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Recently the interacting boson model with SU(3) higher-order interactions was proposed by one of the authors,
in which new γ softness can emerge. This stimulates further discussion on the connections between the new
γ softness and realistic γ -soft nuclei. In this paper, E(5)-like γ softness arises when the SU(3) fourth-order
interaction Ĉ2

2 [SU(3)] is considered. The corresponding transitional behaviors are similar to those from the U(5)
limit to the O(6) limit in the previous interacting boson model, IBM-1, which provides a novel perspective for
understanding the new model. Low-lying spectra, B(E2) values, and quadrupole moment of the first 2+

1 state
are investigated. The E(5)-like nucleus 82Kr is exemplified, where the calculated low-lying level energies and
the associated B(E2) values fit very well with the experimental data.
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I. INTRODUCTION

Nuclear shapes arising from collective dynamics between
nucleons provide a fundamental concept to understand var-
ious properties of atomic nuclei [1]. Taking into account
quadrupole degrees of freedom, nuclear shapes are character-
ized as a spherical harmonic vibrator [2], an axially symmetric
deformed rotor [3] (prolate or oblate), a γ -unrelated rotor
[4], or a γ -rigid triaxial rotor [5]. The nuclear shapes can be
elegantly described in the framework of the interacting boson
model (IBM) [6]. In the simplest version IBM-1, collective
properties of nuclei can be well described by Hamiltonian
with up to two-body interactions. Spectra of spherical [the
U(5) limit], prolate [the SU(3) limit], oblate [the SU(3) limit],
and γ -soft [the O(6) limit] nuclei can be reproduced, and
shape transitional behaviors between the typical collective
excitation modes are also extensively investigated in this
model [7–17]. The abrupt shape transition between different
paradigms is characterized as critical point symmetry (CPS)
[18,19], which provides a simple parameter-free analytical
treatment of transitional nuclei. In particular, the E(5) CPS
[18] corresponds to the critical point of the transition from
spherical to deformed γ -unstable shapes. This description
was initially built within the Bohr-Mottelson (BM) model [1],
where the collective potential function is taken as an infinite
square well that only depends on β. Based on the correspon-
dence between the BM model and IBM, relationships between
the E(5) model and IBM are explored in [20,21].

It is worth noting that the Hamiltonian, which only con-
tains the lower-order interactions, has some limitations in
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describing the shapes. For example, it fails to account for
the γ -rigid triaxial deformation [22], which means that the
γ -rigid triaxial shape can notbe treated on an equal footing
with the prolate shape. The introduction of the higher-order
interactions [d†d†d†](L) · [d̃ d̃ d̃](L) into the Hamiltonian can
overcome this deficiency and induce a stable triaxial shape
[23]. Meanwhile, it can be noticed that SU(3) symmetry-
conserving higher-order interactions have been systematically
investigated to remove the degeneracy of the γ band and the β

band [24], and the rigid quantum asymmetric rotor within the
SU(3) limit has been realized [25,26]. The SU(3) higher-order
interactions were also investigated in [27–31]. Additionally,
these interactions also play an important role in partial dy-
namical symmetry [32–34].

Inspired by the relationships between the γ -rigid triaxial
deformation and the higher-order interactions [22,23], For-
tunato et al. investigated triaxiality by introducing a cubic
Q-consistent IBM Hamiltonian [35]. In the SU(3) limit, the
cubic quadrupole interaction can describe the oblate shape,
which can replace the oblate description of the SU(3) limit
in previous IBM-1 and create a new evolution path from the
prolate shape to the oblate shape. It opens a new door to un-
derstand the oblate shape in realistic nuclei. The analytically
solvable prolate-oblate shape phase transitional description
within the SU(3) limit was investigated [36], which offers a
finite-N first-order shape transition.

