18.75 1.000 0.002328 0.1923
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TABLE VII. Central values of 2-qubit quantum simulations obtained using AER simulator for the ground-state energy (in units of ε), wave
function amplitudes, and Bures distances [Eq. (19)] for the 
 = 4 effective model space using 100 k shots per ensemble. The LMG model
parameters are N = 30, ε = 1.0, v = 2.0. The starting values of variational parameters were β [0] = 0.2 and θ

[0]
i = 0.0.


 = 4, AER

Iteration Energy |A0| |A1| |A2| |A3| Bures distance

1 −17.98 0.9957 0.05494 −0.07397 1.933 × 10−6 0.4320
2 −18.32 0.9972 0.05962 −0.04422 7.771 × 10−6 0.2953
3 −18.57 0.9980 0.06343 −0.006676 0.00001920 0.2031
4 −18.72 0.9969 0.06415 0.04478 0.00004183 0.1606
5 −18.81 0.9935 0.05956 0.09709 0.00004846 0.1048
6 −18.87 0.9900 0.05837 0.1283 0.00006483 0.08426
7 −18.89 0.9879 0.05568 0.1449 0.00007499 0.06657
8 −18.90 0.9862 0.05564 0.1557 0.00008579 0.06405
9 −18.90 0.9855 0.05388 0.1607 0.00008767 0.05761
10 −18.90 0.9849 0.05401 0.1645 0.00009111 0.05843
11 −18.90 0.9847 0.05283 0.1658 0.00009575 0.05548
12 −18.90 0.9845 0.05294 0.1672 0.0001050 0.05667
13 −18.90 0.9845 0.05202 0.1675 0.0001009 0.05489
14 −18.90 0.9844 0.05202 0.1680 0.0001081 0.05598
15 −18.90 0.9845 0.05128 0.1678 0.0001130 0.05491
16 −18.90 0.9844 0.05118 0.1682 0.0001217 0.05545
17 −18.90 0.9845 0.05062 0.1681 0.0001216 0.05497
18 −18.90 0.9844 0.05053 0.1683 0.0001279 0.05529
19 −18.90 0.9845 0.05015 0.1681 0.0001343 0.05515
20 −18.90 0.9845 0.04993 0.1682 0.0001389 0.05536
21 −18.90 0.9845 0.04951 0.1681 0.0001400 0.05504
22 −18.90 0.9845 0.04935 0.1682 0.0001538 0.05530
23 −18.90 0.9846 0.04893 0.1680 0.0001561 0.05512
24 −18.90 0.9846 0.04878 0.1681 0.0001551 0.05535
25 −18.90 0.9846 0.04847 0.1680 0.0001555 0.05501
26 −18.90 0.9846 0.04836 0.1681 0.0001546 0.05535
27 −18.90 0.9846 0.04810 0.1681 0.0001561 0.05524
28 −18.90 0.9846 0.04785 0.1681 0.0001623 0.05517
29 −18.90 0.9846 0.04764 0.1680 0.0001607 0.05515
30 −18.90 0.9846 0.04751 0.1681 0.0001686 0.05526
31 −18.90 0.9847 0.04735 0.1679 0.0001703 0.05531
32 −18.90 0.9847 0.04711 0.1680 0.0001756 0.05538
33 −18.90 0.9847 0.04687 0.1679 0.0001738 0.05518
34 −18.90 0.9847 0.04668 0.1679 0.0001804 0.05553
35 −18.90 0.9847 0.04637 0.1678 0.0001792 0.05518
36 −18.90 0.9847 0.04635 0.1679 0.0001825 0.05551
37 −18.90 0.9848 0.04608 0.1678 0.0001847 0.05525
38 −18.90 0.9847 0.04592 0.1678 0.0001865 0.05548
39 −18.90 0.9848 0.04575 0.1677 0.0001945 0.05528
40 −18.90 0.9848 0.04561 0.1677 0.0002003 0.05574
41 −18.90 0.9848 0.04527 0.1676 0.0001977 0.05524
42 −18.90 0.9848 0.04521 0.1678 0.0001995 0.05558
43 −18.90 0.9848 0.04501 0.1676 0.0002030 0.05538
44 −18.90 0.9848 0.04480 0.1676 0.0002015 0.05558
45 −18.90 0.9849 0.04461 0.1675 0.0001946 0.05550
46 −18.90 0.9848 0.04447 0.1677 0.0001984 0.05537
47 −18.90 0.9848 0.04437 0.1677 0.0002005 0.05539
48 −18.90 0.9849 0.04425 0.1677 0.0001999 0.05553
49 −18.90 0.9849 0.04412 0.1677 0.0001998 0.05540
50 −18.90 0.9849 0.04406 0.1676 0.0001998 0.05561
51 −18.90 0.9849 0.04388 0.1674 0.0001987 0.05559
52 −18.90 0.9849 0.04372 0.1675 0.0001946 0.05546
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TABLE VII. (Continued.)


