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Nuclear charge radii and shape evolution of Kr and Sr isotopes with the deformed relativistic
Hartree-Bogoliubov theory in continuum
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The deformed relativistic Hartree-Bogoliubov theory in continuum (DRHBc) is employed to study the ground-
state properties of Kr and Sr isotopes. Based on the constrained DRHBc calculations, it is found that Kr and Sr
isotopes with N = 50 are spherical, while the nuclei just away from N = 50 generally have soft potential energy
curves. Further moving along the isotopic chains in both neutron-rich and neutron-deficient directions, there are
generally two minima at oblate and prolate sides for nuclear potential energy curves, where possible candidates
for shape coexistence are found. The dynamical correlations are crucial to describe the properties of nuclei with
soft potential energy curves or shape coexistence, e.g., the binding energies, two-neutron separation energies,
deformations, and charge radii, which are considered with the two-dimensional collective Hamiltonian method.
In addition, the constrained DRHBc calculations would be helpful to distinguish the oblate or prolate shape for
the nuclei with deformation |β2| � 0.3 by combining with the experimental charge radii and absolute values of
deformations.
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I. INTRODUCTION

Nuclear charge radius is a basic physical quantity in nu-
clear physics, which can be used to extract various nuclear
structure information, e.g., halo phenomena [1], shape evolu-
tion and shape coexistence [2,3], and nuclear magic numbers
[4,5]. It also provides a stringent test and challenge for nuclear
theories, such as the intricate behavior of charge radii along
the Ca isotopic chain [6] and the reduction in odd-even stag-
gering of charge radii of exotic copper isotopes approaching
N = 50 shell gap [7]. Therefore, the study of nuclear charge
radius becomes a hot topic in nuclear physics during past
decades.

Nuclear charge radius can be measured by electronic
scattering experiments [8,9] and muonic spectra [10,11], or
extracted from the optical [12] and Kα x-ray [13] isotope
shifts. The optical isotope shifts can be used to determine
charge radii of weakly produced exotic isotopes, so the charge
radius measurements have been extended to the regions far
from the β-stability line for some isotopic chains with the
development of laser spectroscopy [14,15]. The charge radii
of about 200 nuclides measured by laser spectroscopy ex-
periment were compiled in Ref. [16], and about 900 nuclear
charge radii were summarized and evaluated by combined
analysis of the experimental data from various methods in
Ref. [17].
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The liquid drop model [18,19] treats a nucleus as a uniform
liquid drop with a sharp surface, in which the charge radius
can be described with a phenomenological formula. Since its
introduction various phenomenological formulas have been
proposed to improve the theoretical description of nuclear
charge radius [20–24]. With the development of computer
techniques and computational methods, it is possible to pre-
dict nuclear charge radii with ab initio method [7,25]. It can
well describe the local features of the charge radii, whereas
there are systematic deviations to the experimental absolute
charge radii [7]. In addition, it is very difficult or even impos-
sible to make systematic calculations for heavy nuclei with
ab initio method. Density functional theory (DFT) [26] is
another method to describe nuclear charge radii, which can
well reproduce the experimental isotope shift including the
conspicuous kink around the magic number [27], within the
nonrelativistic [28–33] and the relativistic [34,35] frame-
works. In contrast to the nonrelativistic model, the relativistic
model [36–39] has some attractive advantages including auto-
matic inclusion of nucleonic spin degree of freedom, natural
description of the nuclear spin-orbit coupling with an empiri-
cal strength, natural explanation of the pseudospin symmetry
in the nucleon spectrum [40–42], and the spin symmetry in
antinucleon spectrum [42,43]. The relativistic model has been
successfully applied to describe various nuclear properties,
such as nuclear masses [44–46], half-lives [47–49], fission
properties [50–52], nuclear rotations [53,54], low-lying spec-
trum [55,56], and spin-isospin resonances [57–59]. Therefore,
it is appropriate to systematically study nuclear charge radii
with the relativistic DFT.
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The pairing correlation and continuum effects are essential
to investigate many nuclear properties [60], and the relativistic
continuum Hartree-Bogoliubov (RCHB) theory has consid-
ered these effects via the Bogoliubov transformation in the
coordinate representation [61,62], so the RCHB theory has
been applied to describe ground-state properties of spherical
nuclei. The RCHB theory has been applied to describing
ground-state properties of spherical nuclei, such as the in-
terpretation of halo phenomena [61] and predict giant halo
phenomena [63,64]. It has been also employed to construct
nuclear mass table and the inclusion of continuum effects
largely extends the existing nuclear landscapes predicted with
other methods [65], while its predictions have obvious de-
viations to experimental masses for many deformed nuclei.
By including the deformation degree of freedom, the de-
formed relativistic Hartree-Bogoliubov theory in continuum
(DRHBc) has been developed based on a Dirac Woods-Saxon
basis [66–68]. The DRHBc theory provides a unified descrip-
tion for all nuclei in the nuclear chart, even including those
open-shell deformed nuclei near drip line, since it simul-
taneously contains the pairing correlation, deformation, and
continuum effects.