These novel results [35,36] encourage us to understand
the experimental phenomena from a new perspective. The
interacting boson model with SU(3) higher-order interactions
(SU3-IBM) proposed by one of the authors can give ex-
cellent explanations of the B(E2) anomaly [37–41], where
the anomaly phenomenon can be described by introducing
the two SU(3) third-order interactions [42] or more higher-
order interactions [43]. The Hamiltonian of the SU3-IBM is
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constructed algebraically by only considering the U(5) limit
and the SU(3) limit [44]. Various quadrupole deformations
including the γ -rigid triaxiality can be described in the SU(3)
limit, and the combination with the U(5) limit can induce the
emergence of γ softness. This new γ softness was found to
be intimately related to realistic γ -soft nuclei. For example,
the normal states of 110Cd can be described by the new γ -soft
rotational mode [44], which is related to the spherical nucleus
puzzle [45–53]. And this emerging γ softness can be also used
to explain the properties of 196Pt [54]. On the other hand,
it is found that the SU3-IBM can describe the asymmetric
prolate-oblate shape phase transition in the Hf-Hg region [55].
The belief that triaxiality results from the competition be-
tween the prolate shape and the oblate shape [44] is further
exemplified, which is also discussed in the Xe-Ba region very
recently [56].

The γ -softness discussed in the simplest SU3-IBM [44]
has one specific feature that the energy of the 0+

3 state is
almost twice larger than the one of the 0+

2 state, which is the
major drawback when fitting the γ -soft nucleus of 196Pt. This
deficiency stimulates further investigations on the new γ soft-
ness. In this paper the fourth-order interaction Ĉ2

2 [SU(3)] is
introduced and a new curious connection is established. Tran-
sitional behaviors similar to those from the U(5) limit to the
O(6) limit are found, and γ softness with E(5) characteristic
is demonstrated. Besides, the relationships between the irreps
and shape deformations in the SU(3) limit are also discussed
with the aim of realizing a rigid triaxial shape. Based on the
SU3-IBM, the low-lying states and the B(E2) values of 82Kr
are investigated, and it can be seen that the calculation results
fit well with the experimental data [57].

The paper is organized as follows. In Sec. II, the Hamil-
tonian used in our paper is given. The level anticrossing and
potential energy surface based on the new model are demon-
strated in Sec. III. Section IV shows the transitional behaviors
of the Hamiltonian including the excitation spectra, B(E2)
transition rates, and the quadrupole moment. In Sec. V, the
calculation results of 82Kr are compared with other theoretical
results and experimental data. A summary of the main results
and conclusions are given in Sec. VI.

II. HAMILTONIAN

The Hamiltonian supporting the new γ -softness was pro-
posed in [44], and is composed of two parts. One is the
d-boson number operator n̂d of the U(5) limit. Another
term contains various symmetry-conserving interactions of
the SU(3) limit. In Ref. [44] the SU(3) invariants are the
second-order Casimir operator −Ĉ2[SU(3)] and the third-
order Casimir operator Ĉ3[SU(3)], which describe the prolate
shape and the oblate shape, respectively. Therefore, this
formalism can be also used to the investigation of the prolate-
oblate shape phase transition [58–60]. In previous research
[44] the energy of the 0+

3 state is larger than the experimental
result. However, it can be noticed that the 0+

3 state is close
to the 0+

2 state in many nuclei, such as 82Kr [57,61]. In or-
der to realize this characteristic, the fourth-order interaction
Ĉ2

2 [SU(3)] is considered in this paper. Thus the Hamiltonian

is expressed as

Ĥ = c

[
(1 − η)n̂d + η

(
−Ĉ2[SU(3)]

2N

+ κ
Ĉ3[SU(3)]

2N2
+ ξ

Ĉ2
2 [SU(3)]

2N3

)]
, (1)

where c is the total fitting parameter, 0 � η � 1, κ and ξ

are the coefficients of the cubic and biquadrate interactions,
respectively, and N is the boson number. If η = 0, it presents
the spherical shape. If η = 1, it is a combination of the inter-
actions in the SU(3) limit.

The two SU(3) Casimir operators are defined as

Ĉ2[SU(3)] = 2Q̂ · Q̂ + 3

4
L̂ · L̂, (2)

Ĉ3[SU(3)] = −4
√

35

9
[Q̂ × Q̂ × Q̂]0 −

√
15

2
[L̂ × Q̂ × L̂]0,

(3)

where Q̂ is the quadrupole momentum operator in the SU(3)
limit and L̂ is the angular moment operators. Under the group
chain U(6) ⊃ SU(3) ⊃ O(3), the eigenvalues of the Casimir
operators can be expressed in terms of the SU(3) irreps (λ, μ)
as

〈Ĉ2[SU(3)]〉 = λ2 + μ2 + λμ + 3λ + 3μ, (4)

〈Ĉ3[SU(3)]〉 = 1
9 (λ − μ)(2λ + μ + 3)(λ + 2μ + 3). (5)

By containing higher-order interactions the Hamiltonian
(1) can generate a collective potential of a stable axially
asymmetric system [62] and is relevant to the anomaly phe-
nomenon in nuclear structure [43].