 = 4, AER

Iteration Energy |A0| |A1| |A2| |A3| Bures distance

53 −18.90 0.9849 0.04361 0.1675 0.0001972 0.05569
54 −18.90 0.9849 0.04345 0.1675 0.0001945 0.05544
55 −18.90 0.9849 0.04345 0.1676 0.0001951 0.05558
56 −18.90 0.9849 0.04338 0.1676 0.0001980 0.05552
57 −18.90 0.9849 0.04328 0.1676 0.0002018 0.05555
58 −18.90 0.9849 0.04319 0.1675 0.0002033 0.05551
59 −18.90 0.9849 0.04311 0.1674 0.0002049 0.05579
60 −18.90 0.9850 0.04290 0.1673 0.0002034 0.05547
61 −18.90 0.9849 0.04286 0.1675 0.0002040 0.05571
62 −18.90 0.9850 0.04267 0.1674 0.0002031 0.05540
63 −18.90 0.9850 0.04274 0.1674 0.0002060 0.05598
64 −18.90 0.9850 0.04253 0.1673 0.0002066 0.05547
65 −18.90 0.9850 0.04253 0.1675 0.0002075 0.05564
66 −18.90 0.9850 0.04244 0.1674 0.0002078 0.05553
67 −18.90 0.9850 0.04241 0.1675 0.0002079 0.05578
68 −18.90 0.9850 0.04223 0.1675 0.0002052 0.05553
69 −18.90 0.9850 0.04225 0.1675 0.0002076 0.05558
70 −18.90 0.9850 0.04221 0.1675 0.0002079 0.05548
71 −18.90 0.9850 0.04218 0.1675 0.0002032 0.05561
72 −18.90 0.9850 0.04211 0.1675 0.0002007 0.05561
73 −18.90 0.9850 0.04205 0.1673 0.0001984 0.05560
74 −18.90 0.9850 0.04202 0.1673 0.0002026 0.05565
75 −18.90 0.9850 0.04196 0.1674 0.0002035 0.05553
76 −18.90 0.9850 0.04191 0.1674 0.0002033 0.05559
77 −18.90 0.9850 0.04180 0.1674 0.0002079 0.05553
78 −18.90 0.9850 0.04183 0.1673 0.0002082 0.05565
79 −18.90 0.9850 0.04173 0.1674 0.0002081 0.05555
80 −18.90 0.9850 0.04171 0.1674 0.0002119 0.05571

TABLE VIII. Central values of 2-qubit quantum simulations obtained using ibm_lagos for the ground-state energy (in units of ε), wave
function amplitudes, and Bures distances [Eq. (19)] for the 
 = 4 effective model space using 32k shots per ensemble. The LMG model
parameters are N = 30, ε = 1.0, v = 2.0. The starting values of variational parameters were β [0] = 0.2 and θ

[0]
i = 0.0.