Due to the advantages of the DRHBc theory in describing
nuclear ground-state properties, it has been employed to study
many nuclear phenomena successfully, such as deformed halo
[66,67,69–75], particles in the classically forbidden regions
[76], shape coexistence [77,78], deformation effects on the
location of neutron drip line [79], and the peninsulas of
stability beyond the two-neutron drip line [80–82]. Another
important application of DRHBc theory is the construction
of nuclear mass table with the PC-PK1 effective interaction
[83]. The strategy and techniques for the nuclear mass table
by the DRHBc theory are presented for even-even nuclei in
Ref. [84] and odd-mass nuclei in Ref. [85]. The mass table for
even-even nuclei has been summarized in Ref. [44], whose
root-mean-square (rms) deviation of nuclear masses to the ex-
perimental data is about 1.5 MeV by including the rotational
correction energies in the cranking approximation, providing
one of the best microscopic descriptions for nuclear masses.
However, the cranking approximation used to obtain the ro-
tational correction energy in the present DRHBc calculations
is not suitable for (near) spherical nuclei (quadrupole defor-
mation β2 � 0.05). Therefore, its description of nuclear mass
for (near) spherical nuclei is generally worse than that for
deformed nuclei [86], and nonphysical kinks of two-neutron
separation energies S2n are found when the nuclei change
from (near) spherical to deformed shapes [87]. It is found
that the beyond-mean-field dynamical correlation energies
(DCEs) can improve the description of both deformed and
(near) spherical nuclei by using the five-dimensional collec-
tive Hamiltonian (5DCH) [88–92] or generator coordinate
method (GCM) methods [93]. Systematical calculations of
DCEs have been performed based on the axially deformed
relativistic mean-field plus Bardeen-Cooper-Schrieffer (BCS)
(RMF+BCS) [94] and triaxial relativistic Hartree-Bogoliubov
(RHB) theories in the harmonic oscillator basis [95]. Com-
pared with the harmonic oscillator basis, the Woods-Saxon
basis is more suitable to describe the exotic nuclei and hence
to perform large-scale calculations since it has a more realistic

asymptotic behavior. Recently, the DRHBc theory has been
extended to go beyond mean-field framework by perform-
ing a two-dimensional collective Hamiltonian (2DCH) [87].
It is found that DCEs with 2DCH method can significantly
improve the description of nuclear masses for the (near) spher-
ical nuclei by taking Se, Nd, and Th isotopes as examples, and
reduce the rms deviations of S2n by 17% [87].

Nuclear deformation plays an important role in reliably
describing many nuclear properties, such as nuclear masses
mentioned above and charge radii. It has been found that
the drastic changes in the charge radii of Sr and Zr iso-
topes at N = 60 are related to the rapid changing in nuclear
shapes [96–98]. The shape evolution and shape coexistence
at N ≈ 60 have attracted wide attention from both theoretical
and experimental sides, e.g., the related experimental mea-
surements for 72Kr [99], Sr isotopes [100–102], and 98Zr
[103], and theoretical studies for Kr isotopes [104], Kr, Sr,
and Zr isotopes [2], Sr isotopes [105], Sr and Zr isotopes
[106,107], and Zr isotopes [108–112]. These studies have
shown that there are complicated shape evolution and rich
structure information in Kr and Sr isotopes. For better treat-
ing the weakly deformed nuclei and large shape fluctuations
related to a very soft potential energy curve (PEC) around the
global minima in Kr and Sr isotopes, we would employ the
2DCH method to consider the beyond-mean-field dynamical
correlation effects based on the calculations of DRHBc theory.
The results of Kr and Sr isotopes with DRHBc+2DCH model
are presented in Sec. III, and special attention is focused on
nuclear charge radii and shape evolution. A brief introduction
of DRHBc+2DCH model is given in Sec. II. The summary
and perspectives are presented in Sec. IV.