To provide better descriptions for the new model, transi-
tional behaviors from the U(5) limit to the SU(3) limit in
the new model will be compared with those from the U(5)
limit to the O(6) limit in the previous IBM-1 model. The
Hamiltonian that describes the evolution from U(5) to O(6)
can be expressed as

Ĥ0 = c

[
(1 − η)n̂d − η

Q̂0 · Q̂0

N

]
, (6)

where c is the total fitting parameter, 0 � η � 1, and Q̂0 is
the quadrupole operator in the O(6) limit. When η = 0, it
describes the spherical shape of the U(5) limit. When η = 1,
it corresponds to the γ softness of the O(6) limit.

III. LEVEL ANTICROSSING
AND POTENTIAL ENERGY SURFACE

Compared to only considering second- and third-order
interactions, the introduction of fourth-order interaction ex-
pands the choice of the lowest SU(3) irrep. For N = 6, the
ground irrep can be represented by (4,4), which corresponds
to shape variable γ = 30◦. To determine the values of ξ

and κ in Eq. (1), the four lowest 0+ states are plotted as a
function of ξ and κ in the SU(3) limit, where ξ and κ are
selected within the region corresponding to the irrep (4,4)
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FIG. 1. Transitional behaviors of the 0+
2 and 0+

3 states as a function of η for N = 6, (a) from the U(5) limit to the SU(3) limit with
ξ = 0.2232 and κ = 0, (b) from the U(5) limit to the SU(3) limit with ξ = 0.2232 and κ = 0.2, and (c) from the U(5) limit to the O(6) limit.
Here panels (a) and (b) are obtained according to Eq. (1), while (c) corresponds to Eq. (6).

(as detailed in the Appendix). As shown in Fig. 1(a), when
ξ = 0.2232 and κ = 0, the energy interval between the 0+

2
and 0+

3 states decreases with increasing η, and they exhibit
crossing at η = 0.53. Here we want to point out that the level
crossing in Fig. 1(a) is actually an anticrossing, which can be
observed by enlarging the crossing-like point shown in the
inset. Similar phenomena, which appear in first-order phase
transitions due to the level repulsion, have been reported in
[63,64]. The third-order interaction dissolves the crossing-like
phenomenon and increase the energy interval between the

0+
2 and 0+

3 states as shown in Fig. 1(b). The level-crossing
phenomenon of the 0+

2 and 0+
3 states has been regarded as a

feature of the transitional behaviors from the U(5) limit to the
O(6) limit [11] shown in Fig. 1(c). It is worth noting that the
transitional behavior observed in the previous IBM-1 model is
reproduced in the SU3-IBM, which is an appealing result and
also a key feature sought by the new model.

In order to reveal the γ softness, the potential energy sur-
face for the Hamiltonian (1) calculated using the ground state
energy per boson in the large-N limit is [35,43]

V (β, γ ) = (1 − η)
β2

1 + β2
+ η

{
− β2

2(1 + β2)2
[8 + β2 + 4

√
2β cos(3γ )]

+ ξβ4

2(1 + β2)4
[64 + 32β2 + β4 + 16β2 cos(6γ ) + 8

√
2(8β + β2) cos(3γ )]

+ κβ3

9(1 + β2)3
[24β + 16

√
2 cos(3γ )+6

√
2β2 cos(3γ ) + β3 cos(6γ )]

}
. (7)

For N = 6, the irrep of the ground state corresponding to
γ = 30◦ in the SU(3) limit is (4,4); for the large-N limit, the
corresponding irrep is ( 2

3 N, 2
3 N). According to Eq. (A3) in

the Appendix, in the large-N limit ξ = 0.375 for κ = 0. The

contour plots of Eq. (7) with ξ = 0.375 are given in Figs. 2
for (a) κ = 0, (b) κ = 0.2, and (c) κ = 0.6, respectively. The
γ values of the minimum points for κ = 0 and 0.2 are both
0◦, which show the prolate shape. For κ = 0.6, the minimum