 = 4, ibm_lagos

Iteration Energy |A0| |A1| |A2| |A3| Bures distance

1 −15.32 0.9999 0.006064 0.01473 3.807 × 10−6 1.256
2 −15.55 0.9996 0.01218 0.02589 0.00001039 1.203
3 −15.90 0.9992 0.01849 0.03509 0.00001715 1.138
4 −16.24 0.9987 0.02476 0.04357 0.00001987 1.061
5 −16.54 0.9982 0.03083 0.05049 0.00002447 0.9690
6 −16.96 0.9977 0.03698 0.05680 0.00003040 0.8638
7 −17.35 0.9971 0.04354 0.06307 0.00003385 0.7457
8 −17.76 0.9963 0.05009 0.06948 0.00005767 0.6161
9 −18.05 0.9956 0.05601 0.07560 0.00009977 0.4770
10 −18.42 0.9947 0.06213 0.08194 0.0001186 0.3326
11 −18.63 0.9938 0.06759 0.08814 0.0001753 0.1916
12 −18.79 0.9925 0.07196 0.09833 0.0002948 0.1013
13 −18.89 0.9914 0.07163 0.1097 0.0003181 0.09405
14 −18.87 0.9907 0.07054 0.1160 0.0003484 0.09040
15 −18.91 0.9902 0.06760 0.1219 0.0004992 0.08092
16 −18.86 0.9894 0.06633 0.1290 0.0006422 0.07533
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TABLE VIII. (Continued.)


 = 4, ibm_lagos

Iteration Energy |A0| |A1| |A2| |A3| Bures distance

17 −18.88 0.9888 0.06595 0.1342 0.0006689 0.07526
18 −18.88 0.9887 0.06438 0.1353 0.0007022 0.07114
19 −18.90 0.9878 0.06406 0.1418 0.0007734 0.06634
20 −18.90 0.9871 0.06346 0.1471 0.0007934 0.06667
21 −18.89 0.9875 0.06104 0.1456 0.0007279 0.06377
22 −18.88 0.9874 0.06016 0.1461 0.0007626 0.06292
23 −18.88 0.9871 0.06019 0.1485 0.0009840 0.06102
24 −18.97 0.9860 0.06244 0.1543 0.001076 0.05763
25 −18.96 0.9856 0.06469 0.1563 0.001311 0.05889
26 −18.93 0.9854 0.06447 0.1573 0.001550 0.05686
27 −18.98 0.9855 0.06487 0.1568 0.001828 0.05821
28 −18.97 0.9852 0.06480 0.1587 0.002056 0.05782
29 −18.94 0.9852 0.06438 0.1588 0.002052 0.05624
30 −18.89 0.9848 0.06371 0.1614 0.002102 0.05383
31 −18.84 0.9849 0.06574 0.1604 0.002289 0.05740
32 −18.91 0.9853 0.06504 0.1582 0.002322 0.05684
33 −18.94 0.9855 0.06414 0.1568 0.002349 0.05940
34 −18.96 0.9856 0.06216 0.1569 0.002225 0.05648
35 −18.95 0.9851 0.06419 0.1597 0.002649 0.06830
36 −18.95 0.9849 0.06237 0.1614 0.002799 0.05596
37 −18.89 0.9845 0.06350 0.1633 0.002843 0.05919
38 −18.87 0.9849 0.06108 0.1620 0.002706 0.05396
39 −18.84 0.9847 0.06264 0.1627 0.002848 0.05645
40 −18.94 0.9851 0.06052 0.1612 0.002817 0.05367
41 −18.92 0.9851 0.06204 0.1607 0.002910 0.05809
42 −18.90 0.9856 0.05983 0.1583 0.002756 0.05516
43 −18.96 0.9855 0.06083 0.1581 0.002885 0.05836
44 −18.94 0.9854 0.06041 0.1590 0.002891 0.05584
45 −18.95 0.9858 0.06025 0.1568 0.002908 0.06455
46 −18.90 0.9861 0.05771 0.1560 0.002773 0.05849
47 −18.91 0.9861 0.05807 0.1556 0.002822 0.06921
48 −18.91 0.9865 0.05494 0.1541 0.002727 0.05952
49 −18.95 0.9858 0.05695 0.1578 0.002868 0.05873
50 −18.92 0.9860 0.05616 0.1569 0.002755 0.05573
51 −18.93 0.9861 0.05624 0.1565 0.002733 0.06232
52 −18.91 0.9861 0.05514 0.1566 0.002694 0.05688
53 −18.89 0.9864 0.05450 0.1552 0.002717 0.05817
54 −18.87 0.9861 0.05481 0.1570 0.002853 0.05565
55 −18.90 0.9861 0.05484 0.1568 0.002843 0.05866
56 −18.93 0.9866 0.05316 0.1541 0.002646 0.05978
57 −18.92 0.9866 0.05261 0.1543 0.002559 0.05728
58 −18.92 0.9866 0.05189 0.1545 0.002451 0.05736
59 −18.92 0.9867 0.05059 0.1546 0.002325 0.06070
60 −18.60 0.9868 0.05234 0.1531 0.002831 0.06481
61 −18.90 0.9864 0.05136 0.1562 0.002656 0.06291
62 −18.97 0.9861 0.04991 0.1583 0.002647 0.05492
63 −18.94 0.9861 0.04994 0.1582 0.002713 0.06368
64 −18.97 0.9867 0.04787 0.1553 0.002674 0.05649
65 −18.97 0.9862 0.04959 0.1578 0.002785 0.06491
66 −18.96 0.9865 0.04724 0.1567 0.002695 0.05571
67 −18.98 0.9868 0.04627 0.1554 0.002636 0.05992
68 −18.95 0.9864 0.04527 0.1577 0.002587 0.05517
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TABLE VIII. (Continued.)