II. THEORETICAL FRAMEWORK

The DRHBc theory provides a unified and self-consistent
treatment of the mean field and the pairing correlation, which
can include continuum effects without introducing nonphysi-
cal contributions and describe the exotic nuclei properly in the
Dirac Woods-Saxon basis [113,114]. The details of DRHBc
theory can be found in Refs. [66,67,84], so we only give a
brief introduction of DRHBc theory here.

The relativistic Hartree-Bogoliubov equations [115] in
DRHBc theory,(

hD − λτ �

−�∗ −h∗
D + λτ

)(
Uk

Vk

)
= Ek

(
Uk

Vk

)
, (1)

are solved in the Dirac Woods-Saxon basis [113,114]. Ek is
the quasiparticle energy, (Uk,Vk )� is the quasiparticle wave
function, and λτ is the Fermi energy for neutron or proton
(τ = n, p). The Dirac Hamiltonian hD is

hD(r) = α · p + V (r) + β[M + S(r)], (2)

where M is the neutron (proton) mass, and S(r) and V (r) are
the scalar and vector potentials, respectively. In this work,
the potentials S(r) and V (r) are derived from the Lagrangian
with the effective point-coupling interaction PC-PK1 [83].
The pairing potential Δ is

Δ(r1, r2) = V pp(r1, r2)κ (r1, r2), (3)
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where κ is the pairing tensor. V pp is the pairing force and in
this work we use a density-dependent zero-range pairing force

V pp(r1, r2) = V0
1

2
(1 − Pσ )δ(r1 − r2)

(
1 − ρ(r1)

ρsat

)
. (4)

Here, V0 and ρsat are the pairing strength and the saturation
density of nuclear matter, respectively. (1 − Pσ )/2 is the pro-
jector for the spin S = 0 component in the pairing channel.
For axially deformed nuclei, the potentials are expanded with
the Legendre polynomials in the DRHBc theory

f (r) =
∑

λ

fλ(r)Pλ(cos θ ), λ = 0, 2, 4, . . . , λmax. (5)

Because of the spatial reflection symmetry, λ is restricted to be
even numbers. The numerical details of DRHBc calculation
are the same as suggested in Ref. [84]. Specifically, the Leg-
endre extension truncation in Eq. (5) is chosen as λmax = 6,
the pairing strength and saturation density in Eq. (4) are set
as V0 = −325 MeV fm3 and ρsat = 0.152 fm−3, and a cutoff
energy of 100 MeV is used for the pairing window in the
quasiparticle space.

Similar to Refs. [82,84], the charge radius Rc is calculated
with

Rc =
√

R2
p,rms + 0.64 fm2, (6)

which ignores the small correction due to the center of mass
motion and the charge distributions in proton and neutron
[116,117]. The root-mean-square (rms) radius of proton Rp,rms

can be obtained with

R2
p,rms =

∫
d3r[r2ρp(r)]/Z, (7)

where ρp is the vector density of the proton.
To include the collective dynamical correlations, the 2DCH

method is employed to go beyond mean-field approxima-
tion, whose collective parameters are determined from the
constrained DRHBc calculations [87]. The 2DCH collective
Hamiltonian is

Ĥcoll = T̂vib + T̂rot + Vcoll

= − h̄2

2

1√
I Bββ

∂

∂β

√
I

Bββ

∂

∂β
+ Ĵ2

2I
+ Vcoll, (8)

where T̂vib and T̂rot are the vibrational and rotational kinetic en-
ergy terms, respectively. Vcoll is the collective potential, which
is calculated from the DRHBc total energy by subtracting the
rotational correction energy Erot and the vibrational correction
energy Evib. Bββ is the collective mass, which is calculated
in the cranking approximation [118]. Ĵ is the total angular
momentum in the intrinsic frame and I is the moment of
inertia, which is calculated by the Inglis-Belyaev inertial
function [119,120]. One can obtain the beyond-mean-field
ground-state energy E (0+

1 ) by diagonalizing the 2DCH
Hamiltonian Ĥcoll in Eq. (8). The dynamical correlation en-
ergy is then calculated with the difference between the global
minimum of the total energy curve and E (0+

1 ), i.e., DCE =
Emin

tot − E (0+
1 ).