FIG. 2. Potential energy surfaces plotted in the large-N limit with ξ = 0.375, η = 0.41, (a) κ = 0, (b) κ = 0.2, (c) κ = 0.6.
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FIG. 3. Potential energy plotted as a function of γ via the mini-
mum points marked in Fig. 2

point is around 32◦, which corresponds to a typical triaxial
shape. The potential curves along the γ degree of freedom via
the minimum point for the three cases are shown in Fig. 3.
The potential depths are 0.032, 0.020, and 0.001 for κ = 0,
0.2, and 0.6, respectively. Although these situations do not
strictly correspond to the γ -unstable mode, the potential en-
ergy surfaces exhibit very shallow minimum regions in the
γ direction. This κ related shape transformation is consistent
with the evolution of the quadrupole moment of the 2+

1 state
shown in Fig. 6. In the following sections, we will show that
Hamiltonian (1) can provide an accurate description for the
properties of the realistic γ -soft nuclei. To avoid confusion,
distinguishing between the large-N limit and finite N case
(N = 6 in this paper) is necessary, for the parameters ξ and κ

under those two conditions are not the same (see Appendix).
The parameter η is less sensitive to the variation of the boson
number N , so it is chosen as 0.41 for consistency with that
used in Sec. V.

IV. ANALYSIS OF TRANSITIONAL BEHAVIORS

The evolution behaviors of partial low-lying levels from
the U(5) limit to the SU(3) limit are demonstrated in Fig. 4. In
Fig. 4(a) only the second-order and fourth-order interactions
of the SU(3) limit are considered. The key finding is that
the quasidegeneracy can be observed in the 4+

1 , 2+
2 states as

well as the 6+
1 , 4+

2 , 3+
1 states, which implies the γ softness

of the spectra. In addition, it can be noticed that the 0+
2 state

is higher than the quasidegenerate doublet states 4+
1 , 2+

2 and
intersects with the 0+

3 state at η = 0.53 (anticrossing). The
0+

3 state is degenerate with the 6+
1 , 4+

2 , 3+
1 triple states when

η < 0.53 and then begins to deviate from the triple states
when η > 0.53. As a comparison, the evolution behaviors of
low-lying states with κ = 0.2 are given in Fig. 4(b), where we
can see that the 0+

2 and 0+
3 states do not have intersection-like

behavior any more. However, the γ softness is still maintained
in the spectra, because the quasidegeneracy holds in both the
double states 4+

1 , 2+
2 and the triple states 6+

1 , 4+
2 , 3+

1 .
The reduced transitional rate B(E2) value is an impor-

tant observable for the investigation of collective behaviors.

FIG. 4. Transitional behaviors of partial low-lying states as a
function of η with ξ = 0.2232 and N = 6. (a) κ = 0, (b) κ = 0.2.

Usually, definite relationships between the energy spectra
and the corresponding B(E2) values are expected for spe-
cific nucleus. However, such relationships cannot always be
maintained. For example, in Cd isotopes the energy spectra of
the normal states are similar to those of the rigid spherical
vibrations, but the B(E2) values do not match the experi-
mental data at all [45–49]. This demonstrates that collective
behaviors cannot be solely determined by the energy spectra;
the corresponding B(E2) values must be considered. The E2
operator is defined as

T̂ (E2) = eQ̂, (8)

where e is the boson effective charge.
The transitional behaviors of the B(E2; 2+

1 → 0+
1 ),

B(E2; 0+
2 → 2+

1 ), B(E2; 0+
2 → 2+

2 ), B(E2; 0+
3 → 2+

1 ), and
B(E2; 0+

3 → 2+
2 ) values are plotted in Fig. 5. In Fig. 5(a),

when κ = 0, slight variation is displayed on the B(E2; 2+
1 →

0+
1 ) value. However, steep changes are demonstrated on

B(E2; 0+
2 → 2+

1 ), B(E2; 0+
2 → 2+

2 ), B(E2; 0+
3 → 2+

1 ), and
B(E2; 0+

3 → 2+
2 ) values just at the small level anticrossing

interval of the 0+
2 and 0+

3 states, which is similar to that
from the U(5) limit to the O(6) limit [11] shown in Fig. 5(c).
In Fig. 5(b), when κ = 0.2 the curve of B(E2; 2+

1 → 0+
1 )
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FIG. 5. Transitional behaviors of B(E2; 2+
1 → 0+

1 ) (solid black line), B(E2; 0+
2 → 2+

1 ) (solid blue line), B(E2; 0+
2 → 2+

2 ) (dashed black
line), B(E2; 0+

3 → 2+
1 ) (dashed red line), and B(E2; 0+

3 → 2+
2 ) (solid red line) as a function of η for N = 6, (a) from the U(5) limit to the