 = 4, ibm_lagos

Iteration Energy |A0| |A1| |A2| |A3| Bures distance

69 −18.97 0.9864 0.04607 0.1577 0.002678 0.05925
70 −18.96 0.9867 0.04401 0.1567 0.002654 0.05776
71 −18.93 0.9870 0.04284 0.1550 0.002585 0.05663
72 −18.93 0.9865 0.04322 0.1579 0.002611 0.05534
73 −18.91 0.9869 0.04026 0.1563 0.002455 0.05618
74 −18.94 0.9870 0.03932 0.1559 0.002338 0.05738
75 −18.97 0.9870 0.03816 0.1559 0.002348 0.05688
76 −18.88 0.9872 0.03828 0.1547 0.002434 0.05698
77 −18.91 0.9872 0.03856 0.1547 0.002462 0.05768
78 −18.93 0.9874 0.03741 0.1539 0.002335 0.05807
79 −18.93 0.9876 0.03743 0.1527 0.002344 0.06376
80 −18.92 0.9878 0.03655 0.1515 0.002298 0.06062

TABLE IX. Unprojected wave functions expressed in the full β = 0 basis, reconstructed from classical and quantum simulations in 
 =
2, 4 effective model spaces, along with the exact wave function. The LMG model parameters are N = 30, ε = 1.0, v = 2.0. The projected
ground-state wave functions can be obtained by setting the odd-n components to zero, and rescaling, as described in Sec. III.

Full-space wave functions (unprojected)

State, n Exact AER 
 = 2 ibm_lagos 
 = 2 AER 
 = 4 ibm_lagos 
 = 4

1 0.064046 0.01337(15) 0.0139(16) 0.03390(62) 0.0321(33)
2 0.11405 0.04229(42) 0.0437(44) 0.0881(13) 0.0843(70)
3 0.17438 0.09298(78) 0.0957(82) 0.1594(19) 0.1541(99)
4 0.23289 0.1639(11) 0.167(11) 0.2330(20) 0.227(11)
5 0.28608 0.2459(13) 0.250(13) 0.2942(18) 0.290(10)
6 0.32693 0.3237(12) 0.327(12) 0.3348(12) 0.3344(76)
7 0.35138 0.38146(87) 0.3842(87) 0.35422(66) 0.3567(46)
8 0.35860 0.40774(31) 0.4085(28) 0.35635(27) 0.3605(18)
9 0.34752 0.39910(30) 0.3978(35) 0.34535(43) 0.3495(17)
10 0.32276 0.36020(82) 0.3572(87) 0.32343(84) 0.3261(46)
11 0.28598 0.3013(11) 0.297(11) 0.2914(12) 0.2922(75)
12 0.24395 0.2345(12) 0.230(12) 0.2508(15) 0.2498(98)
13 0.19892 0.1703(11) 0.166(11) 0.2045(17) 0.202(11)
14 0.15647 0.11572(97) 0.1125(98) 0.1570(17) 0.154(10)
15 0.11767 0.07361(73) 0.0712(73) 0.1130(15) 0.1107(97)
16 0.085371 0.04389(50) 0.0422(50) 0.0760(12) 0.0743(78)
17 0.059140 0.02453(31) 0.0235(31) 0.04778(93) 0.0465(57)
18 0.039465 0.01285(18) 0.0122(18) 0.02796(63) 0.0272(38)
19 0.025074 0.00630(10) 0.00599(99) 0.01522(38) 0.0148(23)
20 0.015295 0.002892(51) 0.00273(49) 0.00770(22) 0.0074(13)
21 0.0088408 0.001238(23) 0.00116(23) 0.00361(11) 0.00351(67)
22 0.0048782 0.000493(10) 0.000463(98) 0.001569(54) 0.00152(31)
23 0.0025309 0.0001821(40) 0.000170(38) 0.000627(23) 0.00061(13)
24 0.0012416 <0.0001 <0.0001 0.0002302(93) 0.000224(54)
25 0.00056553 <0.0001 <0.0001 <0.0001 <0.0001
26 0.00023956 <0.0001 <0.0001 <0.0001 <0.0001
27 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
28 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
29 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
30 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