The continuum effects play an important role in studying
the properties of exotic nuclei, especially for nuclei near the

drip lines. Therefore, a nuclear model with continuum effects
is necessary to perform large-scale calculations for nuclei on
the nuclear chart. By further including the 2DCH corrections,
the DRHBc model can better describe nuclear properties with
low computational limitation, thus providing an effective tool
to systematically study nuclear properties. However, it should
be noted that the present calculations are limited to the axial
degree of freedom and the results may be affected for some
triaxially deformed nuclei.

III. RESULTS AND DISCUSSION

The binding energy and two-neutron separation energy
are first employed to show the predictive powers of DRHBc
and DRHBc+2DCH models, whose results are presented in
Figs. 1 and 2, respectively. From Fig. 1, it is clear that the
DRHBc generally underestimates nuclear binding energies,
whose rms deviation with respective to the experimental data
[121] is 3.0 MeV for Kr and Sr isotopes. It has been found
that the rotational correction energies Erot should be included
properly in the DRHBc calculations with PC-PK1, which are
obtained in the cranking approximation here as in Ref. [84].
By including the Erot, the description of deformed nuclei is
remarkably improved, and the rms deviation is reduced to 1.8
MeV. However, the Erot is set to be zero for (near) spheri-
cal nuclei (β2 � 0.05), since the cranking approximation is
not suitable and nonphysical results would be obtained for
them. Based on the 2DCH method, the obtained DCEs not
only improve the description of deformed nuclei but also
improve the description of (near) spherical nuclei 76,78,86Kr
and 80,82,84,86,88Sr close to the neutron (sub)shell, further re-
ducing the rms deviation to 1.2 MeV. Therefore, the DCEs
are essential for describing nuclei with different deformations,
including (near) spherical nuclei. However, the binding en-
ergies of some nuclei are still underestimated even with the
2DCH corrections, e.g., 88,90Kr and 90,92,94Sr. The inclusion
of triaxial degrees of freedom can help to improve these de-
viations. Compared with the present 2DCH calculations, the
5DCH calculations in Ref. [95] can further reduce the rms of
binding energies of Kr and Sr isotopes by about 0.1 MeV. This
small rms improvement might suggest that the triaxial degree
of freedom does not influence seriously.

The two-neutron separation energy S2n contains detailed
information about the nuclear structure, such as shell struc-
ture and shape transition, whose results are shown in Fig. 2
for Kr and Sr isotopes. The DRHBc, DRHBc with Erot, and
DRHBc+2DCH models all reproduce the shell structure at
the magic number N = 50, but the shell gap of DRHBc
is too large, which can be improved by adding the Erot in
cranking approximation or the DCEs with 2DCH method.
Moreover, conspicuous non-physical kinks of S2n are found
around N = 40 for both Kr and Sr isotopes when the Erot is
added to DRHBc calculations. It is found that these kinks
originate from abrupt changes of deformations, e.g., shape
changes from largely deformed nuclei 74Kr and 78Sr to spher-
ical nuclei 76Kr and 80Sr (refer to Fig. 4 for the deformations
of Kr and Sr isotopes). There are about 3 MeV for the Erot

of largely deformed nuclei, while they are zero for (near)
spherical nuclei, so abrupt changes of deformations induce
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FIG. 1. Differences between the experimental binding energies [121] and the theoretical results for Kr (a) and Sr (b) isotopes. The DRHBc
results, DRHBc results with Erot , and DRHBc+2DCH results are shown by open squares, triangles, and circles, respectively.

the abrupt changes of Erot and hence induce the conspicuous
kinks of S2n. By considering the beyond-mean-field dynamical
correlation with 2DCH method, the changes of deformations
are remarkably weakened and there are nonzero DCEs for
both deformed and spherical nuclei, so the kinks of S2n in
both Kr and Sr isotopes are well eliminated and hence the
S2n predicted by DRHBc+2DCH are more consistent with
the experimental data [122]. And the rms deviation of S2n

are 1.01 MeV, 1.16 MeV, and 0.77 MeV for the DRHBc, the
DRHBc with Erot, and DRHBc+2DCH theories, respectively.
Therefore, the inclusion of dynamical correlations with 2DCH
makes the DRHBc predictions more reliable, and we will
employ the DRHBc+2DCH model to study the evolution of
deformations and charge radii of Kr and Sr isotopes in the
following.