SU(3) limit with ξ = 0.2232 and κ = 0, (b) from the U(5) limit to the SU(3) limit with ξ = 0.2232 and κ = 0.2, and (c) from the U(5) limit
to the O(6) limit.

value becomes flatter than the case of κ = 0. In addition, the
B(E2; 0+

2 → 2+
1 ), B(E2; 0+

2 → 2+
2 ), B(E2; 0+

3 → 2+
1 ), and

B(E2; 0+
3 → 2+

2 ) values no longer exhibit steep changes as
those in Fig. 5(a).

TABLE I. Absolute B(E2) values in W.u. for E2 transitions be-
tween the low-lying normal states in 82Kr. The data of experiments,
E(5), and IBM are taken from Ref. [57]. The data of DD-ME2
are taken from Ref. [61]. The Resulta and Resultb are calculated
with κ = 0 and κ = 0.2, respectively. The corresponding effective
charges of Resulta and Resultb are e = 1.8037 (W.u)1/2 and e =
1.8525 (W.u)1/2, respectively. Other parameters: ξ = 0.2232, η =
0.41, N = 6.

Li L f Expt. E(5) IBM DD-ME2 Resulta Resultb

2+
1 0+

1 21.3(10) 21 21 23 21.3 21.3
4+

1 2+
1 31.1(31) 36 31 42 29.8 29.2

2+
2 2+

1 34.6(63) 36 31 24 34.6 35.8
0+

1 1.9(2) 0 0 0 0.14 0.45
6+

1 4+
1 34.3(49) 46 33 60 30.5 28.9

4+
2 2+

2 16.8(17) 24 17 42 16.8 17.0
2+

1 0.5(1) 0 0 0.26 0.44
4+

1 15.8(45) 22 16 17.6 18.5
3+

1 2+
1 1.0(2) 0 0 1 0.18 0.64

2+
2 27.8(72) 34 24 41 32.8 32.7

4+
1 9.7(75) 15.4 16.1

8+
1 6+

1 >23.9 54 31 85 24.8 22.1
6+

2 4+
2 >21.9 37 21 64 18.5 17.8

6+
1 >7.6 17 10 10.1 10.5

5+
1 3+

1 17.3(15) 28 16 54 19.5 18.9
4+

2 7.3(18) 13 7 12.4 11.7
0+

3 2+
1 0 0 10 0.02 0.84

2+
2 46 33 44 32.3 39.6

0+
2 2+

1 12.1(20) 18 12 18 15.0 13.0
2+

2 2.0(40) 0 0 5.0 0.05
2+

3 0+
2 12.7(27) 16 13 35 16.7 13.2

2+
2 2.5+0.8

−1.1 4 2 3.2 3.1
4+

3 2+
3 >18.5 26 21 21.5 18.0

2+
4 2+

3 >20.5 26 21 21.5 19.2

If deformation is the main paradigm in nuclear structure
[50], the spectroscopic quadrupole moment will be one of
the most relevant quantities, especially for the prolate-oblate
shape phase transition. The quadrupole moment of the 2+

1
state is given in Fig. 6(a). It can be seen that with increas-
ing η the values of quadrupole moment vary from negative
to positive. This means that the shapes change from prolate
to oblate, although they are all accompanied by a little bit
deformation. In the SU(3) limit, it exhibits an oblate shape,
which is induced by the fourth-order interaction Ĉ2

2 [SU(3)].
It can be seen that the value of quadrupole moment with
κ = 0.2 is larger than the case of κ = 0, which indicates that
Ĉ3[SU(3)] can make the nucleus more oblate. In the O(6) limit
the quadrupole moment of each state is 0. Thus quadrupole
moment can serve as an indicator of γ softness. As depicted
in Fig. 6(b) when κ = 0 the values of Q2+

1
, Q2+

2
, and Q4+

1
are

approximately 0 around η = 0.6, except for a slight deviation
in Q6+

1
. This phenomenon also indicates the O(6)-like γ soft-

ness existing in our model, which will be discussed for the
nucleus of 196Pt in future.