024313-27



CAROLINE E. P. ROBIN AND MARTIN J. SAVAGE PHYSICAL REVIEW C 108, 024313 (2023)

TABLE X. The difference between the exact ground state energy
and that obtained using HL-VQE with different truncations obtained
with classical simulations (in units of ε). “Naive” indicates trunca-
tion of the Hamiltonian without modification, “Effective” indicates
results from the effective model space, and “Effective projected”
indicates results from the projected effective wave function. The
LMG model parameters are N = 32, ε = 1.0, v = 2.0.

N = 32


 Naive Effective Effective projected

2 4.1650 1.6497 × 10−1 1.6497 × 10−1

4 3.4144 1.5623 × 10−2 1.5619 × 10−2

6 2.4775 2.0314 × 10−3 1.9222 × 10−3

8 1.6218 6.9980 × 10−4 2.3089 × 10−4

10 9.5918 × 10−1 5.5488 × 10−4 2.4225 × 10−5

12 4.9318 × 10−1 5.3602 × 10−4 4.0713 × 10−6

14 2.0974 × 10−1 5.3282 × 10−4 9.5794 × 10−7

16 6.9504 × 10−2 5.3203 × 10−4 2.3434 × 10−7

18 1.7265 × 10−2 5.3168 × 10−4 1.2486 × 10−7

20 3.6812 × 10−3 5.3131 × 10−4 3.5171 × 10−7

22 8.9597 × 10−4 5.2763 × 10−4 1.0558 × 10−5

24 7.4972 × 10−5 7.4972 × 10−5 7.4972 × 10−5

26 3.7240 × 10−6 3.7240 × 10−6 3.7240 × 10−6

28 9.6145 × 10−8 9.6145 × 10−8 9.6145 × 10−8

30 9.7540 × 10−10 9.7541 × 10−10 9.7541 × 10−10

32 0 0 0

TABLE XI. The difference between the exact ground state en-
ergy and that obtained using HL-VQE with different truncations
obtained with classical simulations (in units of ε). “Naive” indi-
cates truncation of the Hamiltonian without modification, “Effective”
indicates results from the effective model space, and “Effective pro-
jected” indicates results from the projected effective wave function.
The LMG model parameters are N = 64, ε = 1.0, v = 2.0.