The two-neutron separation energy can also be used to
determine the neutron drip line. The neutron drip-line nu-
clei for Kr and Sr isotopes predicted by the DRHBc+2DCH

are 132Kr and 142Sr. The drip-line nuclei predicted by the
RHB in the harmonic oscillator basis are 130,120,118,118Kr and
138,126,120,120Sr for NL3*, DD-ME2, DD-MEδ, and DD-PC1,
respectively [123]. Clearly, the inclusion of the continuum can
extend the neutron drip line to the more neutron-rich side.
Compared to the drip-line nuclei 136Kr and 148Sr predicted by
the spherical RCHB [65], the inclusion of deformation would
also affect the position of the neutron drip line. If only Erot

are considered in the DRHBc calculations, the conspicuous
nonphysical kinks are found when N > 60 regions for both
Kr and Sr isotopes, such as around N = 68, 80, 84, 92 for
Kr isotopes. This kind of kink induces 128Kr to be unbound,
and hence 126Kr becomes the neutron drip line, showing the
importance of DCE effects in the determination of the neutron
drip line. The above discussions show that the simultaneous
consideration of the deformation, continuum, and DCE effects
is important for the determination of the drip line, which can
be achieved in the DRHBc+2DCH theory.

FIG. 2. Comparison of S2n between experimental data [121] (filled squares) and theoretical results for Kr (a) and Sr (b) isotopes. The
DRHBc results, DRHBc results with Erot , and DRHBc+2DCH results are shown by open squares, triangles, and circles, respectively.
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FIG. 3. Evolution of the PECs for Kr (a) and Sr (b) isotopes from the constrained DRHBc calculations. For displaying the data clearly, the
PECs of the lightest isotopes 70Kr and 76Sr are renormalized to their potential energies at β2 = 0, and other PECs for each isotope are shifted
upward by 4 MeV compared to the previous one.

FIG. 4. Charge radii and deformations for Kr and Sr isotopes. The results from the DRHBc+2DCH and DRHBc calculations are denoted
with open circles and open squares, respectively. The green triangles (c) and (d) represent the new DRHBc+2DCH calculations, while the
pairing strength is reduced by multiplying a factor of 0.8. The corresponding experimental data [17,122] are shown with filled squares for
comparison.
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Rich structure and shape coexistence phenomena have
been widely noticed in Kr and Sr isotopes [2,97–102,104–
106]. The potential energy curves (PECs) are very crucial to
study nuclear structure and shape evolution, which are shown
in Fig. 3(a) and 3(b) for Kr and Sr isotopes, respectively.
The global minima of PECs are denoted by open circles in
Fig. 3. It is known that the nucleus with a magic number
is generally spherical, e.g., 86Kr at neutron magic number
N = 50. When the neutron number deviates (decreases or
increases) from magic number N = 50, soft PECs are found
for 76–84,88Kr (N = 40–48, 52). When the neutron number
decreases to N = 38, a very complex structure shows up for
74Kr. It has a prolate global minimum and a soft potential
energy curve around the oblate minima, whose energy differ-
ence between two minima is only 0.041 MeV. 72Kr (N = 36)
has an oblate global minimum and a soft potential around
the prolate minima, while the energy difference between two
minima is 2.356 MeV. Moving along the chain in neutron-
deficient direction, two remarkable minima are found for 70Kr
(N = 34), one is oblate ground states and the other is prolate
local minimum, and the energy difference between the two
minima is 1.566 MeV. With the increase of neutron number,
two minima at oblate and prolate shapes are also found from
90Kr (N = 54), whose energy differences are 0.078, 0.447,
1.271, 3.352, and 2.516 MeV for 90–98Kr, respectively. There-
fore, 74,90,92Kr are possible candidates for shape coexistence
in the DRHBc calculations, since their energy differences �E
between two minima are very small (criterion of �E � 1
MeV as in Refs. [77,78]). Moving further towards the neutron-
rich side, the PECs have (near) spherical minima for the nuclei
around the next magic number N = 82, others have prolate
or oblate minima. Similar shape evolution is also found for
Sr isotopes, e.g., 88Sr (N = 50) is spherical and 80–86,90,92Sr
(N = 42–48, 52, 54) have soft potentials. Moreover, there are
two minima at oblate and prolate shapes for 76,78,94–104Sr
(N = 38, 40, 56–66), and the energy differences between
their oblate and prolate minima are all very small, which are
1.008, 0.267, 0.355, 0.137, 0.348, 0.205, 0.450, 0.849 MeV,
respectively. These small energy differences between two
minima imply that they are possible candidates for shape
coexistence. For the nuclei around the next magic number
N = 82, i.e., the nuclei with N = 70–84, their PECs all have
spherical minima. Moving further towards the neutron-rich
side for Sr isotopes, the deformations of their ground states
are stabilized in the oblate shape.