V. THEORETICAL FITTING OF 82Kr

82Kr has been identified experimentally as an empirical re-
alization of E(5) features [57,65]. The partial low-lying levels
of 82Kr are demonstrated in Fig. 7, where (a), (b), and (c) are
the energy spectra of E(5) symmetry [57], IBM calculations
[57], and DD-ME2 calculations [61], respectively. The exper-
imental results are displayed in Fig. 7(d), and our calculation
results are given in Figs. 7(e) and 7(f) with the fitting point
η = 0.41. It should be noticed that the parameter η used here
does not corresponding to the crossing point of 0+

2 and 0+
3

states shown in Fig. 1(a). Because the experimental result
shown in Fig. 7(d) do not exhibit the generation of 0+

2 and
0+

3 states, in order to be consistent with the experiment η is
chosen as 0.41. The total fitting parameter c used in Figs. 7(e)
and 7(f) is determined by normalizing the calculated 2+

1 state
to the experimental value. It can be seen that our calculated
results reproduce the overall features of the experimental en-
ergy spectra; especially the energy levels of the 0+

2 and 0+
3
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FIG. 6. (a) Transitional behaviors of the quadrupole moment of
the 2+

1 state as a function of η with κ = 0 and κ = 0.2. (b) Transi-
tional behaviors of the quadrupole moments of 2+

1 , 2+
2 , 4+

1 , and 6+
1

states as a function of η with κ = 0. Other parameters are N = 6 and
ξ = 0.2232.

fit well with the experiment data. The main drawback of our
theoretical calculation is that the higher levels of 8+

1 , 4+
4 , and

2+
4 are somewhat lower than the experimental results. When

κ = 0.2 the energy levels of 82Kr are slightly higher than
the case of κ = 0. The theoretical results are expected to be
better in line with the experimental results when more SU(3)
higher-order interactions are considered in the Hamiltonian,
and this will be investigated in future. Reference [57] shows
that 82Kr can be well described by E(5) symmetry. In this
paper, it is shown that the E(5)-like γ softness of 82Kr can
be also well described by the SU3-IBM, which is the main
conclusion of this paper.

The experimental and theoretical B(E2) values are shown
in Table I. The B(E2) values between some low-lying levels
of 82Kr in the last two columns are calculated with κ = 0
and κ = 0.2, respectively. It can be seen that the values of
the last two columns are basically identical except for those
of B(E2; 0+

3 → 2+
1 ) and B(E2; 0+

2 → 2+
2 ). Compared to the

experimental results in the third column [57], the calculated
B(E2; 2+

2 → 0+
1 ) values for κ = 0 and κ = 0.2 are 0.14 and

0.45 W.u., respectively, which are smaller than the experimen-
tal result of 1.9 W.u., but consistent with the results of E(5)
symmetry. Similar situation also occurs for the B(E2; 3+

1 →
2+

1 ) values. Besides, significant differences are displayed in
the calculated B(E2; 0+

2 → 2+
2 ) values for different κ , where

the calculated results are larger and smaller than the exper-
imental results for κ = 0 and κ = 0.2, respectively. Other
calculated results fit well with the experimental results, which
implies that the new theory exhibits close relationships with
the actual properties of 82Kr and E(5) symmetry.

The predicted values of the quadrupole moment of the 2+
1

state are −0.388 eb and 0.071 eb for κ = 0 and κ = 0.2,
respectively (see Fig. 6). The former value indicates a prolate
shape of the nucleus, while the latter suggests a γ -soft one
with a slightly oblate shape. Although the energies of the
low-lying levels and B(E2) values are similar for κ = 0 and
κ = 0.2, their quadrupole moments are very different due
to the sensitivity of quadrupole moment to nuclear shape.
Therefore, experimental measurements are awaited.

VI. CONCLUSIONS

The interacting boson model with SU(3) higher-order in-
teractions (SU3-IBM) is used to investigate the spectroscopic
properties of 82Kr, which were recently identified as empiri-
cal evidence for the E(5) CPS. In previous studies [44], the
Hamiltonian of the SU(3) limit only consists of the second-
order Casimir operator Ĉ2[SU(3)] and the third-order Casimir
operator Ĉ3[SU(3)]. If this Hamiltonian is used to describe
the properties of the typical γ -soft nucleus 196Pt, large energy
difference will exist between the 0+

2 and 0+
3 states. To over-

come this difficulty, SU(3) fourth-order interaction Ĉ2
2 [SU(3)]

is considered. The calculated results reveal that the energy
difference of 0+

2 and 0+
3 states can be reduced in this new

model. More importantly, the resulting transitional behaviors
are similar to those from the U(5) limit to the O(6) limit.
Therefore, it is expected that E(5)-like new γ softness can
exist in the new model. The theoretical calculated energies and
the B(E2) values between the relevant states in 82Kr exhibit
striking agreement with the experimental results and the E(5)
symmetry.