N = 64


 Naive Effective Effective projected

2 8.1569 1.5689 × 10−1 1.5689 × 10−1

4 7.4157 1.3157 × 10−2 1.3157 × 10−2

6 6.3471 1.0902 × 10−3 1.0902 × 10−3

8 5.2706 9.0117 × 10−5 9.0117 × 10−5

10 4.2615 7.7929 × 10−6 7.7886 × 10−6

12 3.3392 8.2237 × 10−7 7.8705 × 10−7

14 2.5243 2.0110 × 10−7 9.6436 × 10−8

16 1.8297 1.4181 × 10−7 6.4595 × 10−9

18 1.2606 1.3566 × 10−7 9.1655 × 10−10

20 8.1584 × 10−1 1.3495 × 10−7 1.0981 × 10−10

22 4.8843 × 10−1 1.3486 × 10−7 1.6069 × 10−11

24 2.6531 × 10−1 1.3485 × 10−7 2.9514 × 10−12

26 1.2783 × 10−1 1.3484 × 10−7 6.7541 × 10−13

28 5.3358 × 10−2 1.3484 × 10−7 1.8833 × 10−13

30 1.8905 × 10−2 1.3484 × 10−7 6.1047 × 10−14

32 5.6094 × 10−3 1.3484 × 10−7 2.5971 × 10−14

34 1.3850 × 10−3 1.3484 × 10−7 8.9075 × 10−15

36 2.8397 × 10−4 1.3484 × 10−7 9.2551 × 10−15

38 4.8379 × 10−5 1.3484 × 10−7 7.0723 × 10−15

40 6.9896 × 10−6 1.3484 × 10−7 4.9407 × 10−15

42 1.0368 × 10−6 1.3484 × 10−7 4.7592 × 10−14

44 2.3949 × 10−7 1.3477 × 10−7 2.7661 × 10−10

TABLE XI. (Continued.)

N = 64


 Naive Effective Effective projected

46 1.9755 × 10−8 1.9755 × 10−8 1.9755 × 10−8

48 1.2852 × 10−9 1.2852 × 10−9 1.2852 × 10−9

50 6.445 × 10−11 6.445 × 10−11 6.445 × 10−11

52 2.417 × 10−12 2.417 × 10−12 2.417 × 10−12

54 6.5 × 10−14 6.5 × 10−14 6.5 × 10−14

56 1.1 × 10−15 1.1 × 10−15 1.1 × 10−15

TABLE XII. The difference between the exact ground state en-
ergy and that obtained using HL-VQE with different truncations
obtained with classical simulations (in units of ε). “Naive” indi-
cates truncation of the Hamiltonian without modification, “Effective”
indicates results from the effective model space, and “Effective pro-
jected” indicates results from the projected effective wave function.
A dash indicates a value below 10−15, and all values for 74 < 
 <

96 are below this value. The LMG model parameters are N = 96,
ε = 1.0, v = 2.0.

N = 96


 Naive Effective Effective projected

2 1.2155 × 101 1.5459 × 10−1 1.5459 × 10−1

4 1.1416 × 101 1.2629 × 10−2 1.2629 × 10−2

6 1.0304 × 101 9.9641 × 10−4 9.9641 × 10−4

8 9.1508 7.6372 × 10−5 7.6372 × 10−5

10 8.0154 5.8604 × 10−6 5.8604 × 10−6

12 6.9164 4.5826 × 10−7 4.5826 × 10−7

14 5.8757 3.6940 × 10−8 3.6940 × 10−8

16 4.9088 3.1168 × 10−9 3.1151 × 10−9

18 4.0261 2.9945 × 10−10 2.9098 × 10−10

20 3.2338 5.4361 × 10−11 3.3224 × 10−11

22 2.5358 3.2170 × 10−11 3.6422 × 10−12

24 1.9334 2.9776×10−11 2.1585×10−13

26 1.4260 2.9563×10−11 3.9432×10−14

28 1.0109 2.9534×10−11 9.3732×10−15

30 6.8338×10−1 2.9527×10−11 2.5873×10−15

32 4.3622×10−1 2.9541×10−11 −
34 2.5994×10−1 2.9527×10−11 −
36 1.4276×10−1 2.9527×10−11 −
38 7.1321×10−2 2.9520×10−11 −
40 3.2037×10−2 2.9520×10−11 −
42 1.2829×10−2 2.9520×10−11 −
44 4.5583×10−3 2.9520×10−11 −
46 1.4350×10−3 2.9534×10−11 −
48 4.0038×10−4 2.9520×10−11 −
50 9.9070×10−5 2.9527×10−11 −
52 2.1741×10−5 2.9527×10−11 −
54 4.2285×10−6 2.9527×10−11 −
56 7.2773×10−7 2.9520×10−11 −
58 1.1060×10−7 2.9520×10−11 −
60 1.4833×10−8 2.9534×10−11 −
62 1.7895×10−9 2.9520×10−11 −
64 2.3580×10−10 2.9527×10−11 −
66 5.3561×10−11 2.9527×10−11 −
68 4.4042×10−12 4.4096×10−12 4.4096×10−12

70 3.1050×10−13 5.0871×10−13 5.0871×10−13

72 1.8596×10−14 1.8431×10−14 1.8431×10−14
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