In comparison with the triaxial RHB theory [95], we found
that there is no triaxial deformation in the ground state for
the Kr and Sr isotopes. This triaxial RHB theory employed
the PC-PK1 density functional to systematically calculate the
nuclear landscape and accounted for DCEs through the 5DCH
method. Many ground state properties calculated within the
2DCH model are in good agreement with the data, for exam-
ple, the experimental binding energy results shown in Fig. 1.
As mentioned above, the small reduction of rms of binding
energies from 2DCH to 5DCH calculations might suggest
that the triaxial degree of freedom does not influence seri-
ously. However, even though no energy minimum is found
at triaxiality, the triaxial degree of freedom may still influ-
ence the results of some nuclei with double minima. By

carefully checking the triaxial calculations in Ref. [95], we
found that the nuclei just above N = 50 have a clear path
connecting them in the β-γ plane with relatively low energies,
for which an admixture of the γ -deformed configuration may
be important, such as 88,90Kr and 90,92,94Sr. A systematic
search for triaxial ground-state nuclear shapes in Kr and Sr
isotopes has also been studied within a relativistic DFT us-
ing DD-PC1 and NL3∗ parameter sets, which predicted that
there are the triaxial deformations in the ground states of
92,94Sr [2]. This further suggests that the triaxial degree of
freedom may be important for the nuclei just above N = 50.
Therefore, it should be noted that the present results of these
nuclei may be affected if one includes the triaxial degree of
freedom.

The deformations of DRHBc theory can be obtained from
the global minima of PECs, which are shown in Fig. 4 for
Kr and Sr isotopes together with their charge radii. As dis-
cussed in Fig. 3, soft potentials around the global minima are
found for nuclei with neutron number around magic num-
ber N = 50. The shape predictions for these nuclei are very
challenging for the mean-field model. The 2DCH method can
well deal with the large shape fluctuations characterized by
soft potentials, and the deformations in the 2DCH method
can be calculated as the expectation values of β2 in the
ground state 0+

1 [87]. From Fig. 4(b) and 4(d), it is clear
that the DRHBc+2DCH gives nonzero deformations for all
Kr and Sr isotopes with N = 40–52 due to the shape fluctua-
tions. The calculated deformations with the DRHBc+2DCH
better agree with the experimental deformation data ex-
tracted from measured B(E2) [122]. For neutron-rich Kr
and Sr isotopes around the next magic number N = 82, the
DRHBc+2DCH also gives nonzero deformations as for the
nuclei around N = 50, so the deformation evolution predicted
by the DRHBc+2DCH is much smoother than that predicted
by the DRHBc. The abrupt shape changes between deformed
nuclei and spherical nuclei can lead to the abrupt changes of
Erot, which then induce the nonphysical kinks of S2n shown in
Fig. 2. Therefore, the DECs from 2DCH are important for our
understanding of nuclear ground-state properties.

For 74Kr and 96Sr, possible candidates for shape coexis-
tence with energy differences between two minima as 0.041
and 0.137 MeV, the DRHBc predicts very large prolate defor-
mations |β2| > 0.4, while the DRHBc+2DCH predicts oblate
ground states with moderate deformations |β2| ≈ 0.25, which
agree well with the experimental values. This implies the
importance of dynamical correlations by the 2DCH in de-
scribing some nuclei with shape coexistence. Therefore, the
DRHBc+2DCH can also improve the description of defor-
mation for the deformed nuclei with β2 � 0.2. However, the
DRHBc+2DCH predicts an oblate ground state for 100Sr with
|β2| = 0.258, which is much smaller than its experimental
value of 0.426. It has been found the 2DCH calculations
are quite sensitive to the pairing correlations [87], so we
further reduce the pairing strength by multiplying a fac-
tor of 0.8 (from V0 = −325 to −260 MeV fm3) to make
DRHBc+2DCH calculations and the new results are shown
by triangles in Fig. 4(c) and 4(d) for 96–104Sr. For 100Sr, the
ground state becomes prolate shape with |β2| = 0.437 from
oblate shape with |β2| = 0.258.
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FIG. 5. Charge radius as a function of deformation for 100Sr. The
filled and open circles denote the constrained results and the minima
in unconstrained calculations predicted by the DRHBc model. The
dependence between the charge radius and the deformation from a
empirical formula [124] is shown with the squares for comparison.
Shadows represent experimental charge radius [17] and deformation
[122] with uncertainties.