Based on these important findings, realistic γ -soft nuclei
need to be further investigated in this new SU3-IBM, espe-
cially the traditional O(6)-like γ -soft nuclei, such as 196Pt.
Experimental investigations have revealed that the γ -soft be-
haviors in 124–132Xe [66–73] and 98–102Zr [74,75] cannot be
explained using the traditional γ -soft descriptions, but can
be further studied in the new model. On the other hand, it
is worth noting that in the SU3-IBM there exists anticrossing
between the 0+

2 and 0+
3 states, which is very similar to the level

crossing observed in the original IBM-1 model. This implies
that a systematic investigation of this structure characteristic
is necessary. Besides, our results also contribute to the under-
standing of the prolate-oblate shape phase transition.
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FIG. 7. The comparison of experimental and calculated partial low-lying level spectra for the 82Kr nucleus. (a), (b), and (c) are the
energy spectra of E(5) symmetry, IBM calculations, and DD-ME2 calculations, respectively. (d) is the experimental results. (e) and (f)
are the calculation results with κ = 0, c = 1517.4 KeV and κ = 0.2, c = 1486.6 KeV, respectively. Other parameters used in (e) and (f)
are η = 0.41, ξ = 0.2232, and N = 6. The data of E(5), IBM, and experiment are taken from Ref. [57]. The data of DD-ME2 are taken from
Ref. [61]
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APPENDIX: PARAMETERS ξ AND κ

In the SU3-IBM, the SU(3) symmetry dominates the defor-
mation of the nucleus. This possibility was first pointed out in
Ref. [25], but was not taken seriously. In Ref. [44], the SU(3)
second-order Casimir operator −Ĉ2[SU(3)] and third-order
Casimir operator Ĉ3[SU(3)] are used to describe the shape
phase transition from the prolate shape to the oblate shape
[36]. However, in the deformation regime of the SU(3) limit,
the rigid triaxial shape cannot be realized. When the U(5) limit
is added, new γ -softness can emerge, but the energy of the 0+

3
state is almost twice the one of the 0+

2 state. Although this new
mode can successfully describe the normal states of 110Cd, it
does not conform to the actual situation of many γ -soft nuclei.

For example, in the E(5) nuclei, the 0+
2 and 0+

3 states are very
close.

Reference [25] pointed out that each irrep of the SU(3)
symmetry corresponds to a specific deformation, such as
(2N, 0) for the prolate shape and (0, N ) for the oblate shape.
If other representations can be reduced to the ground state,
it is possible to achieve the rigid triaxiality. They proposed a
very efficient mechanism by introducing SU(3) fourth-order
interaction Ĉ2

2 [SU(3)], which corresponds to the formalism

Ĥ1 = c

[
−Ĉ2[SU(3)]

2N
+ κ

Ĉ3[SU(3)]

2N2
+ ξ

Ĉ2
2 [SU(3)]

2N3

]
.

(A1)
Then the energy of Eq. (A1) for the irrep (λ,μ) is

E1(λ,μ) = c

[
−g(λ,μ)

2N
+ κ

h(λ,μ)

2N2
+ ξ

g(λ,μ)2

2N3

]
, (A2)
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FIG. 8. The six lowest 0+ levels with specific (λ,μ) as a function
of ξ with κ = 0 in the SU(3) limit.

where g(λ,μ) = 〈Ĉ2[SU(3)]〉 = λ2 + μ2 + λμ + 3λ + 3μ

and h(λ,μ) = 〈Ĉ3[SU(3)]〉 = 1
9 (λ − μ)(2λ + μ + 3)(λ +

2μ + 3). Thus, if the irrep (λ0, μ0) is the ground state, it
satisfies the condition

ξ = N2

2g(λ0, μ0)
− κN

6g(λ0, μ0)
(3 + λ0 + 2μ0), (A3)

which is obtained by calculating the derivatives of formula
(A2) and can be used to choose the value of ξ .