It is also found that the 5DCH calculations based on
RMF+BCS [98,106] well reproduce the experimental charge
radii of Sr isotopes including 100Sr, which may imply the
triaxial degree of freedom is also important for some Sr
isotopes. As can be seen in Fig. 3, some nuclei have two
minima, and the deformations may change when considering
the triaxial degree of freedom, especially for the nuclei just
above N = 50. Nuclear charge radii are sensitive to nuclear
deformations, so the improvement of nuclear deformation in
DRHBc+2DCH model induces the improvement of nuclear
charge radii. For example, the inclusion of dynamical corre-
lations with 2DCH method based on the DRHBc calculations
improves the underestimation of charge radii for (near) spher-
ical Kr and Sr isotopes and smooths the non-physical kink of
charge radius at N = 38 and 92 for Kr isotopes. Therefore,
the DRHBc+2DCH model generally better reproduces the
experimental charge radii than DRHBc model for both (near)
spherical and deformed nuclei.

To further study the dependence of charge radius on de-
formation, nuclear charge radii are shown in Fig. 5 as a
function of deformation by taking 100Sr as an example. The
dependence between the charge radius and the deformation
from a well-known empirical formula [124] is also shown for
comparison, i.e., R2

ch = R2
ch0[1 + 5β2

2/(4π )]. The Rch0 repre-
sents the charge radius of the corresponding spherical nucleus.
This empirical formula is derived by assuming a phenomeno-
logical charge density distribution, while the present DRHBc
theory can make self-consistent calculations, which generally
better describes nuclear density distributions. From the con-
strained calculations with the DRHBc theory, it is clear that
the charge radius takes the smallest value when the nucleus
is spherical and it increases with the increase of deformation

FIG. 6. Wave function of 100Sr in the 2DCH model.

in both oblate and prolate sides. However, the charge radius
increases more rapidly along the oblate direction, so the same
charge radius would correspond to different deformations in
the oblate and prolate regions. When the charge radius and
the absolute value of deformation |β2| are known, one can
determine whether a nucleus is oblate or prolate when the
deformation |β2| � 0.3. The experimental deformation data
are extracted from the measured B(E2) by using the rela-
tion β2 = 4πe

√
B(E2)/(3ZR2

0) with R0 = 1.2A1/3 fm [122].
Clearly, there are only positive β2 for experimental defor-
mations, which are in fact the magnitude of β2, i.e., |β2|.
Therefore, it is believed that the B(E2) does not depend on
the sign of β2, which is valid for strongly deformed nuclei.
The experimental data of other nuclear properties are then
necessary to determine the sign of β2. We have found that the
charge radii are very sensitive to the sign of β2 for the strongly
deformed nuclei with |β2| � 0.3. One can then combine the
experimental |β2| extracted from measured B(E2) and the
experimental charge radii to determine the sign of β2 for the
nuclei with |β2| � 0.3.

Taking 100Sr as an example, its experimental charge ra-
dius Rch and deformation β2 with uncertainties are shown by
the horizontal and vertical shadows in Fig. 5, respectively.
Clearly, the experimental charge radius and deformation can
be achieved simultaneously only when the nucleus takes a
prolate shape. The DRHBc also predict a prolate minimum
at this region, which agree well with the experimental charge
radius and deformation. Furthermore, it can be seen from
Fig. 4 that the DRHBc+2DCH model also predicts a prolate
shape with β2 = 0.437 when it can reproduce the experimen-
tal charge radius of 100Sr. The corresponding wave function
in the 2DCH model is shown in Fig. 6. It is clear that the pro-
late deformation with β2 ≈ 0.45 is the dominant component,
which further testifies that the correlation between charge
radius and deformation can help to determine the oblate or
prolate shape of a nucleus.

Figure 7 presents the charge radii from the DRHBc cal-
culations for Kr and Sr isotopes, whose deformations are
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FIG. 7. Charge radii from the constrained DRHBc calculations
for Kr (a) and Sr (b) isotopes. The deformations in DRHBc cal-
culations are constrained to the experimental values [122] in the
prolate (open inverted triangles) and oblate (open triangles) regions.
The experimental charge radii [17] are shown with filled squares for
comparison.

constrained to their experimental values in the prolate and
oblate regions. Clearly, at least one charge radius from the
constrained DRHBc calculation can reproduce the experi-
mental value. Combining Figs. 4 and 7, it is found that the
charge radii from the constrained DRHBc calculations of
some nuclei are close to the experimental values in both
prolate and oblate regions, such as 82–96Kr (N = 46–60) and
84–96Sr (N = 46–58), corresponding to nuclei with relatively
weak deformation |β2| � 0.25. For the relatively largely de-
formed nuclei, especially for |β2| � 0.3, the charge radii from
the constrained DRHBc calculations are clearly different from
each other, and only one constrained result can reproduce the
experimental charge radii, so that one can distinguish the nu-
clear deformation in the prolate or oblate region. The present
DRHBc calculations support that 74–78Kr (N = 38–42) and
80Sr (N = 42) are more likely to be oblate, while 78,82,98,100Sr
(N = 40, 44, 60, 62) are more likely to be prolate. Therefore,
the constrained DRHBc calculations can be used to distin-
guish the oblate or prolate shape for the largely deformed
nuclei with |β2| � 0.3 by combining the experimental charge
radius and absolute values of deformation. It should be noted
that the present work is limited in the axial degree of freedom,

so the inclusion of triaxial degree of freedom may affect our
results.

IV. SUMMARY AND PERSPECTIVES

The DRHBc is employed to study the ground-state prop-
erties of Sr and Kr isotopes, including the binding energies,
two-neutron separation energies, deformations, and charge
radii. Based on the DRHBc calculations, the beyond-mean-
field dynamical correlation effects are considered with 2DCH
method. It is found that the DCEs are essential for describing
nuclei with different deformations, including (near) spheri-
cal nuclei, and thus reducing the rms deviation of binding
energies from 3.2 MeV to 1.2 MeV. The DRHBc+2DCH
model reduces the shell gap of N = 50 and eliminates the
nonphysical kinks of S2n in DRHBc calculations, hence better
describes experimental S2n. Based on the constrained DRHBc
calculations, it is found that Kr and Sr isotopes (86Kr and
88Sr) with N = 50 are spherical, while the nuclei just away
from N = 50 generally have soft PECs. Further moving along
the isotopic chains in both neutron-rich and neutron-deficient
directions, there are generally two minima at oblate and pro-
late shapes for nuclear PECs, where possible candidates for
shape coexistence are found, e.g., 74,90,92Kr and 76,78,94–104Sr.
The dynamical correlations are found to be crucial to describe
deformations of nuclei with soft PECs or shape coexistence.
Therefore, the DRHBc+2DCH gives nonzero deformations
for the (near) spherical nuclei in DRHBc theory due to
the shape fluctuations, and thus better reproduces the ex-
perimental deformations extracted from measured B(E2).
The improvement of nuclear deformation in DRHBc+2DCH
model induces the improvement of nuclear charge radii. How-
ever, one also needs to be aware that the 2DCH calculations
are quite sensitive to the pairing correlations. Finally, it is
found that the constrained DRHBc calculations are helpful
to distinguish the oblate or prolate shape for the nuclei with
deformation |β2| � 0.3 by combining with the experimental
charge radii and absolute values of deformations. Based on
the present calculations, 74–78Kr and 80Sr are more likely to
be oblate, while 78,82,98,100Sr are more likely to be prolate.
In Ref. [95], it is found that the ground states of Kr and Sr
isotopes considered here are not triaxially deformed with the
5DCH method based on the RHB theory in harmonic oscil-
lator basis and the effective interaction PC-PK1. However,
it would be interesting to extend the DRHBc theory from
the present axial deformation to include triaxial degree of
freedom and consider the dynamical correlation effects with
the 5DCH method in future works, which would be helpful to
confirm our conclusions in this work.
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