To reduce the energy difference between the 0+
2 and 0+

3
states, the previous IBM-1 can give us some inspiration. In
the transitional behaviors from the U(5) limit to the O(6) limit,
there exists a crossover phenomenon between the 0+

2 and 0+
3

states [11]. The O(6) limit corresponds to the γ -unrelated
case, where the average value of the γ degree of freedom is
γeff = 30◦. In the SU3-IBM, this implies that the shape in the
SU(3) limit is a rigid triaxial deformation with γ = 30◦. The
value of the quadrupole shape variable γ for the SU(3) irrep
(λ0, μ0) in the finite-N case can be expressed as [36]

γ = tan−1

( √
3(μ0 + 1)

2λ0 + μ0 + 3

)
. (A4)

Obviously, γ = 30◦ if λ0 = μ0, which is valid in the large-N
limit [26,36]. This means that the irrep of the ground state
should be (λ0, λ0), which can be realized by introducing the
fourth-order interaction Ĉ2

2 [SU(3)]. If the irrep (λ0, λ0) does
not exist, then ξ that can result in γeff = 30◦ will be chosen.
For example, if N = 7, ξ is located between the irreps (6,4)
and (2,6).

To further elucidate the relationship between the SU(3)
irreps of the ground state and the parameter ξ , Fig. 8 presents
evolutional behaviors of the six lowest 0+ levels with specific
irreps (λ,μ) as a function of ξ in the SU(3) limit with κ = 0.
By setting the energy of the ground states to 0, Fig. 8 can

FIG. 9. Transitional behaviors of the four lowest 0+ states are plotted as a function of ξ in the SU(3) limit, with (a) κ = 0, (b) κ = 0.1,
(c) κ = 0.2, and (d) κ = 0.3. The ground states corresponding to SU(3) irreps (12,0), (8,2), (4,4) and (0,6) (6,0) for N = 6 are separated by
dashed lines.
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be represented by Fig. 9(a), which offers a more effective
illustration of changes in the SU(3) irreps of the ground state.
The same procedure is also employed for the cases of κ = 0.1,
0.2, and 0.3, yielding Figs. 9(b), 9(c), and 9(d), respectively.

For simplicity, only the four lowest 0+ states are plot-
ted in Fig. 9. It can be seen that the irreps of the ground
state gradually appear, with the first four labeled as (12,0),
(8,2), (4,4) and (0,6) (6,0), respectively, which are separated
by the dashed lines. For (12,0) and (0,6), γ = 3.67◦ and
γ = 53.41◦, which correspond to the prolate and oblate de-
formation, respectively. For (8,2) and (4,4), γ = 18.90◦ and
γ = 30◦ respectively, which represent the triaxial rotation.
According to Eq. (A3), the values of ξ for the first four irreps
are located at 0.1, 0.16, 0.25, and 0.33, which fall within the
regions (0, 0.1225), (0.1225, 0.1925), (0.1925, 0.285), and
(0.285, 0.4625) respectively in Fig. 9(a). The transitional be-
haviors from the U(5) limit to the SU(3) limit for Hamiltonian
(1) are discussed in the vicinity of ξ = 0.25, and the crossover
phenomenon between the 0+

2 and 0+
3 state can be found for

ξ = 0.2232 in Fig. 1.

According to Eq. (A3), for a specific irrep (λ0, μ0) the
value of ξ decreases as κ increases. For example, when con-
sidering irrep (4,4), the values of ξ are 0.250, 0.229, 0.208,
and 0.188 for κ = 0, 0.1, 0.2, and 0.3, respectively. To demon-
strate the effect of κ , a gray area around 0.2232 is labeled in
Fig. 9. As κ increases from 0 to 0.3, the irrep (4,4) shifts out
of the gray area and the oblate deformation (0,6) moves into
this region, indicating that the shape evolves from the rigid
triaixal rotor to the oblate rotation. This may be affected by the
(6,0) irrep, which is degenerate with (0,6). This phenomenon
is consistent with the conclusion given in Ref. [36] that the
SU(3) third-order interaction can induce the oblate deforma-
tion. Besides, it can be also noticed that the level interval
between 0+

2 and 0+
3 states in the gray area becomes larger as κ

increases. When choosing the value of κ , we expect the gray
area investigated in this paper to fall within the rigid triaxial
deformation region of irrep (4,4), and the energy interval of
0+

2 and 0+
3 states in the gray area is not too large. Thus in this

paper we choose κ = 0 and 0.2 for comparison.
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